Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.
Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N
2004-06-22
Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.
Cyclodextrin-based microsensor for volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, B.I.; Li, D.Q.
1996-12-31
The direct covalent attachment of modified {alpha}- and {beta}-cyclodextrin on oxide surfaces has been studied for application in chemical sensors. First, oxide surfaces were treated with a silane coupling layer followed by the addition of cyclodextrin to form a self-assembled monolayer (SAM) of host receptors. Second, the oxide surfaces were reacted with a sol-gel (SG) precursor based on cyclodextrin structure to form a thick film with defined hydrophobic cyclodextrin cavities. The sensing properties of both films (SAM and SG) were examined with surface acoustic wave (SAW) measurement platform. Molecular interactions between an organic guest and a host thin-film on amore » 200 MHZ SAW resonator are being studied as a method of tracking and recognizing the presence of volatile organics. Surface acoustic wave sensors based on the inclusion chemistry of the bucket-type (cyclodextrin) molecules, were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Because the nature of the interactions is moderate but noncovalent, detection of these VOCs was possible using a reversible real-time mode. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying VOCs. Recent results using optical waveguides for sensor transduction will also be discussed.« less
NASA Astrophysics Data System (ADS)
Frasconi, Marco; Mazzei, Franco
2009-07-01
This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.
Maglione, Maria Serena; Casado-Montenegro, Javier; Fritz, Eva-Corinna; Crivillers, Núria; Ravoo, Bart Jan; Rovira, Concepció; Mas-Torrent, Marta
2018-03-25
Here, on ITO//Au patterned substrates SAMs of ferrocene (Fc) on the Au regions and of anthraquinone (AQ) on the ITO areas are prepared, exhibiting three stable redox states. Furthermore, by selectively oxidizing or reducing the Fc or AQ units, respectively, the surface properties are locally modified. As a proof-of-concept, such a confinement of the properties is exploited to locally form host-guest complexes with β-cyclodextrin on specific surface regions depending on the applied voltage.
Malapert, Aurélia; Tomao, Valérie; Dangles, Olivier; Reboul, Emmanuelle
2018-05-09
Hydroxytyrosol bioaccessibility and absorption by the intestinal cells were studied using an in vitro digestion model and Caco-2 TC7 monolayers cells in culture in the presence and absence of β-cyclodextrin and foods. Hydroxytyrosol was either provided as a pure standard or in an alperujo powder. The presence of foods significantly decreased hydroxytyrosol bioaccessibility and absorption (-20 and -10%, respectively), while β-cyclodextrin had no effect. Moreover, the presence of other compounds from alperujo in the intestinal compartment reduced hydroxytyrosol absorption by Caco-2 cells compared to pure standard (-60%). The final bioavailability of hydroxytyrosol, defined as its quantity at the basolateral side of cultured cell monolayers compared to the initial amount in the test meal, was 6.9 ± 0.4, 31.1 ± 1.1, and 40.9 ± 1.5% when hydroxytyrosol was from alperujo or a standard administered with or without food, respectively. Our results show that conversely to foods, β-cyclodextrin does not alter hydroxytyrosol bioavailability.
Rassu, Giovanna; Soddu, Elena; Cossu, Massimo; Brundu, Antonio; Cerri, Guido; Marchetti, Nicola; Ferraro, Luca; Regan, Raymond F.; Giunchedi, Paolo; Gavini, Elisabetta; Dalpiaz, Alessandro
2015-01-01
We propose the formulation and characterization of solid microparticles as nasal drug delivery systems able to increase the nose-to-brain transport of deferoxamine mesylate (DFO), a neuroprotector unable to cross the blood brain barrier and inducing negative peripheral impacts. Spherical chitosan chloride and methyl-β-cyclodextrin microparticles loaded with DFO (DCH and MCD, respectively) were obtained by spray drying. Their volume-surface diameters ranged from 1.77 ± 0.06 μm (DCH) to 3.47 ± 0.05 μm (MCD); the aerodynamic diameters were about 1.1 μm and their drug content was about 30%. In comparison with DCH, MCD enhanced the in vitro DFO permeation across lipophilic membranes, similarly as shown by ex vivo permeation studies across porcine nasal mucosa. Moreover, MCD were able to promote the DFO permeation across monolayers of PC 12 cells (neuron like), but like DCH did not modify the DFO permeation pattern across Caco-2 monolayers (epithelial like). Nasal administration to rats of 200 μg DFO encapsulated in the microparticles resulted in its uptake into the cerebrospinal fluid (CSF) with peak values ranging from 3.83 ± 0.68 μg/mL (DCH) and 14.37 ± 1.69 μg/mL (MCD) 30 min after insufflation of microparticles. No drug CSF uptake was detected after nasal administration of a DFO water solution. The DFO systemic absolute bioavailabilities obtained by DCH and MCD nasal administration were 6% and 15%, respectively. Chitosan chloride and methyl-β-cyclodextrins appear therefore suitable to formulate solid microparticles able to promote the nose to brain uptake of DFO and to limit its systemic exposure. PMID:25620068
Pan, Yong; Mu, Ning; Shao, Shengyu; Yang, Liu; Wang, Wen; Xie, Xiao; He, Shitang
2015-01-01
Self-assembly and molecular imprinting technologies are very attractive technologies for the development of artificial recognition systems and provide chemical recognition based on need and not happenstance. In this paper, we employed a β-cyclodextrin derivative surface acoustic wave (SAW) chemical sensor for detecting the chemical warfare agents (CWAs) sarin (O-Isoprophyl methylphosphonofluoridate, GB). Using sarin acid (isoprophyl hydrogen methylphosphonate) as an imprinting template, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Binding, uptake, and transport of hypericin by Caco-2 cell monolayers.
Sattler, S; Schaefer, U; Schneider, W; Hoelzl, J; Lehr, C M
1997-10-01
The biological evaluation of hypericin in various test models is hampered by its very poor water solubility. In the present study cyclodextrin formulations and liposomal preparations were investigated for improved delivery and solubility of hypericin in aqueous buffer systems. Caco-2 cells, grown to tight monolayers on 96-well tissue culture plates as well as on Transwell polycarbonate filters, were used to study the membrane binding and the epithelial transport of hypericin. Cumulative transport of hypericin, which could not be measured without the use of cyclodextrins, in apical-to-basolateral direction from cyclodextrin-hypericin buffer solutions was 3-5% at 37 degrees C and approximately 0.12% at 4 degrees C after 5 h. After an incubation time of 1 h at 37 and 4 degrees C, 12.7% +/- 2.6% and 6.5% +/- 0.8%, respectively, of hypericin were found to be bound to or taken up by Caco-2 cells. Liposomal formulations markedly increased the solubility of hypericin in Krebs-Ringer buffer, but there was no effect observed on the binding and transport of hypericin delivered by liposomes in the Caco-2 cell model. Due to the fluorescence properties of hypericin, its interaction with the cells could be visualized by confocal laser scanning microscopy. The results indicate that a significant accumulation of the drug in the cell membrane and the cell nucleus membrane takes place. We conclude that hypericin is absorbed through the intestinal epithelium by passive transcellular diffusion and that increasing its solubility by cyclodextrin appears as a promising approach to increase its oral bioavailability for pharmaceutical formulations.
Sadighi, Armin; Ostad, S N; Rezayat, S M; Foroutan, M; Faramarzi, M A; Dorkoosh, F A
2012-01-17
Chitosan nanoparticles (CS-NPs) have been used to enhance the permeability of furosemide and ranitidine hydrochloride (ranitidine HCl) which were selected as candidates for two different biopharmaceutical drug classes having low permeability across Caco-2 cell monolayers. Drugs loaded CS-NPs were prepared by ionic gelation of CS and pentasodium tripolyphosphate (TPP) which added to the drugs inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-βCD). The stability constants for furosemide/HP-βCD and ranitidine HCl/HP-βCD were calculated as 335 M(-1) and 410 M(-1), whereas the association efficiencies (AE%) of the drugs/HP-βCD inclusion complexes with CS-NPs were determined to be 23.0 and 19.5%, respectively. Zetasizer and scanning electron microscopy (SEM) were used to characterise drugs/HP-βCD-NPs size and morphology. Transport of both nano and non-nano formulations of drugs/HP-βCD complexes across a Caco-2 cell monolayer was assessed and fitted to mathematical models. Furosemide/HP-βCD-NPs demonstrated transport kinetics best suited for the Higuchi model, whereas other drug formulations demonstrated power law transportation behaviour. Permeability experiments revealed that furosemide/HP-βCD and ranitidine HCl/HP-βCD nano formulations greatly induce the opening of tight junctions and enhance drug transition through Caco-2 monolayers. Copyright © 2011 Elsevier B.V. All rights reserved.
Xi, Jun-zuan; Qian, Da-wei; Duan, Jin-ao; Liu, Pei; Zhu, Yue; Zhu, Zhen-hua; Zhang, Li
2015-08-01
Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.
Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.
Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana
2016-12-01
β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.
Gil, Eun Seok; Wu, Linfeng; Xu, Lichong; Lowe, Tao Lu
2012-11-12
Novel biodegradable polymeric nanoparticles composed of β-cyclodextrin and poly(β-amino ester) segments have been developed for sustained drug delivery across the blood-brain barrier (BBB). The nanoparticles have been synthesized by cross-linking β-cyclodextrin with poly(β-amino ester) via the Michael addition method. The chemical, physical, and degradation properties of the nanoparticles have been characterized by matrix-assisted laser desoption/ionization time-of-flight, attenuated total reflectance Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and atomic force microscopy techniques. Bovine and human brain microvascular endothelial cell monolayers have been constructed as in vitro BBB models. Preliminary results show that the nanoparticles do not affect the integrity of the in vitro BBB models, and the nanoparticles have much higher permeability than dextran control across the in vitro BBB models. Doxorubicin has been loaded into the nanoparticles with a loading efficiency of 86%, and can be released from the nanoparticles for at least one month. The developed β-cyclodextrin-poly(β-amino ester) nanoparticles might be useful as drug carriers for transporting drugs across the BBB to treat chronic diseases in the brain.
Dos Santos, Andreia G; Bayiha, Jules César; Dufour, Gilles; Cataldo, Didier; Evrard, Brigitte; Silva, Liana C; Deleu, Magali; Mingeot-Leclercq, Marie-Paule
2017-10-01
Budesonide (BUD), a poorly soluble anti-inflammatory drug, is used to treat patients suffering from asthma and COPD (Chronic Obstructive Pulmonary Disease). Hydroxypropyl-β-cyclodextrin (HPβCD), a biocompatible cyclodextrin known to interact with cholesterol, is used as a drug-solubilizing agent in pharmaceutical formulations. Budesonide administered as an inclusion complex within HPβCD (BUD:HPβCD) required a quarter of the nominal dose of the suspension formulation and significantly reduced neutrophil-induced inflammation in a COPD mouse model exceeding the effect of each molecule administered individually. This suggests the role of lipid domains enriched in cholesterol for inflammatory signaling activation. In this context, we investigated the effect of BUD:HPβCD on the biophysical properties of membrane lipids. On cellular models (A549, lung epithelial cells), BUD:HPβCD extracted cholesterol similarly to HPβCD. On large unilamellar vesicles (LUVs), by using the fluorescent probes diphenylhexatriene (DPH) and calcein, we demonstrated an increase in membrane fluidity and permeability induced by BUD:HPβCD in vesicles containing cholesterol. On giant unilamellar vesicles (GUVs) and lipid monolayers, BUD:HPβCD induced the disruption of cholesterol-enriched raft-like liquid ordered domains as well as changes in lipid packing and lipid desorption from the cholesterol monolayers, respectively. Except for membrane fluidity, all these effects were enhanced when HPβCD was complexed with budesonide as compared with HPβCD. Since cholesterol-enriched domains have been linked to membrane signaling including pathways involved in inflammation processes, we hypothesized the effects of BUD:HPβCD could be partly mediated by changes in the biophysical properties of cholesterol-enriched domains. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of β-cyclodextrin derivatives on the diosgenin absorption in Caco-2 cell monolayer and rats.
