Sample records for pattern-triggered immunity pti

  1. Root assays to study pattern-triggered immunity in plant-nematode interactions

    USDA-ARS?s Scientific Manuscript database

    Plants employ extracellular immune receptors to perceive conserved pathogen-associated molecular patterns (PAMPs), triggering the first layer of defense known as pattern-triggered immunity (PTI). The understanding of PTI is mainly based on the studies focusing on leaves. Plants are vulnerable to att...

  2. Plant immunity triggered by microbial molecular signatures.

    PubMed

    Zhang, Jie; Zhou, Jian-Min

    2010-09-01

    Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resulting in diminished plant defenses and increased bacterial virulence. Some of the proteins targeted by pathogen effectors have evolved to sense the effector activity by associating with cytoplasmic immune receptors classically known as resistance proteins. This allows plants to activate a second layer of immunity termed effector-triggered immunity (ETI). Recent studies on PTI regulation and P. syringae effector targets have uncovered new components in PTI signaling. Although MAP kinase (MAPK) cascades have been considered crucial for PTI, emerging evidence indicates that a MAPK-independent pathway also plays an important role in PTI signaling.

  3. A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity.

    PubMed

    Hatsugai, Noriyuki; Igarashi, Daisuke; Mase, Keisuke; Lu, You; Tsuda, Yayoi; Chakravarthy, Suma; Wei, Hai-Lei; Foley, Joseph W; Collmer, Alan; Glazebrook, Jane; Katagiri, Fumiaki

    2017-09-15

    Since signaling machineries for two modes of plant-induced immunity, pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), extensively overlap, PTI and ETI signaling likely interact. In an Arabidopsis quadruple mutant, in which four major sectors of the signaling network, jasmonate, ethylene, PAD4, and salicylate, are disabled, the hypersensitive response (HR) typical of ETI is abolished when the Pseudomonas syringae effector AvrRpt2 is bacterially delivered but is intact when AvrRpt2 is directly expressed in planta These observations led us to discovery of a network-buffered signaling mechanism that mediates HR signaling and is strongly inhibited by PTI signaling. We named this mechanism the ETI-Mediating and PTI-Inhibited Sector (EMPIS). The signaling kinetics of EMPIS explain apparently different plant genetic requirements for ETI triggered by different effectors without postulating different signaling machineries. The properties of EMPIS suggest that information about efficacy of the early immune response is fed back to the immune signaling network, modulating its activity and limiting the fitness cost of unnecessary immune responses. © 2017 The Authors.

  4. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana[OPEN

    PubMed Central

    Adachi, Hiroaki; Nakano, Takaaki; Miyagawa, Noriko; Ishihama, Nobuaki; Yoshioka, Miki; Katou, Yuri; Yaeno, Takashi

    2015-01-01

    Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB. PMID:26373453

  5. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    PubMed

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  6. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    PubMed

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  7. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants.

    PubMed

    Gouveia, Bianca C; Calil, Iara P; Machado, João Paulo B; Santos, Anésia A; Fontes, Elizabeth P B

    2016-01-01

    Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.

  8. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  9. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    PubMed Central

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  11. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    PubMed

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  12. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    USDA-ARS?s Scientific Manuscript database

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  13. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.

    PubMed

    Silva, Marilia Santos; Arraes, Fabrício Barbosa Monteiro; Campos, Magnólia de Araújo; Grossi-de-Sa, Maira; Fernandez, Diana; Cândido, Elizabete de Souza; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2018-05-01

    This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2013-04-01

    Plant innate immunity is composed of two layers. Basal immunity is triggered by pathogen-associated molecular patterns (PAMPs) such as the flagellin-peptide flg22 and is termed PAMP-triggered immunity (PTI). In addition, effector-triggered immunity (ETI) linked with programmed cell death and cytoskeletal reorganization can be induced by pathogen-derived factors, such as the Harpin proteins originating from phytopathogenic bacteria. To get insight into the link between cytoskeleton and PTI or ETI, this study followed the responses of actin filaments and microtubules to flg22 and HrpZ in vivo by spinning-disc confocal microscopy in GFP-tagged marker lines of tobacco BY-2. At a concentration that clearly impairs mitosis, flg22 can induce only subtle cytoskeletal responses. In contrast, HrpZ causes a rapid and massive bundling of actin microfilaments (completed in ~20 min, i.e. almost simultaneously with extracellular alkalinization), which is followed by progressive disintegration of actin cables and cytoplasmic microtubules, a loss of cytoplasmic structure, and vacuolar disintegration. Cytoskeletal disruption is proposed as an early event that discriminates HrpZ-triggered ETI-like defence from flg22-triggered PTI.

  15. The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells

    PubMed Central

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2013-01-01

    Plant innate immunity is composed of two layers. Basal immunity is triggered by pathogen-associated molecular patterns (PAMPs) such as the flagellin-peptide flg22 and is termed PAMP-triggered immunity (PTI). In addition, effector-triggered immunity (ETI) linked with programmed cell death and cytoskeletal reorganization can be induced by pathogen-derived factors, such as the Harpin proteins originating from phytopathogenic bacteria. To get insight into the link between cytoskeleton and PTI or ETI, this study followed the responses of actin filaments and microtubules to flg22 and HrpZ in vivo by spinning-disc confocal microscopy in GFP-tagged marker lines of tobacco BY-2. At a concentration that clearly impairs mitosis, flg22 can induce only subtle cytoskeletal responses. In contrast, HrpZ causes a rapid and massive bundling of actin microfilaments (completed in ~20min, i.e. almost simultaneously with extracellular alkalinization), which is followed by progressive disintegration of actin cables and cytoplasmic microtubules, a loss of cytoplasmic structure, and vacuolar disintegration. Cytoskeletal disruption is proposed as an early event that discriminates HrpZ-triggered ETI-like defence from flg22-triggered PTI. PMID:23408828

  16. Effector-triggered defence against apoplastic fungal pathogens

    PubMed Central

    Stotz, Henrik U.; Mitrousia, Georgia K.; de Wit, Pierre J.G.M.; Fitt, Bruce D.L.

    2014-01-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  17. Silencing and innate immunity in plant defense against viral and non-viral pathogens.

    PubMed

    Zvereva, Anna S; Pooggin, Mikhail M

    2012-10-29

    The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.

  18. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity1[OPEN

    PubMed Central

    Fritz, Marion

    2016-01-01

    The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elusive. Here, we identify the Arabidopsis (Arabidopsis thaliana) GLYCOGEN SYNTHASE KINASE3 (GSK3)/Shaggy-like kinase ASKα as a positive regulator of plant immune signaling. The perception of several unrelated PAMPs rapidly induced ASKα kinase activity. Loss of ASKα attenuated, whereas its overexpression enhanced, diverse PTI responses, ultimately affecting susceptibility to the bacterial pathogen Pseudomonas syringae. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the oxidative pentose phosphate pathway, provides reducing equivalents important for defense responses and is a direct target of ASKα. ASKα phosphorylates cytosolic G6PD6 on an evolutionarily conserved threonine residue, thereby stimulating its activity. Plants deficient for or overexpressing G6PD6 showed a modified immune response, and the insensitivity of g6pd6 mutant plants to PAMP-induced growth inhibition was complemented by a phosphomimetic but not by a phosphonegative G6PD6 version. Overall, our data provide evidence that ASKα and G6PD6 constitute an immune signaling module downstream of PRRs, linking protein phosphorylation cascades to metabolic regulation. PMID:27208232

  19. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana.

    PubMed

    Sreekanta, Suma; Bethke, Gerit; Hatsugai, Noriyuki; Tsuda, Kenichi; Thao, Amanda; Wang, Lin; Katagiri, Fumiaki; Glazebrook, Jane

    2015-07-01

    In this paper we describe PATTERN-TRIGGERED IMMUNITY (PTI) COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (PCRK1) of Arabidopsis thaliana, an RLCK that is important for defense against the pathogen Pseudomonas syringae pv. maculicola ES4326 (Pma ES4326). We examined defense responses such as bacterial growth, production of reactive oxygen species (ROS) and callose deposition in pcrk1 mutant plants to determine the role of PCRK1 during pathogen infection. Expression of PCRK1 was induced following pathogen infection. Pathogen growth was significantly higher in pcrk1 mutant lines than in wild-type Col-0. Mutant pcrk1 plants showed reduced pattern-triggered immunity (PTI) against Pma ES4326 after pretreatment with peptides derived from flagellin (flg22), elongation factor-Tu (elf18), or an endogenous protein (pep1). Deposition of callose was reduced in pcrk1 plants, indicating a role of PCRK1 in activation of early immune responses. A PCRK1 transgene containing a mutation in a conserved lysine residue important for phosphorylation activity of kinases (K118E) failed to complement a pcrk1 mutant for the Pma ES4326 growth phenotype. Our study shows that PCRK1 plays an important role during PTI and that a conserved lysine residue in the putative kinase domain is important for PCRK1 function. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?

    PubMed

    Block, Anna; Alfano, James R

    2011-02-01

    The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle trafficking, and altering organelle function. T3Es can be recognized indirectly by resistance proteins monitoring specific T3E targets resulting in ETI. It is presently unclear whether the monitored targets represent bona fide virulence targets or guarded decoys. Extensive overlap between PTI and ETI signaling suggests that T3Es may suppress both pathways through common targets and by possessing multiple activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner.

    PubMed

    Singh, Prashant; Yekondi, Shweta; Chen, Po-Wen; Tsai, Chia-Hong; Yu, Chun-Wei; Wu, Keqiang; Zimmerli, Laurent

    2014-06-01

    In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline

    2018-01-26

    Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.

  3. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    PubMed Central

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  4. Pattern Triggered Immunity (PTI) in Tobacco: Isolation of Activated Genes Suggests Role of the Phenylpropanoid Pathway in Inhibition of Bacterial Pathogens

    PubMed Central

    Szatmári, Ágnes; Zvara, Ágnes; Móricz, Ágnes M.; Besenyei, Eszter; Szabó, Erika; Ott, Péter G.; Puskás, László G.; Bozsó, Zoltán

    2014-01-01

    Background Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease. Methodology/Principal Findings Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI - as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI. Conclusions/Significance We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI. PMID:25101956

  5. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.

    PubMed

    Po-Wen, Chen; Singh, Prashant; Zimmerli, Laurent

    2013-01-01

    Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  6. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    PubMed

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  7. The Tomato Kinase Pti1 Contributes to Production of Reactive Oxygen Species in Response to Two Flagellin-Derived Peptides and Promotes Resistance to Pseudomonas syringae Infection.

    PubMed

    Schwizer, Simon; Kraus, Christine M; Dunham, Diane M; Zheng, Yi; Fernandez-Pozo, Noé; Pombo, Marina A; Fei, Zhangjun; Chakravarthy, Suma; Martin, Gregory B

    2017-09-01

    The Pti1 kinase was identified from a reverse genetic screen as contributing to pattern-triggered immunity (PTI) against Pseudomonas syringae pv. tomato (Pst). The tomato genome has two Pti1 genes, referred to as Pti1a and Pti1b. A hairpin-Pti1 (hpPti1) construct was developed and was used to generate two independent stable transgenic tomato lines that had reduced transcript abundance of both genes. In response to P. syringae pv. tomato inoculation, these hpPti1 plants developed more severe disease symptoms, supported higher bacterial populations, and had reduced transcript accumulation of PTI-associated genes, as compared with wild-type plants. In response to two flagellin-derived peptides, the hpPti1 plants produced lesser amounts of reactive oxygen species (ROS) but showed no difference in mitogen-activated protein kinase (MAPK). Synthetic Pti1a and Pti1b genes designed to avoid silencing were transiently expressed in the hpPti1 plants and restored the ability of the plants to produce wild-type levels of ROS. Our results identify a new component of PTI in tomato that, because it affects ROS production but not MAPK signaling, appears to act early in the immune response.

  8. A novel nematode effector suppresses plant immunity by activating host reactuve oxygen species-scavenging system

    USDA-ARS?s Scientific Manuscript database

    Oxidative burst is a hallmark event of the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), which is the first line of plant defense mechanisms, but it remains unclear how nematodes can overcome this defense mechanism. In this study, we show that plant-parasitic nematode Meloid...

  9. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana.

    PubMed

    Tsuda, Kenichi; Mine, Akira; Bethke, Gerit; Igarashi, Daisuke; Botanga, Christopher J; Tsuda, Yayoi; Glazebrook, Jane; Sato, Masanao; Katagiri, Fumiaki

    2013-01-01

    Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity, Effector-Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), extensively share signaling machinery, the network output is much more robust against perturbations during ETI than PTI, suggesting modulation of network robustness. Here, we report a molecular mechanism underlying the modulation of the network robustness in Arabidopsis thaliana. The salicylic acid (SA) signaling sector regulates a major portion of the plant immune response and is important in immunity against biotrophic and hemibiotrophic pathogens. In Arabidopsis, SA signaling was required for the proper regulation of the vast majority of SA-responsive genes during PTI. However, during ETI, regulation of most SA-responsive genes, including the canonical SA marker gene PR1, could be controlled by SA-independent mechanisms as well as by SA. The activation of the two immune-related MAPKs, MPK3 and MPK6, persisted for several hours during ETI but less than one hour during PTI. Sustained MAPK activation was sufficient to confer SA-independent regulation of most SA-responsive genes. Furthermore, the MPK3 and SA signaling sectors were compensatory to each other for inhibition of bacterial growth as well as for PR1 expression during ETI. These results indicate that the duration of the MAPK activation is a critical determinant for modulation of robustness of the immune signaling network. Our findings with the plant immune signaling network imply that the robustness level of a biological network can be modulated by the activities of network components.

  10. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions.

    PubMed

    Bozsó, Zoltán; Ott, Péter G; Kámán-Tóth, Evelin; Bognár, Gábor F; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were also observable. Genes specifically affected by virulent P. tabaci belonged to various previously identified signaling routes, suggesting that compatible pathogens may modulate diverse signaling pathways of PTI to overcome plant defense.

  11. Redox proteomics of tomato in response to Pseudomonas syringae infection

    PubMed Central

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  12. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants.

    PubMed

    Nakano, Masahito; Oda, Kenji; Mukaihara, Takafumi

    2017-07-01

    Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects more than 70 effector proteins into host plant cells via the Hrp type III secretion system to cause a successful infection. However, the function of these effectors in plant cells, especially in the suppression of plant immunity, remains largely unknown. In this study, we characterized two Ralstonia solanacearum effectors, RipAW and RipAR, which share homology with the IpaH family of effectors from animal and plant pathogenic bacteria, that have a novel E3 ubiquitin ligase (NEL) domain. Recombinant RipAW and RipAR show E3 ubiquitin ligase activity in vitro. RipAW and RipAR localized to the cytoplasm of plant cells and significantly suppressed pattern-triggered immunity (PTI) responses such as the production of reactive oxygen species and the expression of defence-related genes when expressed in leaves of Nicotiana benthamiana. Mutation in the conserved cysteine residue in the NEL domain of RipAW completely abolished the E3 ubiquitin ligase activity in vitro and the ability to suppress PTI responses in plant leaves. These results indicate that RipAW suppresses plant PTI responses through the E3 ubiquitin ligase activity. Unlike other members of the IpaH family of effectors, RipAW and RipAR had no leucine-rich repeat motifs in their amino acid sequences. A conserved C-terminal region of RipAW is indispensable for PTI suppression. Transgenic Arabidopsis plants expressing RipAW and RipAR showed increased disease susceptibility, suggesting that RipAW and RipAR contribute to bacterial virulence in plants.

  13. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity

    PubMed Central

    Reymond, Philippe

    2013-01-01

    Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis. PMID:23264520

  14. Rapid screening for citrus canker resistance employing pattern-triggered immunity (PTI) responses

    USDA-ARS?s Scientific Manuscript database

    Citrus canker, caused by the bacterial pathogen Xanthomonas citri ssp. citri (Xcc), has been attributed to millions of dollars in loss or damage to commercial citrus crops in subtropical production areas of the world. Since identification of resistant plants is one of the most effective methods of d...

  15. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity1[OPEN

    PubMed Central

    Connor, Richard A.

    2017-01-01

    Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. PMID:27909045

  16. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity.

    PubMed

    Zhou, Bangjun; Mural, Ravi V; Chen, Xuanyang; Oates, Matt E; Connor, Richard A; Martin, Gregory B; Gough, Julian; Zeng, Lirong

    2017-02-01

    Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Phosphorylation of Trihelix Transcriptional Repressor ASR3 by MAP KINASE4 Negatively Regulates Arabidopsis Immunity

    PubMed Central

    Li, Bo; Jiang, Shan; Yu, Xiao; Cheng, Cheng; Chen, Sixue; Cheng, Yanbing; Yuan, Joshua S.; Jiang, Daohong; He, Ping; Shan, Libo

    2015-01-01

    Proper control of immune-related gene expression is crucial for the host to launch an effective defense response. Perception of microbe-associated molecular patterns (MAMPs) induces rapid and profound transcriptional reprogramming via unclear mechanisms. Here, we show that ASR3 (ARABIDOPSIS SH4-RELATED3) functions as a transcriptional repressor and plays a negative role in regulating pattern-triggered immunity (PTI) in Arabidopsis thaliana. ASR3 belongs to a plant-specific trihelix transcription factor family for which functional studies are lacking. MAMP treatments induce rapid phosphorylation of ASR3 at threonine 189 via MPK4, a mitogen-activated protein kinase that negatively regulates PTI responses downstream of multiple MAMP receptors. ASR3 possesses transcriptional repressor activity via its ERF-associated amphiphilic repression motifs and negatively regulates a large subset of flg22-induced genes. Phosphorylation of ASR3 by MPK4 enhances its DNA binding activity to suppress gene expression. Importantly, the asr3 mutant shows enhanced disease resistance to virulent bacterial pathogen infection, whereas transgenic plants overexpressing the wild-type or phospho-mimetic form of ASR3 exhibit compromised PTI responses. Our studies reveal a function of the trihelix transcription factors in plant innate immunity and provide evidence that ASR3 functions as a transcriptional repressor regulated by MAMP-activated MPK4 to fine-tune plant immune gene expression. PMID:25770109

  18. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity.

    PubMed

    Medina, Cesar Augusto; Reyes, Paola Andrea; Trujillo, Cesar Augusto; Gonzalez, Juan Luis; Bejarano, David Alejandro; Montenegro, Nathaly Andrea; Jacobs, Jonathan M; Joe, Anna; Restrepo, Silvia; Alfano, James R; Bernal, Adriana

    2018-03-01

    Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  19. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein.

    PubMed

    Escudero, Viviana; Jordá, Lucía; Sopeña-Torres, Sara; Mélida, Hugo; Miedes, Eva; Muñoz-Barrios, Antonio; Swami, Sanjay; Alexander, Danny; McKee, Lauren S; Sánchez-Vallet, Andrea; Bulone, Vincent; Jones, Alan M; Molina, Antonio

    2017-11-01

    Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    PubMed

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  1. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    PubMed Central

    Zhou, Bangjun; Zeng, Lirong

    2018-01-01

    In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  2. Plant pattern recognition receptor complexes at the plasma membrane.

    PubMed

    Monaghan, Jacqueline; Zipfel, Cyril

    2012-08-01

    A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    PubMed

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henty-Ridilla, Jessica L.; Shimono, Masaki; Li, Jiejie

    2013-04-04

    Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence thatmore » the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.« less

  5. Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity.

    PubMed

    Popov, Georgy; Fraiture, Malou; Brunner, Frederic; Sessa, Guido

    2016-08-01

    Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms.

  6. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    PubMed

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  7. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    PubMed Central

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  8. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    PubMed

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-02

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions.

  9. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance.

    PubMed

    You, Quanyuan; Zhai, Keran; Yang, Donglei; Yang, Weibing; Wu, Jingni; Liu, Junzhong; Pan, Wenbo; Wang, Jianjun; Zhu, Xudong; Jian, Yikun; Liu, Jiyun; Zhang, Yingying; Deng, Yiwen; Li, Qun; Lou, Yonggen; Xie, Qi; He, Zuhua

    2016-12-14

    Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

    PubMed Central

    Singh, Raksha; Dangol, Sarmina; Chen, Yafei; Choi, Jihyun; Cho, Yoon-Seong; Lee, Jea-Eun; Choi, Mi-Ok; Jwa, Nam-Soo

    2016-01-01

    Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen. PMID:27126515

  11. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    PubMed Central

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963

  12. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000.

    PubMed

    Wang, Mengnan; Zhu, Yanxun; Han, Rui; Yin, Wuchen; Guo, Chunlei; Li, Zhi; Wang, Xiping

    2018-03-01

    Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20 , from the Chinese wild Vitis genotype, V. amurensis Rupr "Shuangyou". Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea ) in "Shuangyou" and V. vinifera "Red Globe". Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato ( Pst ) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and Pst DC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and Pst DC3000 inoculation of the VaERF20 -overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses.

  13. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    PubMed

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-05-31

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.

  14. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000

    PubMed Central

    Wang, Mengnan; Zhu, Yanxun; Han, Rui; Yin, Wuchen; Guo, Chunlei; Li, Zhi; Wang, Xiping

    2018-01-01

    Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr “Shuangyou”. Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea) in “Shuangyou” and V. vinifera “Red Globe”. Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Patterns of pathogen-induced reactive oxygen species (ROS) accumulation were entirely distinct in B. cinerea and PstDC3000 inoculated plants. Examples of both salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) responsive defense genes were up-regulated after B. cinerea and PstDC3000 inoculation of the VaERF20-overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI), callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses. PMID:29494485

  15. Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana

    PubMed Central

    Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian

    2018-01-01

    Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510

  16. Virulence of Pseudomonas syringae pv. tomato DC3000 Is Influenced by the Catabolite Repression Control Protein Crc.

    PubMed

    Chakravarthy, Suma; Butcher, Bronwyn G; Liu, Yingyu; D'Amico, Katherine; Coster, Matthew; Filiatrault, Melanie J

    2017-04-01

    Pseudomonas syringae infects diverse plant species and is widely used as a model system in the study of effector function and the molecular basis of plant diseases. Although the relationship between bacterial metabolism, nutrient acquisition, and virulence has attracted increasing attention in bacterial pathology, it is largely unexplored in P. syringae. The Crc (catabolite repression control) protein is a putative RNA-binding protein that regulates carbon metabolism as well as a number of other factors in the pseudomonads. Here, we show that deletion of crc increased bacterial swarming motility and biofilm formation. The crc mutant showed reduced growth and symptoms in Arabidopsis and tomato when compared with the wild-type strain. We have evidence that the crc mutant shows delayed hypersensitive response (HR) when infiltrated into Nicotiana benthamiana and tobacco. Interestingly, the crc mutant was more susceptible to hydrogen peroxide, suggesting that, in planta, the mutant may be sensitive to reactive oxygen species generated during pathogen-associated molecular pattern-triggered immunity (PTI). Indeed, HR was further delayed when PTI-induced tissues were challenged with the crc mutant. The crc mutant did not elicit an altered PTI response in plants compared with the wild-type strain. We conclude that Crc plays an important role in growth and survival during infection.

  17. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    PubMed

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

    PubMed

    Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang

    2014-12-01

    Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

  19. A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri.

    PubMed Central

    Shi, Qingchun; Febres, Vicente J; Jones, Jeffrey B; Moore, Gloria A

    2016-01-01

    Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) is an important component of plant innate immunity. In a previous study, we showed that the PAMP flg22 from Xanthomonas citri ssp. citri (Xflg22), the causal agent of citrus canker, induced PTI in citrus, which correlated with the observed levels of canker resistance. Here, we identified and sequenced two bacterial flagellin/flg22 receptors (FLS2-1 and FLS2-2) from ‘Duncan’ grapefruit (Citrus paradisi, CpFLS2-1 and CpFLS2-2) and ‘Sun Chu Sha’ mandarin (C. reticulata, CrFLS2-1 and CrFLS2-2). We were able to isolate only one FLS2 from ‘Nagami’ kumquat (Fortunella margarita, FmFLS2-1) and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome. Phylogenetic analysis, gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus. FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1, with induced expression levels higher in canker-resistant citrus than in susceptible ones. Interestingly, ‘Nagami’ kumquat showed the highest FLS2-1 steady-state expression levels, although it was not induced by Xflg22. We selected FmFLS2-1, CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays. Both FmFLS2-1 and CrFLS2-2, the two proteins from canker-resistant species, conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype. These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types. PMID:27222722

  20. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  1. Ca2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity.

    PubMed

    Yuan, Peiguo; Du, Liqun; Poovaiah, B W

    2018-06-14

    During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.

  2. Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity

    PubMed Central

    Fabro, Georgina; Steinbrenner, Jens; Coates, Mary; Ishaque, Naveed; Baxter, Laura; Studholme, David J.; Körner, Evelyn; Allen, Rebecca L.; Piquerez, Sophie J. M.; Rougon-Cardoso, Alejandra; Greenshields, David; Lei, Rita; Badel, Jorge L.; Caillaud, Marie-Cecile; Sohn, Kee-Hoon; Van den Ackerveken, Guido; Parker, Jane E.; Beynon, Jim; Jones, Jonathan D. G.

    2011-01-01

    Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation. PMID:22072967

  3. Elevated CO2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Yuan, Erliang; Ge, Feng

    2018-03-01

    Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO 2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO 2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO 2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO 2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO 2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO 2 , and negated the increased resistance against the aphid under elevated CO 2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO 2 . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    PubMed Central

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry ( Physalis peruviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P . peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  5. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    PubMed

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  6. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  7. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism.

    PubMed

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-22

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.

  8. Plant immunity: a lesson from pathogenic bacterial effector proteins.

    PubMed

    Cui, Haitao; Xiang, Tingting; Zhou, Jian-Min

    2009-10-01

    Phytopathogenic bacteria inject an array of effector proteins into host cells to alter host physiology and assist the infection process. Some of these effectors can also trigger disease resistance as a result of recognition in the plant cell by cytoplasmic immune receptors. In addition to effector-triggered immunity, plants immunity can be triggered upon the detection of Pathogen/Microbe-Associated Molecular Patterns by surface-localized immune receptors. Recent progress indicates that many bacterial effector proteins use a variety of biochemical properties to directly attack key components of PAMP-triggered immunity and effector-triggered immunity, providing new insights into the molecular basis of plant innate immunity. Emerging evidence indicate that the evolution of disease resistance in plants is intimately linked to the mechanism by which bacterial effectors promote parasitism. This review focuses on how these studies have conceptually advanced our understanding of plant-pathogen interactions.

  9. Effector-triggered versus pattern-triggered immunity: how animals sense virulent pathogens

    PubMed Central

    Stuart, Lynda M.; Paquette, Nicholas; Boyer, Laurent

    2014-01-01

    A fundamental question of any immune system is how it can discriminate between pathogens and non-pathogens. Here, we discuss that this can be mediated by a surveillance system distinct from pattern recognition receptors that recognize conserved microbial patterns and can be based instead on the host’s ability to sense perturbations in host cells induced by bacterial toxins or ‘effectors’ that are exclusively encoded by virulent microorganisms. Such ‘effector-triggered immunity’ was previously thought to be restricted to plants, but recent data indicate that animals also use this strategy. PMID:23411798

  10. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    PubMed

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism

    PubMed Central

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-01

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310

  12. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.

    PubMed

    Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten

    2015-10-05

    Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.

  13. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.

    PubMed

    West, A Phillip

    2017-11-01

    A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    PubMed Central

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  15. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    PubMed

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  16. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity.

    PubMed

    Cheng, Yulin; Wu, Kuan; Yao, Juanni; Li, Shumin; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng

    2017-05-01

    During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    PubMed

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  18. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity.

    PubMed

    Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji

    2016-04-12

    The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.

  19. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes.

    PubMed

    Aljaafri, Weasam A R; McNeece, Brant T; Lawaju, Bisho R; Sharma, Keshav; Niruala, Prakash M; Pant, Shankar R; Long, David H; Lawrence, Kathy S; Lawrence, Gary W; Klink, Vincent P

    2017-12-01

    The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Analysis of PAMP-Triggered ROS Burst in Plant Immunity.

    PubMed

    Sang, Yuying; Macho, Alberto P

    2017-01-01

    The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

  1. Sugars and plant innate immunity.

    PubMed

    Bolouri Moghaddam, Mohammad Reza; Van den Ende, Wim

    2012-06-01

    Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals.

  2. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines.

    PubMed

    Tima, Hermann Giresse; Huygen, Kris; Romano, Marta

    2016-11-01

    Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.

  3. Patterns of Primary Tumor Invasion and Regional Lymph Node Spread Based on Magnetic Resonance Imaging in Early-Stage Nasal NK/T-cell Lymphoma: Implications for Clinical Target Volume Definition and Prognostic Significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Run-Ye; Liu, Kang; Wang, Wei-Hu

    Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surroundingmore » the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.« less

  4. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.

    PubMed

    Salminen, Antero; Ojala, Johanna; Kauppinen, Anu; Kaarniranta, Kai; Suuronen, Tiina

    2009-02-01

    The inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease (AD). Recent studies indicate that inflammation is not merely a bystander in neurodegeneration but a powerful pathogenetic force in the disease process. Increased production of amyloid-beta peptide species can activate the innate immunity system via pattern recognition receptors (PRRs) and evoke Alzheimer's pathology. We will focus on the role of innate immunity system of brain in the initiation and the propagation of inflammatory process in AD. We examine here in detail the significance of amyloid-beta oligomers and fibrils as danger-associated molecular patterns (DAMPs) in the activation of a wide array of PRRs in glial cells and neurons, such as Toll-like, NOD-like, formyl peptide, RAGE and scavenger receptors along with complement and pentraxin systems. We also characterize the signaling pathways triggered by different PRRs in evoking inflammatory responses. In addition, we will discuss whether AD pathology could be the outcome of chronic activation of the innate immunity defence in the brain of AD patients.

  5. Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean

    USDA-ARS?s Scientific Manuscript database

    Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...

  6. The Xanthomonas campestris pv. vesicatoria Type-3 Effector XopB Inhibits Plant Defence Responses by Interfering with ROS Production

    PubMed Central

    Priller, Johannes Peter Roman; Reid, Stephen; Konein, Patrick; Dietrich, Petra

    2016-01-01

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria 85–10 (Xcv) translocates about 30 type-3 effector proteins (T3Es) into pepper plants (Capsicum annuum) to suppress plant immune responses. Among them is XopB which interferes with PTI, ETI and sugar-mediated defence responses, but the underlying molecular mechanisms and direct targets are unknown so far. Here, we examined the XopB-mediated suppression of plant defence responses in more detail. Infection of susceptible pepper plants with Xcv lacking xopB resulted in delayed symptom development compared to Xcv wild type infection concomitant with an increased formation of salicylic acid (SA) and expression of pathogenesis-related (PR) genes. Expression of xopB in Arabidopsis thaliana promoted the growth of the virulent Pseudomonas syringae pv. tomato (Pst) DC3000 strain. This was paralleled by a decreased SA-pool and a lower induction of SA-dependent PR gene expression. The expression pattern of early flg22-responsive marker genes indicated that MAPK signalling was not altered in the presence of XopB. However, XopB inhibited the flg22-triggered burst of reactive oxygen species (ROS). Consequently, the transcript accumulation of AtOXI1, a ROS-dependent marker gene, was reduced in xopB-expressing Arabidopsis plants as well as callose deposition. The lower ROS production correlated with a low level of basal and flg22-triggered expression of apoplastic peroxidases and the NADPH oxidase RBOHD. Conversely, deletion of xopB in Xcv caused a higher production of ROS in leaves of susceptible pepper plants. Together our results demonstrate that XopB modulates ROS responses and might thereby compromise plant defence. PMID:27398933

  7. Innate immunity phenotypic features point toward simultaneous raise of activation and modulation events following 17DD live attenuated yellow fever first-time vaccination.

    PubMed

    Martins, Marina Angela; Silva, Maria Luiza; Elói-Santos, Silvana Maria; Ribeiro, José Geraldo Leite; Peruhype-Magalhães, Vanessa; Marciano, Ana Paula Vieira; Homma, Akira; Kroon, Erna Geessien; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis

    2008-02-26

    Detailed multiparametric phenotypic investigation aiming to characterize the kinetics of the innate immune response in the peripheral blood following 17DD yellow fever (17DD-YF) first-time vaccination was performed. Results showed increased frequency of monocytes and NK cell subpopulations besides unexpected up-regulation of granulocytes activation status (CD28+/CD23+ and CD28+/HLA-DR+, respectively). Up-regulation of Fcgamma-R and IL-10-R expression emerge as putative events underlying the mixed pattern of phenotypic features triggered by the 17DD yellow fever (17DD-YF) vaccination. Mixed pattern of chemokine receptors expression further support our hypothesis that a parallel establishment of activation/modulation microenvironment plays a pivotal role in the protective immunity triggered by the 17DD-YF vaccine.

  8. Roles of small RNAs in plant disease resistance.

    PubMed

    Yang, Li; Huang, Hai

    2014-10-01

    The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race-specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen-associated molecular pattern-triggered and the effector-triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA-mediated defense. Here, we review recent advances in small RNA-mediated defense responses and discuss the challenging questions in this area. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Functional Investigation of the Plant-Specific Long Coiled-Coil Proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana

    PubMed Central

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199

  10. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  12. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases.

    PubMed

    Feng, Feng; Yang, Fan; Rong, Wei; Wu, Xiaogang; Zhang, Jie; Chen, She; He, Chaozu; Zhou, Jian-Min

    2012-04-15

    Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.

  13. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    PubMed

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  15. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum

    PubMed Central

    Rahman, Hafizur; Xu, You-Ping; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2016-01-01

    Calmodulin-binding transcription activators (CAMTAs) play important roles in various plant biological processes including disease resistance and abiotic stress tolerance. Oilseed rape (Brassica napus L.) is one of the most important oil-producing crops worldwide. To date, compositon of CAMTAs in genomes of Brassica species and role of CAMTAs in resistance to the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum are still unknown. In this study, 18 CAMTA genes were identified in oilseed rape genome through bioinformatics analyses, which were inherited from the nine copies each in its progenitors Brassica rapa and Brassica oleracea and represented the highest number of CAMTAs in a given plant species identified so far. Gene structure, protein domain organization and phylogentic analyses showed that the oilseed rape CAMTAs were structurally similar and clustered into three major groups as other plant CAMTAs, but had expanded subgroups CAMTA3 and CAMTA4 genes uniquely in rosids species occurring before formation of oilseed rape. A large number of stress response-related cis-elements existed in the 1.5 kb promoter regions of the BnCAMTA genes. BnCAMTA genes were expressed differentially in various organs and in response to treatments with plant hormones and the toxin oxalic acid (OA) secreted by S. sclerotiorum as well as the pathogen inoculation. Remarkably, the expression of BnCAMTA3A1 and BnCAMTA3C1 was drastically induced in early phase of S. sclerotiorum infection, indicating their potential role in the interactions between oilseed rape and S. sclerotiorum. Furthermore, inoculation analyses using Arabidopsis camta mutants demonstrated that Atcamta3 mutant plants exhibited significantly smaller disease lesions than wild-type and other Atcamta mutant plants. In addition, compared with wild-type plants, Atcamta3 plants accumulated obviously more hydrogen peroxide in response to the PAMP chitin and exhibited much higher expression of the CGCG-box-containing genes BAK1 and JIN1, which are essential to the PAMP triggered immunity (PTI) and/or plant resistance to pathogens including S. sclerotiorum. Our results revealed that CAMTA3 negatively regulated PTI probably by directly targeting BAK1 and it also negatively regulated plant defense through suppressing JA signaling pathway probably via directly targeting JIN1. PMID:27200054

  16. Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis.

    PubMed

    Araújo, Márcio Sobreira Silva; de Andrade, Renata Aline; Sathler-Avelar, Renato; Magalhães, Camila Paula; Carvalho, Andréa Teixeira; Andrade, Mariléia Chaves; Campolina, Sabrina Sidney; Mello, Maria Norma; Vianna, Leonardo Rocha; Mayrink, Wilson; Reis, Alexandre Barbosa; Malaquias, Luiz Cosme Cotta; Rocha, Luciana Morais; Martins-Filho, Olindo Assis

    2011-05-15

    In this study, we summarized the major phenotypic/functional aspects of circulating leukocytes following canine immunization with Leishvaccine and Leishmune®. Our findings showed that Leishvaccine triggered early changes in the innate immunity (neutrophils and eosinophils) with late alterations on monocytes. Conversely, Leishmune(®) induced early phenotypic changes in both, neutrophils and monocytes. Moreover, Leishvaccine triggered mixed activation-related phenotypic changes on T-cells (CD4+ and CD8+ and B-lymphocytes, whereas Leishmune(®) promoted a selective response, mainly associated with CD8+ T-cell activation. Mixed cytokine profile (IFN-γ/IL-4) was observed in Leishvaccine immunized dogs whereas a selective pro-inflammatory pattern (IFN-γ/NO) was induced by Leishmune® vaccination. The distinct immunological profile triggered by Leishvaccine and Leishmune® may be a direct consequence of the distinct biochemical composition of these immunobiological, i.e. complex versus purified Leishmania antigen along with Bacillus Calmette-Guérin (BCG) versus saponin adjuvant. Both immunobiologicals are able to activate phagocytes and CD8+ T-cells and therefore could be considered as a putative vaccines against canine visceral leishmaniasis (CVL). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Plant innate immunity: an updated insight into defense mechanism.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2013-06-01

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.

  18. A two-domain protein triggers heat shock pathway and necrosis pathway both in model plant and nematode.

    PubMed

    Ruan, Lifang; Wang, Huihui; Cai, Ge; Peng, Donghai; Zhou, Hua; Zheng, Jinshui; Zhu, Lei; Wang, Xixi; Yu, Haoquan; Li, Seng; Geng, Ce; Sun, Ming

    2015-11-01

    The entomopathogen Bacillus thuringiensis is equipped with multiple virulent factors. The genome sequence of B. thuringiensis YBT1520 revealed the presence of a two-domain protein named Nel which is composed of a necrosis-inducing phytophthora protein 1-like domain found in phytopathogens and a ricin B-like lectin domain. The merging of two distantly related domains is relatively rare. Nel induced necrosis and pathogen-triggered immunity (PTI) on model plants. The Nel also exhibited inhibition activity to nematode. Microscopic observation showed that the toxicity of Nel to nematodes targets the intestine. Quantitative proteomics revealed that Nel stimulated the host defence. The Nel thus possesses dual roles, as both toxin and elicitor. Remarkably, the Nel protein triggered a similar response, induction of the heat shock pathway and the necrosis pathway, in both model plants and nematodes. The unusual ability of Nel to function across kingdom suggests a highly conserved mechanism in eukaryotes that predates the divergence of plants and animal. It is also speculated that the two-domain protein is the result of horizontal gene transfer (HGT) between phytopathogens and entomopathogens. Our results provide an example that HGT occurs between members of different species or even genera with lower frequency are particularly important for evolution of new bacterial pathogen lineages with new virulence. Bacillus thuringiensis occupies the same ecological niches, plant and soil, as phytopathogens, providing the opportunity for gene exchange. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Induction of innate immune responses by flagellin from the intracellular bacterium, 'Candidatus Liberibacter solanacearum'.

    PubMed

    Hao, Guixia; Pitino, Marco; Ding, Fang; Lin, Hong; Stover, Ed; Duan, Yongping

    2014-08-05

    'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited alphaproteobacterium associated with the devastating zebra chip disease of potato (Solanum tuberosum). Like other members of Liberibacter, Lso-ZC1 encodes a flagellin domain-containing protein (Fla Lso ) with a conserved 22 amino-acid peptide (flg22 Lso ). To understand the innate immune responses triggered by this unculturable intracellular bacterium, we studied the pathogen-associated molecular patterns (PAMPs) that triggered immunity in Nicotiana benthamiana, using the flg22 Lso peptide and the full length fla Lso gene. Our results showed that the expression of fla Lso via Agrobacterium-mediated transient expression induced a slow necrotic cell death in the inoculated leaves of N. benthamiana, which was coupled with a burst of reactive oxygen species (ROS) production. Moreover, the expression of several representative genes involved in innate immunity was transiently up-regulated by the flg22 Lso in N. benthamiana. The Fla Lso , however, induced stronger up-regulation of these representative genes compared to the flg22 Lso , especially that of flagellin receptor FLAGELLIN SENSING2 (FLS2) and respiratory burst oxidase (RbohB) in N. benthamiana. Although neither cell death nor ROS were induced by the synthetic flg22 Lso , a weak callose deposition was observed in infiltrated leaves of tobacco, tomato, and potato plants. The flagellin of Lso and its functional domain, flg22 Lso share characteristics of pathogen-associated molecular patterns, and trigger unique innate immune responses in N. benthamiana. Slow and weak activation of the innate immune response in host plants by the flagellin of Lso may reflect the nature of its intracellular life cycle. Our findings provide new insights into the role of the Lso flagellin in the development of potato zebra chip disease and potential application in breeding for resistance.

  20. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte.

    PubMed

    Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René

    2006-10-06

    The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-beta-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types.

  1. The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1

    PubMed Central

    Lee, Dong Sook; Kim, Young Cheon; Kwon, Sun Jae; Ryu, Choong-Min; Park, Ohkmae K.

    2017-01-01

    Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity. PMID:29163585

  2. Persistent inflammation in HIV infection: established concepts, new perspectives.

    PubMed

    Nasi, Milena; Pinti, Marcello; Mussini, Cristina; Cossarizza, Andrea

    2014-10-01

    Immune activation is now considered a main driving force for the progressive immune failure in HIV infection. During the early phases of infection, a rapid depletion of gastrointestinal CD4+ T cells occurs that is followed by a deterioration of the gut epithelium and by the subsequent translocation of microbial products into the blood. Activation of innate immunity results in massive production of proinflammatory cytokines, which can trigger activation induced cell death phenomena among T lymphocytes. Moreover, persistent antigenic stimulation and inflammatory status causes immune exhaustion. The chronic immune activation also damages lymphoid tissue architecture, so contributing to the impairment of immune reconstitution. Recently, new mechanisms were identified, so opening new perspective on the innate immune sensing in HIV-1 infection. Cell death is followed by the release of molecules containing "damage-associated molecular patterns", that trigger a potent innate immune response through the engagement of Toll-like receptors. Then, also different types of HIV-related nucleic acids can act as potent stimulators of innate immunity. All these events contribute to the loss of T cell homeostatic regulation and to the failure of adaptive immunity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The inducers of immunogenic cell death for tumor immunotherapy.

    PubMed

    Li, Xiuying

    2018-01-01

    Immunotherapy is a promising treatment modality that acts by selectively harnessing the host immune defenses against cancer. An effective immune response is often needed to eliminate tumors following treatment which can trigger the immunogenicity of dying tumor cells. Some treatment modalities (such as photodynamic therapy, high hydrostatic pressure or radiotherapy) and agents (some chemotherapeutic agents, oncolytic viruses) have been used to endow tumor cells with immunogenicity and/or increase their immunogenicity. These treatments and agents can boost the antitumor capacity by inducing immune responses against tumor neoantigens. Immunogenic cell death is a manner of cell death that can induce the emission of immunogenic damage-associated molecular patterns (DAMPs). DAMPs are sufficient for immunocompetent hosts to trigger the immune system. This review focuses on the latest developments in the treatment modalities and agents that can induce and/or enhance the immunogenicity of cancer cells.

  4. Innate Immune Regulations and Liver Ischemia Reperfusion Injury

    PubMed Central

    Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan

    2016-01-01

    Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288

  5. Pattern recognition receptor immunomodulation of innate immunity as a strategy to limit the impact of influenza virus.

    PubMed

    Pizzolla, Angela; Smith, Jeffery M; Brooks, Andrew G; Reading, Patrick C

    2017-04-01

    Influenza remains a major global health issue and the effectiveness of current vaccines and antiviral drugs is limited by the continual evolution of influenza viruses. Therefore, identifying novel prophylactic or therapeutic treatments that induce appropriate innate immune responses to protect against influenza infection would represent an important advance in efforts to limit the impact of influenza. Cellular pattern recognition receptors (PRRs) recognize conserved structures expressed by pathogens to trigger intracellular signaling cascades, promoting expression of proinflammatory molecules and innate immunity. Therefore, a number of approaches have been developed to target specific PRRs in an effort to stimulate innate immunity and reduce disease in a variety of settings, including during influenza infections. Herein, we discuss progress in immunomodulation strategies designed to target cell-associated PRRs of the innate immune system, thereby, modifying innate responses to IAV infection and/or augmenting immune responses to influenza vaccines. © Society for Leukocyte Biology.

  6. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5.

    PubMed

    Rumbo, Martin; Nempont, Clément; Kraehenbuhl, Jean-Pierre; Sirard, Jean-Claude

    2006-05-22

    Toll-like receptors (TLR) detect pathogen-associated molecular patterns (PAMP) and play a crucial role in triggering immunity. Due to their large surfaces in direct contact with the environment, mucosal tissues are the major sites of PAMP-TLR signalling. How innate and adaptive immunity are triggered through flagellin-TLR5 interaction is the main focus of the review. In view of recent reports on genetic polymorphism, we will summarize the impact of TLR5 on the susceptibility to mucosal infections and on various immuno-pathologies. Finally, the contribution of TLRs in the induction and maintenance of mucosal homeostasis and commensal discrimination is discussed.

  7. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    PubMed

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte

    PubMed Central

    Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René

    2006-01-01

    Background The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Results Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-β-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. Conclusion ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types. PMID:17022830

  9. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Degrave, Alexandre; Siamer, Sabrina; Boureau, Tristan; Barny, Marie-Anne

    2015-10-01

    The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae1[C][W][OPEN

    PubMed Central

    Bethke, Gerit; Grundman, Rachael E.; Sreekanta, Suma; Truman, William; Katagiri, Fumiaki; Glazebrook, Jane

    2014-01-01

    Pectins, major components of dicot cell walls, are synthesized in a heavily methylesterified form in the Golgi and are partially deesterified by pectin methylesterases (PMEs) upon export to the cell wall. PME activity is important for the virulence of the necrotrophic fungal pathogen Botrytis cinerea. Here, the roles of Arabidopsis PMEs in pattern-triggered immunity and immune responses to the necrotrophic fungus Alternaria brassicicola and the bacterial hemibiotroph Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) were studied. Plant PME activity increased during pattern-triggered immunity and after inoculation with either pathogen. The increase of PME activity in response to pathogen treatment was concomitant with a decrease in pectin methylesterification. The pathogen-induced PME activity did not require salicylic acid or ethylene signaling, but was dependent on jasmonic acid signaling. In the case of induction by A. brassicicola, the ethylene response factor, but not the MYC2 branch of jasmonic acid signaling, contributed to induction of PME activity, whereas in the case of induction by Pma ES4326, both branches contributed. There are 66 PME genes in Arabidopsis, suggesting extensive genetic redundancy. Nevertheless, selected pme single, double, triple and quadruple mutants allowed significantly more growth of Pma ES4326 than wild-type plants, indicating a role of PMEs in resistance to this pathogen. No decreases in total PME activity were detected in these pme mutants, suggesting that the determinant of immunity is not total PME activity; rather, it is some specific effect of PMEs such as changes in the pattern of pectin methylesterification. PMID:24367018

  11. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?

    PubMed

    Aznar, Aude; Dellagi, Alia

    2015-06-01

    Microorganisms use siderophores to obtain iron from the environment. In pathogenic interactions, siderophores are involved in iron acquisition from the host and are sometimes necessary for the expression of full virulence. This review summarizes the main data describing the role of these iron scavengers in animal and plant defence systems. To protect themselves against iron theft, mammalian hosts have developed a hypoferremia strategy that includes siderophore-binding molecules called siderocalins. In addition to microbial ferri-siderophore sequestration, siderocalins are involved in triggering immunity. In plants, no similar mechanisms have been described and many fewer data are available, although recent advances have shed light on the role of siderophores in plant-pathogen interactions. Siderophores can trigger immunity in plants in several contexts. The most frequently described situation involving siderophores is induced systemic resistance (ISR) triggered by plant-growth-promoting rhizobacteria. Although ISR responses have been observed after treating roots with certain siderophores, the underlying mechanisms are poorly understood. Immunity can also be triggered by siderophores in leaves. Siderophore perception in plants appears to be different from the well-known perception mechanisms of other microbial compounds, known as microbe-associated molecular patterns. Scavenging iron per se appears to be a novel mechanism of immunity activation, involving complex disturbance of metal homeostasis. Receptor-specific recognition of siderophores has been described in animals, but not in plants. The review closes with an overview of the possible mechanisms of defence activation, via iron scavenging by siderophores or specific siderophore recognition by the plant host. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity

    PubMed Central

    Birkenbihl, Rainer P.; Kracher, Barbara; Roccaro, Mario

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. PMID:28011690

  13. Control of antiviral immunity by pattern recognition and the microbiome

    PubMed Central

    Pang, Iris K.; Iwasaki, Akiko

    2013-01-01

    Summary Human skin and mucosal surfaces are in constant contact with resident and invasive microbes. Recognition of microbial products by receptors of the innate immune system triggers rapid innate defense and transduces signals necessary for initiating and maintaining the adaptive immune responses. Microbial sensing by innate pattern recognition receptors is not restricted to pathogens. Rather, proper development, function, and maintenance of innate and adaptive immunity rely on continuous recognition of products derived from the microorganisms indigenous to the internal and external surfaces of mammalian host. Tonic immune activation by the resident microbiota governs host susceptibility to intestinal and extra-intestinal infections including those caused by viruses. This review highlights recent developments in innate viral recognition leading to adaptive immunity, and discusses potential link between viruses, microbiota and the host immune system. Further, we discuss the possible roles of microbiome in chronic viral infection and pathogenesis of autoimmune disease, and speculate on the benefit for probiotic therapies against such diseases. PMID:22168422

  14. NOD-like receptor cooperativity in effector-triggered immunity.

    PubMed

    Griebel, Thomas; Maekawa, Takaki; Parker, Jane E

    2014-11-01

    Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations. Copyright © 2014. Published by Elsevier Ltd.

  15. XopN-T3SS effector of Xanthomonas axonopodis pv. punicae localizes to the plasma membrane and modulates ROS accumulation events during blight pathogenesis in pomegranate.

    PubMed

    Kumar, Rishikesh; Soni, Madhvi; Mondal, Kalyan K

    2016-12-01

    Bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a major disease of pomegranate. Xap secretes effector proteins via type III secretion system (T3SS) to suppress pathogen-associated molecular pattern (PAMP)-triggered plant immunity (PTI). Previously we reported that XopN, a conserved effector of Xap, modulate in planta bacterial growth, and blight disease. In continuation to that here we report the deletion of XopN from Xap caused higher accumulation of reactive oxygen species (ROS) including H 2 O 2 and O 2 - . We quantitatively assessed the higher accumulation of H 2 O 2 in pomegranate leaves infiltrated with Xap ΔxopN compared to Xap wild-type. We analysed that 1.5 to 3.3 fold increase in transcript expression of ROS and flg22-inducible genes, namely FRK1, GST1, WRKY29, PR1, PR2 and PR5 in Arabidopsis when challenged with Xap ΔxopN; contrary, the up-regulation of all the genes were compromised when challenged with either Xap wild-type or Xap ΔxopN+xopN. Further, we demonstrated the plasma-membrane based localization of XopN protein both in its natural and experimental hosts. All together, the present study suggested that XopN-T3SS effector of Xap gets localized in the plasma membrane and suppresses ROS-mediated early defense responses during blight pathogenesis in pomegranate. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Micro-evolution of the hepatitis B virus genome in hepatitis B e-antigen-positive carriers: comparison of genotypes B and C at various immune stages.

    PubMed

    Liu, Chun-Jen; Chen, Ting-Chih; Chen, Pei-Jer; Wang, Hurng-Yi; Tseng, Tai-Chung; Cheng, Huei-Ru; Liu, Chen-Hua; Chen, Ding-Shinn; Kao, Jia-Horng

    2015-01-01

    Patients with hepatitis B virus (HBV) genotype B infection experience hepatitis B e-antigen (HBeAg) seroconversion at an earlier stage than do patients with genotype C infection. Therefore, this study investigated whether the differential phenotypes are related to HBV genomic evolution. Thirty-three HBeAg-positive patients with a mean follow-up of 3.1 years were enrolled: 16 at the immune tolerance stage (group I) and 17 at the immune clearance stage (group II). The evolution rates of paired viral genomes at enrollment and at the final follow-up in the full-length genome (μf), nonoverlapping regions (synonymous [μs] and nonsynonymous [μa]), and overlapping regions (μ) were calculated. The evolution rates were then compared according to serum alanine aminotransferase (ALT) levels and HBV genotype. The overall μf evolution rate was lower in group I than in group II (1.4 × 10(-5)  ± 3.3 × 10(-5) vs 1.2 × 10(-3)  ± 1.2 × 10(-3) nucleotide substitution/site/year, P < 0.001). We observed similar results for the μs, μa, and μ evolution rates. All evolution parameters were comparable between genotypes B and C. We determined a positive correlation between μa/y and the area under the average ALT time curve in genotype B (R(2)  = 0.6935, P < 0.0001), but not in genotype C (R(2)  = 0.1606, P = 0.124). The evolution rate of the HBV genome is higher at the immune clearance stage than at the immune tolerance stage. Host immune selection might play a role in triggering evolution of genotype B. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  17. The function of small RNAs in plant biotic stress response.

    PubMed

    Huang, Juan; Yang, Meiling; Zhang, Xiaoming

    2016-04-01

    Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control. © 2016 Institute of Botany, Chinese Academy of Sciences.

  18. Dysregulated IL-1β Secretion in Autoinflammatory Diseases: A Matter of Stress?

    PubMed Central

    Carta, Sonia; Semino, Claudia; Sitia, Roberto; Rubartelli, Anna

    2017-01-01

    Infectious and sterile inflammation is induced by activation of innate immune cells. Triggering of toll-like receptors by pathogen-associated molecular pattern or damage-associated molecular pattern (PAMP or DAMP) molecules generates reactive oxygen species that in turn induce production and activation of pro-inflammatory cytokines such as IL-1β. Recent evidence indicates that cell stress due to common events, like starvation, enhanced metabolic demand, cold or heat, not only potentiates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. Stress-mediated inflammation is also a common feature of many hereditary disorders, due to the proteotoxic effects of mutant proteins. We propose that harmful mutant proteins can induce dysregulated IL-1β production and inflammation through different pathways depending on the cell type involved. When expressed in professional inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous way the onset of inflammation and mediates its aberrant development, resulting in the explosive responses that hallmark autoinflammatory diseases. When expressed in non-immune cells, the mutant protein may cause the release of transcellular stress signals that trigger and propagate inflammation. PMID:28421072

  19. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    PubMed

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.

  20. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation.

    PubMed

    Borrego, Belén; Rodríguez-Pulido, Miguel; Revilla, Concepción; Álvarez, Belén; Sobrino, Francisco; Domínguez, Javier; Sáiz, Margarita

    2015-07-17

    The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).

  1. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  2. Tomato Prenylated RAB Acceptor Protein 1 Modulates Trafficking and Degradation of the Pattern Recognition Receptor LeEIX2, Affecting the Innate Immune Response

    PubMed Central

    Pizarro, Lorena; Leibman-Markus, Meirav; Schuster, Silvia; Bar, Maya; Meltz, Tal; Avni, Adi

    2018-01-01

    Plants recognize microbial/pathogen associated molecular patterns (MAMP/PAMP) through pattern recognition receptors (PRRs) triggering an immune response against pathogen progression. MAMP/PAMP triggered immune response requires PRR endocytosis and trafficking for proper deployment. LeEIX2 is a well-known Solanum lycopersicum RLP-PRR, able to recognize and respond to the fungal MAMP/PAMP ethylene-inducing xylanase (EIX), and its function is highly dependent on intracellular trafficking. Identifying protein machinery components regulating LeEIX2 intracellular trafficking is crucial to our understanding of LeEIX2 mediated immune responses. In this work, we identified a novel trafficking protein, SlPRA1A, a predicted regulator of RAB, as an interactor of LeEIX2. Overexpression of SlPRA1A strongly decreases LeEIX2 endosomal localization, as well as LeEIX2 protein levels. Accordingly, the innate immune responses to EIX are markedly reduced by SlPRA1A overexpression, presumably due to a decreased LeEIX2 availability. Studies into the role of SlPRA1A in LeEIX2 trafficking revealed that LeEIX2 localization in multivesicular bodies/late endosomes is augmented by SlPRA1A. Furthermore, inhibiting vacuolar function prevents the LeEIX2 protein level reduction mediated by SlPRA1A, suggesting that SlPRA1A may redirect LeEIX2 trafficking to the vacuole for degradation. Interestingly, SlPRA1A overexpression reduces the amount of several RLP-PRRs, but does not affect the protein level of receptor-like kinase PRRs, suggesting a specific role of SlPRA1A in RLP-PRR trafficking and degradation. PMID:29545816

  3. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    PubMed

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.

  4. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns

    PubMed Central

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M.; Cervone, Felice; De Lorenzo, Giulia

    2015-01-01

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  5. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine.

    PubMed

    Fairley, Stacie J; Singh, Shree R; Yilma, Abebayehu N; Waffo, Alain B; Subbarayan, Praseetha; Dixit, Saurabh; Taha, Murtada A; Cambridge, Chino D; Dennis, Vida A

    2013-01-01

    We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide) potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice, which are desirable prerequisites for a C. trachomatis candidate nanovaccine. Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta potential (-14.30 mV), apparent spherical smooth morphology, and continuous slow release pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40 (Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized with rMOMP in Freund's adjuvant had only a four-fold higher Th1 than Th2 antibody titer, suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis.

  6. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  7. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    PubMed

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    PubMed

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  10. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity.

    PubMed

    Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke

    2015-01-01

    A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.

  11. Negative regulators of the RIG-I-like receptor signaling pathway

    PubMed Central

    Quicke, Kendra M.; Diamond, Michael S.; Suthar, Mehul S.

    2017-01-01

    SUMMARY Upon recognition of specific molecular patterns on viruses, bacteria and fungi, host cells trigger an innate immune response, which culminates in the production of type I interferons (IFN), pro-inflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of the immune response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An over-exuberant innate immune response can lead to the destruction of cells and tissues, and the development of spontaneous autoimmunity. The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to a family of cytosolic host RNA helicases that recognize distinct non-self RNA signatures and trigger innate immune responses against several RNA virus infections. The RLR signaling pathway is tightly regulated to achieve a well-orchestrated response aimed at maximizing antiviral immunity and minimizing immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS function. PMID:28295214

  12. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae1[OPEN

    PubMed Central

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-01-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775

  14. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.

    PubMed

    Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.

  15. Innate immunity against HIV-1 infection.

    PubMed

    Altfeld, Marcus; Gale, Michael

    2015-06-01

    During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.

  16. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. Published by Elsevier Ltd.

  17. β-glucans and eicosapolyenoic acids as MAMPs in plant–oomycete interactions: past and present

    PubMed Central

    Robinson, Sara M.; Bostock, Richard M.

    2015-01-01

    Branched β-1,3-glucans and the eicosapolyenoic acids (EP) are among the best characterized oomycete elicitors that trigger innate immune responses in plants. These elicitors were identified over three decades ago, and they were useful in the study of the sequence of physiological, biochemical and molecular events that induce resistance in plants. However, in spite of the cross-kingdom parallels where these molecules are well-characterized as immune system modulators in animals, their perception and modes of action in plants remains obscure. Oomycetes are among the most important plant pathogens, responsible for diseases that devastate crops, ornamentals, and tree species worldwide. With the recent interest and advances in our understanding of innate immunity in plants, and the redefining of many of the classical elicitors as microbe-associated molecular patterns (MAMPs), it seems timely and important to reexamine β-glucans and EP using contemporary approaches. In this review, we highlight early studies of β-glucans and EP, discuss their roles as evolutionarily conserved signals, and consider their action in relation to current models of MAMP-triggered immunity. PMID:25628639

  18. Variation in the location of the shoe sole flexion point influences plantar loading patterns during gait

    PubMed Central

    2014-01-01

    Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift. PMID:24642291

  19. A look at plant immunity through the window of the multitasking coreceptor BAK1.

    PubMed

    Yasuda, Shigetaka; Okada, Kentaro; Saijo, Yusuke

    2017-08-01

    Recognition of microbe- and danger-associated molecular patterns (MAMPs and DAMPs, respectively) by pattern recognition receptors (PRRs) is central to innate immunity in both plants and animals. The plant PRRs described to date are all cell surface-localized receptors. According to their ligand-binding ectodomains, each PRR engages a specific coreceptor or adaptor kinase in its signaling complexes to regulate defense signaling. With a focus on the coreceptor RLK BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and related SOMATIC EMBRYOGENESIS RECEPTOR KINASEs (SERKs), here we review the increasing inventory of BAK1 partners and their functions in plant immunity. We also discuss the significance of autoimmunity triggered by BAK1/SERK4 disintegration in shaping the strategies for attenuation of PRR signaling by infectious microbes and host plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis.

    PubMed

    Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min

    2009-08-01

    Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.

  1. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.

    PubMed

    Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang

    2012-11-01

    Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.

  2. Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants.

    PubMed

    Duran-Flores, Dalia; Heil, Martin

    2017-10-16

    Mammals sense self or non-self extracellular or extranuclear DNA fragments (hereinafter collectively termed eDNA) as indicators of injury or infection and respond with immunity. We hypothesised that eDNA acts as a damage-associated molecular pattern (DAMP) also in plants and that it contributes to self versus non-self discrimination. Treating plants and suspension-cultured cells of common bean (Phaseolus vulgaris) with fragmented self eDNA (obtained from other plants of the same species) induced early, immunity-related signalling responses such as H 2 O 2 generation and MAPK activation, decreased the infection by a bacterial pathogen (Pseudomonas syringae) and increased an indirect defence to herbivores (extrafloral nectar secretion). By contrast, non-self DNA (obtained from lima bean, Phaseolus lunatus, and Acacia farnesiana) had significantly lower or no detectable effects. Only fragments below a size of 700 bp were active, and treating the eDNA preparation DNAse abolished its inducing effects, whereas treatment with RNAse or proteinase had no detectable effect. These findings indicate that DNA fragments, rather than small RNAs, single nucleotides or proteins, accounted for the observed effects. We suggest that eDNA functions a DAMP in plants and that plants discriminate self from non-self at a species-specific level. The immune systems of plants and mammals share multiple central elements, but further work will be required to understand the mechanisms and the selective benefits of an immunity response that is triggered by eDNA in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    PubMed

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana.

    PubMed

    Betsuyaku, Shigeyuki; Katou, Shinpei; Takebayashi, Yumiko; Sakakibara, Hitoshi; Nomura, Nobuhiko; Fukuda, Hiroo

    2018-01-01

    The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  5. Intraoperative monitoring of brain tissue oxygenation during arteriovenous malformation resection.

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Noguer, Montserrat; Olive, Montserrat; Vidal-Jorge, Marian; Sahuquillo, Juan

    2014-10-01

    In normal perfusion pressure breakthrough (NPPB) it is assumed that following arteriovenous malformation (AVM) resection, vasoparalysis persists in the margins of the lesion and that a sudden increase in cerebral blood flow (CBF) after AVM exclusion leads to brain swelling and postsurgical complications. However, the pathophysiology NPPB remains controversial.The aim of our study was to investigate the oxygenation status in tissue surrounding AVMs and in the distant brain using intraoperative monitoring of cerebral partial pressure of oxygen (PtiO(2)) to achieve a better understanding of NPPB pathophysiology. Patients with supratentorial AVMs were monitored intraoperatively using 2 polarographic Clark-type electrodes. To establish reference values, we also studied PtiO(2) in a group of patients who underwent surgery to treat incidental aneurysms. Twenty-two patients with supratentorial AVMs and 16 patients with incidentally found aneurysms were included. Hypoxic pattern was defined as PtiO(2)≤15 mm Hg and/or PtiO(2)/PaO(2) ratio ≤0.10. Tissue hypoxia was detected in 63.6% of the catheters placed in the perinidal area and in 43.8% of catheters placed in a distant area. AVM excision significantly improved oxygenation both around the AVM and in the distant area. The PtiO(2)/PaO(2) ratio is a better indicator than absolute PtiO(2) in detecting tissue hypoxia in mechanically ventilated patients. Intraoperative monitoring showed tissue hypoxia in the margins of AVMs and in the distant ipsilateral brain as the most common finding. Surgical removal of AVMs induces a significant improvement in the oxygenation status in both areas.

  6. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  7. Differential immune response in the hard clam (mercenaria mercenaria) against bacteria and the protistan pathogen QPX (quahog parasite unknown).

    PubMed

    Perrigault, Mickael; Allam, Bassem

    2012-06-01

    The immune response of the hard clam (quahog) Mercenaria mercenaria following challenge with live bacteria (Vibrio alginolyticus) and the protist QPX (Quahog Parasite Unknown) was investigated. The study also compared immune responses following QPX challenge in two different hard clam broodstocks exhibiting different degrees of susceptibility toward this parasite. Different immune and stress-related cellular and humoral factors were assessed including general hemocyte parameters (total and differential hemocyte counts, percentage of dead cells, reactive oxygen production, phagocytosis), parameters geared toward QPX (anti-QPX activity in plasma and hemocyte resistance to the cytotoxicity of QPX extracellular products). Two genes (ferritin and metallothionein) previously shown to be modulated following QPX exposure were molecularly characterized by rapid amplification of cDNA ends (RACE) and their transcription levels were determined in resistant and susceptible clams in response to QPX and bacterial challenge. Results indicated that both V. alginolyticus and QPX challenge triggered significant immune responses in clams with similar trends for most measured parameters. However, specific responses were observed for anti-QPX activity in plasma and hemocyte resistance to QPX products as well as ferritin and metallothionein expression according to each inoculum. Similarly, different response patterns were detected following QPX challenge in susceptible and resistant clam stocks. Resistant clams were able to elicit effective response against the parasite leading to the elimination of QPX and the restoration of constitutive immune status whereas QPX-susceptible clams triggered a strong immune modulation characterized by an acute phase response and associated acute phase protein but appeared to be less active in eliminating the parasite. These results suggest that different signaling pathways are triggered during V. alginolyticus and QPX challenge. Moreover, differences in the immune response toward QPX might be linked to the susceptibility or resistance of different clam stocks to the infection by this parasite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  9. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  10. Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis.

    PubMed

    Mélida, Hugo; Sopeña-Torres, Sara; Bacete, Laura; Garrido-Arandia, María; Jordá, Lucía; López, Gemma; Muñoz-Barrios, Antonio; Pacios, Luis F; Molina, Antonio

    2018-01-01

    Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [β-1,4-N-acetylglucosamine oligomers, (GlcNAc) n ] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc) 4-8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-β-d-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-β-d-(Glc) 6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-β-d-(Glc) 6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-β-d-(Glc) 6 at effective concentrations similar to those of (GlcNAc) 4 . These data support that plants, like animals, have selected as MAMPs the linear 1,3-β-d-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-β-d-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. RIG-I Like Receptors and Their Signaling Crosstalk in the Regulation of Antiviral Immunity

    PubMed Central

    Ramos, Hilario J; Gale, Michael

    2011-01-01

    During virus infection, multiple immune signaling pathways are triggered, both within the host cell and bystander cells of an infected tissue. These pathways act in concert to mediate innate antiviral immunity and to initiate the inflammatory response against infection. The RIG-I-like receptor (RLR) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as nonself via binding to pathogen associated molecular patter (PAMP) motifs within RNA ligands that accumulate during virus infection. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other pro-inflammatory cytokines that serve to induce antiviral and inflammatory gene expression within the local tissue. Cellular regulation of RLR signaling is a critical process that can direct the outcome of infection and is essential for governance of the overall immune response and avoidance of immune toxicity. Mechanisms of positive and negative regulation of RLR signaling have been identified that include signaling crosstalk between RLR pathways and Nuclear Oligomerization Domain (NOD)-Like Receptor (NLR) pathways and Caspase networks. Furthermore, many viruses have evolved mechanisms to target these pathways to promote enhanced replication and spread within the host. These virus-host interactions therefore carry important consequences for host immunity and viral pathogenesis. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity. PMID:21949557

  12. Oral candidosis in relation to oral immunity.

    PubMed

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  14. GSL-enriched membrane microdomains in innate immune responses.

    PubMed

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  15. Protective and destructive immunity in the periodontium: Part 1--innate and humoral immunity and the periodontium.

    PubMed

    Teng, Y-T A

    2006-03-01

    Based on the results of recent research in the field, the present paper will discuss the protective and destructive aspects of the innate vs. adaptive (humoral and cell-mediated) immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) the Toll-like receptors (TLR), the innate immune repertoire for recognizing the unique molecular patterns of microbial components that trigger innate and adaptive immunity for effective host defenses, in some general non-oral vs. periodontal microbial infections; (ii) T-cell-mediated immunity, Th-cytokines, and osteoclastogenesis in periodontal disease progression; and (iii) some molecular techniques developed and used to identify critical microbial virulence factors or antigens associated with host immunity (using Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species). Therefore, further understanding of the molecular interactions and mechanisms associated with the host's innate and adaptive immune responses will facilitate the development of new and innovative therapeutics for future periodontal treatments.

  16. A case of nivolumab-related cholangitis and literature review: how to look for the right tools for a correct diagnosis of this rare immune-related adverse event.

    PubMed

    Gelsomino, Francesco; Vitale, Giovanni; Ardizzoni, Andrea

    2018-02-01

    Anti-programmed cell death-1 (PD-1) monoclonal antibodies, such as nivolumab, used for the treatment of several tumors, can trigger effector T-cells against tumor- and self-antigens, leading to the occurrence of different immune-related adverse events. Among them, liver injuries are rare and usually transient. To date, only four cases of immune-related cholangitis in non-small cell lung cancer (NSCLC) patients have been described during nivolumab treatment. Here, we describe laboratory tests, imaging and liver biopsy features that confirm this diagnosis as opposed to other forms of autoimmune liver disease; nevertheless, we also provide evidence of the presence of different clinical-pathological patterns of immune-related cholangitis.

  17. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  18. Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2-/- mice.

    PubMed

    Verma, A H; Bueter, C L; Rothenberg, M E; Deepe, G S

    2017-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases; however, their influence on intracellular pathogens is less clear. We previously reported that CCR2 -/- mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated interleukin (IL)-4 response. We sought to identify the cellular source promulgating IL-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2 -/- animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity.

  19. Complexity of Danger: The Diverse Nature of Damage-associated Molecular Patterns*

    PubMed Central

    Schaefer, Liliana

    2014-01-01

    In reply to internal or external danger stimuli, the body orchestrates an inflammatory response. The endogenous triggers of this process are the damage-associated molecular patterns (DAMPs). DAMPs represent a heterogeneous group of molecules that draw their origin either from inside the various compartments of the cell or from the extracellular space. Following interaction with pattern recognition receptors in cross-talk with various non-immune receptors, DAMPs determine the downstream signaling outcome of septic and aseptic inflammatory responses. In this review, the diverse nature, structural characteristics, and signaling pathways elicited by DAMPs will be critically evaluated. PMID:25391648

  20. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  1. Induction of innate immunity and its perturbation by influenza viruses.

    PubMed

    Goraya, Mohsan Ullah; Wang, Song; Munir, Muhammad; Chen, Ji-Long

    2015-10-01

    Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5'-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.

  2. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders

    PubMed Central

    Ratajczak, Mariusz Z.; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as “sterile inflammation” when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms. PMID:29541038

  4. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders.

    PubMed

    Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.

  5. Indispensable Role of Proteases in Plant Innate Immunity.

    PubMed

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  6. Evaluation of Shiga toxin 2e-specific chicken egg yolk immunoglobulin: production and neutralization activity.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Kohda, Tomoko; Shimizu, Toshiyasu; Tsuji, Takao

    2014-11-01

    Chicken egg yolk immunoglobulin (IgY) against Shiga toxin 2e (Stx2e), a major cause of swine edema disease, was prepared to evaluate its possible clinical applications. The titer of Stx2e-specific IgY in egg yolk derived from three chickens that had been immunized with an Stx2e toxoid increased 2 weeks after primary immunization and remained high until 90 days after this immunization. Anti-Stx2e IgY was found to neutralize the toxicity of Stx2e by reacting with its A and B subunits, indicating that IgY is a cost-effective agent to develop for prophylactic foods or diagnosis kits for edema disease. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  7. Non-IgE mediated mast cell activation.

    PubMed

    Redegeld, Frank A; Yu, Yingxin; Kumari, Sangeeta; Charles, Nicolas; Blank, Ulrich

    2018-03-01

    Mast cells (MCs) are innate immune cells that are scattered in tissues throughout the organism being particularly abundant at sites exposed to the environment such as the skin and mucosal surfaces. Generally known for their role in IgE-mediated allergies, they have also important functions in the maintenance of tissue integrity by constantly sensing their microenvironment for signals by inflammatory triggers that can comprise infectious agents, toxins, hormones, alarmins, metabolic states, etc. When triggered their main function is to release a whole set of inflammatory mediators, cytokines, chemokines, and lipid products. This allows them to organize the ensuing innate immune and inflammatory response in tight coordination with resident tissue cells, other rapidly recruited immune effector cells as well as the endocrine and exocrine systems of the body. To complete these tasks, MCs are endowed with a large repertoire of receptors allowing them to respond to multiple stimuli or directly interact with other cells. Here we review some of the receptors expressed on MCs (ie, receptors for Immunoglobulins, pattern recognition receptors, nuclear receptors, receptors for alarmins, and a variety of other receptors) and discuss their functional implication in the immune and inflammatory response focusing on non-IgE-mediated activation mechanisms. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Ubiquitination in the antiviral immune response.

    PubMed

    Davis, Meredith E; Gack, Michaela U

    2015-05-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Combining formal and functional approaches to topic structure.

    PubMed

    Zellers, Margaret; Post, Brechtje

    2012-03-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this kind of variation. We argue that it is fruitful to adopt the insights of both PTI's qualitative analysis and EP's quantitative analysis and combine them into a multiple-methods approach. One realm in which it is possible to combine these frameworks is in the analysis of discourse topic structure and the prosodic cues relevant to it. By combining a quantitative and a qualitative approach to discourse topic structure, it is possible to give a better account of the observed variation in prosody, for example in the case of fundamental frequency (F0) peak timing, which can be explained in terms of pitch accent distribution over different topic structure categories. Similarly, local and global patterns in speech rate variation can be better explained and motivated by adopting insights from both PTI and EP in the study of topic structure. Combining PTI and EP can provide better accounts of speech data as well as opening up new avenues of investigation which would not have been possible in either approach alone.

  10. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  11. Lipopolysaccharide-induced innate immune factors in the bottlenose dolphin (Tursiops truncatus) detected in expression sequence tag analysis.