Okawara, Masaki; Tokudome, Yoshihiro; Todo, Hiroaki; Sugibayashi, Kenji; Hashimoto, Fumie
2014-01-01
Orally administrated diosgenin, a steroidal saponin found in the roots of Dioscorea villosa, improves reduced skin thickness in ovariectomized mice, and plays an important role in the treatment of hyperlipidemia. Diosgenin has been noticed as an active element in cosmeceutical and dietary supplements. We have already elucidated that the absolute oral bioavailability of diosgenin is very low; however, a high skin distribution of diosgenin was also observed. The aim of the present study was to examine and compare the effects of β-cyclodextrin (β-CD) and 3 kinds of its derivatives such as hydroxypropyl β-CD on the diosgenin permeability using a Caco-2 model and rat jejunal perfusion. These derivatives of β-CD greatly improved the low solubility of diosgenin. No significant increase was observed in the lactate dehydrogenase leakage from Caco-2 cell, while a slight decrease was found on the transepithelial electrical resistance by diosgenin and β-CD derivatives. However, β-CD derivatives, especially hydroxyethyl β-CD and hydroxypropyl β-CD, markedly enhanced diosgenin permeability across the Caco-2 monolayer and rat jejunum. The bioavailability of diosgenin in the presence of β-CD derivatives were about 4 to 11 fold higher than diosgenin suspension. The mechanisms of these enhancement effects may be due to improvements in solubility and tight junction opening.
Reversible and oriented immobilization of ferrocene-modified proteins.
Yang, Lanti; Gomez-Casado, Alberto; Young, Jacqui F; Nguyen, Hoang D; Cabanas-Danés, Jordi; Huskens, Jurriaan; Brunsveld, Luc; Jonkheijm, Pascal
2012-11-21
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
Supramolecular Systems Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.
NASA Astrophysics Data System (ADS)
Sandoval, C.; Saavedra, M.; Gargallo, L.; Radić, D.
2008-08-01
Atomistic molecular dynamics simulation (MDS) was development to investigate the structural and dynamic properties of a monolayer of supramolecular systems. The simulations were performed at room temperature, on inclusion complexes (ICs) of α-cyclodextrin (CD) with poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF). The simulations were carried out for a surface area of 30Å. The trajectories of the MDS show that the system more stable was IC-PEC, being the less stable IC-PEO. The disordered monolayer for the systems was proved by the orientation correlation function and the radial distribution function between the polar groups of ICs and the water molecules. We found that the system IC-PEC was more stable that the systems IC-PTHF and IC-PEO.
Cugovčan, Martina; Jablan, Jasna; Lovrić, Jasmina; Cinčić, Dominik; Galić, Nives; Jug, Mario
2017-04-15
Mechanochemical activation using several different co-grinding additives was applied as a green chemistry approach to improve physiochemical and biopharmaceutical properties of praziquantel (PZQ). Liquid assisted grinding with an equimolar amount of citric acid (CA), malic acid (MA), salicylic acid (SA) and tartaric acid (TA) gained in cocrystal formation, which all showed pH-dependent solubility and dissolution rate. However, the most soluble cocrystal of PZQ with MA was chemically unstable, as seen during the stability testing. Equimolar cyclodextrin complexes prepared by neat grinding with amorphous hydroxypropyl-β-cyclodextrin (HPβCD) and randomly methylated β-cyclodextrin (MEβCD) showed the highest improvement in drug solubility and the dissolution rate, but only PZQ/HPβCD product presented an acceptable chemical and photostability profile. A combined approach, by co-grinding the drug with both MA and HPβCD in equimolar ratio, also gave highly soluble amorphous product which again was chemical instable and therefore not suitable for the pharmaceutical use. Studies on Caco-2 monolayer confirmed the biocompatibility of PZQ/HPβCD complex and showed that complexation did not adversely affect the intrinsically high PZQ permeability (P app (PZQ)=(3.72±0.33)×10 -5 cms -1 and P app (PZQ/HPβCD)=(3.65±0.21)×10 -5 cms -1 ; p>0.05). All this confirmed that the co-grinding with the proper additive is as a promising strategy to improve biopharmaceutical properties of the drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Ramstedt, B; Slotte, J P
1999-01-01
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells. PMID:9929492
A Selective and Regenerable Surface Based on β-Cyclodextrin for Low-Density Lipoprotein Adsorption.
Fang, Fei; Huang, Xiao-Jun; Guo, Yi Zong; Hong, Xiao; Wu, Hui Min; Liu, Rong; Chen, Da Jing
2018-06-20
Cyclodextrins (CDs) are a family of cyclic oligosaccharides and its unique hydrophilic outer surface and lipophilic central cavity facilitate the formation of inclusion complexes with various biomolecules, such as cholesterol and phospholipids, via multi-interactions. Low-density lipoprotein (LDL) is the main carrier of cholesterol in bloodstream and is associated with the progression of atherosclerosis. The surface of LDL is composed of a shell of phospholipids monolayer containing most of the free unesterified cholesterol, as well as the single copy of apolipoprotein B-100. Till date, various LDL adsorbents have been fabricated to interact with the biomolecules on LDL surface. Owing to its elegant structure, CD is considered to be a promising choice for preparation of more economical and effective LDL-adsorbing materials. Therefore, in this study, interaction between β-CD and LDL in solution was investigated by dynamic light scattering, circular dichroism, and ultraviolet spectroscopy. Further, a supramolecular surface based on β-CD was simply prepared by self-assembled monolayer on gold surface. The effect of hydrogen bond and the cavity of β-CD on the interaction between β-CD and LDL was particularly explored by surface plasmon resonance (SPR) analysis. The SPR results showed that such β-CD-modified surface exhibited good selectivity and could be largely regenerated by sodium dodecyl sulfate wash. This study may extend the understanding of the interaction between LDL and LDL adsorbent, or the design and development of more efficient and lower cost LDL adsorbents in the future.
Beig, Avital; Agbaria, Riad; Dahan, Arik
2013-01-01
The purpose of this study was to investigate the impact of oral cyclodextrin-based formulation on both the apparent solubility and intestinal permeability of lipophilic drugs. The apparent solubility of the lipophilic drug dexamethasone was measured in the presence of various HPβCD levels. The drug’s permeability was measured in the absence vs. presence of HPβCD in the rat intestinal perfusion model, and across Caco-2 cell monolayers. The role of the unstirred water layer (UWL) in dexamethasone’s absorption was studied, and a simplified mass-transport analysis was developed to describe the solubility-permeability interplay. The PAMPA permeability of dexamethasone was measured in the presence of various HPβCD levels, and the correlation with the theoretical predictions was evaluated. While the solubility of dexamethasone was greatly enhanced by the presence of HPβCD (K1∶1 = 2311 M−1), all experimental models showed that the drug’s permeability was significantly reduced following the cyclodextrin complexation. The UWL was found to have no impact on the absorption of dexamethasone. A mass transport analysis was employed to describe the solubility-permeability interplay. The model enabled excellent quantitative prediction of dexamethasone’s permeability as a function of the HPβCD level. This work demonstrates that when using cyclodextrins in solubility-enabling formulations, a tradeoff exists between solubility increase and permeability decrease that must not be overlooked. This tradeoff was found to be independent of the unstirred water layer. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. PMID:23874557
Lee, Yong-Seung; Lee, Seunghyung; Lee, Sang-Hee; Yang, Boo-Keun; Park, Choon-Keun
2015-08-01
This study was undertaken to examine the effect of cholesterol-loaded-cyclodextrin (CLC) on boar sperm viability and spermatozoa cryosurvival during boar semen cryopreservation, and methyl-β-cyclodextrin (MBCD) was treated for comparing with CLC. Boar semen treated with CLC and MBCD before freezing process to monitor the effect on survival and capacitation status by flow cytometry with appropriate fluorescent probes. Sperm viability was higher in 1.5mg CLC-treated sperm (76.9±1.01%, P<0.05) than un-treated and MBCD-treated sperm before cryopreservation (58.7±1.31% and 60.3±0.31%, respectively). For CTC patterns, F-pattern was higher in CLC treated sperm than MBCD-treated sperm, for B-pattern was higher in CLC-treated sperm than fresh sperm (P<0.05). For AR pattern (an acrosome-reacted sperm) was lower in CLC-treated sperm than MBCD-treated sperm (P<0.05). Moreover, we examined in vitro development of porcine oocytes after in vitro fertilization using CLC-treated frozen-thawed semen, in which CLC treatment prior to freezing and thawing increased the development of oocytes to blastocyst stage in vitro. In conclusion, CLC could protect the viability of spermatozoa from cryodamage prior to cryopreservation in boar semen. Copyright © 2015 Elsevier B.V. All rights reserved.
Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; ...
2016-05-27
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less
Ryu, Yong-Sang; Wittenberg, Nathan J.; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N.; Lee, Sin-Doo
2016-01-01
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates. PMID:27230411
Polystyrene nanoparticle trafficking across MDCK-II
Fazlollahi, Farnoosh; Angelow, Susanne; Yacobi, Nazanin R.; Marchelletta, Ronald; Yu, Alan S.L.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.
2011-01-01
Polystyrene nanoparticles (PNP) cross rat alveolar epithelial cell monolayers via non-endocytic transcellular pathways. To evaluate epithelial cell type-specificity of PNP trafficking, we studied PNP flux across Madin Darby canine kidney cell II monolayers (MDCK-II). Effects of calcium chelation (EGTA), energy depletion (sodium azide (NaN3) or decreased temperature), and endocytosis inhibitors methyl-β-cyclodextrin (MBC), monodansylcadaverine and dynasore were determined. Amidine-modified PNP cross MDCK-II 500 times faster than carboxylate-modified PNP. PNP flux did not increase in the presence of EGTA. PNP flux at 4°C and after treatment with NaN3 decreased 75% and 80%, respectively. MBC exposure did not decrease PNP flux, whereas dansylcadaverine- or dynasore-treated MDCK-II exhibited ~80% decreases in PNP flux. Confocal laser scanning microscopy revealed intracellular colocalization of PNP with clathrin heavy chain. These data indicate that PNP translocation across MDCK-II (1) occurs via clathrin-mediated endocytosis and (2) is dependent upon PNP physicochemical properties. We conclude that uptake/trafficking of nanoparticles into/across epithelia is dependent both on properties of the nanoparticles and the specific epithelial cell type. PMID:21310266
2015-08-24
microcontact printing techniques to deposit and pattern intrinsically polar self - assembled monolayers (SAMs) on smooth template-stripped gold films...and large piezoresponse. Stamp Stamp Gold Gold 10 μm 10 μ m 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 nm Fig. 7. Patterned self - assembled monolayers of...SAM. Importantly, deposition and patterning of thiol self - assembled monolayers on gold surfaces is facile, creating in intrinsically polar film for
Patterning of Functional Antibodies and Other Proteins by Photolithography of Silane Monolayers
NASA Astrophysics Data System (ADS)
Mooney, J. F.; Hunt, A. J.; McIntosh, J. R.; Liberko, C. A.; Walba, D. M.; Rogers, C. T.