    PubMed

    Ohishi, Kazue; Shishido, Reiko; Iwata, Yasunao; Saitoh, Masafumi; Takenaka, Ryota; Ohtsu, Dai; Okutsu, Kenji; Maruyama, Tadashi

    2011-11-01

    EST analysis based on the megaclone-megasorting method was performed using leukocytes from the bottlenose dolphin (Tursiops truncatus) with or without LPS stimulation. A total of 849 upregulated and 384 downregulated EST clones were sequenced, annotated, and functionally classified. Ferritin heavy peptide I was the most abundant upregulated transcript, suggesting that LPS stimulation induced high production of reactive oxygen species, which were sequestered in ferritin. Among the immune factors, the transcripts coding for an IL-1Ra, homologs to bovine serum amyloid A3, and canine intercellular adhesion molecule-1 were highly expressed. Markedly downregulated transcripts of immune factors were those for homologs of calcium-binding proteins belonging to the S100 family, S100A12, S100A8, and S100A6. Time-course experiments on the expression of some immune factors including IL-1Ra suggested that these factors interact and control cetacean innate immunity. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  12. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Conservation of NLR-triggered immunity across plant lineages.

    PubMed

    Maekawa, Takaki; Kracher, Barbara; Vernaldi, Saskia; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2012-12-04

    The nucleotide-binding domain and leucine-rich repeat (NLR) family of plant receptors detects pathogen-derived molecules, designated effectors, inside host cells and mediates innate immune responses to pathogenic invaders. Genetic evidence revealed species-specific coevolution of many NLRs with effectors from host-adapted pathogens, suggesting that the specificity of these NLRs is restricted to the host or closely related plant species. However, we report that an NLR immune receptor (MLA1) from monocotyledonous barley is fully functional in partially immunocompromised dicotyledonous Arabidopsis thaliana against the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. This implies ~200 million years of evolutionary conservation of the underlying immune mechanism. A time-course RNA-seq analysis in transgenic Arabidopsis lines detected sustained expression of a large MLA1-dependent gene cluster. This cluster is greatly enriched in genes known to respond to the fungal cell wall-derived microbe-associated molecular pattern chitin. The MLA1-dependent sustained transcript accumulation could define a conserved function of the nuclear pool of MLA1 detected in barley and Arabidopsis. We also found that MLA1-triggered immunity was fully retained in mutant plants that are simultaneously depleted of ethylene, jasmonic acid, and salicylic acid signaling. This points to the existence of an evolutionarily conserved and phytohormone-independent MLA1-mediated resistance mechanism. This also suggests a conserved mechanism for internalization of B. graminis f. sp. hordei effectors into host cells of flowering plants. Furthermore, the deduced connectivity of the NLR to multiple branches of immune signaling pathways likely confers increased robustness against pathogen effector-mediated interception of host immune signaling and could have contributed to the evolutionary preservation of the immune mechanism.

  14. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  15. Eosinophils Subvert Host Resistance to an Intracellular Pathogen by Instigating Non-Protective IL-4 in CCR2−/− Mice

    PubMed Central

    Verma, Akash H.; Bueter, Chelsea L.; Rothenberg, Marc E.; Deepe, George S.

    2016-01-01

    Eosinophils contribute to type II immune responses in helminth infections and allergic diseases, however, their influence on intracellular pathogens is less clear. We previously reported that CCR2−/− mice exposed to the intracellular fungal pathogen Histoplasma capsulatum exhibit dampened immunity caused by an early exaggerated IL-4 response. We sought to identify the cellular source promulgating interleukin (IL)-4 in infected mutant animals. Eosinophils were the principal instigators of non-protective IL-4 and depleting this granulocyte population improved fungal clearance in CCR2−/− animals. The deleterious impact of eosinophilia on mycosis was also recapitulated in transgenic animals overexpressing eosinophils. Mechanistic examination of IL-4 induction revealed that phagocytosis of H. capsulatum via the pattern recognition receptor complement receptor (CR) 3 triggered the heightened IL-4 response in murine eosinophils. This phenomenon was conserved in human eosinophils; exposure of cells to the fungal pathogen elicited a robust IL-4 response. Thus, our findings elucidate a detrimental attribute of eosinophil biology in fungal infections that could potentially trigger a collapse in host defenses by instigating type II immunity. PMID:27049063

  16. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways.

    PubMed

    Zhao, Ke; Du, Juan; Peng, Yanfeng; Li, Peng; Wang, Shaohua; Wang, Yu; Hou, Jingwei; Kang, Jian; Zheng, Wenwen; Hua, Shucheng; Yu, Xiao-Fang

    2018-06-01

    Improper host immune activation leads to the development of the autoimmune disease Aicardi-Goutières syndrome (AGS), which is attributed to defined genetic mutations in such proteins as TREX1 and ADAR1. The mechanism of immune activation in AGS patients has not been thoroughly elucidated to date. In this study, we report that endogenous LINE1 components trigger IFNβ production in multiple human cell types, including those defective for cGAS/STING-mediated DNA sensing. In these cells, LINE1 DNA synthesis and retrotransposition were not required for LINE1-triggered immune activation, but RNA sensing pathways were essential. LINE1-triggered immune activation could be suppressed by diverse LINE1 inhibitors, including AGS-associated proteins targeting LINE1 RNA or proteins. However, AGS-associated ADAR1 or TREX1 mutants were defective in suppressing LINE1 retrotransposition or LINE1-triggered immune activation. Therefore, we have revealed a new function for LINE1 as an endogenous trigger of innate immune activation, which is important for understanding the molecular basis of IFN-based autoimmune diseases and may offer new intervention strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000[OPEN

    PubMed Central

    Lewis, Laura A.; Polanski, Krzysztof; de Torres-Zabala, Marta; Bowden, Laura; Jenkins, Dafyd J.; Hill, Claire; Baxter, Laura; Truman, William; Prusinska, Justyna; Hickman, Richard; Wild, David L.; Ott, Sascha; Buchanan-Wollaston, Vicky; Beynon, Jim

    2015-01-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. PMID:26566919

  18. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000.

    PubMed

    Lewis, Laura A; Polanski, Krzysztof; de Torres-Zabala, Marta; Jayaraman, Siddharth; Bowden, Laura; Moore, Jonathan; Penfold, Christopher A; Jenkins, Dafyd J; Hill, Claire; Baxter, Laura; Kulasekaran, Satish; Truman, William; Littlejohn, George; Prusinska, Justyna; Mead, Andrew; Steinbrenner, Jens; Hickman, Richard; Rand, David; Wild, David L; Ott, Sascha; Buchanan-Wollaston, Vicky; Smirnoff, Nick; Beynon, Jim; Denby, Katherine; Grant, Murray

    2015-11-01

    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Innate immune recognition and inflammation in Neisseria meningitidis infection.

    PubMed

    Johswich, Kay

    2017-03-01

    Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Host Jumps and Radiation, Not Co-Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae.

    PubMed

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups.

  1. Host Jumps and Radiation, Not Co‐Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae

    PubMed Central

    Choi, Young-Joon; Thines, Marco

    2015-01-01

    Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups. PMID:26230508

  2. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antimicrobial autophagy: a conserved innate immune response in Drosophila.

    PubMed

    Moy, Ryan H; Cherry, Sara

    2013-01-01

    Autophagy is a highly conserved degradative pathway that has rapidly emerged as a critical component of immunity and host defense. Studies have implicated autophagy genes in restricting the replication of a diverse array of pathogens, including bacteria, viruses and protozoans. However, in most cases, the in vivo role of antimicrobial autophagy against pathogens has been undefined. Drosophila provides a genetically tractable model system that can be easily adapted to study autophagy in innate immunity, and recent studies in flies have demonstrated that autophagy is an essential antimicrobial response against bacteria and viruses in vivo. These findings reveal striking conservation of antimicrobial autophagy between flies and mammals, and in particular, the role of pathogen-associated pattern recognition in triggering this response. This review discusses our current understanding of antimicrobial autophagy in Drosophila and its potential relevance to human immunity. Copyright © 2013 S. Karger AG, Basel.

  4. Toll-like receptors and gastrointestinal diseases: from bench to bedside?

    PubMed

    Cario, Elke

    2002-11-01

    The family of Toll-like receptors (TLRs) plays a key role in mediating innate immune responses to numerous luminal commensal- and pathogen-derived pattern molecules by the intestinal mucosa. Recent findings have identified several ligands recognized by TLRs as well as the complex downstream signaling effects resulting from activation of these receptors. Understanding is emerging of the importance of TLRs in mucosal host defense-potentially triggering gastrointestinal diseases.

  5. Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species.

    PubMed

    Manuja, Anju; Manuja, Balvinder K; Kaushik, Jyoti; Singha, Harisankar; Singh, Raj Kumar

    2013-10-01

    Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2'-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.

  6. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization

    PubMed Central

    Kombrink, Anja; Hansen, Guido; Valkenburg, Dirk-Jan

    2013-01-01

    While host immune receptors detect pathogen-associated molecular patterns to activate immunity, pathogens attempt to deregulate host immunity through secreted effectors. Fungi employ LysM effectors to prevent recognition of cell wall-derived chitin by host immune receptors, although the mechanism to compete for chitin binding remained unclear. Structural analysis of the LysM effector Ecp6 of the fungal tomato pathogen Cladosporium fulvum reveals a novel mechanism for chitin binding, mediated by intrachain LysM dimerization, leading to a chitin-binding groove that is deeply buried in the effector protein. This composite binding site involves two of the three LysMs of Ecp6 and mediates chitin binding with ultra-high (pM) affinity. Intriguingly, the remaining singular LysM domain of Ecp6 binds chitin with low micromolar affinity but can nevertheless still perturb chitin-triggered immunity. Conceivably, the perturbation by this LysM domain is not established through chitin sequestration but possibly through interference with the host immune receptor complex. DOI: http://dx.doi.org/10.7554/eLife.00790.001 PMID:23840930

  7. The rise of the undead:Pseudokinases as mediators of effector-triggered immunity

    USDA-ARS?s Scientific Manuscript database

    Pathogens use effector proteins to suppress host immunity and promote infection. However, plants can recognize specific effectors and mount an effector-triggered immune response that suppresses pathogen growth. The YopJ/HopZ family of type III secreted effector proteins is broadly distributed in bac...

  8. Plant immunity against viruses: antiviral immune receptors in focus

    PubMed Central

    Calil, Iara P.

    2017-01-01

    Abstract Background Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant–virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant–virus interactions that affect disease or resistance. Scope and Conclusion This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin–26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement. PMID:27780814

  9. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    PubMed

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  10. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  11. Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana.

    PubMed

    Luzuriaga-Loaiza, W Patricio; Schellenberger, Romain; De Gaetano, Yannick; Obounou Akong, Firmin; Villaume, Sandra; Crouzet, Jérôme; Haudrechy, Arnaud; Baillieul, Fabienne; Clément, Christophe; Lins, Laurence; Allais, Florent; Ongena, Marc; Bouquillon, Sandrine; Deleu, Magali; Dorey, Stephan

    2018-06-04

    Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.

  12. Host response mechanisms in periodontal diseases

    PubMed Central

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929

  13. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    PubMed

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-09

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  14. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens

    PubMed Central

    Soto-Suárez, Mauricio; Baldrich, Patricia; Weigel, Detlef; Rubio-Somoza, Ignacio; San Segundo, Blanca

    2017-01-01

    MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection. PMID:28332603

  15. Pesticide toxicity index for freshwater aquatic organisms

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.

    2001-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 75 of the 83 pesticide compounds measured in NAWQA samples, but with a wide range of bioassays per compound (1 to 65). There were a total of 2,824 bioassays for the 75 compounds, including 287 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a nonlethal response) for freshwater cladocerans, 585 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 1,952 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups.While the PTI does not determine whether water in a sample is toxic, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.

  16. Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a Phytophthora infestans RXLR Effector, Is a Susceptibility Factor.

    PubMed

    Yang, Lina; McLellan, Hazel; Naqvi, Shaista; He, Qin; Boevink, Petra C; Armstrong, Miles; Giuliani, Licida M; Zhang, Wei; Tian, Zhendong; Zhan, Jiasui; Gilroy, Eleanor M; Birch, Paul R J

    2016-05-01

    Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  18. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  19. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity

    PubMed Central

    Sohn, Kee Hoon; Hughes, Richard K.; Piquerez, Sophie J.; Jones, Jonathan D. G.; Banfield, Mark J.

    2012-01-01

    Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding–leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4C, residues 134–221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4C required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4C, and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem. PMID:22988101

  20. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia.

    PubMed

    Pomié, Céline; Blasco-Baque, Vincent; Klopp, Pascale; Nicolas, Simon; Waget, Aurélie; Loubières, Pascale; Azalbert, Vincent; Puel, Anthony; Lopez, Frédéric; Dray, Cédric; Valet, Philippe; Lelouvier, Benjamin; Servant, Florence; Courtney, Michael; Amar, Jacques; Burcelin, Rémy; Garidou, Lucile

    2016-06-01

    To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet.

  1. Candida innate immunity at the mucosa.

    PubMed

    Richardson, Jonathan P; Moyes, David L; Ho, Jemima; Naglik, Julian R

    2018-03-09

    The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces. Copyright © 2018. Published by Elsevier Ltd.

  2. Protective immunity by oral immunization with heat-killed Shigella strains in a guinea pig colitis model.

    PubMed

    Barman, Soumik; Koley, Hemanta; Ramamurthy, Thandavarayan; Chakrabarti, Manoj Kumar; Shinoda, Sumio; Nair, Gopinath Balakrish; Takeda, Yoshifumi

    2013-11-01

    The protective efficacy of and immune response to heat-killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 10(7) of each serogroup/serotype of heat-killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 10(9) live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat-killed cells of the six Shigella serogroups/serotypes studied would be a possible broad-spectrum candidate vaccine against shigellosis. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  3. Barrier Epithelial Cells and the Control of Type 2 Immunity.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N

    2015-07-21

    Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

    PubMed

    Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen

    2008-07-17

    Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.

  5. Functionally Redundant RXLR Effectors from Phytophthora infestans Act at Different Steps to Suppress Early flg22-Triggered Immunity

    PubMed Central

    Fraiture, Malou; Liu, Xiaoyu; Boevink, Petra C.; Gilroy, Eleanor M.; Chen, Ying; Kandel, Kabindra; Sessa, Guido; Birch, Paul R. J.; Brunner, Frédéric

    2014-01-01

    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans. PMID:24763622

  6. Cnidarian-microbe interactions and the origin of innate immunity in metazoans.

    PubMed

    Bosch, Thomas C G

    2013-01-01

    Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.

  7. Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane.

    PubMed

    Ashwin, N M R; Barnabas, Leonard; Ramesh Sundar, Amalraj; Malathi, Palaniyandi; Viswanathan, Rasappa; Masi, Antonio; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2017-10-03

    Colletotrichum falcatum, an intriguing hemibiotrophic fungal pathogen causes red rot, a devastating disease of sugarcane. Repeated in vitro subculturing of C. falcatum under dark condition alters morphology and reduces virulence of the culture. Hitherto, no information is available on this phenomenon at molecular level. In this study, the in vitro secretome of C. falcatum cultured under light and dark conditions was analyzed using 2-DE coupled with MALDI TOF/TOF MS. Comparative analysis identified nine differentially abundant proteins. Among them, seven proteins were less abundant in the dark-cultured C. falcatum, wherein only two protein species of a cerato-platanin protein called EPL1 (eliciting plant response-like protein) were found to be highly abundant. Transcriptional expression of candidate high abundant proteins was profiled during host-pathogen interaction using qRT-PCR. Comprehensively, this comparative secretome analysis identified five putative effectors, two pathogenicity-related proteins and one pathogen-associated molecular pattern (PAMP) of C. falcatum. Functional characterization of three distinct domains of the PAMP (EPL1) showed that the major cerato-platanin domain (EPL1∆N1-92) is exclusively essential for inducing defense and hypersensitive response (HR) in sugarcane and tobacco, respectively. Further, priming with EPL1∆N1-92 protein induced systemic resistance and significantly suppressed the red rot severity in sugarcane. Being the first secretomic investigation of C. falcatum, this study has identified five potential effectors, two pathogenicity-related proteins and a PAMP. Although many reports have highlighted the influence of light on pathogenicity, this study has established a direct link between light and expression of effectors, for the first time. This study has presented the influence of a novel N-terminal domain of EPL1 in physical and biological properties and established the functional role of major cerato-platanin domain of EPL1 as a potential elicitor inducing systemic resistance in sugarcane. Comprehensively, the study has identified proteins that putatively contribute to virulence of C. falcatum and for the first time, demonstrated the potential role of EPL1 in inducing PAMP-triggered immunity (PTI) in sugarcane. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Plant immunity against viruses: antiviral immune receptors in focus.

    PubMed

    Calil, Iara P; Fontes, Elizabeth P B

    2017-03-01

    Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes

    PubMed Central

    Bevans-Fonti, Shannon; Drager, Luciano F.; Shin, Mi-Kyung; Polotsky, Vsevolod Y.

    2011-01-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O2 fraction (FiO2) 21–5%, 60/h], IH 12 times/h (FiO2 5% for 15 s, 12/h), sustained hypoxia (SH; FiO2 10%), or normoxia while fasting. Tissue oxygen partial pressure (PtiO2) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of PtiO2 were attenuated in muscle and abolished in fat. In obese mice, baseline liver PtiO2 was lower than in lean mice, whereas muscle and fat PtiO2 did not differ. During IH, PtiO2 was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens. PMID:21737828

  10. Comparative Anatomy of Phagocytic and Immunological Synapses

    PubMed Central

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721

  11. DAMP Molecule S100A9 Acts as a Molecular Pattern to Enhance Inflammation during Influenza A Virus Infection: Role of DDX21-TRIF-TLR4-MyD88 Pathway

    PubMed Central

    Tsai, Su-Yu; Segovia, Jesus A.; Chang, Te-Hung; Morris, Ian R.; Berton, Michael T.; Tessier, Philippe A.; Tardif, Mélanie R.; Cesaro, Annabelle; Bose, Santanu

    2014-01-01

    Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous “inflammatory mediators” called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection. PMID:24391503

  12. Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge.

    PubMed

    Rosa, Rafael D; Capelli-Peixoto, Janaína; Mesquita, Rafael D; Kalil, Sandra P; Pohl, Paula C; Braz, Glória R; Fogaça, Andrea C; Daffre, Sirlei

    2016-06-01

    In dipteran insects, invading pathogens are selectively recognized by four major pathways, namely Toll, IMD, JNK, and JAK/STAT, and trigger the activation of several immune effectors. Although substantial advances have been made in understanding the immunity of model insects such as Drosophila melanogaster, knowledge on the activation of immune responses in other arthropods such as ticks remains limited. Herein, we have deepened our understanding of the intracellular signalling pathways likely to be involved in tick immunity by combining a large-scale in silico approach with high-throughput gene expression analysis. Data from in silico analysis revealed that although both the Toll and JAK/STAT signalling pathways are evolutionarily conserved across arthropods, ticks lack central components of the D. melanogaster IMD pathway. Moreover, we show that tick immune signalling-associated genes are constitutively transcribed in BME26 cells (a cell lineage derived from embryos of the cattle tick Rhipicephalus microplus) and exhibit different transcriptional patterns in response to microbial challenge. Interestingly, Anaplasma marginale, a pathogen that is naturally transmitted by R. microplus, causes downregulation of immune-related genes, suggesting that this pathogen may manipulate the tick immune system, favouring its survival and vector colonization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Attributions and private theories of mental illness among young adults seeking psychiatric treatment in Nairobi: an interpretive phenomenological analysis.

    PubMed

    Mbuthia, Judy Wanjiru; Kumar, Manasi; Falkenström, Fredrik; Kuria, Mary Wangari; Othieno, Caleb Joseph

    2018-01-01

    Mental illness affects every segment of population including young adults. The beliefs held by young patients regarding the causes of mental illness impact their treatment-seeking behaviour. It is pertinent to know the commonly held attributions around mental illness so as to effectively provide psychological care, especially in a resource constrained context such as Kenya. This helps in targeting services around issues such as stigma and extending youth-friendly services. Guided by the private theories interview (PTI-P) and attributional framework, individual semi-structured interviews were carried out with ten young adults of ages 18-25 years about their mental health condition for which they were undergoing treatment. Each interview took 30-45 min. We mapped four attributions (locus of control, stability, controllability and stigma) on PTI-P questions. Data was transcribed verbatim to produce transcripts coded using interpretive phenomenological analysis. These codes were then broken down into categories that could be used to understand various attributions. We found PTI-P to be a useful tool and it elicited three key themes: (a) psychosocial triggers of distress (with themes of negative thoughts, emotions around mental health stigma and negative childhood experiences, parents' separation or divorce, death of a loved one etc.), (b) biological conditions and psychopathologies limiting intervention, and (c) preferences and views on treatment. Mapping these themes on our attributional framework, PTI-P themes presented as causal attributions explaining stigma, locus of control dimensions and stability. External factors were mainly ascribed to be the cause of unstable and uncontrollable attributions including persistent negative emotions and thoughts further exacerbating psychological distress. Nine out of the ten participants expressed the need for more intense and supportive therapy. Our study has provided some experiential evidence in understanding how stigma, internal vs external locus of control, stability vs instability attributions play a role in shaping attitudes young people have towards their mental health. Our study points to psychosocial challenges such as stigma, poverty and lack of social support that continue to undermine mental well-being of Kenyan youth. These factors need to be considered when addressing mental health needs of young people in Kenya.

  14. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    PubMed Central

    Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Chapman, Antony V. E.; Nettleton, Dan; Wise, Roger P.

    2017-01-01

    Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios. PMID:28790145

  15. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice.

    PubMed

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-08-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.

  16. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity—Clues for Treatments and Vaccines

    PubMed Central

    Melchjorsen, Jesper

    2013-01-01

    Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response. PMID:23435233

  17. Prediction of pesticide toxicity in Midwest streams

    USGS Publications Warehouse

    Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.

    2016-01-01

    The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.

  18. Fungal mediated innate immune memory, what have we learned?

    PubMed

    Quintin, Jessica

    2018-05-30

    The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.

  19. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  20. Recent advances targeting innate immunity-mediated therapies against HIV-1 infection.

    PubMed

    Shankar, Esaki Muthu; Velu, Vijayakumar; Vignesh, Ramachandran; Vijayaraghavalu, Sivakumar; Rukumani, Devi Velayuthan; Sabet, Negar Shafiei

    2012-08-01

    Early defence mechanisms of innate immunity respond rapidly to infection against HIV-1 in the genital mucosa. Additionally, innate immunity optimises effective adaptive immune responses against persistent HIV infection. Recent research has highlighted the intrinsic roles of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G, tripartite motif-containing protein 5, tetherin, sterile α-motif and histidine/aspartic acid domain-containing protein 1 in restricting HIV-1 replication. Likewise, certain endogenously secreted antimicrobial peptides, namely α/β/θ-defensins, lactoferrins, secretory leukocyte protease inhibitor, trappin-2/elafin and macrophage inflammatory protein-3α are reportedly protective. Whilst certain factors directly inhibit HIV, others can be permissive. Interferon-λ3 exerts an anti-HIV function by activating Janus kinase-signal transducer and activator of transcription-mediated innate responses. Morphine has been found to impair intracellular innate immunity, contributing to HIV establishment in macrophages. Interestingly, protegrin-1 could be used therapeutically to inhibit early HIV-1 establishment. Moreover, chloroquine inhibits plasmacytoid dendritic cell activation and improves effective T-cell responses. This minireview summarizes the recently identified targets for innate immunity-mediated therapies and outlines the challenges that lie ahead in improving treatment of HIV infection. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  1. Pesticide toxicity index for freshwater aquatic organisms, 2nd edition

    USGS Publications Warehouse

    Munn, Mark D.; Gilliom, Robert J.; Moran, Patrick W.; Nowell, Lisa H.

    2006-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation's streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns. A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups. Although the PTI does not determine whether water in a sample is toxic to aquatic organisms, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.

  2. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  3. Antiviral immune responses: triggers of or triggered by autoimmunity?

    PubMed Central

    Münz, Christian; Lünemann, Jan D.; Getts, Meghann Teague; Miller, Stephen D.

    2010-01-01

    Several common autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus (SLE) and multiple sclerosis, are genetically linked to distinct human MHC class II molecules and other immune modulators. However, genetic predisposition is only one risk factor for the development of these diseases, and low concordance rates in monozygotic twins as well as geographical distribution of disease risk point towards environmental factors in the genesis of these diseases. Among these environmental factors, infections have been implicated in the onset and/or promotion of autoimmunity. In this review, we outline mechanisms by which pathogens can trigger autoimmune disease, and also pathways by which infection and immune control of infectious disease might be dysregulated during autoimmunity. PMID:19319143

  4. Basic leucine zipper domain transcription factors: the vanguards in plant immunity.

    PubMed

    Noman, Ali; Liu, Zhiqin; Aqeel, Muhammad; Zainab, Madiha; Khan, Muhammad Ifnan; Hussain, Ansar; Ashraf, Muhammad Furqan; Li, Xia; Weng, Yahong; He, Shuilin

    2017-12-01

    Regulation of spatio-temporal expression patterns of stress tolerance associated plant genes is an essential component of the stress responses. Eukaryotes assign a large amount of their genome to transcription with multiple transcription factors (TFs). Often, these transcription factors fit into outsized gene groups which, in several cases, exclusively belong to plants. Basic leucine zipper domain (bZIP) transcription factors regulate vital processes in plants and animals. In plants, bZIPs are implicated in numerous fundamental processes like seed development, energy balance, and responses to abiotic or biotic stresses. Systematic analysis of the information obtained over the last two decades disclosed a constitutive role of bZIPs against biotic stress. bZIP TFs are vital players in plant innate immunity due to their ability to regulate genes associated with PAMP-triggered immunity, effector-triggered immunity, and hormonal signaling networks. Expression analysis of studied bZIP genes suggests that exploration and functional characterization of novel bZIP TFs in planta is helpful in improving crop resistance against pathogens and environmental stresses. Our review focuses on major advancements in bZIP TFs and plant responses against different pathogens. The integration of genomics information with the functional studies provides new insights into the regulation of plant defense mechanisms and engineering crops with improved resistance to invading pathogens. Conclusively, succinct functions of bZIPs as positive or negative regulator mediate resistance to the plant pathogens and lay a foundation for understanding associated genes and TFs regulating different pathways. Moreover, bZIP TFs may offer a comprehensive transgenic gizmo for engineering disease resistance in plant breeding programs.

  5. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana.

    PubMed

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium -mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa , Psa -NZ V13 and Psa -NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana . Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium -mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1 , NDR1 , or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana . In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta .

  6. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana

    PubMed Central

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta. PMID:29326748

  7. Antipsychotic treatment and the Rorschach Perceptual Thinking Index (PTI) in psychotic disorder patients: Effects of treatment.

    PubMed

    Biagiarelli, Mario; Curto, Martina; Di Pomponio, Ileana; Comparelli, Anna; Baldessarini, Ross J; Ferracuti, Stefano

    2017-05-01

    The Rorschach-based Perceptual Thinking Index (PTI) is used to identify and rate features of psychotic disorders, but effects of antipsychotic treatment on such ratings is not clear. Accordingly, we examined potential effects of antipsychotic drugs on PTI measures in 114 patients with a psychotic or bipolar-I disorder. Use and doses of antipsychotic drugs (as chlorpromazine-equivalent [CPZ-eq] mg/day) were unrelated to PTI total or subscale scores in any diagnostic group. PTI scores were independently and significantly associated with psychotic symptomatic severity (PANSS score) and less with female sex. These findings support the validity and value of the PTI in identifying features of psychosis even in the presence of antipsychotic treatment. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    PubMed

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  9. Persistent T-wave inversion predicts myocardial damage after ST-elevation myocardial infarction.

    PubMed

    Reindl, Martin; Reinstadler, Sebastian Johannes; Feistritzer, Hans-Josef; Niess, Lea; Koch, Constantin; Mayr, Agnes; Klug, Gert; Metzler, Bernhard

    2017-08-15

    Persistent T-wave inversion (PTI) after ST-elevation myocardial infarction (STEMI) is associated with worse clinical outcome; however, the underlying mechanism between PTI and poor prognosis is incompletely understood. We sought to investigate the relationship between PTI and myocardial damage assessed by cardiac magnetic resonance (CMR) following STEMI. In this prospective observational study, we included 142 consecutive revascularized STEMI patients. Electrocardiography to determine the presence and amplitude of PTI and pathological Q-waves was conducted 4months after infarction. CMR was performed within 1week after infarction and at 4months follow-up to evaluate infarct characteristics and myocardial function. Patients with PTI (n=103, 73%) showed a larger acute (21[11-29] vs. 6[1-13]%; p<0.001) and chronic infarct size (IS) (14[8-19] vs. 3[1-8]%; p<0.001) and more frequently microvascular obstruction (59 vs. 33%; p=0.02). The association between PTI and chronic IS remained significant (odds ratio: 9.02, 95%CI 3.49-23.35; p<0.001) after adjustment for pathological Q-wave and other IS estimators (high-sensitivity cardiac troponin T and C-reactive protein, N-terminal pro B-type natriuretic peptide, culprit vessel, pre-interventional TIMI flow). The value of PTI amplitude for the prediction of large chronic IS>11% (AUC: 0.84, 95%CI 0.77-0.90) was significantly higher compared to Q-wave amplitude (AUC: 0.72, 95%CI 0.63-0.80; p=0.009); the combination of PTI with pathological Q-wave (Q-wave/T-wave score) led to a net reclassification improvement of 0.43 (95% CI 0.29-0.57; p<0.001) as compared to PTI alone. PTI following STEMI is independently and incrementally associated with more extensive myocardial damage as visualized by CMR. An electrocardiographic score combining PTI with pathological Q-wave allows for a highly accurate IS estimation post-STEMI. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  11. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation

    PubMed Central

    Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine

    2017-01-01

    Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136

  12. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controllingmore » innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.« less

  13. Immunology in the liver--from homeostasis to disease.

    PubMed

    Heymann, Felix; Tacke, Frank

    2016-02-01

    The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

  14. LYM2-dependent chitin perception limits molecular flux via plasmodesmata

    PubMed Central

    Faulkner, Christine; Petutschnig, Elena; Benitez-Alfonso, Yoselin; Beck, Martina; Robatzek, Silke; Lipka, Volker; Maule, Andrew J.

    2013-01-01

    Chitin acts as a pathogen-associated molecular pattern from fungal pathogens whose perception triggers a range of defense responses. We show that LYSIN MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN 2 (LYM2), the Arabidopsis homolog of a rice chitin receptor-like protein, mediates a reduction in molecular flux via plasmodesmata in the presence of chitin. For this response, lym2-1 mutants are insensitive to the presence of chitin, but not to the flagellin derivative flg22. Surprisingly, the chitin-recognition receptor CHITIN ELCITOR RECEPTOR KINASE 1 (CERK1) is not required for chitin-induced changes to plasmodesmata flux, suggesting that there are at least two chitin-activated response pathways in Arabidopsis and that LYM2 is not required for CERK1-mediated chitin-triggered defense responses, indicating that these pathways are independent. In accordance with a role in the regulation of intercellular flux, LYM2 is resident at the plasma membrane and is enriched at plasmodesmata. Chitin-triggered regulation of molecular flux between cells is required for defense responses against the fungal pathogen Botrytis cinerea, and thus we conclude that the regulation of symplastic continuity and molecular flux between cells is a vital component of chitin-triggered immunity in Arabidopsis. PMID:23674687

  15. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”

    PubMed Central

    Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.

    2011-01-01

    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931

  16. A timetable of 24-hour patterns for human lymphocyte subpopulations.

    PubMed

    Mazzoccoli, G; Sothern, R B; De Cata, A; Giuliani, F; Fontana, A; Copetti, M; Pellegrini, F; Tarquini, R

    2011-01-01

    Specific lymphocyte cell surface molecules involved in antigen recognition and cell activation present different circadian patterns, with peaks and troughs reflecting a specific time-related compartment of immune cell function. In order to study the dynamics of variation in expression of cytotoxic lymphocyte cell surface molecules that trigger immune responses, several lymphocyte cell surface clusters of differentiation (CD) and antigen receptors, analyses were performed on blood samples collected every 4 h for 24 h from eleven clinically-healthy men. Assays for serum melatonin (peaking at night) and cortisol (peaking near awakening) confirmed 24-h synchronization of the subjects to the light-dark schedule. A significant (p≤0.05) circadian rhythm could be demonstrated for six of the 10 lymphocyte subpopulations, with midday peaks for CD8+dim (T cytotoxic cells, 11:15 h), gammadeltaTCR (gamma-delta T cell receptor-expressing cells, 11:33 h), CD8+ (T suppressor/cytotoxic cells, 12:08 h), and for CD16+ (natural killer cells, 12:59 h), and peaks during the night for CD4+ (T helper/inducer cells, 01:23 h) and CD3+ (total T cells, 02:58 h). A borderline significant rhythm (p = 0.056) was also observed for CD20+ (total B cells), with a peak late in the evening (23:06 h). Acrophases for 3 subsets, CD8+bright (T suppressor cells, 15:22 h), HLA-DR+ (B cells and activated T cells, 23:06 h) and CD25+ (activated T lymphocytes with expression of the alpha chain of IL2 receptor, 23:35 h), where a 24-h rhythm could not be definitively determined, nevertheless provide information on the location of their highest values and possible physiological significance. Thus, specific lymphocyte surface molecules present distinctly-timed profiles of nyctohemeral changes that indicate a temporal (i.e., circadian) organization of cellular immune function, which is most likely of physiological significance in triggering and regulating immune responses. Such a molecular cytotoxic timetable can potentially serve as a guide to sampling during experimental, diagnostic, therapeutic and/or other medical procedures.

  17. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae

    PubMed Central

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W.; Brennan, Patrick J.; Belisle, John T.

    2016-01-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. PMID:27297389

  18. 17DD and 17D-213/77 yellow fever substrains trigger a balanced cytokine profile in primary vaccinated children.

    PubMed

    Campi-Azevedo, Ana Carolina; de Araújo-Porto, Luiza Pacheco; Luiza-Silva, Maria; Batista, Maurício Azevedo; Martins, Marina Angela; Sathler-Avelar, Renato; da Silveira-Lemos, Denise; Camacho, Luiz Antonio Bastos; de Menezes Martins, Reinaldo; de Lourdes de Sousa Maia, Maria; Farias, Roberto Henrique Guedes; da Silva Freire, Marcos; Galler, Ricardo; Homma, Akira; Ribeiro, José Geraldo Leite; Lemos, Jandira Aparecida Campos; Auxiliadora-Martins, Maria; Caldas, Iramaya Rodrigues; Elói-Santos, Silvana Maria; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis

    2012-01-01

    This study aimed to compare the cytokine-mediated immune response in children submitted to primary vaccination with the YF-17D-213/77 or YF-17DD yellow fever (YF) substrains. A non-probabilistic sample of eighty healthy primary vaccinated (PV) children was selected on the basis of their previously known humoral immune response to the YF vaccines. The selected children were categorized according to their YF-neutralizing antibody titers (PRNT) and referred to as seroconverters (PV-PRNT(+)) or nonseroconverters (PV-PRNT(-)). Following revaccination with the YF-17DD, the PV-PRNT(-) children (YF-17D-213/77 and YF-17DD groups) seroconverted and were referred as RV-PRNT(+). The cytokine-mediated immune response was investigated after short-term in vitro cultures of whole blood samples. The results are expressed as frequency of high cytokine producers, taking the global median of the cytokine index (YF-Ag/control) as the cut-off. The YF-17D-213/77 and the YF-17DD substrains triggered a balanced overall inflammatory/regulatory cytokine pattern in PV-PRNT(+), with a slight predominance of IL-12 in YF-17DD vaccinees and a modest prevalence of IL-10 in YF-17D-213/77. Prominent frequency of neutrophil-derived TNF-α and neutrophils and monocyte-producing IL-12 were the major features of PV-PRNT(+) in the YF-17DD, whereas relevant inflammatory response, mediated by IL-12(+)CD8(+) T cells, was the hallmark of the YF-17D-213/77 vaccinees. Both substrains were able to elicit particular but relevant inflammatory events, regardless of the anti-YF PRNT antibody levels. PV-PRNT(-) children belonging to the YF-17DD arm presented gaps in the inflammatory cytokine signature, especially in terms of the innate immunity, whereas in the YF-17D-213/77 arm the most relevant gap was the deficiency of IL-12-producing CD8(+)T cells. Revaccination with YF-17DD prompted a balanced cytokine profile in YF-17DD nonresponders and a robust inflammatory profile in YF-17D-213/77 nonresponders. Our findings demonstrated that, just like the YF-17DD reference vaccine, the YF-17D-213/77 seed lot induced a mixed pattern of inflammatory and regulatory cytokines, supporting its universal use for immunization.

  19. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  20. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  1. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure.

    PubMed

    Wang, Shuangfeng; Sun, Jianhang; Fan, Fenggui; Tan, Zhaoyun; Zou, Yanmin; Lu, Dongping

    2016-09-01

    Receptor-like kinases (RLKs) play important roles in plant immunity signaling; thus, many are hijacked by pathogen effectors to promote successful pathogenesis. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice leaf blight disease. The strain PXO99A has 18 non-TAL (transcription activation-like) effectors; however, their mechanisms of action and host target proteins remain largely unknown. Although the effector XopR from the Xoo strain MAFF311018 was shown to suppress PAMP-triggered immune responses in Arabidopsis, its target has not yet been identified. Here, we show that PXO99A XopR interacts with BIK1 at the plasma membrane. BIK1 is a receptor-like cytoplasmic kinase (RLCK) belonging to the RLK family of proteins and mediates PAMP-triggered stomatal immunity. In turn, BIK1 phosphorylates XopR. Furthermore, XopR suppresses PAMP-triggered stomatal closure in transgenic Arabidopsis expressing XopR. In addition, XopR is able to associate with RLCKs other than BIK1. These results suggest that XopR likely suppresses plant immunity by targeting BIK1 and other RLCKs.

  2. Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence.

    PubMed

    Dixit, Vishwa Deep

    2012-10-01

    Emerging evidence indicates that the immune and metabolic interactions control several aspects of the aging process and associated chronic diseases. Among several sites of immune-metabolic interactions, thymic demise represents a particularly puzzling phenomenon because even in metabolically healthy middle-aged individuals the majority of thymic space is replaced with ectopic lipids. The new T cell specificities can only be generated in a functional thymus and, peripheral proliferation of pre-existing T cell clones provides limited immune-vigilance in the elderly. Therefore, it is hypothesized that the strategies that enhance thymic-lymphopoiesis may extend healthspan. Recent data suggest that byproducts of thymic fatty acids and lipids result in accumulation of 'lipotoxic DAMPs' (damage associated molecular patterns), which triggers the innate immune-sensing mechanism like inflammasome activation which links aging to thymic demise. The immune-metabolic interaction within the aging thymus produces a local pro-inflammatory state that directly compromises the thymic stromal microenvironment, thymic-lymphopoiesis and serves a precursor of systemic immune-dysregulation in the elderly. New evidence also suggests that ectopic thymic adipocytes may develop from specific intrathymic stromal cell precursors instead of a passive process that is simply a consequence of thymic lymphopenia. Thus the complex bidirectional interactions between metabolic and immune systems may link aging to health, T cell senescence, and associated diseases. This review discusses the immune-metabolic mechanisms during aging - with implications for developing future therapeutic strategies for living well beyond the expected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Jasmonate-triggered plant immunity.

    PubMed

    Campos, Marcelo L; Kang, Jin-Ho; Howe, Gregg A

    2014-07-01

    The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.

  4. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response1[OPEN

    PubMed Central

    Brauer, Elizabeth K.; Ahsan, Nagib; Kato, Naohiro; Coluccio, Alison E.; Thelen, Jay J.

    2016-01-01

    Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca2+ uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H+)/K+ symporter that mediates a high-affinity uptake during K+ deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K+ efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K+ loss. Taken together, our results position ILK1 as a link between plant defense pathways and K+ homeostasis. PMID:27208244

  5. A novel technique for monitoring of fast variations in brain oxygen tension using an uncoated fluorescence quenching probe (Foxy AL-300).

    PubMed

    Klein, Klaus Ulrich; Boehme, Stefan; Hartmann, Erik Kristopher; Szczyrba, Marc; David, Matthias; Markstaller, Klaus; Engelhard, Kristin

    2011-10-01

    A novel uncoated fluorescence quenching probe allows fast measurement of oxygen tension in vessels and tissue. The present study reports the first use of the technology for dual measurements of arterial (paO(2)) and brain tissue oxygen tension (ptiO(2)) during hypoxic challenge in a pig model. Eight pigs were anesthetized using fentanyl and propofol. Fluorescence quenching pO(2) probes (Foxy AL-300, Ocean Optics, Dunedin, FL) were placed in the ascending aorta (Foxy-paO(2)) and subcortically at 14 mm in brain tissue (Foxy-ptiO(2)). As reference, a clark-type electrode probe (Licox-ptiO(2)) was placed into brain tissue close to the Foxy probe (Licox, Integra Neurosciences, Plainsboro, NJ). Measurements were taken at baseline (FiO(2) 1.0), during episodes of apnea, and during recovery (FiO(2) 1.0). descriptive results. Individual Foxy-paO(2), Foxy-ptiO(2), and Licox-ptiO(2) courses were related to episodes of apnea. The response time of the Foxy measurements was 10 Hz. Baseline values at FiO(2) 1.0 were Foxy-paO(2) 520±120 mm Hg, Foxy-ptiO(2) 62±24 mm Hg, and Licox-ptiO(2) 55±29 mm Hg; apnea values were Foxy-paO(2) 64±10 mm Hg, Foxy-ptiO(2) 37±12 mm Hg, and Licox-ptiO(2) 31±16 mm Hg; recovery values at FiO(2) 1.0 were Foxy-paO(2) 478±98 mm Hg, Foxy-ptiO(2) 78±26 mm Hg, and Licox-ptiO(2) 62±32 mm Hg. The present study demonstrates the feasibility of pO(2) measurements in macrocirculation and cerebral microcirculation using a novel uncoated fluorescence quenching probe. The technology allows for real-time investigation of pO(2) changes at a temporal resolution of 0.05 to 10 Hz.

  6. Acute injury in the peripheral nervous system triggers an alternative macrophage response

    PubMed Central

    2012-01-01

    Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy. PMID:22818207

  7. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    PubMed Central

    Metzger, Rebecca N.; Krug, Anne B.; Eisenächer, Katharina

    2018-01-01

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis. PMID:29570694

  8. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola.

    PubMed

    Oliveira-Garcia, Ely; Deising, Holger B

    2016-08-01

    In plants, pathogen defense is initiated by recognition of pathogen-associated molecular patterns (PAMPs) via plasma membrane-localized pattern-recognition receptors (PRRs). Fungal structural cell wall polymers such as branched β-glucans are essential for infection structure rigidity and pathogenicity, but at the same time represent PAMPs. Kre5 and Kre6 are key enzymes in β-1,6-glucan synthesis and formation of branch points of the β-glucan network. In spite of the importance of branched β-glucan for hyphal rigidity and plant-fungus interactions, neither the role of KRE5 and KRE6 in pathogenesis nor mechanisms allowing circumventing branched β-glucan-triggered immune responses are known. We functionally characterized KRE5 and KRE6 of the ascomycete Colletotrichum graminicola, a hemibiotroph that infects maize (Zea mays). After appressorial plant invasion, this fungus sequentially differentiates biotrophic and highly destructive necrotrophic hyphae. RNAi-mediated reduction of KRE5 and KRE6 transcript abundance caused appressoria to burst and swelling of necrotrophic hyphae, indicating that β-1,6-glucosidic bonds are essential in these cells. Live cell imaging employing KRE5:mCherry and KRE6:mCherry knock-in strains and probing of infection structures with a YFP-conjugated β-1,6-glucan-binding protein showed expression of these genes and exposure of β-1,6-glucan in conidia, appressoria and necrotrophic, but not in biotrophic hyphae. Overexpression of KRE5 and KRE6 in biotrophic hyphae led to activation of broad-spectrum plant defense responses, including papilla and H2 O2 formation, as well as transcriptional activation of several defense-related genes. Collectively, our results strongly suggest that down-regulation of synthesis and avoidance of exposure of branched β-1,3-β-1,6-glucan in biotrophic hyphae is required for attenuation of plant immune responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

    PubMed

    Sanchez, Lisa; Courteaux, Barbara; Hubert, Jane; Kauffmann, Serge; Renault, Jean-Hugues; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2012-11-01

    Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.

  10. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.

    PubMed

    Kim, Sang Hee; Son, Geon Hui; Bhattacharjee, Saikat; Kim, Hye Jin; Nam, Ji Chul; Nguyen, Phuong Dung T; Hong, Jong Chan; Gassmann, Walter

    2014-06-01

    The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Emerging Role of Ubiquitination in Antiviral RIG-I Signaling

    PubMed Central

    Maelfait, Jonathan

    2012-01-01

    Summary: Detection of viruses by the innate immune system involves the action of specialized pattern recognition receptors. Intracellular RIG-I receptors sense the presence of viral nucleic acids in infected cells and trigger signaling pathways that lead to the production of proinflammatory and antiviral proteins. Over the past few years, posttranslational modification of RIG-I and downstream signaling proteins by different types of ubiquitination has been found to be a key event in the regulation of RIG-I-induced NF-κB and interferon regulatory factor 3 (IRF3) activation. Multiple ubiquitin ligases, deubiquitinases, and ubiquitin binding scaffold proteins contribute to both positive and negative regulation of the RIG-I-induced antiviral immune response. A better understanding of the function and activity of these proteins might eventually lead to the development of novel therapeutic approaches for management of viral diseases. PMID:22390971

  12. Rapid resolution of brain ischemic hypoxia after cerebral revascularization in moyamoya disease.

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Noguer, Montserrat; Lorenzo-Bosquet, Carles; Sahuquillo, Juan

    2015-03-01

    In moyamoya disease (MMD), cerebral revascularization is recommended in patients with recurrent or progressive ischemic events and associated reduced cerebral perfusion reserve. Low-flow bypass with or without indirect revascularization is generally the standard surgical treatment. Intraoperative monitoring of cerebral partial pressure of oxygen (PtiO2) with polarographic Clark-type probes in cerebral artery bypass surgery for MMD-induced chronic cerebral ischemia has not yet been described. To describe basal brain tissue oxygenation in MMD patients before revascularization as well as the immediate changes produced by the surgical procedure using intraoperative PtiO2 monitoring. Between October 2011 and January 2013, all patients with a diagnosis of MMD were intraoperatively monitored. Cerebral oxygenation status was analyzed based on the Ptio2/PaO2 ratio. Reference thresholds of PtiO2/PaO2 had been previously defined as below 0.1 for the lower reference threshold (hypoxia) and above 0.35 for the upper reference threshold (hyperoxia). Before STA-MCA bypass, all patients presented a situation of severe tissue hypoxia confirmed by a PtiO2/PaO2 ratio <0.1. After bypass, all patients showed a rapid and sustained increase in PtiO2, which reached normal values (PtiO2/PaO2 ratio between 0.1 and 0.35). One patient showed an initial PtiO2 improvement followed by a decrease due to bypass occlusion. After repeat anastomosis, the patient's PtiO2 increased again and stabilized. Direct anastomosis quickly improves cerebral oxygenation, immediately reducing the risk of ischemic stroke in both pediatric and adult patients. Intraoperative PtiO2 monitoring is a very reliable tool to verify the effectiveness of this revascularization procedure.

  13. 2015 Guidance on cancer immunotherapy development in early-phase clinical studies.

    PubMed

    2015-12-01

    The development of cancer immunotherapies is progressing rapidly with a variety of technological approaches. They consist of "cancer vaccines", which are based on the idea of vaccination, "effector cell therapy", classified as passive immunotherapy, and "inhibition of immunosuppression", which intends to break immunological tolerance to autoantigens or immunosuppressive environments characterizing antitumor immune responses. Recent reports showing clinical evidence of efficacy of immune checkpoint inhibitors and adoptive immunotherapies with tumor-infiltrating lymphocytes and tumor-specific receptor gene-modified T cells indicate the beginning of a new era for cancer immunotherapy. This guidance summarizes ideas that will be helpful to those who plan to develop cancer immunotherapy. The aims of this guidance are to discuss and offer important points in early phase clinical studies of innovative cancer immunotherapy, with future progress in this field, and to contribute to the effective development of cancer immunotherapy aligned with the scope of regulatory science. This guidance covers cancer vaccines, effector cell therapy, and inhibition of immunosuppression, including immune checkpoint inhibitors. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis.

    PubMed

    Chen, Wenjun; Wang, Xiaoyun; Lv, Xiaoli; Tian, Yanli; Xu, Yanquan; Mao, Qiang; Shang, Mei; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2014-09-01

    Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P < 0.01) and EPG (P < 0.01) in CsCB2 and CsCB3 groups were significantly lower than in control group. In conclusion, we profiled secreted cathepsin B cysteine proteases family for the first time and demonstrated that all CsCB family were C. sinensis excretory/secretory products that may regulate host immune responses.

  15. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    PubMed

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  17. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.

    PubMed

    Nastase, Madalina V; Janicova, Andrea; Roedig, Heiko; Hsieh, Louise Tzung-Harn; Wygrecka, Malgorzata; Schaefer, Liliana

    2018-04-01

    It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.

  18. Behind the lines–actions of bacterial type III effector proteins in plant cells

    PubMed Central

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715

  19. No Love Lost Between Viruses and Interferons.

    PubMed

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  20. Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon-Dependent Pathway.

    PubMed

    Mollah, Zia U A; Quah, Hong Sheng; Graham, Kate L; Jhala, Gaurang; Krishnamurthy, Balasubramanian; Dharma, Joanna Francisca M; Chee, Jonathan; Trivedi, Prerak M; Pappas, Evan G; Mackin, Leanne; Chu, Edward P F; Akazawa, Satoru; Fynch, Stacey; Hodson, Charlotte; Deans, Andrew J; Trapani, Joseph A; Chong, Mark M W; Bird, Phillip I; Brodnicki, Thomas C; Thomas, Helen E; Kay, Thomas W H

    2017-12-01

    Granzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes. Granzyme A deficiency resulted in an increased incidence in diabetes associated with accumulation of ssDNA in immune cells and induction of an interferon response in pancreatic islets. Central tolerance to proinsulin in transgenic NOD mice was broken on a granzyme A-deficient background. We have identified a novel endogenous trigger for autoimmune diabetes and an in vivo role for granzyme A in maintaining immune tolerance. © 2017 by the American Diabetes Association.

  1. Too many pediatric trampoline injuries.

    PubMed

    Furnival, R A; Street, K A; Schunk, J E

    1999-05-01

    Recent reports note a dramatic increase in the number of pediatric trampoline injuries (PTI) during the past several years. In 1996, the US Consumer Product Safety Commission estimates that 83 000 patients received treatment for trampoline injuries in US hospital emergency departments (EDs), and that approximately 75% of these patients were <15 years of age. We sought to review our experience with PTI since our previous report (Pediatrics 1992;89:849), and to determine if the American Academy of Pediatrics' current (Pediatrics 1981;67:438) safety recommendations are adequate. Retrospective medical record review of all PTI patients presenting to the pediatric ED from November 1990 through November 1997. A total of 727 PTI patients were included; medical records were unavailable for 3 patients. The annual number of PTI nearly tripled during the study period, from 51 in 1991 to a peak of 148 in 1996. PTI patients were 53% female, with a median age of 7 years; 37% were <6 years of age. Privately owned trampolines accounted for 99% of PTI. Most injuries (66%) occurred on the trampoline, 28% resulted from falls off, and 4% from imaginative mechanisms. One hundred eleven patients (15%) suffered severe injury (1990 Abbreviated Injury Scale value >/=3), usually of an extremity (89 out of 111). Fractures occurred in 324 patients (45%). Spinal injuries were common (12%), including 7 patients with cervical or thoracic fractures, and 1 with C7 paraplegia. Fractures were more frequently associated with falls off the trampoline, whereas spinal injuries more frequently occurred on the trampoline. Eighty patients (11%) required prehospital medical transport to our ED, 584 (80%) had ED radiographs, and 382 (53%) required pediatric surgical subspecialty involvement. Seventeen percent of PTI patients (125 out of 727) were admitted to the hospital, including 9 to the pediatric intensive care unit; 99 (14%) required one or more operations. Mean hospital stay was 2 days (range, 1-63 days); 24 stays (19%) were for >/=3 days. We estimate that the hospital charges for the acute medical care of PTI study patients at our institution totaled approximately $700 000. PTI are dramatically increasing in number, and result in considerable childhood morbidity. Most PTI occur on privately owned trampolines. Few, if any, safety recommendations for the trampoline are followed. We support recommendations for a ban on the recreational, school, and competitive pediatric use of trampolines.

  2. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  3. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis

    PubMed Central

    Binder, Christoph J.

    2018-01-01

    Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanism of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles (MV) or oxidized low-density lipoproteins (LDL). Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are pro-inflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes. PMID:27235680

  4. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes

    PubMed Central

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.

    2015-01-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554

  5. Why is neuroimmunopharmacology crucial for the future of addiction research?

    PubMed

    Hutchinson, Mark R; Watkins, Linda R

    2014-01-01

    A major development in drug addiction research in recent years has been the discovery that immune signaling within the central nervous system contributes significantly to mesolimbic dopamine reward signaling induced by drugs of abuse, and hence is involved in the presentation of reward behaviors. Additionally, in the case of opioids, these hypotheses have advanced through to the discovery of the novel site of opioid action at the innate immune pattern recognition receptor Toll-like receptor 4 as the necessary triggering event that engages this reward facilitating central immune signaling. Thus, the hypothesis of major proinflammatory contributions to drug abuse was born. This review will examine these key discoveries, but also address several key lingering questions of how central immune signaling is able to contribute in this fashion to the pharmacodynamics of drugs of abuse. It is hoped that by combining the collective wisdom of neuroscience, immunology and pharmacology, into Neuroimmunopharmacology, we may more fully understanding the neuronal and immune complexities of how drugs of abuse, such as opioids, create their rewarding and addiction states. Such discoveries will point us in the direction such that one day soon we might successfully intervene to successfully treat drug addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes.

    PubMed

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M

    2011-12-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.

  7. Structural and Functional Analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide

    PubMed Central

    Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2016-01-01

    In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487

  8. Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis.

    PubMed

    Amaradasa, Bimal S; Amundsen, Keenan

    2016-01-01

    Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.

  9. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.

    PubMed

    Sun, Tongjun; Zhang, Yaxi; Li, Yan; Zhang, Qian; Ding, Yuli; Zhang, Yuelin

    2015-12-18

    Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.

  10. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  11. The Rorschach Perceptual-Thinking Index (PTI): An Examination of Reliability, Validity, and Diagnostic Efficiency

    ERIC Educational Resources Information Center

    Hilsenroth, Mark J.; Eudell-Simmons, Erin M.; DeFife, Jared A.; Charnas, Jocelyn W.

    2007-01-01

    This study investigates the reliability, validity, and diagnostic efficiency of the Rorschach Perceptual-Thinking Index (PTI) in relation to the accurate identification of psychotic disorder (PTD) patients. The PTI is a revision of the Rorschach Schizophrenia Index (SCZI), designed to achieve several criteria, including an increase in the…

  12. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    PubMed

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  13. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique.

    PubMed

    Nakai, Masaaki; Niinomi, Mitsuo; Ishii, Daisuke

    2011-10-01

    Porous titanium (pTi) can possess a low Young's modulus equal to that of human bone, depending on its porosity. However, the mechanical strength of pTi deteriorates greatly with increasing porosity. On the other hand, certain medical polymers exhibit biofunctionalities, which are not possessed intrinsically by metallic materials. Therefore, a biodegradable medical polymer, poly-L-lactic acid (PLLA), was used to fill in the pTi pores using a modified in-situ polymerization technique. The mechanical and biodegradable properties of pTi filled with PLLA (pTi/PLLA) as fabricated by this technique and the effects of the PLLA filling were evaluated in this study. The pTi pores are almost completely filled with PLLA by the developed process (i.e., technique). The tensile strength and tensile Young's modulus of pTi barely changes with the PLLA filling. However, the PLLA filling improves the compressive 0.2% proof stress of pTi having any porosity and increases the compressive Young's modulus of pTi having relatively high porosity. This difference between the tensile and compressive properties of pTi/PLLA is considered to be caused by the differing resistances of PLLA in the pores to tensile and compressive deformations. The PLLA filled into the pTi pores degrades during immersion in Hanks' solution at 310 K. The weight loss due to PLLA degradation increases with increasing immersion time. However, the rate of weight loss of pTi/PLLA during immersion decreases with increasing immersion time. Hydroxyapatite formation is observed on the surface of pTi/PLLA after immersion for ≥8 weeks. The decrease in the weight-loss rate may be caused by weight gain due to hydroxyapatite formation and/or the decrease in contact area with Hanks' solution caused by its formation on the surface of pTi/PLLA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila

    PubMed Central

    Neyen, Claudine; Lemaitre, Bruno; Marion-Poll, Frédéric

    2017-01-01

    Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC. PMID:29121087

  15. Neuroinflammation in Alzheimer's Disease

    PubMed Central

    Heneka, Michael T.; Carson, Monica J.; El Khoury, Joseph; Landreth, Gary E.; Brosseron, Frederik; Feinstein, Douglas L.; Jacobs, Andreas H.; Wyss-Coray, Tony; Vitorica, Javier; Ransohoff, Richard M.; Herrup, Karl; Frautschy, Sally A.; Finsen, Bente; Brown, Guy C.; Verkhratsky, Alexei; Yamanaka, Koji; Koistinaho, Jari; Latz, Eicke; Halle, Annett; Petzold, Gabor C.; Town, Terrence; Morgan, Dave; Shinohara, Mari L.; Perry, V. Hugh; Holmes, Clive; Bazan, Nicolas G.; Brooks, David J.; Hunot, Stephane; Joseph, Bertrand; Deigendesch, Nikolaus; Garaschuk, Olga; Boddeke, Erik; Dinarello, Charles A.; Breitner, John C.; Cole, Greg M.; Golenbock, Douglas T.; Kummer, Markus P.

    2018-01-01

    Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment but strongly interacts with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on micro- and astroglia and trigger an innate immune response, characterized by the release of inflammatory mediators, which contribute to disease progression and severity. Genome wide analysis suggests that several genes, which increase the risk for sporadic Alzheimer's disease en-code for factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity are likely to interfere with the immunological processes of the brain and further promote disease progression. This re-view provides an overview on the current knowledge and focuses on the most recent and exciting findings. Modulation of risk factors and intervention with the described immune mechanisms are likely to lead to future preventive or therapeutic strategies for Alzheimer's disease. PMID:25792098

  16. Battling the Bite: Tradeoffs in Immunity to Insect-Borne Pathogens.

    PubMed

    Schneider, David Samuel

    2016-06-21

    Effective pathogens are successful, by definition, because they can defeat our immune response. Pingen et al. (2016) in this issue of Immunity demonstrate that some mosquito-transmitted viruses depend upon a strong host immune response triggered by the innate immune response to the bite to promote dissemination through the body. Copyright © 2016. Published by Elsevier Inc.

  17. Why AIDS? The Mystery of How HIV Attacks the Immune System.

    ERIC Educational Resources Information Center

    Christensen, Damaris

    1999-01-01

    Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…

  18. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.

    PubMed

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei; Shen, Dan; Dong, Hansong

    2016-07-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2 As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways1[OPEN

    PubMed Central

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei

    2016-01-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2. As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. PMID:26945050

  20. Small RNAs—The Secret Agents in the Plant-Pathogen Interactions

    PubMed Central

    Weiberg, Arne; Jin, Hailing

    2015-01-01

    Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens. PMID:26123395

  1. Immunization

    MedlinePlus

    ... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...

  2. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    PubMed

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  3. Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense.

    PubMed

    Morris, Otto; Liu, Xi; Domingues, Celia; Runchel, Christopher; Chai, Andrea; Basith, Shaherin; Tenev, Tencho; Chen, Haiyang; Choi, Sangdun; Pennetta, Giuseppa; Buchon, Nicolas; Meier, Pascal

    2016-09-14

    Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Adverse effect versus quality control of the Fuenzalida-Palacios antirabies vaccine.

    PubMed

    Nogueira, Y L

    1998-01-01

    We evaluated the components of the Fuenzalida-Palacios antirabies vaccine, which is till used in most developing countries in human immunization for treatment and prophylaxis. This vaccine is prepared from newborn mouse brains at 1% concentration. Even though the vaccine is considered to have a low myelin content, it is not fully free of myelin or of other undesirable components that might trigger adverse effects after vaccination. The most severe effect is a post-vaccination neuroparalytic accident associated with Guillain-Barré syndrome. In the present study we demonstrate how the vaccines produced and distributed by different laboratories show different component patterns with different degrees of impurity and with varying protein concentrations, indicating that production processes can vary from one laboratory to another. These differences, which could be resolved using a better quality control process, may affect and impair immunization, with consequent risks and adverse effects after vaccination. We used crossed immunoelectrophoresis to evaluate and demonstrate the possibility of quality control in vaccine production, reducing the risk factors possibly involved in these immunizing products.

  5. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae.

    PubMed

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W; Brennan, Patrick J; Belisle, John T; Modlin, Robert L

    2016-09-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. Copyright © 2016 Schenk et al.

  6. Role of Innate Immunity in a Model of Histidyl-tRNA Synthetase (Jo-1)-mediated Myositis

    PubMed Central

    Soejima, Makoto; Kang, Eun Ha; Gu, Xinyan; Katsumata, Yasuhiro; Clemens, Paula R.; Ascherman, Dana P.

    2010-01-01

    Objectives Previous work in humans and in animal models supports a key role for histidyl-tRNA synthetase (HRS=Jo-1) in the pathogenesis of idiopathic inflammatory myopathy. While most investigations have focused on the ability of HRS to trigger adaptive immune responses, in vitro studies clearly indicate that HRS possesses intrinsic chemokine-like properties capable of activating the innate immune system. The purpose of this study was therefore to examine the ability of HRS to direct innate immune responses in a murine model of myositis. Methods Following intramuscular immunization with soluble HRS in the absence of exogenous adjuvant, selected strains of mice were evaluated at different time points for histopathologic evidence of myositis. ELISA-based assessment of autoantibody formation and CFSE proliferation studies provided complementary measures of B and T cell responses triggered by HRS immunization. Results Compared to appropriate control proteins, a murine HRS fusion protein induced robust, statistically significant muscle inflammation in multiple congenic strains of C57BL/6 and NOD mice. Time course experiments revealed that this inflammatory response occurred as early as 7 days post immunization and persisted for up to 7 weeks. Parallel immunization strategies in DO11.10/Rag2−/− and C3H/HeJ (TLR4−/−) mice indicated that the ability of murine HRS to drive muscle inflammation was not dependent on B cell receptor or T cell receptor recognition and did not require TLR4 signaling. Conclusion Collectively, these experiments support a model in which HRS can trigger both innate and adaptive immune responses which culminate in severe muscle inflammation that is the hallmark of idiopathic inflammatory myopathy. PMID:21280002

  7. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  8. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling

    PubMed Central

    Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.

    2015-01-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  9. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  10. Chronic grouped social restriction triggers long-lasting immune system adaptations.

    PubMed

    Tian, Rui; Hou, Gonglin; Song, Liuwei; Zhang, Jianming; Yuan, Ti-Fei

    2017-05-16

    Chronic stress triggers rigorous psychological and physiological changes, including immunological system adaptations. However, the effects of long-term social restriction on human immune system have not been investigated. The present study is to investigate the effect of chronic stress on immune changes in human blood, with the stress stimuli controlled.10 male volunteers were group isolated from the modern society in a 50-meter-square room for 150 days, with enriched nutrition and good living conditions provided. Serum examination of immune system markers demonstrated numerous changes in different aspects of the immune functions. The changes were observed as early as 30 days and could last for another 150 days after the termination of the restriction period (300 days' time point). The results strongly argued for the adaptation of immunological system under chronic social restriction stress in adult human, preceding a clear change in psychological conditions. The changes of these immune system factors could as well act as the serum biomarkers in clinical early-diagnosis of stress-related disorders.

  11. Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*

    PubMed Central

    Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik

    2012-01-01

    RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562

  12. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects

    NASA Astrophysics Data System (ADS)

    Jing, Da; Tong, Shichao; Zhai, Mingming; Li, Xiaokang; Cai, Jing; Wu, Yan; Shen, Guanghao; Zhang, Xuhui; Xu, Qiaoling; Guo, Zheng; Luo, Erping

    2015-11-01

    Emerging evidence substantiates the potential of porous titanium alloy (pTi) as an ideal bone-graft substitute because of its excellent biocompatibility and structural properties. However, it remains a major clinical concern for promoting high-efficiency and high-quality osseointegration of pTi, which is beneficial for securing long-term implant stability. Accumulating evidence demonstrates the capacity of low-amplitude whole-body vibration (WBV) in preventing osteopenia, whereas the effects and mechanisms of WBV on osteogenesis and osseointegration of pTi remain unclear. Our present study shows that WBV enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton of primary osteoblasts in pTi. WBV upregulated osteogenesis-associated gene and protein expression in primary osteoblasts, including OCN, Runx2, Wnt3a, Lrp6 and β-catenin. In vivo findings demonstrate that 6-week and 12-week WBV stimulated osseointegration, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defects via μCT, histological and histomorphometric analyses. WBV induced higher ALP, OCN, Runx2, BMP2, Wnt3a, Lrp6 and β-catenin, and lower Sost and RANKL/OPG gene expression in rabbit femora. Our findings demonstrate that WBV promotes osteogenesis and osseointegration of pTi via its anabolic effect and potential anti-catabolic activity, and imply the promising potential of WBV for enhancing the repair efficiency and quality of pTi in osseous defects.

  13. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects

    PubMed Central

    Jing, Da; Tong, Shichao; Zhai, Mingming; Li, Xiaokang; Cai, Jing; Wu, Yan; Shen, Guanghao; Zhang, Xuhui; Xu, Qiaoling; Guo, Zheng; Luo, Erping

    2015-01-01

    Emerging evidence substantiates the potential of porous titanium alloy (pTi) as an ideal bone-graft substitute because of its excellent biocompatibility and structural properties. However, it remains a major clinical concern for promoting high-efficiency and high-quality osseointegration of pTi, which is beneficial for securing long-term implant stability. Accumulating evidence demonstrates the capacity of low-amplitude whole-body vibration (WBV) in preventing osteopenia, whereas the effects and mechanisms of WBV on osteogenesis and osseointegration of pTi remain unclear. Our present study shows that WBV enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton of primary osteoblasts in pTi. WBV upregulated osteogenesis-associated gene and protein expression in primary osteoblasts, including OCN, Runx2, Wnt3a, Lrp6 and β-catenin. In vivo findings demonstrate that 6-week and 12-week WBV stimulated osseointegration, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defects via μCT, histological and histomorphometric analyses. WBV induced higher ALP, OCN, Runx2, BMP2, Wnt3a, Lrp6 and β-catenin, and lower Sost and RANKL/OPG gene expression in rabbit femora. Our findings demonstrate that WBV promotes osteogenesis and osseointegration of pTi via its anabolic effect and potential anti-catabolic activity, and imply the promising potential of WBV for enhancing the repair efficiency and quality of pTi in osseous defects. PMID:26601709

  14. Early-shared Mycobacterium bovis bacillus Calmette-Guérin sub-strains induce Th1 cytokine production in vivo.

    PubMed

    Taniguchi, Keiichi; Miyatake, Yuuji; Hayashi, Daisuke; Takami, Atsuro; Itoh, Saotomo; Yamamoto, Saburo; Hida, Shigeaki; Onozaki, Kikuo; Takii, Takemasa

    2015-11-01

    Interleukin-12 is one of the cytokines that induce acquired immunity by progressing the differentiation of T cells. When antigens are presented by APCs, including macrophages and DCs, T cells are activated and produce the Th1 cytokines IL-2 and IFN-γ. We have previously reported greater IL-12 production from macrophages infected with early-shared BCG sub-strains (ex. BCG-Japan, -Sweden) than from those infected with late-shared BCG (ex. BCG-Pasteur and -Connaught) . In this study, we investigated the Th1 cytokine-inducing activity of splenocytes co-cultured with BCG-infected DCs. Early-shared BCG-infected DCs produced IL-12 and TNF-α⋅ Furthermore, when they were co-cultured with purified protein derivative-stimulated DCs, the splenocytes of mice immunized with BCG-Tokyo/Japan produced more Th1 cytokine than did those of mice immunized with BCG-Connaught. In conclusion, early-shared BCG sub-strains more strongly induce Th1 cytokine production in vivo. This study provides basic information to inform the selection of candidates for primary vaccination. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  15. Induction of potential protective immunity against enterotoxemia in calves by single or multiple recombinant Clostridium perfringens toxoids.

    PubMed

    Jiang, Zhigang; De, Yanyan; Chang, Jitao; Wang, Fang; Yu, Li

    2014-11-01

    Cattle enterotoxemia caused by Clostridium perfringens toxins is a noncontagious, sporadic, and fatal disease characterized by sudden death. Strategies for controlling and preventing cattle enterotoxemia are based on systematic vaccination of herds with toxoids. Because the process of producing conventional clostridial vaccines is dangerous, expensive, and time-consuming, the prospect of recombinant toxoid vaccines against diseases caused by C. perfringens toxins is promising. In this study, nontoxic recombinant toxoids derived from α-, β- and ε-toxins of C. perfringens, namely, rCPA247-370 , rCPB and rEtxHP, respectively, were expressed in Escherichia coli. High levels of specific IgG antibodies and neutralizing antibodies against the toxins were detected in sera from calves vaccinated with either a single recombinant toxoid or a mixed cocktail of all three recombinant toxoids, indicating the potential of these recombinant toxoids to provide calves with protective immunity against enterotoxemia caused by C. perfringens. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  16. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome

    PubMed Central

    Conti, HR; Baker, O; Freeman, AF; Jang, WS; Holland, SM; Li, RA; Edgerton, M; Gaffen, SL

    2011-01-01

    Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal fungus Candida albicans. An understanding of immunity to Candida has recently begun to unfold with the identification of fungal pattern-recognition receptors such as C-type lectin receptors, which trigger protective T-helper (Th)17 responses in the mucosa. Hyper-IgE syndrome (HIES/Job’s syndrome) is a rare congenital immunodeficiency characterized by dominant-negative mutations in signal transducer and activator of transcription 3, which is downstream of the Th17-inductive cytokines interleukin (IL)-6 and IL-23, and hence patients with HIES exhibit dramatic Th17 deficits. HIES patients develop oral and mucocutaneous candidiasis, supporting a protective role for Th17 cells in immunity to OPC. However, the Th17-dependent mechanisms of antifungal immunity in OPC are still poorly defined. An often unappreciated aspect of oral immunity is saliva, which is rich in antimicrobial proteins (AMPs) and exerts direct antifungal activity. In this study, we show that HIES patients show significant impairment in salivary AMPs, including β-defensin 2 and Histatins. This tightly correlates with reduced candidacidal activity of saliva and concomitantly elevated colonization with Candida. Moreover, IL-17 induces histatins in cultured salivary gland cells. This is the first demonstration that HIES is associated with defective salivary activity, and provides a mechanism for the severe susceptibility of these patients to OPC. PMID:21346738

  17. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome.

    PubMed

    Conti, H R; Baker, O; Freeman, A F; Jang, W S; Holland, S M; Li, R A; Edgerton, M; Gaffen, S L

    2011-07-01

    Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal fungus Candida albicans. An understanding of immunity to Candida has recently begun to unfold with the identification of fungal pattern-recognition receptors such as C-type lectin receptors, which trigger protective T-helper (Th)17 responses in the mucosa. Hyper-IgE syndrome (HIES/Job's syndrome) is a rare congenital immunodeficiency characterized by dominant-negative mutations in signal transducer and activator of transcription 3, which is downstream of the Th17-inductive cytokines interleukin (IL)-6 and IL-23, and hence patients with HIES exhibit dramatic Th17 deficits. HIES patients develop oral and mucocutaneous candidiasis, supporting a protective role for Th17 cells in immunity to OPC. However, the Th17-dependent mechanisms of antifungal immunity in OPC are still poorly defined. An often unappreciated aspect of oral immunity is saliva, which is rich in antimicrobial proteins (AMPs) and exerts direct antifungal activity. In this study, we show that HIES patients show significant impairment in salivary AMPs, including β-defensin 2 and Histatins. This tightly correlates with reduced candidacidal activity of saliva and concomitantly elevated colonization with Candida. Moreover, IL-17 induces histatins in cultured salivary gland cells. This is the first demonstration that HIES is associated with defective salivary activity, and provides a mechanism for the severe susceptibility of these patients to OPC.

  18. Inflammatory Disequilibrium in Stroke

    PubMed Central

    Petrovic-Djergovic, Danica; Goonewardena, Sascha N.; Pinsky, David J.

    2016-01-01

    Over the past several decades, there have been substantial advances in our knowledge of the pathophysiology of stroke. Understanding the benefits of timely reperfusion has led to the development of thrombolytic therapy as the cornerstone of current management of ischemic stroke, but there remains much to be learned about mechanisms of neuronal ischemic and reperfusion injury and associated inflammation. For ischemic stroke, novel therapeutic targets have continued to remain elusive. When considering modern molecular biologic techniques, advanced translational stroke models, and clinical studies, a consistent pattern emerges, implicating perturbation of the immune equilibrium by stroke in both central nervous system injury and repair responses. Stroke triggers activation of the neuroimmune axis, comprised of multiple cellular constituents of the immune system resident within the parenchyma of the brain, leptomeninges, and vascular beds, as well as through secretion of biological response modifiers and recruitment of immune effector cells. This neuroimmune activation can directly impact the initiation, propagation, and resolution phases of ischemic brain injury. In order to leverage a potential opportunity to modulate local and systemic immune responses to favorably affect the stroke disease curve, it is necessary to expand our mechanistic understanding of the neuroimmune axis in ischemic stroke. This review explores the frontiers of current knowledge of innate and adaptive immune responses in the brain and how these responses together shape the course of ischemic stroke. PMID:27340273

  19. Plant Immune Responses Against Viruses: How Does a Virus Cause Disease?[OA

    PubMed Central

    Mandadi, Kranthi K.; Scholthof, Karen-Beth G.