1996-10-01
We have demonstrated the assembly of two-dimensional patterns of functional antibodies on a surface. In particular, we have selectively adsorbed micrometer-scale regions of biotinylated immunoglobulin that exhibit specific antigen binding after adsorption. The advantage of this technique is its potential adaptability to adsorbing arbitrary proteins in tightly packed monolayers while retaining functionality. The procedure begins with the formation of a self-assembled monolayer of n-octadecyltrimethoxysilane (OTMS) on a silicon dioxide surface. This monolayer can then be selectively removed by UV photolithography. Under appropriate solution conditions, the OTMS regions will adsorb a monolayer of bovine serum albumin (BSA), while the silicon dioxide regions where the OTMS has been removed by UV light will adsorb less than 2% of a monolayer, thus creating high contrast patterned adsorption of BSA. The attachment of the molecule biotin to the BSA allows the pattern to be replicated in a layer of streptavidin, which bonds to the biotinylated BSA and in turn will bond an additional layer of an arbitrary biotinylated protein. In our test case, functionality of the biotinylated goat antibodies raised against mouse immunoglobulin was demonstrated by the specific binding of fluorescently labeled mouse IgG.
Intranasal Administration of PACAP: Uptake by Brain and Brain Region Targeting with Cyclodextrins
Nonaka, Naoko; Farr, Susan A.; Nakamachi, Tomoya; Morley, John E.; Nakamura, Masanori; Shioda, Seiji; Banks, William A.
2012-01-01
Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent neurotrophic and neuroprotectant that is transported across the blood-brain barrier in amounts sufficient to affect brain function. However, its short half-life in blood makes it difficult to administer peripherally. Here, we determined whether the radioactively labeled 38 amino acid form of PACAP can enter the brain after intranasal (i.n.) administration. Occipital cortex and striatum were the regions with the highest uptake, peaking at levels of about 2-4 percent of the injected dose per g of brain region. Inclusion of unlabeled PACAP greatly increased retention of I-PACAP by brain probably because of inhibition of the brain-to-blood efflux transporter for PACAP located at the blood-brain barrier. Sufficient amounts of PACAP could be delivered to the brain to affect function as shown by improvement of memory in aged SAMP8 mice, a model of Alzheimer’s disease. We found that each of three cyclodextrins when included in the i.n. injection produced a unique distribution pattern of I-PACAP among brain regions. As examples, β-cyclodextrin greatly increased uptake by the occipital cortex and hypothalamus, α-cyclodextrin increased uptake by the olfactory bulb and decreased uptake by the occipital cortex and striatum, and (2-hydropropyl)-β-cyclodextrin increased uptake by the thalamus and decreased uptake by the striatum. These results show that therapeutic amounts of PACAP can be delivered to the brain by intranasal administration and that cyclodextrins may be useful in the therapeutic targeting of peptides to specific brain regions. PMID:22687366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less
Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory
ERIC Educational Resources Information Center
McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.
2004-01-01
An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.
Elaboration of antibiofilm surfaces functionalized with antifungal-cyclodextrin inclusion complexes.
Gharbi, Aïcha; Humblot, Vincent; Turpin, Frédéric; Pradier, Claire-Marie; Imbert, Christine; Berjeaud, Jean-Marc
2012-07-01
To tackle the loss of activity of surfaces functionalized by coating and covalently bound molecules to materials, an intermediate system implying the noncovalent immobilization of active molecules in the inner cavity of grafted cyclodextrins (CDs) was investigated. The antifungal and antibiofilm activities of the most stable complexes of Anidulafungin (ANF; echinocandin) and thymol (THY; terpen) in various CDs were demonstrated to be almost the same as the free molecules. The selected CD was covalently bond to self-assembled monolayers on gold surfaces. The immobilized antifungal agents reduced the number of culturable Candida albicans ATCC 3153 attached to the surface by 64 ± 8% for ANF and 75 ± 15% for THY. The inhibitory activity was persistent for THY-loaded samples, whereas it was completely lost for ANF-loaded surfaces after one use. However, reloading of the echinocandin restored the activity. Using fluorescent dying and confocal microscopy, it was proposed that the ANF-loaded surfaces inhibited the adherence of the yeasts, whereas the activity of immobilized THY was found fungicidal. This kind of tailored approach for functionalizing surfaces that could allow a progressive release of ANF or THY gave promising results but still needs to be improved to display a full activity. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Donkuru, McDonald; Chitanda, Jackson M; Verrall, Ronald E; El-Aneed, Anas
2014-04-15
This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel β-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the β-cyclodextrin-substituted gemini surfactants, a β-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer. Detection of the precursor ion [M](2+) species of the synthesized compounds and the determination of mass accuracies were conducted using a QqTOF-MS instrument. A multi-stage tandem MS analysis of the detected [M](2+) species was conducted using the QqQ-LIT-MS instrument. Both instruments were equipped with an electrospray ionization (ESI) source. Abundant precursor ion [M](2+) species were detected for all compounds at sub-1 ppm mass accuracies. The β-cyclodextrin-substituted compounds, fragmented via two main pathways: Pathway 1: the loss of one head-tail region produces a [M-(N(Me)2-R)](2+) ion, from which sugar moieties (Glc) are sequentially cleaved; Pathway 2: both head-tail regions are lost to give [M-2(N(Me)2-R)](+), followed by consecutive loss of Glc units. Alternatively, the cleavage of the Glc units could also have occurred simultaneously. Nevertheless, the fragmentation evolved around the quaternary ammonium cations, with characteristic cleavage of Glc moieties. For the bis-pyridinium gemini compounds, they either lost neutral pyridine(s) to give doubly charged ions (Pathway A) or formed complementary pyridinium alongside other singly charged ions (Pathway B). Similar to β-cyclodextrin-substituted compounds, the fragmentation was centered on the pyridinium functional groups. The MS(n) analyses of these novel gemini surfactants, reported here for the first time, revealed diagnostic ions for each compound, with a universal fragmentation pattern for each compound series. The diagnostic ions will be employed within liquid chromatography (LC)/MS/MS methods for screening, identification, and quantification of these compounds within biological samples. Copyright © 2014 John Wiley & Sons, Ltd.
Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guole; Wu, Shuang; Zhang, Tingting
2016-08-01
Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps atmore » liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.« less
Ikuta, Naoko; Sugiyama, Hironori; Shimosegawa, Hiroshi; Nakane, Rie; Ishida, Yoshiyuki; Uekaji, Yukiko; Nakata, Daisuke; Pallauf, Kathrin; Rimbach, Gerald; Terao, Keiji; Matsugo, Seiichi
2013-01-01
R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD. PMID:23434662
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
Xu, Miao; Li, Haolong; Zhang, Liying; Wang, Yizhan; Yuan, Yuan; Zhang, Jianming; Wu, Lixin
2012-10-16
In this paper, four organic-inorganic hybrid complexes were prepared using a cationic surfactant dimethyldioctadecylammonium (DODA) to replace the counter cations of four Keggin-type polyoxometalate (POM) clusters with gradually increased negative charges, PW(12)O(40)(3-), SiW(12)O(40)(4-), BW(12)O(40)(5-), and CoW(12)O(40)(6-). The formed surfactant-encapsulated POM (SEP) complexes showed typical amphiphilic properties and can be spread onto the air-water interface to form Langmuir monolayers. The interfacial behavior of the SEP monolayer films was systemically studied by multiple in situ and ex situ characterization methods including Brewster angle microscopy (BAM), atomic force microscopy (AFM), reflection-absorption infrared (RAIR), and X-ray photoelectron spectroscopy (XPS). We found that the increasing alkyl chain density of SEPs leads to an enhanced stability and a higher collapse pressure of SEP Langmuir monolayers. Moreover, a second layer evolved as patterns from the initial monolayers of all the SEPs, when the surface pressures approached the collapse values. The rational combination of alkyl chain density and surface pressure can precisely control the size and the morphology of SEP patterns transforming from disk-like to leaf-like structures on a micrometer scale. The pattern formation was demonstrated to be driven by the self-optimized surface energy of SEP monolayers. This finding can direct a new strategy for the fabrication of POM-hybrid films with controllable patterns, which should be instructive for designing POM-based thin film devices.
Ikeda, Saiko; Uchida, Tomono; Ichikawa, Tomio; Watanabe, Takashi; Uekaji, Yukiko; Nakata, Daisuke; Terao, Keiji; Yano, Tomohiro
2010-01-01
To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.
Amphiphilic Cyclodextrin Derivatives for Targeted Drug Delivery to Tumors.
Erdogar, Nazlı; Varan, Gamze; Bilensoy, Erem
2017-01-01
Villiers has extensively studied cyclodextrins, a family of macrocyclic oligosaccharides linked by α-1,4 glycosidic bonds, in different fields since their discovery in 1891. The unique structure enabling inclusion complexation for natural cyclodextrins and cyclodextrin derivatives make them attractive for novel drug delivery systems. Cyclodextrins can be modified with long aliphatic chains to render an amphiphilic property and these different amphiphilic cyclodextrins are able to form nanoparticles without surfactants. In the literature, several different amphiphilic cyclodextrins are reported and applied to drug delivery and targeting especially to tumors. Specificly, folateconjugated amphiphilic cyclodextrin derivatives are used for active tumor targeting of poorly water soluble drugs and improve the efficacy and safety of therapeutic agents. On the other hand, effect of positive surface charge has also been under research in the recent years. Polycationic amphiphilic cyclodextrins have shown promise towards forming small complexes with negatively charged molecules such as drugs or plasmid DNA. Polycationic amphiphilic cyclodextrins enhance interaction with cell membrane due to their net positive surface charge. The scope of this review is to describe potential uses and pharmaceutical applications of tumor-targeted amphiphilic cyclodextrins, with focus on folate-conjugated cyclodextrin derivatives and polycationic cyclodextrin derivatives both studied by our group at Hacettepe University. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas
2009-06-01
Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.
Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Locatelli, Marcello; De Luca, Elisa; Tiecco, Matteo; Germani, Raimondo; Menghini, Luigi; Nocentini, Alessio; Gratteri, Paola; Campestre, Cristina
2018-05-01
For the determination of harpagoside and the wide phenolic pattern in Harpagophytum procumbens root and its commercial food supplements, dispersive liquid-liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid-liquid extraction (SULLE) were tested and compared. In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid). The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing H. procumbens are commercially available in Italy. The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of β-cyclodextrin or 15% of sodium chloride. All commercial samples respected the European Pharmacopoeia monograph for this plant material, showing a harpagoside content ≥ 1.2%. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Trofymchuk, Iryna; Roik, Nadiia; Belyakova, Lyudmila
2017-04-01
In this research, we report on the synthesis of mesoporous silicas with various quantities of immobilized oligosaccharide groups and different pore ordering degree. The hydrothermal co-condensation of tetraethyl orthosilicate and β-cyclodextrin-containing organosilane in the presence of cetyltrimethylammonium bromide template was employed. The purpose of this investigation was to show the opportunity of increasing β-cyclodextrin content in silica matrix by changing the molar ratio of initial reagents during organosilane synthesis and to determine whether the enhancing of immobilized groups on the surface influences on model aromatic compound adsorption from water. It was prepared several β-cyclodextrin-organosilanes by modification of (3-aminopropyl)triethoxysilane with oligosaccharide (the molar composition of reaction mixtures were 1:1, 3:1, and 5:1) with using N, N'-carbonyldiimidazole as linking agent. Three types of MCM-41 materials were obtained with 0.018, 0.072, and 0.095 mmol g-1 β-cyclodextrin-group loading according to chemical analysis of silicas. The IR spectroscopy and potentiometric titration were also performed to confirm the presence of functional groups in the silica matrix. Nitrogen sorptometry experiments exhibited the decrease of high surface area (from 812 to 457 m2 g-1) and the average pore diameter (from 1.06 to 0.60 cm3 g-1) of synthesized silicas with increasing of immobilized oligosaccharide groups. The influence of β-cyclodextrin-organosilane presence on the forming of hexagonally arranged porous structure of silicas was evaluated by X-ray diffraction and TEM analyses. As the loading of oligosaccharide groups increases in obtained silicas, the (100) reflex in diffraction patterns is even less intense and broader, denoting the decrease of long-range pore ordering. Adsorption experiments were carried out to study the effect of β-cyclodextrin groups' attendance in silica matrix on benzene uptakes from aqueous solutions. Experimental kinetic curves of benzene adsorption on synthesized silicas were compared with theoretical models of Lagergren and Ho-McKay for pseudo-first and pseudo-second-order processes. Langmuir and Freundlich isotherm models were used to evaluate adsorption processes and parameters. Obtained β-cyclodextrin-containing MCM-41 silicas demonstrate adsorption level performance of known samples and could be very promising for benzene uptakes from aqueous solutions in water treatment processes.
Cho, Hyun-Jong; Balakrishnan, Prabagar; Shim, Won-Sik; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk
2010-11-15
The aim of this study was to prepare microparticles (MPs) of granisetron (GRN) in combination with hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium carboxymethylcellulose (CMC-Na) by the simple freeze-drying method for intranasal delivery. The composition of MPs was determined from the phase-solubility study of GRN in various CDs. Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis and differential scanning calorimetry (DSC) studies were performed to evaluate possible interactions between GRN and excipients. The results indicated the formation of inclusion complex between GRN and CD, and the conversion of drug into amorphous state. The in vitro release of GRN from MPs was determined in phosphate buffered saline (pH 6.4) at 37°C. Cytotoxicity of the MPs and in vitro permeation study were conducted by using primary human nasal epithelial (HNE) cells and their monolayer system cultured by air-liquid interface (ALI) method, respectively. The MPs showed significantly higher GRN release profile compared to pure GRN. Moreover, the prepared MPs showed significantly lower cytotoxicity and higher permeation profile than that of GRN powder (p<0.05). These results suggested that the MPs composed of GRN, HP-β-CD and CMC-Na represent a simple and new GRN intranasal delivery system as an alternative to the oral and intravenous administration of GRN. Copyright © 2010 Elsevier B.V. All rights reserved.
Taub, Mitchell E; Kristensen, Lisbeth; Frokjaer, Sven
2002-05-01
The solubility enhancing effects of various excipients, including their compatibility with in vitro permeability (P(app)) systems, was investigated using drugs representative of Biopharmaceutics Classification System (BCS) classes I-IV. Turbidimetric solubility determination using nephelometry and transport experiments using MDCK Strain I cell monolayers were employed. The highest usable concentration of each excipient [dimethyl sulfoxide (DMSO), ethanol, hydroxypropyl-beta-cyclodextrin (HPCD), and sodium taurocholate] was determined by monitoring apical (AP) to basolateral (BL) [14C]mannitol apparent permeability (P(app)) and the transepithelial electrical resistance (TEER) in transport experiments done at pH 6.0 and 7.4. The excipients were used in conjunction with compounds demonstrating relatively low aqueous solubility (amphotericin B, danazol, mefenamic acid, and phenytoin) in order to obtain a drug concentration >50 microM in the donor compartment. The addition of at least one of the selected excipients enhanced the solubility of the inherently poorly soluble compounds to >50 microM as determined via turbidimetric evaluation at pH 6.0 and 7.4. Ethanol and DMSO were found to be generally disruptive to the MDCK monolayer and were not nearly as useful as HPCD and sodium taurocholate. Sodium taurocholate (5 mM) was compatible with MDCK monolayers under all conditions investigated. Additionally, a novel in vitro system aimed at more accurately simulating in vivo conditions, i.e., a pH gradient (6.0 AP/7.4 BL), sodium taurocholate (5 mM, AP), and bovine serum albumin (0.25%, BL), was shown to generate more reliable P(app) values for compounds that are poorly soluble and/or highly protein bound.
(13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.
Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G
2015-06-05
(13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Buchanan, Charles M; Alderson, Susan R; Cleven, Curtis D; Dixon, Daniel W; Ivanyi, Robert; Lambert, Juanelle L; Lowman, Douglas W; Offerman, Rick J; Szejtli, Jozsef; Szente, Lajos
2002-03-15
We have examined the synthesis of hydroxybutenyl cyclomaltooligosaccharides (cyclodextrins) and the ability of these cyclodextrin ethers to form guest-host complexes with guest molecules. The hydroxybutenyl cyclodextrin ethers were prepared by a base-catalyzed reaction of 3,4-epoxy-1-butene with the parent cyclodextrins in an aqueous medium. Reaction byproducts were removed by nanofiltration before the hydroxybutenyl cyclodextrins were isolated by co-evaporation of water-EtOH. Hydroxybutenyl cyclodextrins containing no unsubstituted parent cyclodextrin typically have a degree of substitution of 2-4 and a molar substitution of 4-7. These hydroxybutenyl cyclodextrins are randomly substituted, amorphous solids. The hydroxybutenyl cyclodextrin ethers were found to be highly water soluble. Complexes of HBen-beta-CD with glibenclamide and ibuprofen were prepared and isolated. In both cases, the guest content of the complexes was large, and a significant increase in the solubility of the free drug was observed. Dissolution of the complexes in pH 1.4 water was very rapid, and significant increases in the solubility of the free drugs were observed. Significantly, after reaching equilibrium concentration, a decrease in the drug concentration over time was not observed.
Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine.
Aktaş, Yeşim; Unlü, Nurşen; Orhan, Mehmet; Irkeç, Murat; Hincal, A Atilla
2003-02-01
The influence of hydroxypropyl beta-cyclodextrin (HPbetaCD) on the corneal permeation of pilocarpine nitrate was investigated by an in vitro permeability study using isolated rabbit cornea. Pupillary-response pattern to pilocarpine nitrate with and without HPbetaCD was examined in rabbit eye. Corneal permeation of pilocarpine nitrate was found to be four times higher after adding HPbetaCD into the formulation. The reduction of pupil diameter (miosis) by pilocarpine nitrate was significantly increased as a result of HPbetaCD addition into the simple aqueous solution of the active substance. The highest miotic response was obtained with the formulation prepared in a vehicle of Carbopol 940. It is suggested that ocular bioavailability of pilocarpine nitrate could be improved by the addition of HPbetaCD.
Liu, Yu; Chen, Guo-Song; Chen, Yong; Lin, Jun
2005-06-02
The inclusion complexation behavior of azadirachtin with several cyclodextrins and their methylated derivatives has been investigated in both solution and the solid state by means of XRD, TG-DTA, DSC, NMR, and UV-vis spectroscopy. The results show that the water solubility of azadirachtin was obviously increased after resulting inclusion complex with cyclodextrins. Typically, beta-cyclodextrin (beta-CD), dimethyl-beta-cyclodextrin (DMbetaCD), permethyl-beta-cyclodextrin (TMbetaCD), and hydroxypropyl-beta-cyclodextrin (HPbetaCD) are found to be able to solubilize azadirachtin to high levels up to 2.7, 1.3, 3.5, and 1.6 mg/mL (calculated as azadirachtin), respectively. This satisfactory water solubility and high thermal stability of the cyclodextrin-azadirachtin complexes, will be potentially useful for their application as herbal medicine or healthcare products.
Javierre, Isabelle; Nedyalkov, Mickael; Petkova, Vera; Benattar, Jean Jacques; Weisse, Sandrine; Auzély-Velty, Rachel; Djedaïni-Pilard, Florence; Perly, Bruno
2002-10-01
Recently, new cyclodextrin derivatives were synthesized and shown to exhibit strong amphiphilic properties. In this paper, we study the action of these new amphiphilic cyclodextrins on phospholipids. Mixed phospholipid/cyclodextrin derivative films were prepared and studied using X-ray reflectivity for various phospholipid/cyclodextrin ratios. A molar ratio of 3 provides a highly stable film the molecular structure of which has been investigated in detail. The cholesterol tail of the cyclodextrin molecule was found to be anchored into the phospholipid film. The cyclodextrin moieties exposed to the aqueous medium are prone to the addition of the guest molecule Dosulepin, making them of high interest for drug delivery. For this purpose and as an example of a potential application, this cyclodextrin molecular carrier property is also addressed to this complex film architecture.
Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels.
Woldum, Henriette Sie; Larsen, Kim Lambertsen; Madsen, Flemming
2008-01-01
The effect of 2-hydroxypropyl-beta-cyclodextrin and gamma-cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all gamma-cyclodextrin complexes was limited. The load also was increased by adjusting pH for the acidic drugs and this exceeds the increase obtained with gamma-cyclodextrin addition.
Bole-Vunduk, B; Verhnjak, K; Zmitek, J
1996-11-01
The anti-inflammatory, analgesic and gastric mucosal damage-inducing activities of S-(+)-ibuproxam, and S-(+)-ibuproxam-beta-cyclodextrin, new propionic acid derivatives, and racemic ibuproxam-beta-cyclodextrin were investigated in three animal models and compared with those of racemic ibuproxam, racemic ibuprofen and its optical enantiomer S-(+)-ibuprofen. The anti-inflammatory activities of racemic ibuprofen, S-(+)-ibuprofen and racemic ibuproxam in carrageenan-induced paw oedema in rats were almost equipotent and slightly greater than those of S-(+)-ibuproxam and S-(+)-ibuproxam-beta-cyclodextrin, and significantly greater than that of racemic ibuproxam-beta-cyclodextrin. In abdominal constriction tests in mice, the analgesic effects of racemic ibuproxam, S-(+)-ibuproxam, racemic ibuproxam-beta-cyclodextrin and S-(+)-ibuproxam-beta-cyclodextrin were significantly less pronounced than those of racemic ibuprofen and S-(+)-ibuprofen. Ulcerogenic activity of S-(+)-ibuproxam-beta-cyclodextrin in rats was found to be significantly weaker than that of racemic ibuproxam-beta-cyclodextrin, racemic ibuproxam and S-(+)-ibuproxam and, most notably, weaker than those of racemic ibuprofen and S-(+)ibuprofen. These results indicate that S-(+)-ibuproxam-beta-cyclodextrin could be a novel potent anti-inflammatory and analgesic agent with a therapeutic index more favourable than that of the classical non-steroid anti-inflammatory drugs ibuprofen and ibuproxam.
Wang, Yuchun; Du, Xuezhong
2006-07-04
The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.
2015-01-01
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727
Intercellular ice propagation: experimental evidence for ice growth through membrane pores.