    2013-01-01

    Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms—advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity. PMID:23709626

  20. Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus Piriformospora indica1[C][W

    PubMed Central

    Jacobs, Sophie; Zechmann, Bernd; Molitor, Alexandra; Trujillo, Marco; Petutschnig, Elena; Lipka, Volker; Kogel, Karl-Heinz; Schäfer, Patrick

    2011-01-01

    Piriformospora indica is a root-colonizing basidiomycete that confers a wide range of beneficial traits to its host. The fungus shows a biotrophic growth phase in Arabidopsis (Arabidopsis thaliana) roots followed by a cell death-associated colonization phase, a colonization strategy that, to our knowledge, has not yet been reported for this plant. P. indica has evolved an extraordinary capacity for plant root colonization. Its broad host spectrum encompasses gymnosperms and monocotyledonous as well as dicotyledonous angiosperms, which suggests that it has an effective mechanism(s) for bypassing or suppressing host immunity. The results of our work argue that P. indica is confronted with a functional root immune system. Moreover, the fungus does not evade detection but rather suppresses immunity triggered by various microbe-associated molecular patterns. This ability to suppress host immunity is compromised in the jasmonate mutants jasmonate insensitive1-1 and jasmonate resistant1-1. A quintuple-DELLA mutant displaying constitutive gibberellin (GA) responses and the GA biosynthesis mutant ga1-6 (for GA requiring 1) showed higher and lower degrees of colonization, respectively, in the cell death-associated stage, suggesting that P. indica recruits GA signaling to help establish proapoptotic root cell colonization. Our study demonstrates that mutualists, like pathogens, are confronted with an effective innate immune system in roots and that colonization success essentially depends on the evolution of strategies for immunosuppression. PMID:21474434

  1. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves

    PubMed Central

    2017-01-01

    Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890

  2. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    PubMed

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling.

    PubMed

    Farhat, Katja; Riekenberg, Sabine; Heine, Holger; Debarry, Jennifer; Lang, Roland; Mages, Jörg; Buwitt-Beckmann, Ute; Röschmann, Kristina; Jung, Günther; Wiesmüller, Karl-Heinz; Ulmer, Artur J

    2008-03-01

    TLR are primary triggers of the innate immune system by recognizing various microorganisms through conserved pathogen-associated molecular patterns. TLR2 is the receptor for a functional recognition of bacterial lipopeptides (LP) and is up-regulated during various disorders such as chronic obstructive pulmonary disease and sepsis. This receptor is unique in its ability to form heteromers with TLR1 or TLR6 to mediate intracellular signaling. According to the fatty acid pattern as well as the assembling of the polypeptide tail, LP can signal through TLR2 in a TLR1- or TLR6-dependent manner. There are also di- and triacylated LP, which stimulate TLR1-deficient cells and TLR6-deficient cells. In this study, we investigated whether heterodimerization evolutionarily developed to broaden the ligand spectrum or to induce different immune responses. We analyzed the signal transduction pathways activated through the different TLR2 dimers using the three LP, palmitic acid (Pam)octanoic acid (Oct)(2)C-(VPGVG)(4)VPGKG, fibroblast-stimulating LP-1, and Pam(2)C-SK(4). Dominant-negative forms of signaling molecules, immunoblotting of MAPK, as well as microarray analysis indicate that all dimers use the same signaling cascade, leading to an identical pattern of gene activation. We conclude that heterodimerization of TLR2 with TLR1 or TLR6 evolutionarily developed to expand the ligand spectrum to enable the innate immune system to recognize the numerous, different structures of LP present in various pathogens. Thus, although mycoplasma and Gram-positive and Gram-negative bacteria may activate different TLR2 dimers, the development of different signal pathways in response to different LP does not seem to be of vital significance for the innate defense system.

  4. Differentiating psychotic patients from nonpsychotic patients with the MMPI-2 and Rorschach.

    PubMed

    Dao, Tam K; Prevatt, Frances; Horne, Heather Leveta

    2008-01-01

    The goal of this study was to examine the incremental validity and the clinical utility of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; (Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) and Rorschach (Rorschach, 1942) with regard to differential diagnosis in a sample of adult inpatients with a primary psychotic disorder or a primary mood disorder without psychotic features. Diagnostic efficiency statistics have suggested that the Rorschach Perceptual Thinking Index (PTI; Exner, 2000a, 2000b) was better than MMPI-2 scales in discriminating psychotic patients from nonpsychotic patients. We compared the 84% overall correct classification rate (OCC) for the PTI to an OCC of 70% for the MMPI-2 scales. Adding the MMPI-2 scales to the PTI resulted in a decrease in OCC of 1%, whereas adding the PTI to the MMPI-2 resulted in an increase in OCC of 14%. Sensitivity, specificity, positive predictive power, negative predictive power, and kappa were equal or higher with only the PTI in the model.

  5. Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae.

    PubMed

    Shen, Danyu; Liu, Tingli; Ye, Wenwu; Liu, Li; Liu, Peihan; Wu, Yuren; Wang, Yuanchao; Dou, Daolong

    2013-01-01

    Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.

  6. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus

    PubMed Central

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-01-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh. RACB is required for positioning of the nucleus near the site of attack from Bgh. We therefore suggest that Bgh profits from RACB’s function in cell polarity rather than from immunity-regulating functions of RACB. PMID:27056842

  7. Setting Occupational Exposure Limits for Chemical Allergens—Understanding the Challenges

    PubMed Central

    Dotson, G. S.; Maier, A.; Siegel, P. D.; Anderson, S. E.; Green, B. J.; Stefaniak, A. B.; Codispoti, C. D.; Kimber, I.

    2015-01-01

    Chemical allergens represent a significant health burden in the workplace. Exposures to such chemicals can cause the onset of a diverse group of adverse health effects triggered by immune-mediated responses. Common responses associated with workplace exposures to low molecular weight (LMW) chemical allergens range from allergic contact dermatitis to life-threatening cases of asthma. Establishing occupational exposure limits (OELs) for chemical allergens presents numerous difficulties for occupational hygiene professionals. Few OELs have been developed for LMW allergens because of the unique biological mechanisms that govern the immune-mediated responses. The purpose of this article is to explore the primary challenges confronting the establishment of OELs for LMW allergens. Specific topics include: (1) understanding the biology of LMW chemical allergies as it applies to setting OELs; (2) selecting the appropriate immune-mediated response (i.e., sensitization versus elicitation); (3) characterizing the dose (concentration)-response relationship of immune-mediated responses; (4) determining the impact of temporal exposure patterns (i.e., cumulative versus acute exposures); and (5) understanding the role of individual susceptibility and exposure route. Additional information is presented on the importance of using alternative exposure recommendations and risk management practices, including medical surveillance, to aid in protecting workers from exposures to LMW allergens when OELs cannot be established. PMID:26583909

  8. Triggering through NOD-2 Differentiates Bone Marrow Precursors to Dendritic Cells with Potent Bactericidal activity

    PubMed Central

    Khan, Nargis; Aqdas, Mohammad; Vidyarthi, Aurobind; Negi, Shikha; Pahari, Susanta; Agnihotri, Tapan; Agrewala, Javed N.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αβ signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens. PMID:27265209

  9. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    PubMed

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    PubMed

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  11. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    PubMed Central

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  12. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness.

    PubMed

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V ), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles.

  13. Establishment and development of the intestinal microbiota of preterm infants in a Lebanese tertiary hospital.

    PubMed

    Itani, Tarek; Ayoub Moubareck, Carole; Melki, Imad; Rousseau, Clotilde; Mangin, Irène; Butel, Marie-José; Karam Sarkis, Dolla

    2017-02-01

    The establishment and development of the intestinal microbiota is known to be associated with profound short- and long-term effects on the health of full-term infants (FTI), but studies are just starting for preterm infants (PTI). The data also mostly come from western countries and little information is available for the Middle East. Here, we determined the composition and dynamics of the intestinal microbiota during the first month of life for PTI (n = 66) and FTI (n = 17) in Lebanon. Fecal samples were collected weekly and analyzed by quantitative PCR (q-PCR) and temporal temperature gradient gel electrophoresis (TTGE). We observed differences in the establishment and composition of the intestinal microbiota between the two groups. q-PCR showed that PTI were more highly colonized by Staphylococcus than FTI in the first three weeks of life; whereas FTI were more highly colonized by Clostridium clusters I and XI. At one month of life, PTI were mainly colonized by facultative anaerobes and a few strict anaerobes, such as Clostridium cluster I and Bifidobacterium. The type of feeding and antibiotic treatments significantly affected intestinal colonization. TTGE revealed low species diversity in both groups and high inter-individual variability in PTI. Our findings show that PTI had altered intestinal colonization with a higher occurrence of potential pathogens (Enterobacter, Clostridium sp) than FTI. This suggests the need for intervention strategies for PTI to modulate their intestinal microbiota and promote their health. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women.

    PubMed

    Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M

    2012-01-01

    Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. The quantal theory of how the immune system discriminates between "self and non-self"

    PubMed

    Smith, Kendall A

    2004-12-17

    In the past 50 years, immunologists have accumulated an amazing amount of information as to how the immune system functions. However, one of the most fundamental aspects of immunity, how the immune system discriminates between self vs. non-self, still remains an enigma. Any attempt to explain this most intriguing and fundamental characteristic must account for this decision at the level of the whole immune system, but as well, at the level of the individual cells making up the immune system. Moreover, it must provide for a molecular explanation as to how and why the cells behave as they do. The "Quantal Theory", proposed herein, is based upon the "Clonal Selection Theory", first proposed by Sir McFarland Burnet in 1955, in which he explained the remarkable specificity as well as diversity of recognition of everything foreign in the environment. The "Quantal Theory" is built upon Burnet's premise that after antigen selection of cell clones, a proliferative expansion of the selected cells ensues. Furthermore, it is derived from experiments which indicate that the proliferation of antigen-selected cell clones is determined by a quantal, "all-or-none", decision promulgated by a critical number of cellular receptors triggered by the T Cell Growth Factor (TCGF), interleukin 2 (IL2). An extraordinary number of experiments reported especially in the past 20 years, and detailed herein, indicate that the T cell Antigen Receptor (TCR) behaves similarly, and also that there are several critical numbers of triggered TCRs that determine different fates of the T cells. Moreover, the fates of the cells appear ultimately to be determined by the TCR triggering of the IL2 and IL2 receptor (IL2R) genes, which are also expressed in a very quantal fashion. The "Quantal Theory" states that the fundamental decisions of the T cell immune system are dependent upon the cells receiving a critical number of triggered TCRs and IL2Rs and that the cells respond in an all-or-none fashion. The "Quantal Theory" accounts fully for the development of T cells in the thymus, and such fundamental cellular fates as both "positive" and "negative" selection, as well as the decision to differentiate into a "Regulatory T cell" (T-Reg). In the periphery, the "Quantal Theory" accounts for the decision to proliferate or not in response to the presence of an antigen, either non-self or self, or to differentiate into a T-Reg. Since the immune system discriminates between self and non-self antigens by the accumulated number of triggered TCRs and IL2Rs, therapeutic manipulation of the determinants of these quantal decisions should permit new approaches to either enhance or dampen antigen-specific immune responses.

  16. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    PubMed Central

    Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  17. Porcine reproductive and respiratory syndrome virus infection triggers HMGB1 release to promote inflammatory cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Erzhen; Wang, Dang; Luo, Rui

    The high mobility group box 1 (HMGB1) protein is an endogenous damage-associated molecular pattern (DAMP) molecule involved in the pathogenesis of various infectious agents. Based on meta-analysis of all publicly available microarray datasets, HMGB1 has recently been proposed as the most significant immune modulator during the porcine response to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the function of HMGB1 in PRRSV pathogenesis is unclear. In this study, we found that PRRSV infection triggers the translocation of HMGB1 from the nucleus to the extracellular milieu in MARC-145 cells and porcine alveolar macrophages. Although HMGB1 has no effect onmore » PRRSV replication, HMGB1 promotes PRRSV-induced NF-κB activation and subsequent expression of inflammatory cytokines through receptors RAGE, TLR2 and TLR4. Our findings show that HMGB1 release, triggered by PRRSV infection, enhances the efficiency of virus-induced inflammatory responses, thereby providing new insights into the pathogenesis of PRRSV infection. - Highlights: • PRRSV infection triggers HMGB1 release from MARC-145 cells and PAMs. • HMGB1 does not significantly affect PRRSV proliferation. • HMGB1 is involved in PRRSV-induced NF-κB activation and inflammatory responses. • HMGB1 promotes PRRSV-induced inflammatory responses through TLR2/4 and RAGE.« less

  18. Activation of TLR3 and its adaptor TICAM-1 increases miR-21 levels in extracellular vesicles released from human cells.

    PubMed

    Fukushima, Yoshimi; Okamoto, Masaaki; Ishikawa, Kana; Kouwaki, Takahisa; Tsukamoto, Hirotake; Oshiumi, Hiroyuki

    2018-06-07

    Pattern-recognition receptors (PRRs) recognizes viral RNAs and trigger the innate immune responses. Toll-like receptor 3 (TLR3), a PRR, recognizes viral double-stranded RNA (dsRNA) in endolysosomes, whereas cytoplasmic dsRNA is sensed by another PRR, MDA5. TLR3 and MDA5 utilize TICAM-1 and MAVS, respectively, to trigger the signal for inducing innate immune responses. Extracellular vesicles (EVs) include the exosomes and microvesicles; an accumulating body of evidence has shown that EVs delivers functional RNA, such as microRNAs (miRNAs), to other cells and thus mediate intercellular communications. Therefore, EVs carrying miRNAs affect innate immune responses in macrophages and dendritic cells. However, the mechanism underlying the regulation of miRNA levels in EVs remains unclear. To elucidate the mechanism, we sought to reveal the pathway that control miRNA expression levels in EVs. Here, we found that TLR3 stimulation increased miR-21 levels in EVs released from various types of human cells. Ectopic expression of the TLR3 adaptor, TICAM-1, increased miR-21 levels in EVs but not intracellular miR-21 levels, suggesting that TICAM-1 augmented sorting of miR-21 to EVs. In contrast, the MDA5 adaptor, MAVS, did not increase miR-21 levels in EVs. The siRNA for TICAM-1 reduced EV miR-21 levels after stimulation of TLR3. Collectively, our data indicate a novel role of the TLR3-TICAM-1 pathway in controlling miR-21 levels in EVs. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.

    PubMed

    Sun, Ying; Shu, Rong; Li, Chao-Lun; Zhang, Ming-Zhu

    2010-10-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Toll-like receptors (TLRs), which could recognize microbial pathogens, are important components in the innate and adaptive immune systems. Both qualitatively and quantitatively distinct immune responses might result from different bacteria stimulation and the triggering of different TLRs. This study explores the interaction of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) with TLR2 and TLR4. We studied the gene expression changes of TLR2 and TLR4 and cytokine production (interleukin-1β, -6, -8, -10, and tumor necrosis factor-alpha) in human periodontal ligament cells (HPDLCs) stimulated with heat-killed bacteria or P. gingivalis lipopolysaccharide (LPS) in the presence or absence of monoclonal antibodies to TLR2 or TLR4 (anti-TLR2/4 mAb). Both test bacteria and 10 microg/ml P. gingivalis LPS treatment increased the gene expression of TLR2 and TLR4 and cytokine production in HPDLCs. In addition, these upregulations could be blocked by anti-TLR2/4 mAb. However, the expression of TLR4 mRNA in HPDLCs stimulated with 1 microg/ml P. gingivalis LPS was not increased. No differences were found in the cytokine production caused by 1 microg/ml P. gingivalis LPS treatment in the presence or absence of anti-TLR4 mAb. These patterns of gene expression and cytokine production indicate that Gram-negative periodontal bacteria or their LPS might play a role in triggering TLR2 and/or TLR4, and be of importance for the immune responses in periodontitis.

  20. Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs.

    PubMed

    Suda, Yoshihito; Villena, Julio; Takahashi, Yu; Hosoya, Shoichi; Tomosada, Yohsuke; Tsukida, Kohichiro; Shimazu, Tomoyuki; Aso, Hisashi; Tohno, Masanori; Ishida, Mitsuharu; Makino, Seiya; Ikegami, Shuji; Kitazawa, Haruki

    2014-06-19

    Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets' immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer's patches (PP). In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages' activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.

  1. Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs

    PubMed Central

    2014-01-01

    Background Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets’ immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer’s patches (PP). Objective In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. Results Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages’ activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. Conclusions We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal. PMID:24943108

  2. Myasthenia triggered by immune checkpoint inhibitors: New case and literature review.

    PubMed

    Gonzalez, Natalia L; Puwanant, Araya; Lu, Angela; Marks, Stanley M; Živković, Saša A

    2017-03-01

    Immune checkpoint molecules are potent regulators of immunologic homeostasis that prevent the development of autoimmunity while maintaining self-tolerance. Inhibitors of immune checkpoint molecules are used as immunotherapy in the treatment of melanoma and different types of refractory cancer, and can trigger various autoimmune complications including myositis and myasthenia gravis. We describe a case of generalized myasthenia gravis induced by pembrolizumab and review 11 other cases. Five patients also had elevated serum CK levels ranging from 1200 to 8729 IU/L, and biopsy showed myositis in one. Severity was highly variable as symptoms normalized spontaneously in one patient, but three others developed myasthenic crisis (including two with fatal outcomes). Steroids have been recommended as a preferred treatment of autoimmune complications of immune-checkpoint inhibitors. Myasthenia gravis should be considered when weakness, diplopia or bulbar symptoms are seen after treatment with immune checkpoint inhibitors, and additional studies are needed to characterize association with hyperCKemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  4. Colonic Immune Stimulation by Targeted Oral Vaccine

    PubMed Central

    Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour

    2013-01-01

    Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086

  5. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  6. Photodynamic impact induces ischemic tolerance in models in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Demyanenko, Svetlana; Sharifulina, Svetlana; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Maria; Zhukovskaya, Ludmila

    2016-04-01

    Ischemic tolerance determines resistance to lethal ischemia gained by a prior sublethal stimulus (i.e., preconditioning). We reproduced this effect in two variants. In vitro the preliminary short (5 s) photodynamic treatment (PDT) (photosensitizer Photosens, 10 nM, 30 min preincubation; laser: 670 nm, 100 mW/cm2) significantly reduced the necrosis of neurons and glial cells in the isolated crayfish stretch receptor, which was caused by following 30-min PDT by 66% and 46%, respectively. In vivo PDT of the rat cerebral cortex with hydrophilic photosensitizer Rose Bengal (i.v. administration, laser irradiation: 532 nm, 60 mW/cm2, 3 mm beam diameter, 30 min) caused occlusion of small brain vessels and local photothrombotic infarct (PTI). It is a model of ischemic stroke. Cerebral tissue edema and global necrosis of neurons and glial cells occurred in the infarction core, which was surrounded by a 1.5 mm transition zone, penumbra. The maximal pericellular edema, hypo- and hyperchromia of neurons were observed in penumbra 24 h after PTI. The repeated laser irradiation of the contralateral cerebral cortex also caused PTI but lesser as compared with single PDT. Preliminary unilateral PTI provided ischemic tolerance: at 14 day after second exposure the PTI volume significantly decreased by 24% than in the case of a single exposure. Sensorimotor deficits in PDT-treated rats was registered using the behavioral tests. The preliminary PTI caused the preconditioning effect.

  7. Parent training plus contingency management for substance abusing families: A Complier Average Causal Effects (CACE) analysis*

    PubMed Central

    Stanger, Catherine; Ryan, Stacy R.; Fu, Hongyun; Budney, Alan J.

    2011-01-01

    Background Children of substance abusers are at risk for behavioral/emotional problems. To improve outcomes for these children, we developed and tested an intervention that integrated a novel contingency management (CM) program designed to enhance compliance with an empirically-validated parent training curriculum. CM provided incentives for daily monitoring of parenting and child behavior, completion of home practice assignments, and session attendance. Methods Forty-seven mothers with substance abuse or dependence were randomly assigned to parent training + incentives (PTI) or parent training without incentives (PT). Children were 55% male, ages 2-7 years. Results Homework completion and session attendance did not differ between PTI and PT mothers, but PTI mothers had higher rates of daily monitoring. PTI children had larger reductions in child externalizing problems in all models. Complier Average Causal Effects (CACE) analyses showed additional significant effects of PTI on child internalizing problems, parent problems and parenting. These effects were not significant in standard Intent-to-Treat analyses. Conclusion Results suggest our incentive program may offer a method for boosting outcomes. PMID:21466925

  8. Dynamics of neutrophil migration in lymph nodes during infection.

    PubMed

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A

    2008-09-19

    Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.

  9. Dynamics of neutrophil migration in lymph nodes during infection

    PubMed Central

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.

    2008-01-01

    Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768

  10. Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria.

    PubMed

    Shi, Ruizheng; Cao, Zehong; Li, Hong; Graw, Jochen; Zhang, Guogang; Thannickal, Victor J; Cheng, Guangjie

    2018-05-01

    Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.

  11. Effect of acetochlor on transcription of genes associated with oxidative stress, apoptosis, immunotoxicity and endocrine disruption in the early life stage of zebrafish.

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Liu, Xinju; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2015-09-01

    The study presented here aimed to characterize the effects of acetochlor on expression of genes related to endocrine disruption, oxidative stress, apoptosis and immune system in zebrafish during its embryo development. Different trends in gene expression were observed after exposure to 50, 100, 200μg/L acetochlor for 96h. Results demonstrated that the transcription patterns of many key genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis (e.g., VTG1, ERβ1, CYP19a and TRα), cell apoptosis pathway (e.g., Bcl2, Bax, P53 and Cas8), as well as innate immunity (e.g., CXCL-C1C, IL-1β and TNFα) were affected in newly hatched zebrafish after exposure to acetochlor. In addition, the up-regulation of CAT, GPX, GPX1a, Cu/Zn-SOD and Ogg1 suggested acetochlor might trigger oxidative stress in zebrafish. These finding indicated that acetochlor could simultaneously induce multiple responses during zebrafish embryonic development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    PubMed Central

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  13. Prophenoloxidase system and its role in shrimp immune responses against major pathogens.

    PubMed

    Amparyup, Piti; Charoensapsri, Walaiporn; Tassanakajon, Anchalee

    2013-04-01

    The global shrimp industry still faces various serious disease-related problems that are mainly caused by pathogenic bacteria and viruses. Understanding the host defense mechanisms is likely to be beneficial in designing and implementing effective strategies to solve the current and future pathogen-related problems. Melanization, which is performed by phenoloxidase (PO) and controlled by the prophenoloxidase (proPO) activation cascade, plays an important role in the invertebrate immune system in allowing a rapid response to pathogen infection. The activation of the proPO system, by the specific recognition of microorganisms by pattern-recognition proteins (PRPs), triggers a serine proteinase cascade, eventually leading to the cleavage of the inactive proPO to the active PO that functions to produce the melanin and toxic reactive intermediates against invading pathogens. This review highlights the recent discoveries of the critical roles of the proPO system in the shrimp immune responses against major pathogens, and emphasizes the functional characterizations of four major groups of genes and proteins in the proPO cascade in penaeid shrimp, that is the PRPs, serine proteinases, proPO and inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271

  15. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense.

    PubMed

    Wirthmueller, Lennart; Zhang, Yan; Jones, Jonathan D G; Parker, Jane E

    2007-12-04

    Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are, however, poorly understood. Arabidopsis Toll/Interleukin-1 (TIR) type NB-LRR receptor RPS4 recognizes the bacterial type III effector AvrRps4. We show that epitope-tagged RPS4 expressed under its native regulatory sequences distributes between endomembranes and nuclei in healthy and AvrRps4-triggered tissues. RPS4 accumulation in the nucleus, mediated by a bipartite nuclear localization sequence (NLS) at its C terminus, is necessary for triggering immunity through authentic activation by AvrRps4 in Arabidopsis or as an effector-independent "deregulated" receptor in tobacco. A strikingly conserved feature of TIR-NB-LRR receptors is their recruitment of the nucleocytoplasmic basal-defense regulator EDS1 in resistance to diverse pathogens. We find that EDS1 is an indispensable component of RPS4 signaling and that it functions downstream of RPS4 activation but upstream of RPS4-mediated transcriptional reprogramming in the nucleus.

  16. The miR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling

    PubMed Central

    Liu, Jie; Cheng, Xiliu; Liu, Da; Xu, Weihui; Wise, Roger; Shen, Qian-Hua

    2014-01-01

    Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. PMID:25502438

  17. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    PubMed

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  18. [Pathophysiological mechanisms underlying cryopyrin-associated periodic syndromes: genetic and molecular basis and the inflammasome].

    PubMed

    Aróstegui, Juan I

    2011-01-01

    NLRP3 gene (formerly known as CIAS1) encodes for cryopyrin (Nalp3) protein, which belongs to the Nod-like family of innate immune receptors. Cryopyrin recruits different adaptor and effectors proteins into a cytosolic macromolecular complex termed Nalp3-inflammasome, which senses both several pathogen-associated and damage-associated molecular patterns as well as inorganic particles (asbestos, silica), and triggers innate immune and inflammatory responses. Gain-of-function NLRP3 mutations are the common molecular basis of cryopyrin-associated periodic syndromes (CAPS), which encompasses three clinical entities along a spectrum of disease severity (familial cold autoinflammatory syndrome, Muckle-Wells syndrome and CINCA-NOMID syndrome). This hypermorphic cryopyrin provokes an increased, unregulated secretion of different inflammatory cytokines (IL-1β, IL-18, IL-33) in patients with CAPS, and in vivo administration of IL-1 blocking agents results in excellent therapeutic responses in these patients. Copyright © 2011 Elsevier España S.L. All rights reserved.

  19. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    NASA Astrophysics Data System (ADS)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM⿿EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  20. Innate sensors of pathogen and stress: linking inflammation to obesity.

    PubMed

    Jin, Chengcheng; Flavell, Richard A

    2013-08-01

    Pathogen and nutrient response pathways are evolutionarily conserved and highly integrated to regulate metabolic and immune homeostasis. Excessive nutrients can be sensed by innate pattern recognition receptors as danger signals either directly or through production of endogenous ligands or modulation of intestinal microbiota. This triggers the activation of downstream inflammatory cascades involving nuclear factor κB and mitogen-activated protein kinase and ultimately induces the production of inflammatory cytokines and immune cell infiltration in various metabolic tissues. The chronic low-grade inflammation in the brain, islet, liver, muscle, and adipose tissue further promotes insulin resistance, energy imbalance, and impaired glucose/lipid metabolism, contributing to the metabolic complications of obesity, such as diabetes and atherosclerosis. In addition, innate pathogen receptors have now emerged as a critical link between the intestinal microbiota and host metabolism. In this review we summarize recent studies demonstrating the important roles of innate pathogen receptors, including Toll-like receptors, nucleotide oligomerization domain containing proteins, and inflammasomes in mediating the inflammatory response to metabolic stress in different tissues and highlight the interaction of innate pattern recognition receptors, gut microbiota, and nutrients during the development of obesity and related metabolic disorders. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Alarmins and Their Receptors as Modulators and Indicators of Alloimmune Responses.

    PubMed

    Matta, B M; Reichenbach, D K; Blazar, B R; Turnquist, H R

    2017-02-01

    Cell damage and death releases alarmins, self-derived immunomodulatory molecules that recruit and activate the immune system. Unfortunately, numerous processes critical to the transplantation of allogeneic materials result in the destruction of donor and recipient cells and may trigger alarmin release. Alarmins, often described as damage-associated molecular patterns, together with exogenous pathogen-associated molecular patterns, are potent orchestrators of immune responses; however, the precise role that alarmins play in alloimmune responses remains relatively undefined. We examined evolving concepts regarding how alarmins affect solid organ and allogeneic hematopoietic cell transplantation outcomes and the mechanisms by which self molecules are released. We describe how, once released, alarmins may act alone or in conjunction with nonself materials to contribute to cytokine networks controlling alloimmune responses and their intensity. It is becoming recognized that this class of molecules has pleotropic functions, and certain alarmins can promote both inflammatory and regulatory responses in transplant models. Emerging evidence indicates that alarmins and their receptors may be promising transplantation biomarkers. Developing the therapeutic ability to support alarmin regulatory mechanisms and the predictive value of alarmin pathway biomarkers for early intervention may provide opportunities to benefit graft recipients. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana.

    PubMed

    Kwaaitaal, Mark; Huisman, Rik; Maintz, Jens; Reinstädler, Anja; Panstruga, Ralph

    2011-12-15

    Binding of specific microbial epitopes [MAMPs (microbe-associated molecular patterns)] to PRRs (pattern recognition receptors) and subsequent receptor kinase activation are key steps in plant innate immunity. One of the earliest detectable events after MAMP perception is a rapid and transient rise in cytosolic Ca2+ levels. In plants, knowledge about the signalling events leading to Ca2+ influx and on the molecular identity of the channels involved is scarce. We used a transgenic Arabidopsis thaliana line stably expressing the luminescent aequorin Ca2+ biosensor to monitor pharmacological interference with Ca2+ signatures following treatment with the bacterial peptide MAMPs flg22 and elf18, and the fungal carbohydrate MAMP chitin. Using a comprehensive set of compounds known to impede Ca2+-transport processes in plants and animals we found strong evidence for a prominent role of amino acid-controlled Ca2+ fluxes, probably through iGluR (ionotropic glutamate receptor)-like channels. Interference with amino acid-mediated Ca2+ fluxes modulates MAMP-triggered MAPK (mitogen-activated protein kinase) activity and affects MAMP-induced accumulation of defence gene transcripts. We conclude that the initiation of innate immune responses upon flg22, elf18 and chitin recognition involves apoplastic Ca2+ influx via iGluR-like channels.

  3. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  4. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    PubMed

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dissociation of Innate Immune Responses in Microglia Infected with Listeria monocytogenes

    PubMed Central

    Frande-Cabanes, Elisabet; Fernandez-Prieto, Lorena; Calderon-Gonzalez, Ricardo; Rodríguez-Del Río, Estela; Yañez-Diaz, Sonsoles; López-Fanarraga, Monica; Alvarez-Domínguez, Carmen

    2014-01-01

    Microglia, the innate immune cells of the brain, plays a central role in cerebral listeriosis. Here, we present evidence that microglia control Listeria infection differently than macrophages. Infection of primary microglial cultures and murine cell lines with Listeria resulted in a dual function of the two gene expression programmes involved in early and late immune responses in macrophages. Whereas the bacterial gene hly seems responsible for both transcriptional programmes in macrophages, Listeria induces in microglia only the tumor necrosis factor (TNF)-regulated transcriptional programme. Listeria also represses in microglia the late immune response gathered in two clusters, microbial degradation, and interferon (IFN)-inducible genes. The bacterial gene actA was required in microglia to induce TNF-regulated responses and to repress the late response. Isolation of microglial phagosomes revealed a phagosomal environment unable to destroy Listeria. Microglial phagosomes were also defective in several signaling and trafficking components reported as relevant for Listeria innate immune responses. This transcriptional strategy in microglia induced high levels of TNF-α and monocyte chemotactic protein-1 and low production of other neurotoxic compounds such as nitric oxide, hydrogen peroxide, and Type I IFNs. These cytokines and toxic microglial products are also released by primary microglia, and this cytokine and chemokine cocktail display a low potential to trigger neuronal apoptosis. This overall bacterial strategy strongly suggests that microglia limit Listeria inflammation pattern exclusively through TNF-mediated responses to preserve brain integrity. GLIA 2014;62:233–246 PMID:24311463

  6. Review series on helminths, immune modulation and the hygiene hypothesis: Immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies?

    PubMed Central

    Jackson, Joseph A; Friberg, Ida M; Little, Susan; Bradley, Janette E

    2009-01-01

    Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (Treg) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/Treg immunoregulatory footprint (often termed a ‘modified Th2’ response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection. PMID:19120495

  7. Investigation on the governance model and effect of medical schools merged with comprehensive universities in China.

    PubMed

    Bai, Ge; Luo, Li

    2013-08-01

    This investigation analyzes the management of medical schools merged with comprehensive universities through internet search and research review to reveal management model and effect of the merger. The conclusion is safely reached that governance models are divided into two different patterns: centralized management and decentralized management. Eight universities, representing the two models, were selected and evaluated comprehensively. Among them, the universities that carried out decentralized management have greater development after the merger based on a quality comparison concerning freshmen, faculty, teaching, and research between the two patterns. © 2013 Wiley Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  8. Episodes of breathlessness: types and patterns - a qualitative study exploring experiences of patients with advanced diseases.

    PubMed

    Simon, Steffen T; Higginson, Irene J; Benalia, Hamid; Gysels, Marjolein; Murtagh, Fliss Em; Spicer, James; Bausewein, Claudia

    2013-06-01

    Despite the high prevalence and impact of episodic breathlessness, information about characteristics and patterns is scarce. To explore the experience of patients with advanced disease suffering from episodic breathlessness, in order to describe types and patterns. Qualitative design using in-depth interviews with patients suffering from advanced stages of chronic heart failure, chronic obstructive pulmonary disease, lung cancer or motor neurone disease. As part of the interviews, patients were asked to draw a graph to illustrate typical patterns of breathlessness episodes. Interviews were tape-recorded, transcribed verbatim and analysed using Framework Analysis. The graphs were grouped according to their patterns. Fifty-one participants (15 chronic heart failure, 14 chronic obstructive pulmonary disease, 13 lung cancer and 9 motor neurone disease) were included (mean age 68.2 years, 30 of 51 men, mean Karnofsky 63.1, mean breathlessness intensity 3.2 of 10). Five different types of episodic breathlessness were described: triggered with normal level of breathlessness, triggered with predictable response (always related to trigger level, e.g. slight exertion causes severe breathlessness), triggered with unpredictable response (not related to trigger level), non-triggered attack-like (quick onset, often severe) and wave-like (triggered or non-triggered, gradual onset). Four patterns of episodic breathlessness could be identified based on the graphs with differences regarding onset and recovery of episodes. These did not correspond with the types of breathlessness described before. Patients with advanced disease experience clearly distinguishable types and patterns of episodic breathlessness. The understanding of these will help clinicians to tailor specific management strategies for patients who suffer from episodes of breathlessness.

  9. Gut-derived commensal bacterial products inhibit liver dendritic cell maturation by stimulating hepatic interleukin-6/signal transducer and activator of transcription 3 activity.

    PubMed

    Lunz, John G; Specht, Susan M; Murase, Noriko; Isse, Kumiko; Demetris, Anthony J

    2007-12-01

    Intraorgan dendritic cells (DCs) monitor the environment and help translate triggers of innate immunity into adaptive immune responses. Liver-based DCs are continually exposed, via gut-derived portal venous blood, to potential antigens and bacterial products that can trigger innate immunity. However, somehow the liver avoids a state of perpetual inflammation and protects central immune organs from overstimulation. In this study, we tested the hypothesis that hepatic interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) activity increases the activation/maturation threshold of hepatic DCs toward innate immune signals. The results show that the liver nuclear STAT3 activity is significantly higher than that of other organs and is IL-6-dependent. Hepatic DCs in normal IL-6 wild-type (IL-6(+/+)) mice are phenotypically and functionally less mature than DCs from IL-6-deficient (IL-6(-/-)) or STAT3-inhibited IL-6(+/+) mice, as determined by surface marker expression, proinflammatory cytokine secretion, and allogeneic T-cell stimulation. IL-6(+/+) liver DCs produce IL-6 in response to exposure to lipopolysaccharide (LPS) and cytidine phosphate guanosine oligonucleotides (CpG) but are resistant to maturation compared with IL-6(-/-) liver DCs. Conversely, exogenous IL-6 inhibits LPS-induced IL-6(-/-) liver DC maturation. IL-6/STAT3 signaling influences the liver DC expression of toll-like receptor 9 and IL-1 receptor associated kinase-M. The depletion of gut commensal bacteria in IL-6(+/+) mice with oral antibiotics decreased portal blood endotoxin levels, lowered the expression of IL-6 and phospho-STAT3, and significantly increased liver DC maturation. Gut-derived bacterial products, by stimulating hepatic IL-6/STAT3 signaling, inhibit hepatic DC activation/maturation and thereby elevate the threshold needed for translating triggers of innate immunity into adaptive immune responses. Manipulating gut bacteria may therefore be an effective strategy for altering intrahepatic immune responses.

  10. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies.

    PubMed

    Schijf, Marcel A; Lukens, Michael V; Kruijsen, Debby; van Uden, Nathalie O P; Garssen, Johan; Coenjaerts, Frank E J; Van't Land, Belinda; van Bleek, Grada M

    2013-01-01

    Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14(+) myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.

  11. Respiratory Syncytial Virus Induced Type I IFN Production by pDC Is Regulated by RSV-Infected Airway Epithelial Cells, RSV-Exposed Monocytes and Virus Specific Antibodies

    PubMed Central

    Schijf, Marcel A.; Lukens, Michael V.; Kruijsen, Debby; van Uden, Nathalie O. P.; Garssen, Johan; Coenjaerts, Frank E. J.; van’t Land, Belinda; van Bleek, Grada M.

    2013-01-01

    Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease. PMID:24303065

  12. Inflammatory mediators in mastitis and lactation insufficiency.

    PubMed

    Ingman, Wendy V; Glynn, Danielle J; Hutchinson, Mark R

    2014-07-01

    Mastitis is a common inflammatory disease during lactation that causes reduced milk supply. A growing body of evidence challenges the central role of pathogenic bacteria in mastitis, with disease severity associated with markers of inflammation rather than infection. Inflammation in the mammary gland may be triggered by microbe-associated molecular patterns (MAMPs) as well as danger-associated molecular patterns (DAMPs) binding to pattern recognition receptors such as the toll-like receptors (TLRs) on the surface of mammary epithelial cells and local immune cell populations. Activation of the TLR4 signalling pathway and downstream nuclear factor kappa B (NFkB) is critical to mediating local mammary gland inflammation and systemic immune responses in mouse models of mastitis. However, activation of NFkB also induces epithelial cell apoptosis and reduced milk protein synthesis, suggesting that inflammatory mediators activated during mastitis promote partial involution. Perturbed milk flow, maternal stress and genetic predisposition are significant risk factors for mastitis, and could lead to a heightened TLR4-mediated inflammatory response, resulting in increased susceptibility and severity of mastitis disease in the context of low MAMP abundance. Therefore, heightened host inflammatory signalling may act in concert with pathogenic or commensal bacterial species to cause both the inflammation associated with mastitis and lactation insufficiency. Here, we present an alternate paradigm to the widely held notion that breast inflammation is driven principally by infectious bacterial pathogens, and suggest there may be other therapeutic strategies, apart from the currently utilised antimicrobial agents, that could be employed to prevent and treat mastitis in women.