Acker, J P; Elliott, J A; McGann, L E
2001-01-01
Propagation of intracellular ice between cells significantly increases the prevalence of intracellular ice in confluent monolayers and tissues. It has been proposed that gap junctions facilitate ice propagation between cells. This study develops an equation for capillary freezing-point depression to determine the effect of temperature on the equilibrium radius of an ice crystal sufficiently small to grow through gap junctions. Convection cryomicroscopy and video image analysis were used to examine the incidence and pattern of intracellular ice formation (IIF) in the confluent monolayers of cell lines that do (MDCK) and do not (V-79W) form gap junctions. The effect of gap junctions on intracellular ice propagation was strongly temperature-dependent. For cells with gap junctions, IIF occurred in a directed wave-like pattern in 100% of the cells below -3 degrees C. At temperatures above -3 degrees C, there was a marked drop in the incidence of IIF, with isolated individual cells initially freezing randomly throughout the sample. This random pattern of IIF was also observed in the V-79W monolayers and in MDCK monolayers treated to prevent gap junction formation. The significant change in the low temperature behavior of confluent MDCK monolayers at -3 degrees C is likely the result of the inhibition of gap junction-facilitated ice propagation, and supports the theory that gap junctions facilitate ice nucleation between cells. PMID:11509353
Predictions for partial and monolayer coverages of O2 on graphite
NASA Technical Reports Server (NTRS)
Pan, R. P.; Etters, R. D.; Kobashi, K.; Chandrasekharan, V.
1982-01-01
Monolayer properties of O2 on graphite are calculated using a pattern recognition, optimization scheme. Equilibrium monolayers are predicted at two different densities with properties in agreement with recent X-ray diffraction, specific heat, and neutron scattering data. Properties of the extremely low density regime are calculated using a model based upon a distribution of two-dimensional O2 clusters. The results are consistent with experimental evidence.
Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen
2013-11-27
A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.
Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
NASA Astrophysics Data System (ADS)
O'Brien, Maria; McEvoy, Niall; Hallam, Toby; Kim, Hye-Young; Berner, Nina C.; Hanlon, Damien; Lee, Kangho; Coleman, Jonathan N.; Duesberg, Georg S.
2014-12-01
Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components.
Wahl, Joachim; Furuishi, Takayuki; Yonemochi, Etsuo; Meinel, Lorenz; Holzgrabe, Ulrike
2017-04-01
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte-cyclodextrin-complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β-cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x-reciprocal, y-reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, methyl-β-cyclodextrin and 6-O-α-maltosyl-β-cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer-cyclodextrin-complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β-cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Caiming; Huang, Min; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng
2014-04-02
A major disadvantage of cyclodextrin production is the limited thermostability of cyclodextrin glycosyltransferase. The ability of combinations of nanosilica sol with polyethylene glycol (PEG) 1000 to enhance the thermostability of the β-cyclodextrin glycosyltransferase from Bacillus circulans was investigated. It was found that 10% PEG 1000 combined with 0.05% nanosilica sol could activate the β-cyclodextrin glycosyltransferase by 17.2%. Furthermore, 0.05% nanosilica sol leads to further increase in PEG 1000-enhanced thermostability of β-cyclodextrin glycosyltransferase. With the simultaneous addition of 10% PEG 1000 and 0.05% nanosilica into the enzyme solution, which was allowed to incubate for 60 min at 60 °C, 61.3% of β-cyclodextrin-forming activity could be retained, which was much higher than that with only 10% PEG 1000 added. Atomic force microscopy, fluorescence spectroscopy, and circular dichroism analysis indicated that silica nanoparticles helped PEG 1000 further protect the tertiary and secondary structures of β-cyclodextrin glycosyltransferase. This study provides an effective approach for improving the thermostability of cyclodextrin glycosyltransferase and related enzymes.
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.
Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola
2017-12-01
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio
2012-05-02
Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society
Self-association and cyclodextrin solubilization of drugs.
Loftsson, Thorsteinn; Magnúsdóttir, Auethur; Másson, Már; Sigurjónsdóttir, Jóhanna F
2002-11-01
Phase-solubility diagrams are frequently used to calculate stoichiometry of drug/cyclodextrin complexes. Linear diagrams (A(L)-type systems) are thought to indicate that the complexes are first order with respect to cyclodextrin and first or higher order with respect to the drug. Positive deviation from linearity (A(P)-type systems) are thought to indicate formation of complexes that are first order with respect to the drug but second or higher order with respect to cyclodextrin. The phase solubility of several different compounds, i.e., cholesterol, ibuprofen, diflunisal, alprazolam, 17beta-estradiol and diethylstilbestrol, and various charged and uncharged cyclodextrins was investigated. Phase-solubility diagrams of cholesterol in aqueous cyclodextrin solutions were all of A(P) type. However, the phase-solubility diagrams obtained with charged cyclodextrins could not be fitted to complexes of second or higher order with respect to cyclodextrin. The phase-solubility diagrams of ibuprofen and diflunisal were of A(L) type with slope greater than unity indicating formation of 2:1 drug/cyclodextrin complexes. However, Job's plots and space filling docking studies indicated that 1:1 complexes were formed. These and other observations show that stoichiometry of drug/cyclodextrin complexes cannot be derived from simple phase-solubility studies. Furthermore, the results indicate that drug/cyclodextrin complexes can self-associate to form water-soluble aggregates, which then can further solubilize the drug through non-inclusion complexation. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2307-2316, 2002
Loftsson, Thorsteinn; Brewster, Marcus E
2011-09-01
Cyclodextrins are useful solubilizing excipients that have gained currency in the formulator's armamentarium based on their ability to temporarily camouflage undesirable physicochemical properties. In this context cyclodextrins can increase oral bioavailability, stabilize compounds to chemical and enzymatic degradation and can affect permeability through biological membranes under certain circumstances. This latter property is examined herein as a function of the published literature as well as work completed in our laboratories. Cyclodextrins can increase the uptake of drugs through biological barriers if the limiting barrier component is the unstirred water layer (UWL) that exists between the membrane and bulk water. This means that cyclodextrins are most useful when they interact with lipophiles in systems where such an UWL is present and contributes significantly to the barrier properties of the membrane. Furthermore, these principles are used to direct the optimal formulation of drugs in cyclodextrins. A second related critical success factor in the formulation of cyclodextrin-based drug product is an understanding of the kinetics and thermodynamics of complexation and the need to optimize the cyclodextrin amount and drug-to-cyclodextrin ratios. Drug formulations, especially those targeting compartments associated with limited dissolution (i.e. the eye, subcutaneous space, etc.), should be carefully designed such that the thermodynamic activity of the drug in the formulation is optimal meaning that there is sufficient cyclodextrin to solubilize the drug but not more than that. Increasing the cyclodextrin concentration decreases the formulation 'push' and may reduce the bioavailability of the system. A mechanism-based understanding of cyclodextrin complexation is essential for the appropriate formulation of contemporary drug candidates. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Post monitoring of a cyclodextrin remeditated chlorinated solvent contaminated aquifer
NASA Astrophysics Data System (ADS)
Blanford, W. J.
2006-12-01
Hydroxypropyl-â-cyclodextrin (HPâCD) has been tested successfully in the laboratory and in the field for enhanced flushing of low-polarity contaminants from aquifers. The cyclodextrin molecule forms a toroidal structure, which has a hydrophobic cavity. Within this cavity, organic compounds of appropriate shape and size can form inclusion complexes, which is the basis for the use of cyclodextrin in groundwater remediation. The hydrophilic exterior of the molecule makes cyclodextrin highly water-soluble. The solubility of cyclodextrins can be further enhanced by adding functional groups, such as hydroxypropyl groups, to the cyclodextrin core. The aqueous solubility of HPâCD exceeds 950 g/L. These high solubilities are advantageous for field applications because they permit relatively high concentrations of the flushing agent. In order for cyclodextrin to become a feasible remediative alternative, it must be demonstrate a short term resistance to biodegradation during field application, but ultimately biodegrade so as not to pose a long term presence in the aquifer. The potential for degradation of cyclodextrin as well as changes in the chlorinated solvents and groundwater geochemistry were examined during the post monitoring of a field demonstration in a shallow aquifer at Little Creek Naval Amphibious Base in Virginia. It was found that a portion of the cyclodextrin remaining in the aquifer after the cessation of field activities biodegraded during the 425 days of post monitoring. This degradation also led to the degradation of the chlorinated solvents trichloroethylene and 1,1-trichloroethane through both biological and chemical processes. The aquifer remained anaerobic with average dissolved oxygen levels below 0.5 mg/L. Dissolved nitrate and sulfate concentrations within the cyclodextrin plume decreased due their being used as terminal electron acceptors during the degradation of the cyclodextrin. The concentrations of total iron at the field site showed no change over time. It can be concluded from this research that cyclodextrin remaining in the subsurface after cessation of active remediation will degrade due to microbial processes. The chlorinated solvents will also degrade through both chemical and biological processes to their daughter products. The terminal electron acceptors present within the cyclodextrin plume will also be used for energy during the degradation processes.
Solubilization of ibuprofen with β-cyclodextrin derivatives: energetic and structural studies.
di Cagno, Massimiliano; Stein, Paul C; Skalko-Basnet, Nataša; Brandl, Martin; Bauer-Brandl, Annette
2011-06-01
The aim of this work was to investigate the complexation of ibuprofen as model drug with various β-cyclodextrins (native β-cyclodextrin, hydroxypropyl-β-cyclodextrin with two different molar degrees of substitution, and methyl-β-cyclodextrin). Solutions of the commercially available β-cyclodextrins were prepared in phosphate buffer (73mM). The pH value was adjusted to 7.4 and the solutions were isotonized with NaCl. A solution of ibuprofen was prepared in the same way. A thermal activity monitor was used for isothermal titration calorimetry (ITC). (1)H NMR analysis was employed to investigate the structures of the complexes. ITC analysis showed that each type of β-cyclodextrin had its characteristic values of both enthalpy and mass equilibrium constant for the complexation processes with the drug molecules. (1)H NMR spectroscopy of the complexes showed through significant differences in chemical shifts that the physical interaction between the cyclodextrins and ibuprofen molecules were also different, probably due to different three-dimensional arrangements of ibuprofen in the cyclodextrin cavity, induced by the different substituents bonded to the glucose rings. These differences were connected to the thermodynamic parameters of the complexes. Copyright © 2011 Elsevier B.V. All rights reserved.
β-Cyclodextrin's orientation onto TiO2 and its paradoxical role in guest's photodegradation.
Zhang, Xu; Yang, Zixin; Li, Xuankun; Deng, Nansheng; Qian, Shahua
2013-01-28
This work revealed that β-cyclodextrin was attached onto the surface of TiO(2) predominately by its secondary ring side, which caused paradoxical functions of β-cyclodextrin in the photodegradation of the four bisphenols. The equilibrium between the guest adsorbed through β-cyclodextrin onto TiO(2) and the one locked in β-CD in water could also change the role of β-cyclodextrin in the degradation of a certain guest.
Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study
NASA Astrophysics Data System (ADS)
Jullian, Carolina; Orosteguis, Teresita; Pérez-Cruz, Fernanda; Sánchez, Paulina; Mendizabal, Fernando; Olea-Azar, Claudio
2008-11-01
Properties of inclusion complexes between morin (M) and β-cyclodextrin (βCD), 2-hydroxypropyl-β-cyclodextrin (HPβCD) and Heptakis (2,6- O-di methyl) β-cyclodextrin (DMβCD) such as aqueous solubility and the association constants of this complex have been determined. The water solubility of morin was increased by inclusion with cyclodextrins. The phase-solubility diagrams drawn from UV spectral measurements are of the A L-type. Also ORAC FL studies were done. An increase in the antioxidant reactivity is observed when morin form inclusion complex with the three cyclodextrin studied. Finally, thermodynamics studies of cyclodextrin complexes indicated that for DMβCD the inclusion is primarily enthalpy-driven process meanwhile βCD and HPβCD are entropy-driven processes. This is corroborated by the different inclusion geometries obtained by 2D-NMR.
Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.
Lenik, Joanna; Łyszczek, Renata
2016-04-01
Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.
Patterning of supported gold monolayers via chemical lift-off lithography
Slaughter, Liane S; Cheung, Kevin M; Kaappa, Sami; Cao, Huan H; Yang, Qing; Young, Thomas D; Serino, Andrew C; Malola, Sami; Olson, Jana M; Link, Stephan
2017-01-01
The supported monolayer of Au that accompanies alkanethiolate molecules removed by polymer stamps during chemical lift-off lithography is a scarcely studied hybrid material. We show that these Au–alkanethiolate layers on poly(dimethylsiloxane) (PDMS) are transparent, functional, hybrid interfaces that can be patterned over nanometer, micrometer, and millimeter length scales. Unlike other ultrathin Au films and nanoparticles, lifted-off Au–alkanethiolate thin films lack a measurable optical signature. We therefore devised fabrication, characterization, and simulation strategies by which to interrogate the nanoscale structure, chemical functionality, stoichiometry, and spectral signature of the supported Au–thiolate layers. The patterning of these layers laterally encodes their functionality, as demonstrated by a fluorescence-based approach that relies on dye-labeled complementary DNA hybridization. Supported thin Au films can be patterned via features on PDMS stamps (controlled contact), using patterned Au substrates prior to lift-off (e.g., selective wet etching), or by patterning alkanethiols on Au substrates to be reactive in selected regions but not others (controlled reactivity). In all cases, the regions containing Au–alkanethiolate layers have a sub-nanometer apparent height, which was found to be consistent with molecular dynamics simulations that predicted the removal of no more than 1.5 Au atoms per thiol, thus presenting a monolayer-like structure. PMID:29259879
Cyclodextrins as excipients in tablet formulations.
Conceição, Jaime; Adeoye, Oluwatomide; Cabral-Marques, Helena Maria; Lobo, José Manuel Sousa
2018-04-22
This paper aims to provide a critical review of cyclodextrins as excipients in tablet formulations, highlighting: (i) the principal pharmaceutical applications of cyclodextrins; (ii) the most relevant technological aspects in pharmaceutical formulation development; and (iii) the actual regulatory status of cyclodextrins. Moreover, several illustrative examples are presented. Cyclodextrins can be used as complexing excipients in tablet formulations for low-dose drugs. By contrast, for medium-dose drugs and/or when the complexation efficiency is low, the methods to enhance the complexation efficiency play a key part in reducing the cyclodextrin quantity. In addition, these compounds are used as fillers, disintegrants, binders and multifunctional direct compression excipients of the tablets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cyclodextrins as new formulation entities and therapeutic agents.
Sikharam, Sreevalli; Egan, Talmage D; Kern, Steven E
2005-08-01
This review is focused on recent advances in the application of cyclodextrins to new drug formulations, with emphasis on the field of anesthesia. Cyclodextrins are well-known excipients in the pharmaceutical industry. Their recent application to the anesthetic induction agent propofol as a means of creating a non-lipid formulation may lead to their introduction into anesthesia pharmacology. The development of a novel cyclodextrin as specific reversal agent for the neuromuscular blocker rocuronium (that acts as an in-vivo scavenging system to bind free rocuronium in the circulation) will also increase the likelihood that cyclodextrins will have a greater clinical presence in anesthesiology in the future. Cyclodextrin-containing polymers are also finding a role in the delivery of nucleic acids and protein therapeutic agents. Recent developments in cyclodextrins as excipients for anesthetics may soon culminate in their introduction into anesthesiology, although more research is necessary to better define their potential.
Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.
Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella
2017-03-28
Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.
Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko
2010-12-15
TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero
2011-02-01
Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The potential functional and nutritional benefits of granular starch treated with cyclodextrin glycosyltransferase (CGTase) and the released cyclodextrins (CDs) were explored in in vivo studies. The metabolic effects of diets in the C57BL/6J mouse containing native and enzymatically modified corn st...
Enhanced transport of low-polarity organic compounds through soil by cyclodextrin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brusseau, M.L.; Wang, X.; Hu, Q.
1994-05-01
The removal of low-polarity organic compounds from soils and aquifers by water flushing is often constrained by sorption interactions. There is great interest in developing systems that can enhance the transport of organic compounds through porous media, thus facilitating remediation. We investigated the potential of hydroxypropyl-[beta]-cyclodextrin (HPCD), a microbially produced compound, to reduce the sorption and to enhance the transport of several low-polarity organic compounds. The results show that cyclodextrin does not interact with the two porous media used in the study. As a result, there is no retardation of cyclodextrin during transport. The retardation of compounds such as anthracene,more » pyrene, and trichlorobiphenyl was significantly (orders of magnitude) reduced in the presence of cyclodextrin. The enhancement effect of the cyclodextrin was predictable with a simple equation based on three-phase partitioning. The nonreactive nature of cyclodextrin combined with its large affinity for low-polarity organic compounds makes cyclodextrin a possible candidate for use in in-situ remediation efforts. 22 refs., 6 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto
2017-03-01
We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.
Pajatsch, Markus; Gerhart, Maria; Peist, Ralf; Horlacher, Reinhold; Boos, Winfried; Böck, August
1998-01-01
Klebsiella oxytoca M5a1 has the capacity to transport and to metabolize α-, β- and γ-cyclodextrins. Cyclodextrin transport is mediated by the products of the cymE, cymF, cymG, cymD, and cymA genes, which are functionally homologous to the malE, malF, malG, malK, and lamB gene products of Escherichia coli. CymE, which is the periplasmic binding protein, has been overproduced and purified. By substrate-induced fluorescence quenching, the binding of ligands was analyzed. CymE bound α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, with dissociation constants (Kd) of 0.02, 0.14 and 0.30 μM, respectively, and linear maltoheptaose, with a Kd of 70 μM. In transport experiments, α-cyclodextrin was taken up by the cym system of K. oxytoca three to five times less efficiently than maltohexaose by the E. coli maltose system. Besides α-cyclodextrin, maltohexaose was also taken up by the K. oxytoca cym system, but because of the inability of maltodextrins to induce the cym system, growth of E. coli mal mutants on linear maltodextrin was not observed when the cells harbored only the cym uptake system. Strains which gained this capacity by mutation could easily be selected, however. PMID:9573146
NASA Astrophysics Data System (ADS)
Das, Suchandra; Musunuri, Naga; Kucheryavy, Pavel; Lockard, Jenny; Fischer, Ian; Singh, Pushpendra; New Jersey Institute of Technology Collaboration; Rutgers University Newark Collaboration
2017-11-01
We present a technique that uses an electric field in the direction normal to the interface for self-assembling monolayers of gold nanoparticles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film. We are using these films for surface enhanced Raman scattering (SERS) applications. Initial measurements indicate improved performance over commercially available SERS substrates.
Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes
NASA Astrophysics Data System (ADS)
Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.
1996-11-01
The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.
NASA Astrophysics Data System (ADS)
Terekhova, Irina V.; Chislov, Mikhail V.; Brusnikina, Maria A.; Chibunova, Ekaterina S.; Volkova, Tatyana V.; Zvereva, Irina A.; Proshin, Alexey N.
2017-03-01
Study of complex formation of cyclodextrins with 1,2,4-thiadiazole derivatives intended for Alzheimer's disease treatment was carried out using 1H NMR, ITC and phase solubility methods. Structure of cyclodextrins and thiadiazoles affects the binding mode and thermodynamics of complexation. The larger cavity of β- and γ-cyclodextrins is more appropriate for deeper insertion of 1,2,4-thiadiazole derivatives which is accompanied by intensive dehydration and solvent reorganization. Benzene ring of the thiadiazoles is located inside macrocyclic cavity while piperidine ring is placed outside the cavity and can form H-bonds with cyclodextrin exterior. Complexation with cyclodextrins induces the enhancement of aqueous solubility of 1,2,4-thiadiazole derivatives.
Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L.
1994-06-01
A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37more » refs., 9 figs., 5 tabs.« less
Findeisen, Anna; Kolivoska, Viliam; Kaml, Isabella; Baatz, Wolfgang; Kenndler, Ernst
2007-07-20
The exudates of conifers consist mainly of diterpenoic acids of the abietane and pimarane type (abietic, neoabietic, dehydroabietic, palustric, pimaric, isopimaric, levopimaric and sandaracopimaric acid) and larixol acetate. These natural resins were used as adhesives, coatings, varnishes or plasticizers in artistic and historic works since ancient times. For the purpose of conservation and restoration and for art historic examination of such museum objects the identification of the binding media used is undoubtedly of paramount importance. In the present paper, the characterization of these resins based on the pattern of their diterpenoid constituents is carried out by capillary electrophoresis. For separation a background electrolyte which has been initially introduced for the analysis of chlorinated and natural resin acids in waste water was modified and the experimental conditions were adjusted in terms of resolution and analysis time. Separation was carried out in borate buffer at pH 9.25 (ionic strength 20 mmol L(-1)) with methyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin as additives to increase selectivity and enhance the solubility of the analytes. With this electrophoretic system the resin acids of interest and larixol acetate--all as anionic cyclodextrin complexes--were separated within 5 min and detected at 200, 250 and 270 nm with a diode array detector. The electrophoretic patterns served for the characterisation of the relevant diterpenoic resins, balsams and copals. Sample pre-treatment was limited to sonication in methanol at 55 degrees C for 30 min. This enables the identification of the resins in mixtures with other binders like plant gums, animal glues or drying oils, even when these media are present in excess. Colophony was identified as resinous constituent of a modelling mass for gilded frames originating from the 19th century.
Transmission X-ray scattering as a probe for complex liquid-surface structures
Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...