  13. Plant Immunity Inducer Development and Application.

    PubMed

    Dewen, Qiu; Yijie, Dong; Yi, Zhang; Shupeng, Li; Fachao, Shi

    2017-05-01

    Plant immunity inducers represent a new and rapidly developing field in plant-protection research. In this paper, we discuss recent research on plant immunity inducers and their development and applications in China. Plant immunity inducers include plant immunity-inducing proteins, chitosan oligosaccharides, and microbial inducers. These compounds and microorganisms can trigger defense responses and confer disease resistance in plants. We also describe the mechanisms of plant immunity inducers and how they promote plant health. Furthermore, we summarize the current situation in plant immunity inducer development in China and the global marketplace. Finally, we also deeply analyze the development trends and application prospects of plant immunity inducers in environmental protection and food safety.

  14. A psychometric evaluation of the Rorschach comprehensive system's perceptual thinking index.

    PubMed

    Dao, Tam K; Prevatt, Frances

    2006-04-01

    In this study, we investigated evidence for reliability and validity of the Perceptual Thinking Index (PTI; Exner, 2000a, 2000b) among an adult inpatient population. We conducted reliability and validity analyses on 107 patients who met the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision; American Psychiatric Association, 2000) criteria for a schizophrenia-spectrum disorder (SSD) or mood disorder with no psychotic features (MD). Results provided support for interrater reliability as well as internal consistency of the PTI. Furthermore, the PTI was an effective index in differentiating SSD patients from patients diagnosed with an MD. Finally, the PTI demonstrated adequate diagnostic statistics that can be useful in the classification of patients diagnosed with SSD and MD. We discuss methodological issues, implications for assessment practice, and directions for future research.

  15. [Intraoperative monitoring of oxygen tissue pressure: Applications in vascular neurosurgery].

    PubMed

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Chocron, Ivette; Rodriguez-Tesouro, Ana; Sahuquillo, Juan

    2014-01-01

    Ischemic lesions related to surgical procedures are a major cause of postoperative morbidity in patients with cerebral vascular disease. There are different systems of neuromonitoring to detect intraoperative ischemic events, including intraoperative monitoring of oxygen tissue pressure (PtiO2). The aim of this article was to describe, through the discussion of 4 cases, the usefulness of intraoperative PtiO2 monitoring during vascular neurosurgery. In presenting these cases, we demonstrate that monitoring PtiO2 is a reliable way to detect early ischemic events during surgical procedures. Continuous monitoring of PtiO2 in an area at risk allows the surgeon to resolve the cause of the ischemic event before it evolves to an established cerebral infarction. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism

    PubMed Central

    Jing, Da; Zhai, Mingming; Tong, Shichao; Xu, Fei; Cai, Jing; Shen, Guanghao; Wu, Yan; Li, Xiaokang; Xie, Kangning; Liu, Juan; Xu, Qiaoling; Luo, Erping

    2016-01-01

    Treatment of osseous defects remains a formidable clinical challenge. Porous titanium alloys (pTi) have been emerging as ideal endosseous implants due to the excellent biocompatibility and structural properties, whereas inadequate osseointegration poses risks for unreliable long-term implant stability. Substantial evidence indicates that pulsed electromagnetic fields (PEMF), as a safe noninvasive method, inhibit osteopenia/osteoporosis experimentally and clinically. We herein investigated the efficiency and potential mechanisms of PEMF on osteogenesis and osseointegration of pTi in vitro and in vivo. We demonstrate that PEMF enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton for in vitro osteoblasts seeded in pTi. PEMF promoted gene expressions in Runx2, OSX, COL-1 and Wnt/β-catenin signaling. PEMF-stimulated group exhibited higher Runx2, Wnt1, Lrp6 and β-catenin protein expressions. In vivo results via μCT and histomorphometry show that 6-week and 12-week PEMF promoted osteogenesis, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defect. PEMF promoted femoral gene expressions of Runx2, BMP2, OCN and Wnt/β-catenin signaling. Together, we demonstrate that PEMF improve osteogenesis and osseointegration of pTi by promoting skeletal anabolic activities through a Wnt/β-catenin signaling-associated mechanism. PEMF might become a promising biophysical modality for enhancing the repair efficiency and quality of pTi in bone defect. PMID:27555216

  17. Clinical application of immune-enhanced enteral nutrition in patients with advanced gastric cancer after total gastrectomy.

    PubMed

    Liu, Hua; Ling, Wei; Shen, Zhi Yong; Jin, Xin; Cao, Hui

    2012-08-01

    To determine whether immune-enhanced enteral nutrition (EN) was effective on nutritional status, immune function, surgical outcomes and days of hospitalization after total gastrectomy for patients with advanced gastric cancer (AGC). From August 2005 to May 2011, 78 patients with AGC who underwent a total gastrectomy were enrolled and divided randomly into three groups: immune-enhanced EN (EN + glutamine [Gln]) group, standard EN group and control group. Serum parameters including total protein, albumin, proalbumin and transferrin were examined on preoperative day 1, postoperative day 2 and day 12. Levels of immunoglobulin M (IgM), immunoglobulin G (IgG), natural killer (NK) cells, CD4⁺ and CD8⁺ T cells were also compared. The formulas were tolerated well in all the patients except 5 with mild complications. The EN + Gln and EN groups showed a faster onset of flatus and shorter hospitalization duration than the control group. On postoperative day 12, serum total protein, albumin, proalbumin and transferrin levels of the EN + Gln and EN groups were significantly higher than those of the control group (P < 0.05). CD4⁺ T cells, NK cells, IgM and IgG levels of the EN + Gln group increased prominently, and were significantly higher than those before the operation as well as those in the EN and control groups. Immune-enhanced EN can improve nutritional status and immune function for the patients with AGC after total gastrectomy. © 2012 The Authors. Journal of Digestive Diseases © 2012 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  18. Altered Immune Regulation in Type 1 Diabetes

    PubMed Central

    Zóka, András; Műzes, Györgyi; Somogyi, Anikó; Varga, Tímea; Szémán, Barbara; Al-Aissa, Zahra; Hadarits, Orsolya; Firneisz, Gábor

    2013-01-01

    Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development. PMID:24285974

  19. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Adjuvants and lymphoma risk as part of the ASIA spectrum.

    PubMed

    Butnaru, Dana; Shoenfeld, Yehuda

    2015-02-01

    The emerging epidemic of Hodgkin and non-Hodgkin lymphomas worldwide continues to defy our understanding and forces the search for the causative factors. Adjuvants are known to act as triggers of immune and inflammatory responses. Animal experiments have demonstrated that long-term inflammation is related to aggravation of the immune network resulting in cellular and humoral responses leading to autoimmunity and lymphoma development. Chronic stimulation of the immune system is thought to be the key mechanism through which infectious diseases as well as autoimmune diseases can lead to lymphomagenesis. Many adjuvants can act similarly perturbing immune system's function, inducing a state of prolonged immune activation related to chronic lymphatic drainage. Several mechanisms were proposed by which adjuvants induce inflammation, and they are discussed herein. Some of them are triggering inflammasome; others bind DNA, lipid moieties in cells, induce uric acid production or act as lipophilic and/or hydrophobic substances. The sustained inflammation increases the risk of genetic aberrations, where the initial polyclonal activation ends in monoclonality. The latter is the hallmark of malignant lymphoma. Thus, chronic adjuvant stimulation may lead to lymphoma.

  1. Construction and comparison of gene co-expression networks shows complex plant immune responses

    PubMed Central

    López, Camilo; López-Kleine, Liliana

    2014-01-01

    Gene co-expression networks (GCNs) are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA). Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses. PMID:25320678

  2. Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans.

    PubMed

    Kimura, Takafumi; Takanami, Takako; Sakashita, Tetsuya; Wada, Seiichi; Kobayashi, Yasuhiko; Higashitani, Atsushi

    2012-10-01

    The effect of radiation on the intestine has been studied for more than one hundred years. It remains unclear, however, whether this organ uses specific defensive mechanisms against ionizing radiation. The infection with Pseudomonas aeruginosa (PA14) in Caenorhabditis elegans induces up-regulation of innate immune response genes. Here, we found that exposure to ionizing radiation also induces certain innate immune response genes such as F49F1.6 (termed mul-1), clec-4, clec-67, lys-1 and lys-2 in the intestine. Moreover, pre-treatment with ionizing radiation before seeding on PA14 lawn plate significantly increased survival rate in the nematode. We also studied transcription pathway of the mul-1 in response to ionizing radiation. Induction of mul-1 gene was highly dependent on the ELT-2 transcription factor and p38 MAPK. Moreover, the insulin/IGF-1 signal pathway works to enhance induction of this gene. The mul-1 gene showed a different induction pattern from the DNA damage response gene, ced-13, which implies that the expression of this gene might be triggered as an indirect effect of radiation. Silencing of the mul-1 gene led to growth retardation after treatment with ionizing radiation. We describe the cross-tolerance between the response to radiation exposure and the innate immune system.

  3. Protective Cellular Immunity Against Influenza Virus Induced by Plasmid Inoculation of Newborn Mice

    PubMed Central

    Bot, Adrian; Bot, Simona; García-Sastre, Adolfo

    1998-01-01

    Neonate organisms display an intrinsic disability to mount effective immune responses to infectious agents or conventional vaccines. Whereas low. doses of antigens trigger a suboptimal response, higher doses are frequently associated with tolerance induction. We investigated the ability of a plasmid-expressing nucleoprotein of influenza virus to prime a specific cellular immune response when administered to newborn mice. We found that persistent exposure to antigen following plasmid inoculation of neonates leads to a vigorous priming of specific CTLs rather than tolerance induction. The CTLs were cross-reactive against multiple strains of type A influenza viruses and produced IFNγ but no IL-4. The immunity triggered by plasmid inoculation of neonates was protective in terms of pulmonary virus clearance as well as survival rate following lethal challenge with influenza virus. Whereas the persistence of the plasmid at the site of injection was readily demonstrable in adult mice at 3 months after inoculation, mice immunized as newborns displayed no plasmid at 3 months and very little at 1 month after injection. Thus, DNA-based immunization of neonates may prove an effective and safe vaccination strategy for induction of cellular immunity against microbes that cause serious infectious diseases in the early period of life. PMID:9851359

  4. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | FNLCR Staging

    Cancer.gov

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  5. Plant-Pathogen Warfare under Changing Climate Conditions.

    PubMed

    Velásquez, André C; Castroverde, Christian Danve M; He, Sheng Yang

    2018-05-21

    Global environmental changes caused by natural and human activities have accelerated in the past 200 years. The increase in greenhouse gases is predicted to continue to raise global temperature and change water availability in the 21 st century. In this Review, we explore the profound effect the environment has on plant diseases - a susceptible host will not be infected by a virulent pathogen if the environmental conditions are not conducive for disease. The change in CO 2 concentrations, temperature, and water availability can have positive, neutral, or negative effects on disease development, as each disease may respond differently to these variations. However, the concept of disease optima could potentially apply to all pathosystems. Plant resistance pathways, including pattern-triggered immunity to effector-triggered immunity, RNA interference, and defense hormone networks, are all affected by environmental factors. On the pathogen side, virulence mechanisms, such as the production of toxins and virulence proteins, as well as pathogen reproduction and survival are influenced by temperature and humidity. For practical reasons, most laboratory investigations into plant-pathogen interactions at the molecular level focus on well-established pathosystems and use a few static environmental conditions that capture only a fraction of the dynamic plant-pathogen-environment interactions that occur in nature. There is great need for future research to increasingly use dynamic environmental conditions in order to fully understand the multidimensional nature of plant-pathogen interactions and produce disease-resistant crop plants that are resilient to climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Synergic activation of toll-like receptor (TLR) 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells.

    PubMed

    Triantafilou, Martha; De Glanville, Benjamin; Aboklaish, Ali F; Spiller, O Brad; Kotecha, Sailesh; Triantafilou, Kathy

    2013-01-01

    Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), preterm labour (PL) pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to "sense" pathogens. One such family of PRRs are the Toll like receptor family (TLR). In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK) transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA), trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly.

  7. Synergic Activation of Toll-Like Receptor (TLR) 2/6 and 9 in Response to Ureaplasma parvum & urealyticum in Human Amniotic Epithelial Cells

    PubMed Central

    Triantafilou, Martha; De Glanville, Benjamin; Aboklaish, Ali F.; Spiller, O. Brad; Kotecha, Sailesh; Triantafilou, Kathy

    2013-01-01

    Ureaplasma species are the most frequently isolated microorganisms inside the amniotic cavity and have been associated with spontaneous abortion, chorioamnionitis, premature rupture of the membranes (PROM), preterm labour (PL) pneumonia in neonates and bronchopulmonary dysplasia in neonates. The mechanisms by which Ureaplasmas cause such diseases remain unclear, but it is believed that inappropriate induction of inflammatory responses is involved, triggered by the innate immune system. As part of its mechanism of activation, the innate immune system employs germ-lined encoded receptors, called pattern recognition receptors (PRRs) in order to “sense” pathogens. One such family of PRRs are the Toll like receptor family (TLR). In the current study we aimed to elucidate the role of TLRs in Ureaplasma-induced inflammation in human amniotic epithelial cells. Using silencing, as well as human embryonic kidney (HEK) transfected cell lines, we demonstrate that TLR2, TLR6 and TLR9 are involved in the inflammatory responses against Ureaplasma parvum and urealyticum serovars. Ureaplasma lipoproteins, such as Multiple Banded antigen (MBA), trigger responses via TLR2/TLR6, whereas the whole bacterium is required for TLR9 activation. No major differences were observed between the different serovars. Cell activation by Ureaplasma parvum and urealyticum seem to require lipid raft function and formation of heterotypic receptor complexes comprising of TLR2 and TLR6 on the cell surface and TLR9 intracellularly. PMID:23593431

  8. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    PubMed

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  9. Development and characterization of neutralizing monoclonal antibodies against canine distemper virus hemagglutinin protein.

    PubMed

    Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; Mei, Yongjie

    2015-04-01

    Canine distemper virus (CDV) causes a serious multisystemic disease in dogs and other carnivora. Hemagglutinin (H) protein-specific antibodies are mainly responsible for protective immunity against CDV infection. In the present study, six neutralizing MAbs to the H protein of CDV were newly obtained and characterized by immunizing BALB/c mice with a recent Chinese field isolate. Competitive binding inhibition assay revealed that they recognized four distinct antigenic regions of the H protein. Immunofluorescence assay and western blotting showed that all MAbs recognize the conformational rather than the linear epitopes of the H protein. Furthermore, in immunofluorescence and virus neutralization assays, two of the MAbs were found to react only with the recent Chinese field isolate and not with older CDV strains, including vaccine strain Onderstepoort, indicating there are neutralization-related antigenic variations between the recent Chinese field isolate and the older CDV strains examined in this study. The newly established MAbs are useful for differentiating the expanding CDV strains and could be used in immunotherapy and immunodiagnosis against infection with CDV. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  10. IgA vasculitis as a presentation of human immunodeficiency virus infection.

    PubMed

    Brandy-García, Anahy M; Santos-Juanes, Jorge; Suarez, Silvia; Caminal-Montero, Luis

    2018-05-15

    IgA vasculitis is a small-vessel vasculitis mediated by immune complexes. In clinical terms, it is characterized by palpable purpura in the lower limbs, joint involvement in the form of arthralgia or arthritis, and gastrointestinal and renal involvement (this will mark a poorer prognosis in adults). Infectious processes, mainly in the upper respiratory tract, are frequently found to be triggers. On the other hand, human immunodeficiency virus (HIV) causes immune dysfunction, which triggers hypergammaglobulinemia and can trigger autoimmune disorders. At times, this can affect the vascular endothelium, giving rise to vasculitic manifestations, although there are few reports in the literature of its role in the presentation of HIV. Copyright © 2018 Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization

    PubMed Central

    Hayafune, Masahiro; Berisio, Rita; Marchetti, Roberta; Silipo, Alba; Kayama, Miyu; Desaki, Yoshitake; Arima, Sakiko; Squeglia, Flavia; Ruggiero, Alessia; Tokuyasu, Ken; Molinaro, Antonio; Kaku, Hanae; Shibuya, Naoto

    2014-01-01

    Perception of microbe-associated molecular patterns (MAMPs) through pattern recognition receptors (PRRs) triggers various defense responses in plants. This MAMP-triggered immunity plays a major role in the plant resistance against various pathogens. To clarify the molecular basis of the specific recognition of chitin oligosaccharides by the rice PRR, CEBiP (chitin-elicitor binding protein), as well as the formation and activation of the receptor complex, biochemical, NMR spectroscopic, and computational studies were performed. Deletion and domain-swapping experiments showed that the central lysine motif in the ectodomain of CEBiP is essential for the binding of chitin oligosaccharides. Epitope mapping by NMR spectroscopy indicated the preferential binding of longer-chain chitin oligosaccharides, such as heptamer-octamer, to CEBiP, and also the importance of N-acetyl groups for the binding. Molecular modeling/docking studies clarified the molecular interaction between CEBiP and chitin oligosaccharides and indicated the importance of Ile122 in the central lysine motif region for ligand binding, a notion supported by site-directed mutagenesis. Based on these results, it was indicated that two CEBiP molecules simultaneously bind to one chitin oligosaccharide from the opposite side, resulting in the dimerization of CEBiP. The model was further supported by the observations that the addition of (GlcNAc)8 induced dimerization of the ectodomain of CEBiP in vitro, and the dimerization and (GlcNAc)8-induced reactive oxygen generation were also inhibited by a unique oligosaccharide, (GlcNβ1,4GlcNAc)4, which is supposed to have N-acetyl groups only on one side of the molecule. Based on these observations, we proposed a hypothetical model for the ligand-induced activation of a receptor complex, involving both CEBiP and Oryza sativa chitin-elicitor receptor kinase-1. PMID:24395781

  12. Molecular mechanisms mediating immune priming in Anopheles gambiae mosquitos

    USDA-ARS?s Scientific Manuscript database

    The Anopheles gambiae immune priming response is triggered when Plasmodium ookinetes invade the mosquito midgut and the microbiota comes in direct contact with injured cells. This is a long-lasting response that confers the challenged mosquito enhanced ability to control subsequent Plasmodium infect...

  13. Myasthenia Gravis, Lambert-Eaton Myasthenic Syndrome & Congenital Myasthenic Syndromes

    MedlinePlus

    ... make VGCC, triggering the immune system to make anti-VGCC antibodies. The trigger for LEMS without cancer is unknown. What are the symptoms of LEMS? ... after exer- tion. (It’s thought that, with repeated activity, calcium gradually ... urgency. LEMS with cancer has its onset in adulthood, but LEMS without ...

  14. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever.

    PubMed

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) - also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura - is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  15. A nonlinear delayed model for the immune response in the presence of viral mutation

    NASA Astrophysics Data System (ADS)

    Messias, D.; Gleria, Iram; Albuquerque, S. S.; Canabarro, Askery; Stanley, H. E.

    2018-02-01

    We consider a delayed nonlinear model of the dynamics of the immune system against a viral infection that contains a wild-type virus and a mutant. We consider the finite response time of the immune system and find sustained oscillatory behavior as well as chaotic behavior triggered by the presence of delays. We present a numeric analysis and some analytical results.

  16. New Approach for Producing and Purifying IL-15 Heterodimers That Have Potent Immune Effect | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Cytokines are proteins that play a crucial role in the human immune system by delivering messages that trigger the activation of immune cells to fight off attacks from viruses or other invaders. Cristina Bergamaschi, Ph.D., NCI Center for Cancer Research, has been studying the mechanism of expression and function of a cytokine known as

  17. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function

    USDA-ARS?s Scientific Manuscript database

    Zinc deficiency impairs immune system leading to frequent infections. Although it is known that zinc plays critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we showed that zinc is important for the CD154-CD40-mediated activati...

  18. Isolation of immune-relating 185/333-1 gene from Sea Urchin ( Strongylocentrotus intermedius) and Its expression analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Ding, Jun; Liu, Yang; Liu, Xuewei; Chang, Yaqing

    2016-02-01

    The 185/333 gene family involved in the immune response of sea urchin. One 185/333 cDNA was isolated from Strongylocentrotus intermedius, and named as Si185/333-1. Its full-length cDNA was 1246 bp in length with a 906 bp open reading frame encoding a protein of 301 aa. The molecular weight of the deduced protein was approximately 33.1 kD with an estimated PI of pH 6.26. Si185/333-1 had high identities (70%-86%) to most of Sp185/333. An extraordinary identity of 92% was found between Si185/333-1 and Sp185/333 C5 alpha (ABR22474). Moderate identities (63%-64%) were displayed between Si185/333-1 and He185/333. Si185/333-1 had similar structure to Sp185/333. A signal-peptide, a gly-rich region and a his-rich region were found in its secondary structure. RGD motif was found in gly-rich region at position 116-118aa. There was no transmembrane region in Si185/333-1. The element pattern of Si185/333-1 is different from any available pattern that identified in Sp185/333. Si185/333-1 clustered together with pattern C Sp185/333 in phylogenetic tree. The Si185/333-1 mRNA could be detected in tißsues including peristomial membrane, coelomocytes, muscle of Aristotles lantern, gut and tube feet, with the highest expression level detected in peristomial membrane and a relatively low expression in ovary and testis. The temporal expression of Si185/333-1 in peristomial membrane and coelomocytes were up-regulated after bacterial, ß-D-glucan and dsRNA challenges, reaching the maximum at 12 h post-stimulation. The up-regulation was more obvious in coelomocytes, and bacterial challenge triggered the highest response. These results proved that 185/333-1 gene was involved in the immune defense of S. intermedius, while more studies were necessary for its function in S. intermedius immunity.

  19. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.

    PubMed

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping

    2017-02-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.

  20. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo

    2015-07-01

    The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.

  1. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  2. Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets.

    PubMed Central

    Wonerow, Peter; Obergfell, Achim; Wilde, Jonathan I; Bobe, Régis; Asazuma, Naoki; Brdicka, Tomás; Leo, Albrecht; Schraven, Burkhart; Horejsí, Václav; Shattil, Sanford J; Watson, Steve P

    2002-01-01

    The platelet collagen receptor glycoprotein VI (GPVI) and the fibrinogen receptor integrin alphaIIbbeta3 trigger intracellular signalling cascades involving the tyrosine kinase Syk, the adapter SLP-76 and phospholipase Cgamma2 (PLCgamma2). Similar pathways are activated downstream of immune receptors in lymphocytes, where they have been localized in part to glycolipid-enriched membrane domains (GEMs). Here we provide several lines of evidence that GPVI-mediated tyrosine phosphorylation of PLCgamma2 in platelets is dependent on GEM-organized signalling and utilizes the GEM resident adapter protein LAT (linker for activation of T cells). In sharp contrast, although fibrinogen binding to platelets stimulates alphaIIbbeta3-dependent activation of Syk and tyrosine phosphorylation of SLP-76 and PLCgamma2, it does not utilize GEMs to promote these responses or to support platelet aggregation. These results establish that GPVI and alphaIIbbeta3 trigger distinct patterns of receptor signalling in platelets, leading to tyrosine phosphorylation of PLCgamma2, and they highlight the role of GEMs in compartmentalizing signalling reactions involved in haemostasis. PMID:12049640

  3. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins.

    PubMed

    Magna, Melinda; Pisetsky, David S

    2016-05-01

    The communication of cell injury and death is a critical element in host defense. Although immune cells can serve this function by elaborating cytokines and chemokines, somatic cells can repurpose nuclear macromolecules to function as damage-associated molecular patterns (DAMPs) or alarmins to exert similar activity. Among these molecules, DNA, high-mobility group box-1, and histone proteins can all act as DAMPs once they are in an extracellular location. This review describes current information on the role of the nuclear DAMPs, their translocation to the outside of cells, and pathways of activation after uptake into the inside of immune cells. MEDLINE and PubMed databases were searched for citations (1990-2016) in English related to the following terms: DAMPs, high-mobility group box-1, DNA, histones, cell death, danger, and immune activation. Selected articles with the most relevant studies were included for a more detailed consideration. Although nuclear molecules have important structural and genetic regulatory roles inside the cell nucleus, when released into the extracellular space during cell death, these molecules can acquire immune activity and serve as alarmins or DAMPs. Although apoptosis is generally considered the source of extracellular nuclear material, other cell death pathways such as necroptosis, NETosis, and pyroptosis can contribute to the release of nuclear molecules. Importantly, the release of nuclear DAMPs occurs with both soluble and particulate forms of these molecules. The activity of nuclear molecules may depend on posttranslational modifications, redox changes, and the binding of other molecules. Once in an extracellular location, nuclear DAMPs can engage the same pattern recognition receptors as do pathogen-associated molecular patterns. These interactions can activate immune cells and lead to cytokine and chemokine production. Among these receptors, internal receptors for DNA are key to the response to this molecule; the likely function of these internal sensors is the recognition of DNA from intracellular infection by bacteria or viruses. Activation of these receptors requires translocation of extracellular DNA into specialized compartments. In addition to nuclear DNA, mitochondrial DNA can also serve as a DAMP. The communication of cell injury and death is a critical element in host defense and involves the repurposing of nuclear molecules as immune triggers. As such, the presence of extracellular nuclear material can serve as novel biomarkers for conditions involving cell injury and death. Targeting of these molecules may also represent an important new approach to therapy. Published by Elsevier Inc.

  4. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies.

    PubMed

    Rückert, Michael; Deloch, Lisa; Fietkau, Rainer; Frey, Benjamin; Hecht, Markus; Gaipl, Udo S

    2018-06-01

    Radiotherapy (RT) has been known for decades as a local treatment modality for malign and benign disease. In order to efficiently exploit the therapeutic potential of RT, an understanding of the immune modulatory properties of ionizing radiation is mandatory. These should be used for improvement of radioimmunotherapies for cancer in particular. We here summarize the latest research and review articles about immune modulatory properties of RT, with focus on radiation dose and on combination of RT with selected immunotherapies. Based on the knowledge of the manifold immune mechanisms that are triggered by RT, thought-provoking impulse for multimodal radioimmunotherapies is provided. It has become obvious that ionizing radiation induces various forms of cell death and associated processes via DNA damage initiation and triggering of cellular stress responses. Immunogenic cell death (ICD) is of special interest since it activates the immune system via release of danger signals and via direct activation of immune cells. While RT with higher single doses in particular induces ICD, RT with a lower dose is mainly responsible for immune cell recruitment and for attenuation of an existing inflammation. The counteracting immunosuppression emanating from tumor cells can be overcome by combining RT with selected immunotherapies such as immune checkpoint inhibition, TGF-β inhibitors, and boosting of immunity with vaccination. In order to exploit the full power of RT and thereby develop efficient radioimmunotherapies, the dose per fraction used in RT protocols, the fractionation, the quality, and the quantity of certain immunotherapies need to be qualitatively and chronologically well-matched to the individual immune status of the patient.

  5. Natural history of chronic hepatitis B virus infection from infancy to adult life - the mechanism of inflammation triggering and long-term impacts.

    PubMed

    Wu, Jia-Feng; Chang, Mei-Hwei

    2015-10-20

    Chronic hepatitis B virus (HBV) infection in endemic areas usually starts since infancy and early childhood and persists lifelong. The clinical course varies among different chronic infected subjects. Majority of chronic HBV infected children present with immune-tolerant status initially, experience the immune clearance phase with various degree of liver injury during or beyond puberty, and then enter the inactive phase after hepatitis B e antigen (HBeAg) seroconversion. Part of them may have HBV DNA titers elevation with hepatitis flare after HBeAg seroconversion, the so call HBeAg-negative hepatitis flare. Liver cirrhosis, and even hepatocellular carcinoma may develop afterward.The complex course of chronic HBV infection is associated with the age/route of viral acquisition, host factors such as immune and endocrine factors, viral factors, and host-viral interactions. The adrenarche and puberty onset modulate the start of immune clearance and the severity of liver inflammation in chronic HBV infected children. The genotype and phenotype of human cytokines, innate immunity, and human leukocyte antigens are also associated with the onset of immune clearance of HBV and severity of inflammation. Immune escape HBV mutant strains, emerged during the immune clearance phase under host immune surveillance, may cause different impacts on viral biosynthesis, host immune responses, and clinical course.Early events in childhood during chronic HBV infection may serve as important predictors for the later outcome in adulthood. Understanding the mechanisms triggering liver inflammation and their long-term impacts may enhance the development of better and earlier therapeutic strategies for patients with chronic HBV infection.

  6. Breast cancer pathology: the impact of molecular taxonomy on morphological taxonomy.

    PubMed

    Masuda, Shinobu

    2012-05-01

    The concept of having an 'intrinsic subtype,' or a molecular taxonomy, lets us clearly recognize that breast cancers have characteristically different patterns of gene expression, thus giving newfound significance to morphological taxonomy. In this review, the concept of the 'intrinsic subtype' is discussed, research questions are introduced to refine the significance of morphological taxonomy, and a corresponding example is presented between microarray analysis and 'immunohistochemical subtype,' or histological taxonomy. © 2012 The Author. Pathology International © 2012 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  7. [Role of hepatitis A and E viruses in the development of autoimmune diseases].

    PubMed

    Iakimchuk, K S; Malinnikova, E Iu; Poleshchuk, V F; Mikhaĭlov, M I

    2011-01-01

    The mechanisms of development of autoimmune diseases may be associated with a complex of genetic, immune, hormonal, and infectious factors. Autoimmune diseases include a wide range of systemic and organ-specific diseases, including autoimmune hepatitis (AIH). It is currently assumed that the pathogenesis of AIH is due to compromised immune regulation in the presence of an exogenous triggering factor. Exogenous factors, such as viruses, may be triggers of AIH. There may be different ways of initiating an autoimmune response by viruses, which includes nonspecific T-lymphocyte activation and molecular mimicry. There is much evidence supporting the initiating role of hepatitis viruses in the development of AIH and other autoimmune diseases. The development of AIH symptoms during hepatitis A and E virus infections has been described elsewhere. The creation of animal models of viral hepatitis is required to confirm the hypothesis that the viruses trigger the development of AIH and other autoimmune manifestations.

  8. Virus infection, antiviral immunity, and autoimmunity

    PubMed Central

    Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.

    2014-01-01

    Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356

  9. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    PubMed

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  10. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity

    PubMed Central

    Davenport, A. J.; Cross, R. S.; Watson, K. A.; Liao, Y.; Shi, W.; Prince, H. M.; Beavis, P. A.; Trapani, J. A.; Kershaw, M. H.; Ritchie, D. S.; Darcy, P. K.; Jenkins, M. R.

    2018-01-01

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. PMID:29440406

  11. Euflammation attenuates peripheral inflammation-induced neuroinflammation and mitigates immune-to-brain signaling.

    PubMed

    Liu, Xiaoyu; Nemeth, Daniel P; Tarr, Andrew J; Belevych, Natalya; Syed, Zunera W; Wang, Yufen; Ismail, Ahmad S; Reed, Nathaniel S; Sheridan, John F; Yajnik, Akul R; Disabato, Damon J; Zhu, Ling; Quan, Ning

    2016-05-01

    Peripheral inflammation can trigger a number of neuroinflammatory events in the CNS, such as activation of microglia and increases of proinflammatory cytokines. We have previously identified an interesting phenomenon, termed "euflammation", which can be induced by repeated subthreshold infectious challenges. Euflammation causes innate immune alterations without overt neuroimmune activation. In the current study, we examined the protective effect of euflammation against peripheral inflammation-induced neuroinflammation and the underlying mechanisms. When Escherichia coli or lipopolysaccharide (LPS) was injected inside or outside the euflammation induction locus (EIL), sickness behavior, global microglial activation, proinflammatory cytokine production in the brain, expression of endothelial cyclooxygenase II and induction of c-fos expression in the paraventricular nucleus of the hypothalamus were all attenuated in the euflammatory mice compared with those in the control unprimed mice. Euflammation also modulated innate immunity outside the EIL by upregulating receptors for pathogen-associated molecular patterns in spleen cells. In addition, euflammation attenuated CNS activation in response to an intra-airpouch (outside the EIL) injection of LPS without suppressing the cytokine expression in the airpouch. Collectively, our study demonstrates that signaling of peripheral inflammation to the CNS is modulated dynamically by peripheral inflammatory kinetics. Specifically, euflammation can offer effective protection against both bacterial infection and endotoxin induced neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Temporal profile of inflammatory response to fracture and hemorrhagic shock: Proposal of a novel long-term survival murine multiple trauma model.

    PubMed

    Kleber, Christian; Becker, Christopher A; Malysch, Tom; Reinhold, Jens M; Tsitsilonis, Serafeim; Duda, Georg N; Schmidt-Bleek, Katharina; Schaser, Klaus D

    2015-07-01

    Hemorrhagic shock (hS) interacts with the posttraumatic immune response and fracture healing in multiple trauma. Due to the lack of a long-term survival multiple trauma animal models, no standardized analysis of fracture healing referring the impact of multiple trauma on fracture healing was performed. We propose a new long-term survival (21 days) murine multiple trauma model combining hS (microsurgical cannulation of carotid artery, withdrawl of blood and continuously blood pressure measurement), femoral (osteotomy/external fixation) and tibial fracture (3-point bending technique/antegrade nail). The posttraumatic immune response was measured via IL-6, sIL-6R ELISA. The hS was investigated via macrohemodynamics, blood gas analysis, wet-dry lung ration and histologic analysis of the shock organs. We proposed a new murine long-term survival (21 days) multiple trauma model mimicking clinical relevant injury patterns and previously published human posttraumatic immune response. Based on blood gas analysis and histologic analysis of shock organs we characterized and standardized our murine multiple trauma model. Furthermore, we revealed hemorrhagic shock as a causative factor that triggers sIL-6R formation underscoring the fundamental pathophysiologic role of the transsignaling mechanism in multiple trauma. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen.

    PubMed

    Dos Anjos Cassado, Alexandra

    2017-01-01

    Tissue macrophages are a heterogeneous cell population residing in all body tissues that contribute to the maintenance of homeostasis and trigger immune activation in response to injurious stimuli. This heterogeneity may be associated with tissue-specific functions; however, the presence of distinct macrophage populations within the same microenvironment indicates that macrophage heterogeneity may also be influenced outside of tissue specialization. The F4/80 molecule was established as a unique marker of murine macrophages when a monoclonal antibody was found to recognize an antigen exclusively expressed by these cells. However, recent research has shown that F4/80 is expressed by other immune cells and is not equivalently expressed across tissue-specific macrophage lineages, including those residing in the same microenvironment, such as the peritoneum and spleen. In this context, two murine macrophage subtypes with distinct F4/80 expression patterns were recently found to coexist in the peritoneum, termed large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs). However, the presence of phenotypic and functional heterogeneous macrophage subpopulations in the spleen was already known. Thus, although F4/80 surface expression continues to be the best method to identify tissue macrophages, additional molecules must also be examined to distinguish these cells from other immune cells.

  14. High Degree of Overlap between Responses to a Virus and to the House Dust Mite Allergen in Airway Epithelial Cells

    PubMed Central

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Background Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. Methods We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). Results We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Conclusions Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other. PMID:24498371

  15. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    PubMed

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  16. Immunological consequences of vasectomy.

    PubMed

    Shahani, S K; Hattikudur, N S

    1981-09-01

    In more than 50% of men, vasectomy leads to auto-immune pathology. The auto-immune response to sperms following vasectomy is triggered by the phagocytosis of sperm in the epididymis. In the humoral immune response, sperm agglutinating, sperm immobilizing, and antibodies to sperm nuclear protamines occur, as early as 3-4 days after vasectomy. The incidence reaches 60-70% within 1 year and remains almost the same even after 20 years. Presence and effects of circulating immune complexes following vasectomy are discussed with reference to reported increased incidence of atherosclerosis and auto-immune orchitis in experimental animals. There is no positive conclusion whether vasectomy leads to cell mediated immunity to spermatozoa.

  17. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity.

    PubMed

    Huang, Zhe; Zhong, Ling; Lee, Jimmy Tsz Hang; Zhang, Jialiang; Wu, Donghai; Geng, Leiluo; Wang, Yu; Wong, Chi-Ming; Xu, Aimin

    2017-09-05

    Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abrogated in mice with adipose-selective ablation of FGF21 or its co-receptor β-Klotho, whereas such impairments are reversed by replenishment with chemokine CCL11. Mechanistically, FGF21 acts on adipocytes in an autocrine manner to promote the expression and secretion of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte precursors into beige adipocytes. These FGF21-elicited type 2 immune responses and beiging are blocked by CCL11 neutralization. Thus, the adipose-derived FGF21-CCL11 axis triggers cold-induced beiging and thermogenesis by coupling sympathetic nervous system to activation of type 2 immunity in scWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    PubMed Central

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  19. The effects of β-glucan on human immune and cancer cells

    PubMed Central

    Chan, Godfrey Chi-Fung; Chan, Wing Keung; Sze, Daniel Man-Yuen

    2009-01-01

    Non-prescriptional use of medicinal herbs among cancer patients is common around the world. The alleged anti-cancer effects of most herbal extracts are mainly based on studies derived from in vitro or in vivo animal experiments. The current information suggests that these herbal extracts exert their biological effect either through cytotoxic or immunomodulatory mechanisms. One of the active compounds responsible for the immune effects of herbal products is in the form of complex polysaccharides known as β-glucans. β-glucans are ubiquitously found in both bacterial or fungal cell walls and have been implicated in the initiation of anti-microbial immune response. Based on in vitro studies, β-glucans act on several immune receptors including Dectin-1, complement receptor (CR3) and TLR-2/6 and trigger a group of immune cells including macrophages, neutrophils, monocytes, natural killer cells and dendritic cells. As a consequence, both innate and adaptive response can be modulated by β-glucans and they can also enhance opsonic and non-opsonic phagocytosis. In animal studies, after oral administration, the specific backbone 1→3 linear β-glycosidic chain of β-glucans cannot be digested. Most β-glucans enter the proximal small intestine and some are captured by the macrophages. They are internalized and fragmented within the cells, then transported by the macrophages to the marrow and endothelial reticular system. The small β-glucans fragments are eventually released by the macrophages and taken up by other immune cells leading to various immune responses. However, β-glucans of different sizes and branching patterns may have significantly variable immune potency. Careful selection of appropriate β-glucans is essential if we wish to investigate the effects of β-glucans clinically. So far, no good quality clinical trial data is available on assessing the effectiveness of purified β-glucans among cancer patients. Future effort should direct at performing well-designed clinical trials to verify the actual clinical efficacy of β-glucans or β-glucans containing compounds. PMID:19515245

  20. Are Pressure Time Integral and Cumulative Plantar Stress Related to First Metatarsophalangeal Joint Pain? Results From a Community-Based Study.

    PubMed

    Rao, Smita; Douglas Gross, K; Niu, Jingbo; Nevitt, Michael C; Lewis, Cora E; Torner, James C; Hietpas, Jean; Felson, David; Hillstrom, Howard J

    2016-09-01

    To examine the relationship between plantar stress over a step, cumulative plantar stress over a day, and first metatarsophalangeal (MTP) joint pain among older adults. Plantar stress and first MTP pain were assessed within the Multicenter Osteoarthritis Study. All included participants were asked if they had pain, aching, or stiffness at the first MTP joint on most days for the past 30 days. Pressure time integral (PTI) was quantified as participants walked on a pedobarograph, and mean steps per day were obtained using an accelerometer. Cumulative plantar stress was calculated as the product of regional PTI and mean steps per day. Quintiles of hallucal and second metatarsal PTI and cumulative plantar stress were generated. The relationship between predictors and the odds ratio of first MTP pain was assessed using a logistic regression model. Feet in the quintile with the lowest hallux PTI had 2.14 times increased odds of first MTP pain (95% confidence interval [95% CI] 1.42-3.25, P < 0.01). Feet in the quintile with the lowest second metatarsal PTI had 1.50 times increased odds of first MTP pain (95% CI 1.01-2.23, P = 0.042). Cumulative plantar stress was unassociated with first MTP pain. Lower PTI was modestly associated with increased prevalence of frequent first MTP pain at both the hallux and second metatarsal. Lower plantar loading may indicate the presence of an antalgic gait strategy and may reflect an attempt at pain avoidance. The lack of association with cumulative plantar stress may suggest that patients do not limit their walking as a pain-avoidance mechanism. © 2016, American College of Rheumatology.

  1. Are Pressure Time Integral and Cumulative Plantar Stress Related to First Metatarsophalangeal Joint Pain? Results From a Community-Based Study

    PubMed Central

    RAO, SMITA; GROSS, K. DOUGLAS; NIU, JINGBO; NEVITT, MICHAEL C.; LEWIS, CORA E.; TORNER, JAMES C.; HIETPAS, JEAN; FELSON, DAVID; HILLSTROM, HOWARD J.

    2017-01-01

    Objective To examine the relationship between plantar stress over a step, cumulative plantar stress over a day, and first metatarsophalangeal (MTP) joint pain among older adults. Methods Plantar stress and first MTP pain were assessed within the Multicenter Osteoarthritis Study. All included participants were asked if they had pain, aching, or stiffness at the first MTP joint on most days for the past 30 days. Pressure time integral (PTI) was quantified as participants walked on a pedobarograph, and mean steps per day were obtained using an accelerometer. Cumulative plantar stress was calculated as the product of regional PTI and mean steps per day. Quintiles of hallucal and second metatarsal PTI and cumulative plantar stress were generated. The relationship between predictors and the odds ratio of first MTP pain was assessed using a logistic regression model. Results Feet in the quintile with the lowest hallux PTI had 2.14 times increased odds of first MTP pain (95% confidence interval [95% CI] 1.42–3.25, P < 0.01). Feet in the quintile with the lowest second metatarsal PTI had 1.50 times increased odds of first MTP pain (95% CI 1.01–2.23, P = 0.042). Cumulative plantar stress was unassociated with first MTP pain. Conclusion Lower PTI was modestly associated with increased prevalence of frequent first MTP pain at both the hallux and second metatarsal. Lower plantar loading may indicate the presence of an antalgic gait strategy and may reflect an attempt at pain avoidance. The lack of association with cumulative plantar stress may suggest that patients do not limit their walking as a pain-avoidance mechanism. PMID:26713755

  2. Exploring the Potential of Participatory Theatre to Reduce Stigma and Promote Health Equity for Lesbian, Gay, Bisexual, and Transgender (LGBT) People in Swaziland and Lesotho.

    PubMed

    Logie, Carmen H; Dias, Lisa V; Jenkinson, Jesse; Newman, Peter A; MacKenzie, Rachel K; Mothopeng, Tampose; Madau, Veli; Ranotsi, Amelia; Nhlengethwa, Winnie; Baral, Stefan D

    2018-03-01

    Stigma and discrimination affecting lesbian, gay, bisexual, and transgender (LGBT) people compromise health and human rights and exacerbate the HIV epidemic. Scant research has explored effective LGBT stigma reduction strategies in low- and middle-income countries. We developed and pilot-tested a participatory theatre intervention (PTI) to reduce LGBT stigma in Swaziland and Lesotho, countries with the world's highest HIV prevalence. We collected preliminary data from in-depth interviews with LGBT people in Lesotho and Swaziland to enhance understanding of LGBT stigma. Local LGBT and theatre groups worked with these data to create a 2-hour PTI composed of three skits on LGBT stigma in health care, family, and community settings in Swaziland (Manzini) and Lesotho (Maseru, Mapoteng). Participants ( n = 106; nursing students, health care providers, educators, community members) completed 12 focus groups following the PTI. We conducted thematic analysis to understand reactions to the PTI. Focus groups revealed the PTI increased understanding of LGBT persons and issues, increased empathy, and fostered self-reflection of personal biases. Increased understanding included enhanced awareness of the negative impacts of LGBT stigma, and of LGBT people's lived experiences and issues. Participants discussed changes in attitude and perspective through self-reflection and learning. The format of the theatre performance was described as conducive to learning and preferred over more conventional educational methods. Findings indicate changed attitudes and awareness toward LGBT persons and issues following a PTI in Swaziland and Lesotho. Stigma reduction interventions may help mitigate barriers to HIV prevention, treatment, and care in these settings with a high burden of HIV.

  3. OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice.

    PubMed

    Wang, Chao; Wang, Gang; Zhang, Chi; Zhu, Pinkuan; Dai, Huiling; Yu, Nan; He, Zuhua; Xu, Ling; Wang, Ertao

    2017-04-03

    Conserved pathogen-associated molecular patterns (PAMPs), such as chitin, are perceived by pattern recognition receptors (PRRs) located at the host cell surface and trigger rapid activation of mitogen-activated protein kinase (MAPK) cascades, which are required for plant resistance to pathogens. However, the direct links from PAMP perception to MAPK activation in plants remain largely unknown. In this study, we found that the PRR-associated receptor-like cytoplasmic kinase Oryza sativa RLCK185 transmits immune signaling from the PAMP receptor OsCERK1 to an MAPK signaling cascade through interaction with an MAPK kinase kinase, OsMAPKKKε, which is the initial kinase of the MAPK cascade. OsRLCK185 interacts with and phosphorylates the C-terminal regulatory domain of OsMAPKKKε. Coexpression of phosphomimetic OsRLCK185 and OsMAPKKKε activates MAPK3/6 phosphorylation in Nicotiana benthamiana leaves. Moreover, OsMAPKKKε interacts with and phosphorylates OsMKK4, a key MAPK kinase that transduces the chitin signal. Overexpression of OsMAPKKKε increases chitin-induced MAPK3/6 activation, whereas OsMAPKKKε knockdown compromises chitin-induced MAPK3/6 activation and resistance to rice blast fungus. Taken together, our results suggest the existence of a phospho-signaling pathway from cell surface chitin perception to intracellular activation of an MAPK cascade in rice. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  4. Presence of Tube isoforms in Litopenaeus vannamei suggests various regulatory patterns of signal transduction in invertebrate NF-κB pathway.

    PubMed

    Li, Chaozheng; Chen, Yixiao; Weng, Shaoping; Li, Sedong; Zuo, Hongliang; Yu, Xiaoqiang; Li, Haoyang; He, Jianguo; Xu, Xiaopeng

    2014-02-01

    The toll-like receptor (TLR)/NF-κB signaling pathways play critical roles in the innate immune system. The intracellular signal transduction of most TLR pathways in invertebrate cells is triggered by formation of a heterotrimeric complex composed of MyD88, Tube and Pelle. In this study, we identified a Litopenaeus vannamei Pelle (LvPelle) and an isoform of L. vannamei Tube (LvTube) designated as LvTube-1. The interactions among LvPelle, LvTube/LvTube-1 and LvMyD88/LvMyD88-1 were elucidated and their functions during pathogen infections were investigated. Knockdowns of LvPelle and LvTube/LvTube-1 using RNAi strategy led to higher mortalities of shrimps during Vibrio parahemolyticus infection, and could reduce the genome copy number of white spot syndrome virus (WSSV) in the infected muscle tissue but did not affect the mortality caused by WSSV infection. The effects of LvPelle and LvTube/LvTube-1 on promoters containing NF-κB binding motifs were analyzed by dual-luciferase reporter assays and the results demonstrated that LvTube-1 could activate the NF-κB activity to significantly higher level than LvTube did. Moreover, tissue distributions of LvTube and LvTube-1 mRNAs and their expression profiles during pathogen and immune stimulant challenges were different, indicating that they could play different roles in immune responses. This is the first report of Tube isoforms in invertebrates. Together with our previous study on LvMyD88 isoforms, our results suggest that various isoforms of adaptor components may be involved in various regulatory patterns of signal transduction in invertebrate TLR/NF-κB pathway and this could be a strategy adopted by invertebrates to modulate immune responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma.

    PubMed

    Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia

    2015-09-01

    In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL)-mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 L(d). Increase of H-2 L(d) expression by cDNA transfection (Sp6/B7/L(d)) raised tumour immune protection and shifted most CTL responses towards H-2 L(d)-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 L(d)-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/L(d) cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  6. Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma

    PubMed Central

    Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia

    2015-01-01

    In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL) -mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 Ld. Increase of H-2 Ld expression by cDNA transfection (Sp6/B7/Ld) raised tumour immune protection and shifted most CTL responses towards H-2 Ld-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 Ld-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/Ld cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. PMID:25959091

  7. α-Synuclein Activates Innate Immunity but Suppresses Interferon-γ Expression in Murine Astrocytes.

    PubMed

    Wang, Jintang; Chen, Zheng; Walston, Jeremy; Gao, Peisong; Gao, Maolong; Leng, Sean X

    2018-05-19

    Glial activation and neuroinflammation contribute to pathogenesis of neurodegenerative diseases, linked to neuron loss and dysfunction. α-Synuclein (α-syn), as a metabolite of neuron, can induce microglia activation to trigger innate immune response. However, whether α-syn, as well as its mutants (A53T, A30P and E46K), induces astrocyte activation and inflammatory response is not fully elucidated. In this study, we used A53T mutant and wildtype α-syns to stimulate primary astrocytes in dose- and time-dependent manners (0.5, 2, 8 and 20 μg/mL for 24 hour or 3, 12, 24 and 48 hour at 2 μg/mL), and evaluated activation of several canonical inflammatory pathway components. The results showed that A53T mutant or wildtype α-syn significantly upregulated mRNA expression of toll-like receptor (TLR)2, TLR3, nuclear factor-κB and interleukin (IL)-1β, displaying a pattern of positive dose-effect correlation or negative time-effect correlation. Such upregulation was confirmed at protein levels of TLR2 (at 20 μg/mL), TLR3 (at most doses) and IL-1β (at 3 hour) by western blotting. Blockage of TLR2 other than TLR4 inhibited TLR3 and IL-1β mRNA expressions. By contrast, interferon (IFN)-γ was significantly downregulated at mRNA, protein and protein release levels, especially at high concentrations of α-syns or early time-points. These findings indicate that α-syn was a TLRs-mediated immunogenic agent (A53T mutant stronger than wildtype α-syn). The stimulation patterns suggest that persistent release and accumulation of α-syn is required for maintenance of innate immunity activation, and IFN-γ expression inhibition by α-syn suggests a novel immune molecule interaction mechanism underlying pathogenesis of neurodegenerative diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Duplication and selection in the evolution of primate β-defensin genes

    PubMed Central

    Semple, Colin AM; Rolfe, Mark; Dorin, Julia R

    2003-01-01

    Background Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as β-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. β-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in β-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human β-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human β-defensin locus on chromosome 8p22-p23. Results In addition to known genes in the region we report the genomic structures and expression patterns of four novel human β-defensin genes and a related pseudogene. These genes show an unusual pattern of evolution, with rapid divergence between second exon sequences that encode the mature β-defensin peptides matched by relative stasis in first exons that encode signal peptides. Conclusions We conclude that the 8p22-p23 locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes established before the human-baboon divergence more than 23 million years ago. Positive selection, disproportionately favoring alterations in the charge of amino-acid residues, is implicated as driving second exon divergence in these genes. PMID:12734011

  9. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis.

    PubMed

    Melendez, Alirio J; Ibrahim, Farazeela Bte Mohd

    2004-08-01

    The anaphylatoxin C5a is produced following the activation of the complement system and is associated with a variety of pathologies, including septic shock and adult respiratory distress syndrome, and with immune complex-dependent diseases such as rheumatoid arthritis. C5a has been shown to regulate inflammatory functions by interacting with its receptor, C5aR, which belong to the rhodopsin family of seven-transmembrane GPCRs. However, the intracellular signaling pathways triggered by C5aR on immune-effector cells are not well understood. In this report we present data showing that, in human monocyte-derived macrophages, C5aR uses the intracellular signaling molecule sphingosine kinase (SPHK)1 to trigger various physiological responses. Our data show that C5a rapidly stimulates the generation of sphingosine-1-phosphate, SPHK activity, and membrane translocation of SPHK1. Using an antisense oligonucleotide against SPHK1, we show that knockdown of SPHK1 abolishes the C5a-triggered intracellular Ca(2+) signals, degranulation, cytokine generation, and chemotaxis. Our study shows for the first time that SPHK1 not only plays a key role in the generation and release of proinflammatory mediators triggered by anaphylatoxins from human macrophages but is also involved in the process of immune cell motility, thus pointing out SPHK1 as a potential therapeutic target for the treatment of inflammatory and autoimmune diseases.

  10. Macrophages largely contribute to heterologous anti-Propionibacterium acnes antibody-mediated protection from Actinobacillus pleuropneumoniae infection in mice.

    PubMed

    Ma, Qiuyue; Sun, Changjiang; Yang, Feng; Wang, Lei; Qin, Wanhai; Xia, Xiaojing; Feng, Xin; Du, Chongtao; Gu, Jingmin; Han, Wenyu; Lei, Liancheng

    2015-03-01

    Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuropneumonia. Propionibacterium acnes is a facultative anaerobic gram-positive corynebacterium. We have previously found that anti-P. acnes antibodies can prevent A. pleuropneumoniae infections in mice. To investigate the role of macrophages in this process, affinity-purified anti-P. acnes IgG and anti-A. pleuropneumoniae IgG were used in opsonophagocytosis assays. Additionally, the efficacy of passive immunization with P. acnes serum against A. pleuropneumoniae was tested in macrophage-depleted mice. It was found that anti-P. acnes IgG had an effect similar to that of anti-A. pleuropneumoniae IgG (P > 0.05), which significantly promotes phagocytosis of A. pleuropneumoniae by macrophages (P < 0.01). It was also demonstrated that, after passive immunization with anti-P. acnes serum, macrophage-replete mice had the highest survival rate (90%), whereas the survival rate of macrophage-depleted mice was only 40% (P < 0.05). However, macrophage-depleted mice that had been passively immunized with naïve serum had the lowest survival rate (20%), this rate being lower than that of macrophage-replete mice that had been passively immunized with naïve serum. Overall, anti-P. acnes antibodies did not prevent A. pleuropneumoniae infection under conditions of macrophage depletion (P > 0.05). Furthermore, in mice that had been passively immunized with anti-P. acnes serum, macrophage depletion resulted in a greater A. pleuropneumoniae burden and more severe pathological features of pneumonia in lung tissues than occurred in macrophage-replete mice. It was concluded that macrophages are essential for the process by which anti-P. acnes antibody prevents A. pleuropneumoniae infection in mice. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  11. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response

    PubMed Central

    Kozaki, Tatsuya; Komano, Jun; Kanbayashi, Daiki; Takahama, Michihiro; Misawa, Takuma; Satoh, Takashi; Takeuchi, Osamu; Kawai, Taro; Shimizu, Shigeomi; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-01-01

    The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage. PMID:28213497

  12. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I.

    PubMed

    Wang, Yanli; Ludwig, Janos; Schuberth, Christine; Goldeck, Marion; Schlee, Martin; Li, Haitao; Juranek, Stefan; Sheng, Gang; Micura, Ronald; Tuschl, Thomas; Hartmann, Gunther; Patel, Dinshaw J

    2010-07-01

    RIG-I is a cytosolic helicase that senses 5'-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5'-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5'-ppp dsRNA 12-mer, with interactions involving 5'-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5'-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5'-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2'-OCH(3) RNA modifications on the interferon response.

  13. Compatibility of grain-stabilized platinum with candidate propellants for resistojets

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.

    1985-01-01

    Resistojets are candidates for space station auxiliary propulsion, and should be characterized by both long life and multipropellant operations, requirements limited by available materials. Grain stabilized platinum is examined for use as a resistojet thruster material. Use of platinum in other applications indicates it can be used at moderately high temperatures for extended periods of time. Past results indicate that grain-stabilized platinum should be sufficiently inert in candidate propellant environments. Therefore, compatibility of platinum-yttria (P/Y2O3) and platinum-zirconia (Pt/ZrO2) with carbon dioxide, methane, hydrogen and ammonia is examined. A series of 1000 hr tests in CO2, H2, and NH3 is conducted at 1400 C and a series of 1000 hr tests in CH4 is conducted at about 500 C. Scanning electron microscopy, Auger electron spectroscopy and depth profiling analysis are then used to determine the effects of propellants on the material surface, to evaluate possible material contamination and to evaluate grain growth. The results indicate that there is carbon deposition on the surface of the Pt/Y2O3 and Pt/ZrO2 in both the CO2 and CH4 environments. In the H2 environment, the Pt/Y2O3 and Pt/ZrO2 specimen surfaces are roughened. After exposure to the NH3 environment, the Pt/Y2O3 and Pt/ZrO2 are roughened and pitted over the entire heated area with some pitted areas along the grain boundaries. SEM photos show grain growth in cross-sectional views of all the Pt/Y2O3 samples and the Pt/ZrO2 samples, except that tested in methane. Mass loss measurements indicate that Pt/Y2O3 and Pt/ZrO2 would last in excess of 200,000 hr in each propellant environment. However, in NH3 both Pt/Y2O3 and Pt/ZrO2 are severely pitted, with voids up to 50 percent into the material. Pt/Y2O3 and Pt/ZrO2 are not recommended for high temperature service in NH3.

  14. Understanding Human-Plasmodium falciparum Immune Interactions Uncovers the Immunological Role of Worms

    PubMed Central

    Roussilhon, Christian; Brasseur, Philippe; Agnamey, Patrice; Pérignon, Jean-Louis; Druilhe, Pierre

    2010-01-01

    Background Former studies have pointed to a monocyte-dependant effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. Methods and Findings We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. Conclusion The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies. PMID:20174576

  15. Microarray Analysis Reveals Characteristic Changes of Host Cell Gene Expression in Response to Attenuated Modified Vaccinia Virus Ankara Infection of Human HeLa Cells

    PubMed Central

    Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano

    2004-01-01

    The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980

  16. Mitochondrial DNA: An Endogenous Trigger for Immune Paralysis.

    PubMed

    Schäfer, Simon T; Franken, Lars; Adamzik, Michael; Schumak, Beatrix; Scherag, André; Engler, Andrea; Schönborn, Niels; Walden, Jennifer; Koch, Susanne; Baba, Hideo A; Steinmann, Jörg; Westendorf, Astrid M; Fandrey, Joachim; Bieber, Thomas; Kurts, Christian; Frede, Stilla; Peters, Jürgen; Limmer, Andreas

    2016-04-01

    Critically ill patients are at high risk to suffer from sepsis, even in the absence of an initial infectious source, but the molecular mechanisms for their increased sepsis susceptibility, including a suppressed immune system, remain unclear. Although microbes and pathogen-associated molecular pattern are accepted inducers of sepsis and septic immunosuppression, the role of endogenous Toll-like receptor (TLR) ligands, such as mitochondrial DNA (mtDNA), in altering the immune response is unknown. Mitochondrial DNA serum concentrations of the mitochondrial genes D-Loop and adenosine triphosphatase 6 were determined (quantitative polymerase chain reaction) in 165 septic patients and 50 healthy volunteers. Furthermore, cytotoxic T-cell activity was analyzed in wild-type and TLR9 knockout mice, with/without previous mtDNA administration, followed by injection of an ovalbumin-expressing adenoviral vector. Mitochondrial DNA serum concentrations were increased in septic patients (adenosine triphosphatase 6, 123-fold; D-Loop, 76-fold, P < 0.0001) compared with volunteers. Furthermore, a single mtDNA injection caused profound, TLR9-dependent immunosuppression of adaptive T-cell cytotoxicity in wild-type but not in TLR9 knockout mice and evoked various immunosuppressive mechanisms including the destruction of the splenic microstructure, deletion of cross-presenting dendritic cells, and up-regulation of programmed cell death ligand 1 and indoleamine 2,3-dioxygenase. Several of these findings in mice were mirrored in septic patients, and mtDNA concentrations were associated with an increased 30-day mortality. The findings of this study imply that mtDNA, an endogenous danger associated molecular pattern, is a hitherto unknown inducer of septic immunoparalysis and one possible link between initial inflammation and subsequent immunosuppression in critically ill patients.

  17. Indirect effects of immunological tolerance to a regular dietary protein reduce cutaneous scar formation.

    PubMed

    Cantaruti, Thiago Anselmo; Costa, Raquel Alves; de Souza, Kênia Soares; Vaz, Nelson Monteiro; Carvalho, Cláudia Rocha

    2017-07-01

    Oral tolerance refers to the specific inhibition of immune responsiveness to T-cell-dependent antigens contacted through the oral route before parenteral immunization. Oral tolerance to one protein does not inhibit immune responses to other unrelated proteins, but parenteral injection of tolerated antigens plus adjuvant into tolerant, but not normal, mice inhibits immune responses to antigens injected concomitantly or soon thereafter. The inhibitory effect triggered by parenteral injection of tolerated proteins is known as bystander suppression or indirect effects of oral tolerance. Intraperitoneal injection of ovalbumin (OVA) plus alum adjuvant in OVA-tolerant mice soon before skin injury inhibits inflammation and improves cutaneous wound healing. However, as OVA is not a regular component of mouse chow, we tested whether indirect effects could be triggered by zein, the main protein of corn that is regularly present in mouse chow. We show that intraperitoneal injection of a single dose (10 μg) of zein plus alum adjuvant soon before skin injury in mice reduces leucocyte infiltration but increase the number of T cells and the expression of resistin-like molecule-α (a marker of alternatively activated macrophages) in the wound bed, increases the expression of transforming growth factor-β 3 in the newly formed epidermis and reduces cutaneous scar formation. These results suggest that indirect effects of oral tolerance triggered by parenteral injection of regular dietary components may be further explored as one alternative way to promote scarless wound healing. © 2017 John Wiley & Sons Ltd.

  18. 77 FR 55686 - Airworthiness Directives; GA200 (Pty) Ltd Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I, section... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2012... Airworthiness Directives; GA200 (Pty) Ltd Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION...

  19. Infections with the Sexually Transmitted Pathogen Nosema apis Trigger an Immune Response in the Seminal Fluid of Honey Bees (Apis mellifera).

    PubMed

    Grassl, Julia; Peng, Yan; Baer-Imhoof, Barbara; Welch, Mat; Millar, A Harvey; Baer, Boris

    2017-01-06

    Honey bee (Apis mellifera) males are highly susceptible to infections with the sexually transmitted fungal pathogen Nosema apis. However, they are able to suppress this parasite in the ejaculate using immune molecules in the seminal fluid. We predicted that males respond to infections by altering the seminal fluid proteome to minimize the risk to sexually transmit the parasite to the queen and her colony. We used iTRAQ isotopic labeling to compare seminal fluid proteins from infected and noninfected males and found that N. apis infections resulted in significant abundance changes in 111 of the 260 seminal fluid proteins quantitated. The largest group of proteins with significantly changed abundances consisted of 15 proteins with well-known immune-related functions, which included two significantly more abundant chitinases in the seminal fluid of infected males. Chitinases were previously hypothesized to be involved in honey bee antifungal activity against N. apis. Here we show that infection with N. apis triggers a highly specific immune response in the seminal fluid of honey bee males.

  20. A Noncanonical Role for the CKI-RB-E2F Cell Cycle Signaling Pathway in Plant Effector-Triggered Immunity

    PubMed Central

    Wang, Shui; Gu, Yangnan; Zebell, Sophia G.; Anderson, Lisa K.; Wang, Wei; Mohan, Rajinikanth; Dong, Xinnian

    2014-01-01

    SUMMARY Effector-triggered immunity (ETI), the major host defense mechanism in plants, is often associated with programmed cell death (PCD). Plants lack close homologs of caspases, the key mediators of PCD in animals. So although the NB-LRR receptors involved in ETI are well studied, how they activate PCD and confer disease resistance remains elusive. We show that the Arabidopsis nuclear envelope protein, CPR5, negatively regulates ETI and the associated PCD through a physical interaction with CYCLIN-DEPENDENT KINASE INHIBITORs (CKIs). Upon ETI induction, CKIs are released from CPR5 to cause over-activation of another core cell cycle regulator, E2F. In cki and e2f mutants, ETI responses induced by both TIR-NB-LRR and CC-NB-LRR classes of immune receptors are compromised. We further show that E2F is deregulated during ETI probably through CKI-mediated hyperphosphorylation of RETINOBLASTOMA-RELATED 1 (RBR1). This study demonstrates that canonical cell cycle regulators also play important noncanonical roles in plant immunity. PMID:25455564

  1. Immunoregulation of GVHD by triggering the innate immune system with CpG.

    PubMed

    Morecki, Shoshana; Slavin, Shimon

    2009-08-01

    Stimulation of Toll-like receptors by oligodeoxynucleotide sequences containing a CpG motif provides signals capable of triggering the innate and adaptive immune systems, thereby leading either to stimulation or suppression of immunoreactivities. Similar immunoregulatory capabilities are necessary for achieving the fine balance between engraftment and graft-versus-host disease required in the setup of allogeneic cell therapy. Ligation of CpG to its Toll-like receptors can be accomplished by treatment of the host or pretransplant treatment of the donor in vivo. These different strategies are presented in this review, which summarizes the attempts to maximize beneficial alloreactivity against malignant or other undesirable host cells, while controlling graft-versus-host disease.

  2. 76 FR 22862 - Florigene Pty., Ltd.; Availability of Petition and Environmental Assessment for Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2010-0040] Florigene Pty., Ltd.; Availability of Petition and Environmental Assessment for Determination of Nonregulated Status for Altered Color Roses Correction In notice document 2011-8775 appearing on pages 20623...

  3. The Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2012-10-01

    Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.

  4. The Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2017-06-01

    Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.

  5. Techniques for Examining Drop Size Spectra in Water Sprays and Clouds

    DTIC Science & Technology

    1979-04-01

    surface perpendicular to the air stream was essential to avoid elliptical or comet -like impressions. 5.1.2 Oil Wetted Slides While, with this technique...55 Commonwealth Aircraft Corporation, Library 56 Hawker de Havilland Pty Ltd, Librarian, Bankstown 57 Hawker de Havilland Pty Ltd, Manager, Lidcombe 58

  6. Growth versus immunity--a redirection of the cell cycle?

    PubMed

    Eichmann, Ruth; Schäfer, Patrick

    2015-08-01

    Diseases caused by plant pathogens significantly reduce growth and yield in agricultural crop production. Raising immunity in crops is therefore a major aim in breeding programs. However, efforts to enhance immunity are challenged by the occurrence of growth inhibition triggered by immunity that can be as detrimental as diseases. In this review, we will propose molecular models to explain the inhibitory growth-immunity crosstalk. We will briefly discuss why the resource reallocation model might not represent the driving force for the observed growth-immunity trade-offs. We suggest a model in which immunity redirects and initiates hormone signalling activities that can impair plant growth by antagonising cell cycle regulation and meristem activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein

    PubMed Central

    Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  8. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.

    PubMed

    Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng

    2016-01-01

    Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. © The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  9. Biological indicators of illness risk in offspring of bipolar parents: targeting the hypothalamic-pituitary-adrenal axis and immune system.

    PubMed

    Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul

    2012-05-01

    The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.

  10. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains

    PubMed Central

    2013-01-01

    Background Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. Results In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Conclusion Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin. PMID:23856002

  11. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains.

    PubMed

    Defraia, Christopher T; Wang, Yongsheng; Yao, Jiqiang; Mou, Zhonglin

    2013-07-16

    Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.

  12. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  13. A surgeons' guide to renal transplant immunopathology, immunology, and immunosuppression.

    PubMed

    Gaber, Lillian W; Knight, Richard J; Patel, Samir J

    2013-12-01

    The response to allografting involves adaptive and innate immune mechanisms. In the adaptive system, activated T cells differentiate to cytotoxic effectors that attack the graft and trigger B cells to differentiation to plasma cells that produce anti-HLA antibodies. The innate immune system recognizes antigens in a non-specific manner and recruits immune cells to the graft through the productions of chemotactic factors, and activation of cytokines and the complement cascade. In the kidney the tubules and the endothelium are the targets of the rejection response. Immune suppression is effective in modulating the adaptive immune system effect on graft histology. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Uric acid as a danger signal in gout and its comorbidities

    PubMed Central

    Rock, Kenneth L.; Kataoka, Hiroshi; Lai, Jiann-Jyh

    2013-01-01

    Uric acid is a waste product of purine catabolism. This molecule comes to clinical attention when it nucleates to form crystals of monosodium urate (MSU) in joints or other tissues and thereby causes the inflammatory disease of gout. Patients with gout also frequently suffer from a number of co-morbid conditions including hypertension, diabetes mellitus and cardiovascular disease. Why MSU crystals trigger inflammation and are associated with comorbidities of gout has been unclear, but recent studies provide new insights these issues. Rather than simply being a waste product, uric acid could serve a pathophysiological role as a local alarm signal that alerts the immune system to cell injury and helps to trigger both innate and adaptive immune responses. The inflammatory component of these immune responses is caused when urate crystals trigger both inflammasome-dependent and independent pathways to generate the proinflammatory cytokine IL-1. The resulting bioactive IL-1 stimulates the inflammation of gout and might contribute to the development of other comorbidities. Surprisingly, the same mechanisms underlie the inflammatory response to a number of irritant particles, many of which also cause disease. These new insights help to explain the pathogenesis of gout and point to potential new therapeutic targets for this and other sterile inflammatory diseases. PMID:22945591

  15. Nitric Oxide-Mediated Maintenance of Redox Homeostasis Contributes to NPR1-Dependent Plant Innate Immunity Triggered by Lipopolysaccharides1[C][W

    PubMed Central

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-01-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity. PMID:22926319

  16. Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling

    PubMed Central

    Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki

    2010-01-01

    Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428

  17. An improved approach to the analysis of drug-protein binding by distance geometry

    NASA Technical Reports Server (NTRS)

    Goldblum, A.; Kieber-Emmons, T.; Rein, R.

    1986-01-01

    The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.

  18. Erratum to: Reducing Preschoolers' Disruptive Behavior in Public with a Brief Parent Discussion Group.

    PubMed

    Joachim, Sabine; Sanders, Matthew R; Turner, Karen M T

    2015-10-01

    The Triple P-Positive Parenting Program is owned by the University of Queensland (UQ). The University through its main technology transfer company UniQuest Pty Limited has licensed Triple P International Pty Ltd to disseminate the program worldwide. Royalties stemming from this dissemination activity are distributed to the Parenting and Family Support Centre, School of Psychology, UQ; Faculty of Health and Behavioural Sciences at UQ; and contributory authors. No author has any share or ownership in Triple P International Pty Ltd. Matthew Sanders is the founder and an author on various Triple P programs and a consultant to Triple P International. Karen Turner is an author of various Triple P programs.

  19. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins

    USDA-ARS?s Scientific Manuscript database

    Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...

  20. Neuroendocrine mechanisms for immune system regulation during stress in fish.

    PubMed

    Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo

    2014-10-01

    In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Neutrophils, dendritic cells and Toxoplasma.

    PubMed

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  2. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish.

    PubMed

    Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching

    2018-03-01

    The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Concentrating Solar Power Projects - Bokpoort | Concentrating Solar Power |

    Science.gov Websites

    ) project, with data organized by background, parcipants and power plant configuration. Status Date: April (Northern Cape Province) Owner(s): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd Technology Participants Developer(s): ACWA Power Owner(s) (%): ACWA Power Solafrica Bokpoort CSP Power Plant (Pty) Ltd EPC

  4. Preservice Teacher Institute: Developing a Model Learning Community for Student Teachers

    ERIC Educational Resources Information Center

    Kent, Andrea M.; Simpson, Jennifer L.

    2009-01-01

    The Preservice Teacher Institute (PTI) is a budding learning community designed to provide mentoring and support for senior elementary education undergraduate candidates. This program is an effective paradigm for mentoring and inducting new teachers into the profession. PTI is a two-semester program. The first semester is restricted to candidates…

  5. 76 FR 60447 - Florigene Pty., Ltd.; Determination of Nonregulated Status for Altered Color Roses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... evaluation of data submitted by Florigene Pty., Ltd., in its petition for a determination of nonregulated status, our analysis of available scientific data, and comments received from the public in response to... alternative identified in the EA. Determination Based on APHIS' analysis of field and laboratory data...

  6. HIV-1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products.

    PubMed

    Kumar, Swati; Morrison, James H; Dingli, David; Poeschla, Eric

    2018-05-16

    TREX1 has been reported to degrade cytosolic immune-stimulatory DNA, including viral DNA generated during HIV-1 infection, but the dynamic range of its capacity to suppress innate immune stimulation is unknown and its full role in the viral life cycle remains unclear. A main purpose of our study was to determine how the intracellular level of TREX1 affects HIV-1 activation and avoidance of innate immunity. Using stable over-expression and CRISPR-mediated gene disruption, we engineered a range of TREX1 levels in human THP-1 monocytes. Increasing the level of TREX1 dramatically suppressed HIV-1 induction of interferon-stimulated genes (ISGs). Productive infection and integrated proviruses were equal to increased. Knocking out TREX1 impaired viral infectivity, increased early viral cDNA and caused ten-fold or greater increases in HIV-1 ISG induction. Knockout of cyclic GMP-AMP synthase (cGAS) abrogated all ISG induction. Moreover, cGAS knockout produced no increase in single cycle infection, establishing that HIV-1 DNA-triggered signaling is not rapid enough to impair the initial ISG-triggering infection cycle. Disruption of the HIV-1 capsid by PF74 also induced ISGs and this was TREX1 level-dependent, required reverse transcriptase catalysis, and was eliminated by cGAS gene knockout. Thus, the intracellular level of TREX1 pivotally modulates innate immune induction by HIV-1. Partial HIV-1 genomes are the TREX1 target and are sensed by cGAS. The nearly complete lack of innate immune induction despite equal to increased viral integration observed when the TREX1 protein level is experimentally elevated indicates that integration-competent genomes are shielded from cytosolic sensor-effectors during uncoating and transit to the nucleus. IMPORTANCE Much remains unknown about how TREX1 influences HIV-1 replication, whether it targets full-length viral DNA versus partial intermediates, how intracellular TREX1 protein levels correlate with ISG induction, and whether TREX1 digestion of cytoplasmic DNA and subsequent cGAS pathway activation affects both initial and subsequent cycles of infection. To answer these questions, we experimentally varied the intracellular level of TREX1 and show that this strongly determines the innate immunogenicity of HIV-1. In addition, several lines of evidence including time of addition experiments with drugs that impair reverse transcription or capsid integrity showed that the pathogen-associated molecular patterns sensed after viral entry contain DNA, are TREX1 and cGAS substrates, and are derived from incomplete RT products. In contrast, the experiments demonstrate that full-length integration competent viral DNA is immune to TREX1. Treatment approaches that reduce TREX1 levels or facilitate release of DNA intermediates may advantageously combine enhanced innate immunity with antiviral effects. Copyright © 2018 American Society for Microbiology.