2016-01-28
The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less
Shu, H-J; Zeng, C-M; Wang, C; Covey, D F; Zorumski, C F; Mennerick, S
2006-01-01
Background and purpose: Neuroactive steroids are potent modulators of GABAA receptors and are thus of interest for their sedative, anxiolytic, anticonvulsant and anaesthetic properties. Cyclodextrins may be useful tools to manipulate neuroactive effects of steroids on GABAA receptors because cyclodextrins form inclusion complexes with at least some steroids that are active at the GABAA receptor, such as (3α,5α)-3-hydroxypregnan-20-one (3α5αP, allopregnanolone). Experimental approach: To assess the versatility of cyclodextrins as steroid modulators, we investigated interactions between γ-cyclodextrin and neuroactive steroids of different structural classes. Key results: Both a bioassay based on electrophysiological assessment of GABAA receptor function and optical measurements of cellular accumulation of a fluorescent steroid analogue suggest that γ-cyclodextrin sequesters steroids rather than directly influencing GABAA receptor function. Neither a 5β-reduced A/B ring fusion nor a sulphate group at carbon 3 affected the presumed inclusion complex formation between steroid and γ-cyclodextrin. Apparent dissociation constants for interactions between natural steroids and γ-cyclodexrin ranged from 10-60 μM. Although γ-cyclodextrin accommodates a range of natural and synthetic steroids, C11 substitutions reduced inclusion complex formation. Using γ-cyclodextrin to remove steroid not directly bound to GABAA receptors, we found that cellular retention of receptor-unbound steroid rate limits potentiation by 3α- hydroxysteroids but not inhibition by sulphated steroids. Conclusions and implications: We conclude that γ-cyclodextrins can be useful, albeit non-specific, tools for terminating the actions of multiple classes of naturally occurring neuroactive steroids. PMID:17160009
Sol-Gel Synthesis of Ordered β-Cyclodextrin-Containing Silicas
NASA Astrophysics Data System (ADS)
Trofymchuk, Iryna Mykolaivna; Roik, Nadiia; Belyakova, Lyudmila
2016-03-01
New approaches for β-cyclodextrin-containing silicas synthesis were demonstrated. Materials with hexagonally ordered mesoporous structure were prepared by postsynthesis grafting and by co-condensation methods. β-Cyclodextrin activated by a N, N'-carbonyldiimidazole was employed for postsynthesis treatment of 3-aminopropyl-modified MCM-41 support as well as for sol-gel synthesis with β-cyclodextrin-containing organosilane and tetraethyl orthosilicate participation in the presence of cetyltrimethylammonium bromide. The successful incorporation of cyclic oligosaccharide moieties in silica surface layer was verified by means of FT-IR spectroscopy and chemical analysis. Obtained β-cyclodextrin-containing materials were characterized by X-ray diffraction, transmission electron microscopy, and low-temperature adsorption-desorption of nitrogen. In spite of commensurable loading of β-cyclodextrin groups attained by both proposed approaches (up to 0.028 μmol · m-2), it was found that co-condensation procedure provides uniform distribution of β-cyclodextrin functionalities in silica framework, whereas postsynthesis grafting results in modification of external surface of silica surface. Adsorption of benzene from aqueous solutions onto the surface of β-cyclodextrin-containing materials prepared by co-condensation method was studied as the function of time and equilibrium concentration. Langmuir and Freundlich models were used to evaluate adsorption processes and parameters. Adsorption experiments showed that β-cyclodextrin-containing silicas could be promising for the trace amount removal of aromatics from water.
Regioselective self-acylating cyclodextrins in organic solvent
NASA Astrophysics Data System (ADS)
Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho
2016-03-01
Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.
Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J
2016-04-01
Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.
García, Agustina; Leonardi, Darío; Lamas, María C
2016-01-15
An efficient and green method has been developed for the synthesis of succinyl-β-cyclodextrin in aqueous media obtaining very good yield. Acidic groups have been introduced in the synthesized carrier molecule to improve the guest-host affinity. To evaluate the suitability of the novel excipient focused to develop oral dosage forms, albendazole, a BSC class II compound, was chosen as a model drug. The β-cyclodextrin derivative and the inclusion complex were thoroughly characterized in solution and solid state by phase solubility studies, FT-IR spectroscopy, SEM, XRD, ESI-MS, DSC, 1D (1)H NMR, 1D (13)C NMR, selective 1D TOCSY, 2D COSY, 2D HSQC, 2D HMBC and ROESY NMR spectroscopy. Phase solubility studies indicated that both of them β-cyclodextrin and succinyl-β-cyclodextrin formed 1:1 inclusion complexes with albendazole, and the stability constants were 68M(-1) (β-cyclodextrin), 437M(-1) (succinyl-β-cyclodextrin), respectively. Water solubility and dissolution rate of albendazole were significantly improved in complex forms. Thus, the succinyl-β-cyclodextrin derivative could be a promising excipient to design oral dosage forms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shityakov, Sergey; Salmas, Ramin Ekhteiari; Salvador, Ellaine; Roewer, Norbert; Broscheit, Jens; Förster, Carola
2016-04-01
In this study, we investigated the cytotoxic effects of unmodified α-cyclodextrin (α-CD) and modified cyclodextrins, including trimethyl-β-cyclodextrin (TRIMEB) and hydroxypropyl-β-cyclodextrin (HPβCD), on immortalized murine microvascular endothelial (cEND) cells of the blood-brain barrier (BBB). A CellTiter-Glo viability test, performed on the cEND cells showed significant differences among the different cyclodextrins. After 24 hr of incubation, TRIMEB was the most cytotoxic, and HPβCD was non-toxic. α-CD and TRIMEB exhibited greater cytotoxicity in the Dulbecco's modified Eagle's medium than in heat-inactivated human serum indicating protective properties of the human serum. The predicted dynamic toxicity profiles (Td) for α-CD and TRIMEB indicated higher cytotoxicity for these cyclodextrins compared to the reference compound (dimethylsulfoxide). Molecular dynamics simulation of cholesterol binding to the CDs suggested that not just cholesterol but phospholipids extraction might be involved in the cytotoxicity. Overall, the results demonstrate that HPβCD has the potential to be used as a candidate for drug delivery vector development and signify a correlation between the in vitro cytotoxic effect and cholesterol binding of cyclodextrins.
Lumholdt, Ludmilla Riisager; Holm, René; Jørgensen, Erling Bonne; Larsen, Kim Lambertsen
2012-11-15
In vitro studies of α-amylase degradation of α-, β- and γ-cyclodextrins and 2-hydroxypropyl-β- and -γ-cyclodextrins were investigated spectrophotometrically by measuring the formation of reducing sugars, the reaction products of α-amylase degradation. This was done to evaluate potential degradation and thereby biological conversion of the cyclodextrins if dosed orally, as the intestinal tract contains α-amylase for digestive purposes. The results demonstrated that only γ- and 2-hydroxypropyl-γ-cyclodextrins can be degraded by α-amylase to a relevant extent, that is, γ- and 2-hydroxypropyl-γ-cyclodextrins have different biopharmaceutical behaviours than the other evaluated cyclodextrins. The rate of degradation was affected by the addition of the inclusion complex forming additives flurbiprofen, ibuprofen and benzo[a]pyrene. This effect between the degradation dynamics and the included additives was caused by a correlation between solubility of the additives and the stability of the complex. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe
2014-11-01
Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.
Yu, Zongxue; Chen, Qi; Lv, Liang; Pan, Yang; Zeng, Guangyong; He, Yi
2017-05-01
The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu 2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu 2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu 2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.
Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R
2014-02-20
The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions.
Abushoffa, Adel M; Fillet, Marianne; Servais, Anne-Catherine; Hubert, Philippe; Crommen, Jacques
2003-01-01
The enantiomeric separation of some nonsteroidal anti-inflammatory drugs (NSAIDs) was investigated in capillary electrophoresis (CE) using dual systems with mixtures of charged cyclodextrin (CD) derivatives. A significant enhancement of selectivity and resolution could be achieved in the enantioseparation of these analytes in their uncharged form by the simultaneous addition of two oppositely charged CD derivatives to the background electrolyte. The combination of the single-isomer cationic CD, permethyl-6-monoamino-6-monodeoxy-beta-CD (PMMAbetaCD) and the single-isomer polyanionic CD, heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) in a pH 2.5 phosphoric acid-triethanolamine buffer, was designed and employed for the enantioseparation of profens. The improvement in selectivity and resolution can be attributed to the fact that the two CDs, which lead to independent and enantioselective complexation with the analyte enantiomers, have not only opposite effects on the electrophoretic mobility of these compounds but also opposite affinity patterns towards the enantiomers of these compounds. Binding constants for these enantiomers with each CD were determined using linear regression approach, in order to be able to predict the effect of the concentrations of the two CDs on enantiomeric selectivity and resolution in such dual systems.
Hartree-Fock and density functional theory study of alpha-cyclodextrin conformers.
Jiménez, Verónica; Alderete, Joel B
2008-01-31
Herein, we report the geometry optimization of four conformers of alpha-cyclodextrin (alpha-CD) by means of PM3, HF/STO-3G, HF/3-21G, HF/6-31G(d), B3LYP/6-31G(d), and X3LYP/6-31G(d) calculations. The analysis of several geometrical parameters indicates that all conformers possess bond lengths, angles, and dihedrals that agree fairly well with the crystalline structure of alpha-CD. However, only three of them (1-3) resemble the polar character of CDs and show intramolecular hydrogen-bonding patterns that agree with experimental NMR data. Among them, conformer 3 appears to be the most stable species both in the gas phase and in solution; therefore, it is expected to be the most suitable representative structure for alpha-CD conformation. The purpose of selecting such a species is to identify an appropriate structure to be employed as a starting point for reliable computational studies on complexation phenomena. Our results indicate that the choice of a particular alpha-CD conformer should affect the results of ab initio computational studies on the inclusion complexation with this cyclodextrin since both the direction and the magnitude of the dipole moment depend strongly on the conformation of alpha-CD.
Kahle, Claudia; Holzgrabe, Ulrike
2004-10-01
Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes.
Host-guest chemistry of cyclodextrin carbamates and cellulose derivatives in aqueous solution.
Guo, Xin; Jia, Xiangxiang; Du, Jiaojiao; Xiao, Longqiang; Li, Feifei; Liao, Liqiong; Liu, Lijian
2013-10-15
Supramolecular polymer micelles were prepared on basis of the inclusion complexation between cyclodextrin carbamates and cellulose derivatives in aqueous media. Cyclodextrin carbamates were synthesized by microwave-assisted method from cyclodextrin and urea. The urea modified cyclodextrin shows the higher yield than the physical mixture of urea/cyclodextrin in the micellization with cellulose derivatives. The supramolecular structure of the core-shell micelles was demonstrated by (1)H NMR spectra, TEM images, and fluorescence spectra. The drug release behavior of the supramolecular polymer micelles was evaluated using prednisone acetate as a model drug. The drug loaded micelles showed steady and long time drug release behavior. With these properties, the supramolecular polymer micelles are attractive as drug carriers for pharmaceutical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
The interaction of caffeine with substituted cyclodextrins in water
NASA Astrophysics Data System (ADS)
Terekhova, I. V.; Kumeev, R. S.; Al'Per, G. A.
2007-07-01
The interaction of caffeine with hydroxypropyl-and methylcyclodextrins in water was studied by the calorimetry, spectroscopy, and solubility methods at 298.15 K. The interaction of caffeine with these cyclodextrins did not result in the formation of stable inclusion complexes and was mostly accompanied by predominantly endothermic effects of particle dehydration. The introduction of substituents and changes in the size of cyclodextrin molecular cavity did not influence the ability of cyclodextrins to form complexes with caffeine. The conclusion was drawn that substituted cyclodextrins could not be used for increasing the solubility of caffeine in water.
NASA Astrophysics Data System (ADS)
Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying
2014-06-01
Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.