  7. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model

    PubMed Central

    Marquina-Castillo, Brenda; García-García, Lourdes; Ponce-de-León, Alfredo; Jimenez-Corona, Maria-Eugenia; Bobadilla-del Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Martinez-Gamboa, Areli; Kato-Maeda, Midori; Robertson, Brian; Young, Douglas; Small, Peter; Schoolnik, Gary; Sifuentes-Osornio, Jose; Hernandez-Pando, Rogelio

    2009-01-01

    After encounter with Mycobacterium tuberculosis, a series of non-uniform immune responses are triggered that define the course of the infection. Eight M. tuberculosis strains were selected from a prospective population-based study of pulmonary tuberculosis patients (1995–2003) based on relevant clinical/epidemiological patterns and tested in a well-characterized BALB/c mouse model of progressive pulmonary tuberculosis. In addition, a new mouse model of transmissibility consisting of prolonged cohousing (up to 60 days) of infected and naïve animals was tested. Four phenotypes were defined based on strain virulence (mouse survival, lung bacillary load and tissue damage), immunology response (cytokine expression determined by real-time polymerase chain reaction) and transmissibility (lung bacillary loads and cutaneous delayed-type hypersensitivity in naïve animals).We identified four clearly defined strain phenotypes: (1) hypervirulent strain with non-protective immune response and highly transmissible; (2) virulent strain, associated with high expression of proinflammatory cytokines (tumour necrosis factor and interferon) and very low anti-inflammatory cytokine expression (interleukins 4 and 10), which induced accelerated death by immunopathology; (3) strain inducing efficient protective immunity with lower virulence, and (4) strain demonstrating strong and early macrophage activation (innate immunity) with delayed participation of acquired immunity (interferon expression). We were able to correlate virulent and transmissible phenotypes in the mouse model and markers of community transmission such as tuberculin reactivity among contacts, rapid progression to disease and cluster status. However, we were not able to find correlation with the other two phenotypes. Our new transmission model supported the hypothesis that among these strains increased virulence was linked to increased transmission. PMID:19191912

  8. Inflammatory Flt3L is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection

    PubMed Central

    Guermonprez, Pierre; Helft, Julie; Claser, Carla; Deroubaix, Stephanie; Karanje, Henry; Gazumyan, Anna; Darrasse-Jeze, Guillaume; Telerman, Stephanie B.; Breton, Gaëlle; Schreiber, Heidi A.; Frias-Staheli, Natalia; Billerbeck, Eva; Dorner, Marcus; Rice, Charles M.; Ploss, Alexander; Klein, Florian; Swiecki, Melissa; Colonna, Marco; Kamphorst, Alice O.; Meredith, Matthew; Niec, Rachel; Takacs, Constantin; Mikhail, Fadi; Hari, Aswin; Bosque, David; Eisenreich, Tom; Merad, Miriam; Shi, Yan; Ginhoux, Florent; Rénia, Laurent; Urban, Britta C.; Nussenzweig, Michel C.

    2014-01-01

    Summary Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell (DC) homeostasis and adaptive immunity via Flt3L release. Plasmodium-induced Flt3L release requires toll-like receptor activation and type I interferon production. We find that type I interferon supports the up-regulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3L from a pre-synthesized membrane-associated precursor. During infection Flt3L preferentially stimulates expansion of the CD8α+/CD103+ DC subset or its BDCA3+ human DC equivalent and has a significant impact on the magnitude of T cell activation, mostly in the CD8+ compartment. Our findings highlight a new mechanism that regulates DC homeostasis and T cell responses to infection. PMID:23685841

  9. Simultaneous functional photoacoustic microscopy and electrocorticography reveal the impact of rtPA on dynamic neurovascular functions after cerebral ischemia.

    PubMed

    Bandla, Aishwarya; Liao, Lun-De; Chan, Su Jing; Ling, Ji Min; Liu, Yu-Hang; Shih, Yen-Yu Ian; Pan, Han-Chi; Wong, Peter Tsun-Hon; Lai, Hsin-Yi; King, Nicolas Kon Kam; Chen, You-Yin; Ng, Wai Hoe; Thakor, Nitish V

    2018-06-01

    The advance of thrombolytic therapy has been hampered by the lack of optimization of the therapy during the hyperacute phase of focal ischemia. Here, we investigate neurovascular dynamics using a custom-designed hybrid electrocorticography (ECoG)-functional photoacoustic microscopy (fPAM) imaging system during the hyperacute phase (first 6 h) of photothrombotic ischemia (PTI) in male Wistar rats following recombinant tissue plasminogen activator (rtPA)-mediated thrombolysis. We reported, for the first time, the changes in neural activity and cerebral hemodynamic responses following rtPA infusion at different time points post PTI. Interestingly, very early administration of rtPA (< 1 h post PTI) resulted in only partial recovery of neurovascular dynamics (specifically , neural activity recovered to 71 ± 3.5% of baseline and hemodynamics to only 52 ± 2.6% of baseline) and late administration of rtPA (> 4 h post PTI) resulted in the deterioration of neurovascular function. A therapeutic window between 1 and 3 h post PTI was found to improve recovery of neurovascular function (i.e. significant restoration of neural activity to 93 ± 4.2% of baseline and hemodynamics to 81 ± 2.1% of baseline, respectively). The novel combination of fPAM and ECoG enables direct mapping of neurovascular dynamics and serves as a platform to evaluate potential interventions for stroke.

  10. Immune memory: the basics and how to trigger an efficient long-term immune memory.

    PubMed

    Beverley, P C L

    2010-01-01

    Immunological memory consists of expanded clones of T and B lymphocytes that show an increased rate of cell division and shortened telomeres compared with naïve cells. However, exhaustion of clones is delayed by kinetic heterogeneity within clones and altered survival and up-regulation of telomerase. Prolonged maintenance of protective B-cell immunity is T-cell dependent and requires a balance between plasma cells and memory B cells. Protective T-cell immunity also requires correct quality of T cells and that they are located appropriately. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. 'Order from disorder sprung': recognition and regulation in the immune system

    NASA Astrophysics Data System (ADS)

    Mak, Tak W.

    2003-06-01

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.

  12. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS).

    PubMed

    Cooper, Edwin L

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.

  13. 'Order from disorder sprung': recognition and regulation in the immune system.

    PubMed

    Mak, Tak W

    2003-06-15

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.

  14. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)

    NASA Astrophysics Data System (ADS)

    Cooper, Edwin L.

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the self/not self model. The review will end with certain perspectives on artificial immune systems new on the scene and the product of computational immunologists. The tentative view is to question if the immune systems of invertebrates might be amenable to such an analysis? This would offer more credence to the innate system, often pushed aside thus favoring the adaptive responses.

  15. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity.

    PubMed

    de la Torre, Fernando; Gutiérrez-Beltrán, Emilio; Pareja-Jaime, Yolanda; Chakravarthy, Suma; Martin, Gregory B; del Pozo, Olga

    2013-07-01

    Ca(2+) signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a Ca(2+)-signaling system, Cbl10 (for calcineurin B-like protein) and Cipk6 (for calcineurin B-like interacting protein kinase), as their silencing inhibited Pto/AvrPto-elicited PCD. N. benthamiana Cbl10 and Cipk6 are also required for PCD triggered by other plant resistance genes and virus, oomycete, and nematode effectors and for host susceptibility to two P. syringae pathogens. Tomato Cipk6 interacts with Cbl10 and its in vitro kinase activity is enhanced in the presence of Cbl10 and Ca(2+), suggesting that tomato Cbl10 and Cipk6 constitute a Ca(2+)-regulated signaling module. Overexpression of tomato Cipk6 in N. benthamiana leaves causes accumulation of reactive oxygen species (ROS), which requires the respiratory burst homolog RbohB. Tomato Cbl10 and Cipk6 interact with RbohB at the plasma membrane. Finally, Cbl10 and Cipk6 contribute to ROS generated during effector-triggered immunity in the interaction of P. syringae pv tomato DC3000 and N. benthamiana. We identify a role for the Cbl/Cipk signaling module in PCD, establishing a mechanistic link between Ca(2+) and ROS signaling in plant immunity.

  16. A novel mechanism for regulation of the type I IFN response by herpesvirus deconjugases.

    PubMed

    Gupta, Soham; Ylä-Anttila, Päivi; Masucci, Maria G

    2018-04-11

    Upon infection, viral nucleic acids are recognized by germline-encoded pattern-recognition receptors (PRRs), and cytosolic retinoic acid-inducible gene I (RIG-I)-like helicases (RLHs) that initiate signaling pathways resulting in the production of type I IFN and pro-inflammatory cytokines. Binding of RIG-I to viral nucleic acids triggers the formation of the RIG-I signalosome where RIG-I is ubiquitinated by the TRIM25 ligase and, with the help of 14-3-3 scaffolds, further translocated to mitochondrial anti-viral signalling proteins (MAVS). Subsequent ubiquitination-mediated events trigger transcriptional activation of the effectors of innate immunity. We have found a new mechanism by which herpesviruses interfere with this signalling pathway to favour the establishment of latency and promote virus replication. The cysteine protease encoded in the conserved N-terminal domain of the herpesvirus large tegument protein binds to 14-3-3 proteins and forms a tri-molecular complex with TRIM25, promoting the activation and autoubiquitination of the ligase. RIG-I is recruited to the complex but its ubiquitination is drastically reduced, which effectively inactivates downstream signalling and blocks the type I IFN response.

  17. RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease.

    PubMed

    Zhu, Huiyuan; Lou, Fangzhou; Yin, Qianqian; Gao, Yuanyuan; Sun, Yang; Bai, Jing; Xu, Zhenyao; Liu, Zhaoyuan; Cai, Wei; Ke, Fang; Zhang, Lingyun; Zhou, Hong; Wang, Hong; Wang, Gang; Chen, Xiang; Zhang, Hongxin; Wang, Zhugang; Ginhoux, Florent; Lu, Chuanjian; Su, Bing; Wang, Honglin

    2017-05-01

    Retinoic acid inducible-gene I (RIG-I) functions as one of the major sensors of RNA viruses. DDX58 , which encodes the RIG-I protein, has been newly identified as a susceptibility gene in psoriasis. Here, we show that the activation of RIG-I by 5'ppp-dsRNA, its synthetic ligand, directly causes the production of IL-23 and triggers psoriasis-like skin disease in mice. Repeated injections of IL-23 to the ears failed to induce IL-23 production and a full psoriasis-like skin phenotype, in either germ-free or RIG-I-deficient mice. RIG-I is also critical for a full development of skin inflammation in imiquimod (IMQ)-induced psoriasis-like mouse model. Furthermore, RIG-I-mediated endogenous IL-23 production was mainly confined to the CD11c + dendritic cells (DCs) via nuclear factor-kappa B (NF-κB) signaling, and stimulated RIG-I expression in an auto-regulatory feedback loop. Thus, our data suggest that the dysregulation in the antiviral immune responses of hosts through the innate pattern recognition receptors may trigger the skin inflammatory conditions in the pathophysiology of psoriasis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects

    ClinicalTrials.gov

    2018-06-20

    Brain Cancer; Brain Neoplasm; Glioma; Glioblastoma; Gliosarcoma; Malignant Brain Tumor; Neoplasm, Neuroepithelial; Neuroectodermal Tumors; Neoplasm by Histologic Type; Neoplasm, Nerve Tissue; Nervous System Diseases

  19. Asthma Triggers and What to Do about Them

    MedlinePlus

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations ...

  20. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum.

    PubMed

    Verchot, Jeanmarie

    2016-11-19

    The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus-host interactions will provide new targets for crop improvement.

  1. A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair

    PubMed Central

    Castellano, Delia; Blanes, María; Marco, Bruno; Cerrada, Inmaculada; Ruiz-Saurí, Amparo; Pelacho, Beatriz; Araña, Miriam; Montero, Jose A.; Cambra, Vicente; Prosper, Felipe

    2014-01-01

    The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair. PMID:24564648

  2. Proteomics of effector-triggered immunity (ETI) in plants.

    PubMed

    Hurley, Brenden; Subramaniam, Rajagopal; Guttman, David S; Desveaux, Darrell

    2014-01-01

    Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant "resistance" proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field.

  3. Trained immunity in newborn infants of HBV-infected mothers

    PubMed Central

    Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio

    2015-01-01

    The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344

  4. Hypoxia regulates microRNA expression in the human carotid body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less

  5. Typological Asymmetries in Round Vowel Harmony: Support from Artificial Grammar Learning

    PubMed Central

    Finley, Sara

    2012-01-01

    Providing evidence for the universal tendencies of patterns in the world’s languages can be difficult, as it is impossible to sample all possible languages, and linguistic samples are subject to interpretation. However, experimental techniques such as artificial grammar learning paradigms make it possible to uncover the psychological reality of claimed universal tendencies. This paper addresses learning of phonological patterns (systematic tendencies in the sounds in language). Specifically, I explore the role of phonetic grounding in learning round harmony, a phonological process in which words must contain either all round vowels ([o, u]) or all unround vowels ([i, e]). The phonetic precursors to round harmony are such that mid vowels ([o, e]), which receive the greatest perceptual benefit from harmony, are most likely to trigger harmony. High vowels ([i, u]), however, are cross-linguistically less likely to trigger round harmony. Adult participants were exposed to a miniature language that contained a round harmony pattern in which the harmony source triggers were either high vowels ([i, u]) (poor harmony source triggers) or mid vowels ([o, e]) (ideal harmony source triggers). Only participants who were exposed to the ideal mid vowel harmony source triggers were successfully able to generalize the harmony pattern to novel instances, suggesting that perception and phonetic naturalness play a role in learning. PMID:23264713

  6. 77 FR 58052 - Airworthiness Directives; GA 8 Airvan (Pty) Ltd Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... adopt a new airworthiness directive (AD) for GA 8 Airvan (Pty) Ltd Models GA8 and GA8-TC320 airplanes.... The MCAI describes the unsafe condition as burnt electrical connectors leading to the left-hand... Building Ground Floor, Room W12-140, 1200 New Jersey Avenue SE., Washington, DC 20590. Hand Delivery: U.S...

  7. [Plant immune system: the basal immunity].

    PubMed

    Shamraĭ, S N

    2014-01-01

    Plants have an efficient system of innate immunity which is based on the effective detection of potentially harmful microorganisms and rapid induction of defense responses. The first level of plant immunity is the basal immunity which is induced by the conserved molecular structures of microbes such as bacterial flagellins or fungal chitin, or molecules that result from the interaction of plants with pathogens, for example oligosaccharides and peptides ("danger signals"). Plants recognize these inducers through receptors localized to the plasma membrane, represented mainly receptor-like protein kinases or receptor-like proteins. Activation of the receptor by a ligand triggers a complex network of signaling events which eventually cause an array of plant defense responses to prevent further spread of the pathogen.

  8. Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective

    PubMed Central

    Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar

    2017-01-01

    Background: Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection  have not been studied yet. Methods: Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results: IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1, pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions: Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs. PMID:29333244

  9. Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective.

    PubMed

    Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria Del Mar

    2017-01-01

    Background : Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection  have not been studied yet. Methods : Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results : IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1 , pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions : Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs.

  10. Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination

    PubMed Central

    Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals. PMID:27022211

  11. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling

    PubMed Central

    Norris, Michael H.; Schweizer, Herbert P.

    2017-01-01

    Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines. PMID:28453531

  12. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines

    PubMed Central

    Rea, Irene Maeve; Gibson, David S.; McGilligan, Victoria; McNerlan, Susan E.; Alexander, H. Denis; Ross, Owen A.

    2018-01-01

    Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called “inflamm-aging.” Despite research there is no clear understanding about the causes of “inflamm-aging” that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer’s disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with “inflammageing” or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis. PMID:29686666

  13. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity.

    PubMed

    Yue, Jieyu; Sun, Hong; Zhang, Wei; Pei, Dan; He, Yang; Wang, Huazhong

    2015-04-01

    Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are implicated in immunity to powdery mildew, playing a weak, positive role in the Pm21-triggered resistance response and a negative role in the basal resistance of susceptible plants.

  14. Correlations between phytohemagglutinin response and leukocyte profile, and bactericidal capacity in a wild rodent.

    PubMed

    Zhang, Zhiqiang; Zhao, Zhijun

    2015-05-01

    Phytohemagglutinin (PHA)-induced swelling is widely used to investigate cell-mediated and innate immunity across different vertebrate taxa. However, its physiological mechanism is still an open question due to the complexity of the involved immune components. In the present study, we measured the synchronous variations of PHA response, the proportion of different subtypes of leukocytes, as well as serum bactericidal capacity in circulation blood at 6, 12 and 24 h after PHA versus PBS injection in striped hamster, Cricetulus barabensis. First, the results showed that PHA responses reached a peak at 6 h postinjection, then sharply declined at 12 h and 24 h postinjection. Serum bactericidal capacity was higher at 6 h and 12 h than at 24 h. The proportion of different subtypes of leukocytes, as well as the ratio of neutrophils to lymphocytes did not display significant changes across different time points. Second, PHA response was positively correlated with the proportion of neutrophils and serum bactericidal capacity. The proportion of monocytes was negatively correlated with that of eosinophils and neutrophils. The proportion of basophils was negatively correlated with that of lymphocytes. Our results indicate that earlier enhanced PHA response is important for the striped hamster to cope with changing environmental conditions due to its small body mass, and the increased components of innate immunity in circulation blood may contribute to the enhancement of PHA swelling response. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  15. Lowering detection limits for 1,2,3-trichloropropane in water using solid phase extraction coupled to purge and trap sample introduction in an isotope dilution GC-MS method.

    PubMed

    Liao, Wenta; Ghabour, Miriam; Draper, William M; Chandrasena, Esala

    2016-09-01

    Purge and trap sample introduction (PTI) has been the premier sampling and preconcentration technique for gas chromatographic determination of volatile organic compounds (VOCs) in drinking water for almost 50 years. PTI affords sub parts-per-billion (ppb) detection limits for purgeable VOCs including fixed gases and higher boiling hydrocarbons and halocarbons. In this study the coupling of solid phase extraction (SPE) to PTI was investigated as a means to substantially increase enrichment and lower detection limits for the emerging contaminant, 1,2,3-trichloropropane (TCP). Water samples (500 mL) were dechlorinated, preserved with a biocide, and spiked with the isotope labeled internal standard, d5-TCP. The entire 500 mL sample was extracted with activated carbon or carbon molecular sieve SPE cartridges, and then eluted with dichloromethane -- excess solvent was removed in a nitrogen evaporator and diethylene glycol "keeper" remaining was dispersed in 5 mL of water for PTI GC-MS analysis. The experimental Method Detection Limit (MDL) for TCP was 0.11 ng/L (ppt) and accuracy was 95-103% in sub-ppt determinations. Groundwater samples including impaired California sources and treated water (n = 21) were analyzed with results ranging from below the method reporting limit (0.30 ng/L) to > 250 ng/L. Coupling of SPE with PTI may provide similar reductions in detection limits for other VOCs with appropriate physical-chemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis, there is a stress-induced shift in the balance of pro- and anti-inflammatory mediator expression in dural immune cells that is more pronounced in females, and is dependent, at least in part, on sympathetic post-ganglionic innervation in females. This shift in the balance of inflammatory mediator expression may not only play an important role in triggering migraine attacks, but suggests it may be possible, if not necessary to employ different strategies to most effectively treat migraine in men and women. PMID:26126992

  17. DNA Methylation and Demethylation in Plant Immunity.

    PubMed

    Deleris, A; Halter, T; Navarro, L

    2016-08-04

    Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.

  18. Cocaine evokes a profile of oxidative stress and impacts innate antiviral response pathways in astrocytes.

    PubMed

    Cisneros, Irma E; Erdenizmenli, Mert; Cunningham, Kathryn A; Paessler, Slobodan; Dineley, Kelly T

    2018-06-01

    HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immunity. Lastly, PPF and PIO have therapeutic potential to ameliorate cocaine-mediated dysregulation of astrocyte antiviral immunity possibly via a myriad of protective actions including decreases in reactive phenotype and damaging immune factors. Published by Elsevier Ltd.

  19. Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A.

    PubMed

    Yabuuchi, Satomi; Endo, Satoshi; Baek, KeangOk; Hoshino, Kunihide; Tsujino, Yoshio; Vestergaard, Mun'delanji C; Takagi, Masahiro

    2017-12-01

    Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    PubMed

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  1. Innate immunity in rice

    PubMed Central

    Chen, Xuewei; Ronald, Pamela C.

    2011-01-01

    Advances in studies of rice innate immunity have led to the identification and characterization of host sensors encoding receptor kinases that perceive conserved microbial signatures. The non-RD domain, a newly recognized hallmark of these receptor kinases is highly expanded in rice (Oryza sativa) compared with Arabidopsis (Arabidopsis thaliana). Researchers have also identified a diverse array of microbial effectors from bacterial and fungal pathogens that triggers immune responses upon perception. These include both, effectors that indirectly target host Nucleotide binding site/Leucine rice repeat (NBS-LRR) proteins and transcription activator-like (TAL) effectors that directly bind promoters of host genes. Here we review the recognition and signaling events that govern rice innate immunity. PMID:21602092

  2. Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection.

    PubMed

    Lalancette-Hébert, Melanie; Faustino, Joel; Thammisetty, Sai Sampath; Chip, Sophorn; Vexler, Zinaida S; Kriz, Jasna

    2017-10-01

    Activation of microglial cells in response to brain injury and/or immune stimuli is associated with a marked induction of Toll-like receptors (TLRs). While in adult brain, the contribution of individual TLRs, including TLR2, in pathophysiological cascades has been well established, their role and spatial and temporal induction patterns in immature brain are far less understood. To examine whether infectious stimuli and sterile inflammatory stimuli trigger distinct TLR2-mediated innate immune responses, we used three models in postnatal day 9 (P9) mice, a model of infection induced by systemic endotoxin injection and two models of sterile inflammation, intra-cortical IL-1β injection and transient middle cerebral artery occlusion (tMCAO). We took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) to visualize the TLR2 response in the living neonatal brain and then determined neuroinflammation, microglial activation and leukocyte infiltration. We show that in physiological postnatal brain development the in vivo TLR2-luc signal undergoes a marked ∼30-fold decline and temporal-spatial changes during the second and third postnatal weeks. We then show that while endotoxin robustly induces the in vivo TLR2-luc signal in the living brain and increases levels of several inflammatory cytokines and chemokines, the in vivo TLR2-luc signal is reduced after both IL-1β and tMCAO and the inflammatory response is muted. Immunofluorescence revealed that microglial cells are the predominant source of TLR2 production during postnatal brain development and in all three neonatal models studied. Flow cytometry revealed developmental changes in CD11b + /CD45 + and CD11b + /Ly6C + cell populations, involvement of cells of the monocyte lineage, but lack of Ly6G + neutrophils or CD3 + cells in acutely injured neonatal brains. Cumulatively, our results suggest distinct TLR2 induction patterns following PAMP and DAMP - mediated inflammation in immature brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A recombinant flagellin fragment, which includes the epitopes flg22 and flgII-28, provides a useful tool to study flagellin-triggered immunity

    USDA-ARS?s Scientific Manuscript database

    Plants and animals both independently evolved the ability to recognize flagellin (also called FliC), the building block of the bacterial flagellum, as part of their innate immune response. Most plants recognize one or two short epitopes of FliC: flg22 and flgII-28. However, since most research in pl...

  4. [Genetic diversity of microsatellite loci in captive Amur tigers].

    PubMed

    Zhang, Yu-Gaung; Li, Di-Qiang; Xiao, Qi-Ming; Rao, Li-Qun; Zhang, Xue-Wen

    2004-09-01

    The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Haoerbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacrylamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(H(e)), polymorphism information content(PIC) and effective number of allele(N(e)) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and N(e) were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten microsatellie loci had high or medium polymorphism in these Amur tigers and had high genetic diversity. At the same time, we only found even bases variability which showed the even bases repeat sequence (CA/GT) maybe the basic unit for length variability of microsatellite in all loci. In this study, the samples were made up of 75 hair specimens, 23 blood specimens and 15 tissue specimens, we obtained the genome DNA from hairs using the non-invasive DNA technology and demonstrated that DNA derived from hair samples is as good as that obtained from blood samples for the analysis of microsatellite polymorphism. These results imply that microsatellite DNA markers and non-invasive DNA technology can help study the genetic diversity of Amur tiger. This method could be used in the captive management of other endangered species.

  5. Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism.

    PubMed

    Piślewska-Bednarek, Mariola; Nakano, Ryohei Thomas; Hiruma, Kei; Pastorczyk, Marta; Sanchez-Vallet, Andrea; Singkaravanit-Ogawa, Suthitar; Ciesiołka, Danuta; Takano, Yoshitaka; Molina, Antonio; Schulze-Lefert, Paul; Bednarek, Paweł

    2018-01-01

    Glutathione (GSH) and indole glucosinolates (IGs) exert key functions in the immune system of the model plant Arabidopsis ( Arabidopsis thaliana ). Appropriate GSH levels are important for execution of both pre- and postinvasive disease resistance mechanisms to invasive pathogens, whereas an intact PENETRATION2 (PEN2)-pathway for IG metabolism is essential for preinvasive resistance in this species. Earlier indirect evidence suggested that the latter pathway involves conjugation of GSH with unstable products of IG metabolism and further processing of the resulting adducts to biologically active molecules. Here we describe the identification of Glutathione- S -Transferase class-tau member 13 (GSTU13) as an indispensable component of the PEN2 immune pathway for IG metabolism. gstu13 mutant plants are defective in the pathogen-triggered biosynthesis of end products of the PEN2 pathway, including 4-O-β-d-glucosyl-indol-3-yl formamide, indole-3-ylmethyl amine, and raphanusamic acid. In line with this metabolic defect, lack of functional GSTU13 results in enhanced disease susceptibility toward several fungal pathogens including Erysiphe pisi , Colletotrichum gloeosporioides , and Plectosphaerella cucumerina Seedlings of gstu13 plants fail also to deposit the (1,3)-β-glucan cell wall polymer, callose, after recognition of the bacterial flg22 epitope. We show that GSTU13 mediates specifically the role of GSH in IG metabolism without noticeable impact on other immune functions of this tripeptide. We postulate that GSTU13 connects GSH with the pathogen-triggered PEN2 pathway for IG metabolism to deliver metabolites that may have numerous functions in the innate immune system of Arabidopsis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  6. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    PubMed

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis

    PubMed Central

    Gause, William C; Maizels, Rick M

    2016-01-01

    Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. PMID:27116368

  8. Medical relief for the 2011 Japan earthquake: a nursing account.

    PubMed

    Mitani, Satoko; Kako, Mayumi; Mayner, Lidia

    2014-03-01

    In 2011 the east coast of Japan experienced a massive earthquake which triggered a devastating tsunami destroying many towns and killing over 15 000 people. The work presented in this paper is a personal account that outlines the relief efforts of the Humanitarian Medical Assistance team and describes the efforts to provide medical assistance to evacuees. The towns most affected had a large proportion of older people who were more likely to have chronic conditions and required medication to sustain their health. Since personal property was destroyed in the tsunami many older people were left without medication and also did not remember which type of medication they were taking. Some evacuees had brought a list of their medication with them, this assisted relief teams in obtaining the required medication for these people. The more successful evacuation centers had small numbers of evacuees who were given tasks to administer the center that kept them occupied and active. © 2013 Wiley Publishing Asia Pty Ltd.

  9. Personality changes and the role of counseling in the rehabilitation of patients with laryngeal cancer.

    PubMed

    Sharma, Deepika; Nagarkar, Anu N; Jindal, Pankaj; Kaur, Rajinder; Gupta, Ashok K

    2008-08-01

    We conducted a study of 65 adults who had undergone laryngectomy for the treatment of laryngeal cancer. Our goal was to identify any abnormal personality traits in these patients and to assess the effect that psychological counseling might have on correcting these abnormalities and thereby improving postoperative voice rehabilitation. A Personality Trait Inventory (PTI) administered to all patients preoperatively identified 47 patients who had abnormal scores for at least three personality traits. These 47 patients were sent for preoperative psychological counseling, and 3 months following surgery, they underwent a follow-up PTI. At the follow-up assessment, 40 of these patients-32 men and 8 women-still registered abnormal scores for at least three traits. Half of the men and half of the women were randomized to receive 12 sessions of individualized psychological counseling over 6 months in addition to standard speech therapy (group I); the other patients received speech therapy only (group II). A follow-up PTI was administered at the completion of psychological counseling and/or speech therapy (postoperative month 9). Statistical analysis of the data was performed with the paired-samples test. Intragroup analysis of the follow-up PTI results revealed that both groups experienced a significant improvement in activity scores (p < 0.001) compared with their previous PTI results and that group I had significantly better scores for two other PTI traits-cyclothymia (mood swings) and depressive tendency (p < 0.05); neither group showed a significant improvement in dominance scores. Intergroup comparisons revealed that group I's activity and depressive tendency scores were significantly better than those of group II; there was no significant difference between the two groups in cyclothymia and dominance scores. Finally, comparison of results by sex, regardless of group, revealed that men had a significantly higher score for dominance and women had significantly higher scores for depressive tendency, emotional instability, introversion, and social desirability. We conclude that a preoperative personality analysis should be carried out in all patients scheduled for laryngectomy to identify those with personality problems that might benefit from psychological counseling. Correction of these problems should help in the physical, mental, vocational, and social rehabilitation of these patients.

  10. West African Sorghum bicolor Leaf Sheaths Have Anti-Inflammatory and Immune-Modulating Properties In Vitro

    PubMed Central

    Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon

    2013-01-01

    Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787

  11. The Pathogenesis of Autoimmune Liver Disease.

    PubMed

    Arndtz, Katherine; Hirschfield, Gideon M

    Autoimmune liver disease (AILD) encompasses 3 main distinct clinical diseases: autoimmune hepatitis, primary biliary cholangitis (formally known as cirrhosis, PBC) and primary sclerosing cholangitis (PSC). These conditions are an important, yet under-appreciated cause of patient morbidity and mortality with ongoing unmet needs for further research and clinical advances. There is observational evidence for genetic predisposition, with all 3 conditions being more common in first degree relatives. AILD is associated with the presence of auto-antibodies and higher risks of other non-hepatic auto-immune conditions. Genetic risk association studies have identified HLA and non-HLA risk loci for the development of disease, with some HLA loci providing prognostic information. This re-enforces the concept that genetic predisposition to autoimmunity is important, likely in the context of environmental exposures. Such environmental triggers are unclear but relevant risks include smoking, drug and xenobiotic exposure as well as the complexities of the microbiome. There is evidence for a loss of immune tolerance to self-antigens playing a part in the development of these conditions. In particular the IL-2 and IL-12 regulatory pathways have been implicated in pre-disposing to an unopposed inflammatory response within the liver. Main immunological themes revolve around loss of immune tolerance leading to T-cell mediated injury, imbalance in the regulation of immune cells and defective immune response to foreign antigens. For PBC and PSC, there is then the added complexity of the consequences of cholestasis on hepato-biliary injury, immune regulation and liver fibrosis. Whilst specific disease causes and triggers are still lacking, AILD arises on the background of collective genetic and environmental risk, leading to chronic and abnormal hepato-biliary immune responses. Effective and more rational therapy will ultimately be developed when the multiple pathways to liver injury are better understood. © 2016 S. Karger AG, Basel.

  12. HIF Transcription Factors, Inflammation, and Immunity

    PubMed Central

    Palazon, Asis; Goldrath, Ananda; Nizet, Victor

    2015-01-01

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569

  13. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  14. Social cues trigger differential immune investment strategies in a non-social insect, Tenebrio molitor.

    PubMed

    Gallagher, Joe D; Siva-Jothy, Michael T; Evison, Sophie E F

    2018-02-01

    Social immunization (SI) is a horizontal transfer of immunity that protects naive hosts against infection following exposure to infected nestmates. While mainly documented in eusocial insects, non-social species also share similar ecological features which favour the development of group-level immunity. Here, we investigate SI in Tenebrio molitor by pairing naive females with a pathogen-challenged conspecific for 72 h before measuring a series of immune and fitness traits. We found no evidence for SI, as beetles who cohabited with a live pathogen-challenged conspecific were not better protected against bacterial challenge. However, exposure to a heat-killed-bacteria-challenged conspecific appeared to increase pathogen tolerance, which manifested in differential fitness investment. Our results together suggest that T. molitor do respond to immune-related cues in the social environment, despite not showing a classic immunization response as predicted. © 2018 The Author(s).

  15. Colorectal cancer prevention: Immune modulation taking the stage.

    PubMed

    Fletcher, Rochelle; Wang, Yi-Jun; Schoen, Robert E; Finn, Olivera J; Yu, Jian; Zhang, Lin

    2018-04-01

    Prevention or early detection is one of the most promising strategies against colorectal cancer (CRC), the second leading cause of cancer death in the US. Recent studies indicate that antitumor immunity plays a key role in CRC prevention. Accumulating evidence suggests that immunosurveillance represents a critical barrier that emerging tumor cells have to overcome in order to sustain the course of tumor development. Virtually all of the agents with cancer preventive activity have been shown to have an immune modulating effect. A number of immunoprevention studies aimed at triggering antitumor immune response against early lesions have been performed, some of which have shown promising results. Furthermore, the recent success of immune checkpoint blockade therapy reinforces the notion that cancers including CRC can be effectively intervened via immune modulation including immune normalization, and has stimulated various immune-based combination prevention studies. This review summarizes recent advances to help better harness the immune system in CRC prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Identifying patterns of immune-related disease: use in disease prevention and management.

    PubMed

    Dietert, Rodney R; Zelikoff, Judith T

    2010-05-01

    Childhood susceptibility to diseases linked with immune dysfunction affects over a quarter of the pediatric population in some countries. While this alone is a significant health issue, the actual impact of immune-related diseases extends over a lifetime and involves additional secondary conditions. Some comorbidities are well known (e.g., allergic rhinitis and asthma). However, no systematic approach has been used to identify life-long patterns of immune-based disease where the primary condition arises in childhood. Such information is useful for both disease prevention and treatment approaches. Recent primary research papers as well as review articles were obtained from PubMed, Chem Abstracts, Biosis and from the personal files of the authors. Search words used were: the diseases and conditions shown Figs. 1 and 2 in conjunction with comorbid, comorbidities, pediatric, childhood, adult, immune, immune dysfunction, allergy, autoimmune, inflammatory, infectious, health risks, environment, risk factors. Childhood diseases such as asthma, type-1 diabetes, inflammatory bowel disease, respiratory infections /rhinitis, recurrent otitis media, pediatric celiac, juvenile arthritis and Kawasaki disease are examples of significant childhood health problems where immune dysfunction plays a significant role. Each of these pediatric diseases is associated with increased risk of several secondary conditions, many of which appear only later in life. To illustrate, four prototypes of immune-related disease patterns (i.e., allergy, autoimmunity, inflammation and infectious disease) are shown as tools for: 1) enhanced disease prevention; 2) improved management of immune-based pediatric diseases; and 3) better recognition of underlying pediatric immune dysfunction. Identification of immune-related disease patterns beginning in childhood provides the framework for examining the underlying immune dysfunctions that can contribute to additional diseases in later life. Many pediatric diseases associated with dysfunctional immune responses have been linked with an elevated risk of other diseases or conditions as the child ages. Diseases within a pattern may be interlinked based on underlying immune dysfunctions and/or current therapeutic approaches for managing the entryway diseases. It may be beneficial to consider treatment options for the earliest presenting diseases that will concomitantly reduce the risk of immune-linked secondary conditions. Additionally, improved disease prevention is possible with more relevant and age-specific immune safety testing.

  17. Cytomegalovirus shapes long-term immune reconstitution after allogeneic stem cell transplantation

    PubMed Central

    Itzykson, Raphael; Robin, Marie; Moins-Teisserenc, Helene; Delord, Marc; Busson, Marc; Xhaard, Aliénor; de Fontebrune, Flore Sicre; de Latour, Régis Peffault; Toubert, Antoine; Socié, Gérard

    2015-01-01

    Immune reconstitution after allogeneic stem cell transplantation is a dynamic and complex process depending on the recipient and donor characteristics, on the modalities of transplantation, and on the occurrence of graft-versus-host disease. Multivariate methods widely used for gene expression profiling can simultaneously analyze the patterns of a great number of biological variables on a heterogeneous set of patients. Here we use these methods on flow cytometry assessment of up to 25 lymphocyte populations to analyze the global pattern of long-term immune reconstitution after transplantation. Immune patterns were most distinct from healthy controls at six months, and had not yet fully recovered as long as two years after transplant. The two principal determinants of variability were linked to the balance of B and CD8+ T cells and of natural killer and B cells, respectively. Recipient’s cytomegalovirus serostatus, cytomegalovirus replication, and chronic graft-versus-host disease were the main factors shaping the immune pattern one year after transplant. We identified a complex signature of under- and over-representation of immune populations dictated by recipient’s cytomegalovirus seropositivity. Finally, we identified dimensions of variance in immune patterns as significant predictors of long-term non-relapse mortality, independently of chronic graft-versus-host disease. PMID:25261095

  18. Hepatitis C virus and antiviral innate immunity: who wins at tug-of-war?

    PubMed

    Yang, Da-Rong; Zhu, Hai-Zhen

    2015-04-07

    Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.

  19. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration

    1999-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.

  20. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs

    PubMed Central

    2014-01-01

    Background The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. Methods Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. Results Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4+ cells and CD8+ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. Conclusions Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic. PMID:24502656

Top