Scavone, Cristina; Bonagura, Angela Colomba; Fiorentino, Sonia; Cimmaruta, Daniela; Cenami, Rosina; Torella, Marco; Fossati, Tiziano; Rossi, Francesco
2016-06-01
According to health technology assessment, patients deserve the best medicine. The development of drugs associated with solubility enhancers, such as cyclodextrins, represents a measure taken in order to improve the management of patients. Different drugs, such as estradiol, testosterone, dexamethasone, opioids, non-steroidal anti-inflammatories (NSAIDs; i.e. diclofenac), and progesterone are associated with cyclodextrins. Products containing the association of diclofenac/cyclodextrins are available for subcutaneous, intramuscular, and intravenous administration in doses that range from 25 to 75 mg. Medicinal products containing the association of progesterone/cyclodextrins are indicated for intramuscular and subcutaneous injection at a dose equal to 25 mg. The effects of cyclodextrins have been discussed in the solubility profile and permeability through biological membranes of drug molecules. A literature search was performed in order to give an overview of the pharmacokinetic characteristics, and efficacy and safety profiles of diclofenac/hydroxypropyl-β-cyclodextrin (HPβCD) and progesterone/HPβCD associations. The results of more than 20 clinical studies were reviewed. It was suggested that the new diclofenac/HPβCD formulation gives a rapid and effective response to acute pain and, furthermore, has pharmacokinetic and efficacy/safety profiles comparable to other medicinal products not containing cyclodextrins. One of the principal aspects of these new diclofenac formulations is that in lowering the dose (lower than 50 mg) the drugs could be more tolerable, especially in patients with comorbid conditions. Moreover, results of studies investigating the characteristics of progesterone and cyclodextrins showed that the new formulation (progesterone/HPβCD 25 mg solution) has the same bioavailability as other products containing progesterone. It is more rapidly absorbed and allows the achievement of peak plasma concentrations in a shorter time. Finally, the new formulation of progesterone was shown to be safe and not inferior to other products already on the market, with the exception of progesterone administered vaginally. As shown by the results of clinical studies presented in this review, the newly approved medicines containing cyclodextrins have been found to be as effective and as well-tolerated as other medicinal products that do not contain cyclodextrins. Moreover, the newly approved lower dose of diclofenac associated with cyclodextrins is consistent with the European Medicines Agency recommendations reported in the revision of the Assessment Report for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Cardiovascular Risk. Finally, the use of cyclodextrins led to significant increases in solubility and bioavailability of drugs, such as diclofenac and progesterone, and improvement in the efficacy and safety of these drugs.
Structural and dynamic characteristics in monolayer square ice.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2017-07-28
When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.
Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun
2016-04-05
We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Size-tunable Lateral Confinement in Monolayer Semiconductors
Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.; ...
2017-06-12
Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less
Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F
1999-01-29
To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol excretion is most likely the primary mechanism responsible for the lipid-lowering action of beta-cyclodextrin. In contrast, other mechanisms involving the alterations in the biliary bile acid profile or repressed hepatic lipogenesis, e.g., VLDL production, appear to be involved in the hypolipidemic effect of resistant starch.
NASA Astrophysics Data System (ADS)
Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge
2018-01-01
Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.
Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han
2014-06-24
The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.
Rosenbaum, Anton I.; Zhang, Guangtao; Warren, J. David; Maxfield, Frederick R.
2010-01-01
Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-β-cyclodextrin injections in npc1−/− mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin–dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-β-cyclodextrin is more potent than hydroxypropyl-β-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2. PMID:20212119
Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye.
Loftsson, Thorsteinn; Stefánsson, Einar
2002-04-01
Cyclodextrins are cylindrical oligosaccharides with a lipophilic central cavity and hydrophilic outer surface. They can form water-soluble complexes with lipophilic drugs, which 'hide' in the cavity. Cyclodextrins can be used to form aqueous eye drop solutions with lipophilic drugs, such as steroids and some carbonic anhydrase inhibitors. The cyclodextrins increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Cyclodextrins are useful excipients in eye drop formulations of various drugs, including steroids of any kind, carbonic anhydrase inhibitors, pilocarpine, cyclosporins, etc. Their use in ophthalmology has already begun and is likely to expand the selection of drugs available as eye drops. In this paper we review the properties of cyclodextrins and their application in eye drop formulations, of which their use in the formulation of dexamethasone eye drops is an example. Cyclodextrins have been used to formulate eye drops containing corticosteroids, such as dexamethasone, with levels of concentration and ocular absorption which, according to human and animal studies, are many times those seen with presently available formulations. Cyclodextrin-based dexamethasone eye drops are well tolerated in the eye and seem to provide a higher degree of bioavailability and clinical efficiency than the steroid eye drop formulations presently available. Such formulations offer the possibility of once per day application of corticosteroid eye drops after eye surgery, and more intensive topical steroid treatment in severe inflammation. While cyclodextrins have been known for more than a century, their use in ophthalmology is just starting. Cyclodextrins are useful excipients in eye drop formulations for a variety of lipophilic drugs. They will facilitate eye drop formulations for drugs that otherwise might not be available for topical use, while improving absorption and stability and decreasing local irritation.
Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Darcsi, András; Malanga, Milo; Fenyvesi, Éva; Sohajda, Tamás; Szente, Lajos; Béni, Szabolcs
2016-10-07
The enantioselectivity of neutral single-isomer synthetic precursors of sulfated-β-cyclodextrins was studied. Four neutral single-isomer cyclodextrins substituted on the secondary side with acetyl and/or methyl functional groups, heptakis(2-O-methyl-3,6-dihydroxy)-β-cyclodextrin (HM-β-CD), heptakis(2,3-di-O-acetyl-6-hydroxy)-β-cyclodextrin (HDA-β-CD), heptakis(2,3-di-O-methyl-6-hydroxy)-β-cyclodextrin (HDM-β-CD), heptakis(2-O-methyl-3-O-acetyl-6-hydroxy)-β-cyclodextrin (HMA-β-CD), and their sulfated analogs the negatively charged heptakis(2,3-di-O-methyl-6-sulfato)-β-cyclodextrin (HDMS-β-CD) and heptakis(2,3-di-O-acetyl-6-sulfato)-β-cyclodextrin (HDAS-β-CD) were investigated by non-aqueous capillary electrophoresis in the view of enantiodiscrimination for various drugs and related pharmaceutical compounds. The focus of the present work was on the chiral selectivity studies of the neutral derivatives, which are the synthesis intermediates of the sulfated products. The chiral recognition experiments proved that among the neutral compounds the HMA-β-CD shows remarkable enantioselectivity towards chiral guests in non-aqueous capillary electrophoresis, while HM-β-CD, HDA-β-CD and HDM-β-CD failed to resolve any of the 25 studied racemates under the applied experimental conditions. In order to get deeper insight into the molecular interactions between the studied single-isomer cyclodextrin and chiral fluoroquinolones (ofloxacin, gatifloxacin and lomefloxacin) and β-blockers (propranolol), 1 H and ROESY NMR experiments were performed. The 2-O-methylation in combination with the 3-O-acetylation of the host was evidenced to exclusively carry the essential spatial arrangement for chiral recognition. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohua; Czaplewski, David A.; Lenferink, Erik J.
Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here in this paper, we show that laterally-confined excitons in monolayer MoS 2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, themore » lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS 2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems« less
Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.
Mura, Paola
2015-09-10
Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Yumeng; Chen, Lin; Lv, Yuanqi; Wang, Shuangxi; Suo, Zhiyao; Cheng, Xingguang; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi; Feng, Xianchao
2018-06-01
High levels of polyphenols can interact with myofibrillar proteins (MPs), causing damage to a MP emulsion gel. In this study, β-cyclodextrins were used to reduce covalent and non-covalent interaction between epigallocatechin-3-gallate (EGCG) and MPs under oxidative stress. The loss of both thiol and free amine groups and the unfolding of MPs caused by EGCG (80 μM/g protein) were significantly prevented by β-cyclodextrins, and the structural stability and solubility were improved. MP emulsion gel treated with EGCG (80 μM/g protein) had the highest cooking loss (68.64%) and gel strength (0.51 N). Addition of β-cyclodextrins significantly reduced cooking loss (26.24-58.20%) and improved gel strength (0.31-0.41 N) of MP emulsion gel jeopardized by EGCG under oxidative stress. Damage to the emulsifying properties of MPs caused by EGCG was significantly prevented by addition of β-cyclodextrins. β-cyclodextrins reduced interaction between EGCG and MPs in the order Methyl-β-cyclodextrin > (2-Hydroxypropyl)-β-cyclodextrin > β-cyclodextrin. In absence of EGCG, addition of β-cyclodextrins partly protected MPs from oxidative attack and improved its solubility. It is concluded that β-cyclodextrins does not markedly reduce the antioxidant ability of EGCG according to carbonyl analysis, and can effectively increase EGCG loading to potentially provide more durable antioxidant effect for meat products during processing, transportation and storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.
Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet
2013-11-01
Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.
Epitaxial growth of Ag on W(110)
NASA Astrophysics Data System (ADS)
Deisl, C.; Bertel, E.; Bürgener, M.; Meister, G.; Goldmann, A.
2005-10-01
Epitaxial growth of Ag on W(110) at room temperature was studied by scanning tunneling microscopy (STM) and polarization-dependent photoemission. At coverages far below one monolayer Ag atoms populate bcc sites of the substrate and form close-packed islands of monolayer thickness. With increasing coverage geometrical misfit between Ag(111)-like layers and W(110) generates surface stress along W[11¯0] . This is released by formation of domain walls parallel W[001] which are observed with a distance between about 25Å and 30Å , depending on the details of the growth process. At one monolayer coverage most of the Ag atoms still reside in or very near to bcc substrate positions, but now the strain release pattern is changed: solitons aligned along W[1¯12] are formed at an average distance between 35Å and 50Å . The details of the soliton arrangement depend critically on the degree of equilibration and the presence of holes in the monolayer film which allow an additional stress release. This is evident from a comparison with results of STM studies performed at the closed and carefully annealed Ag monolayer [Kim , Phys. Rev. B 67, 223401 (2003)]. Further deposition of Ag starts growth of a second monolayer by formation of islands which increase in size with coverage. At a nominal coverage of 1.5 monolayers the strain relieve pattern changes again: some corrugation lines are oriented along W[001] as in the submonolayers, but other orientations related to Ag(111) directions appear as well. This indicates that several possibilities are available at similar energy costs and that the transition from the W substrate potential to a Ag potential seen by the second layer is very soft. Finally at a nominal coverage of several monolayers, Stranski-Krastanov growth is observed producing Ag(111)-like terraces with one of the dense-packed Ag rows oriented parallel to W[11¯1] .
Zhu, Qingfu; Heinemann, Stefan H; Schönherr, Roland; Scriba, Gerhard K E
2014-12-01
A dual-selector system employing achiral crown ethers in combination with cyclodextrins has been developed for the separation of peptide diastereomers that contain methionine sulfoxide. The combinations of the crown ethers 15-crown-5, 18-crown-6, Kryptofix® 21 and Kryptofix® 22 and β-cyclodextrin, carboxymethyl-β-cyclodextrin, and sulfated β-cyclodextrin were screened at pH 2.5 and pH 8.0 using a 40/50.2 cm, 50 μm id fused-silica capillary and a separation voltage of 25 kV. No diastereomer separation was observed in the sole presence of crown ethers, while only sulfated β-cyclodextrin was able to resolve some peptide diastereomers at pH 8.0. Depending on the amino acid sequence of the peptide and the applied cyclodextrin, the addition of crown ethers, especially the Krpytofix® diaza-crown ethers, resulted in significantly enhanced chiral recognition. Keeping one selector of the dual system constant, increasing concentrations of the second selector resulted in increased peak resolution and analyte migration time for peptide-crown ether-cyclodextrin combinations. The simultaneous diastereomer separation of three structurally related peptides was achieved using the dual selector system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cirpanli, Yasemin; Bilensoy, Erem; Lale Doğan, A; Caliş, Sema
2009-09-01
Camptothecin (CPT) is a potent anticancer agent. The clinical application of CPT is restricted by poor water solubility and instability under physiological conditions. Solubilization and stabilization of CPT were realized through nanoparticulate systems of amphiphilic cyclodextrins, poly(lactide-co-glycolide) (PLGA) or poly-epsilon-caprolactone (PCL). Nanoparticles were prepared with nanoprecipitation technique, whereas cyclodextrin nanoparticles were prepared from preformed inclusion complexes of CPT with amphiphilic cyclodextrins. Polymeric nanoparticles, on the other hand, were loaded with CPT:HP-beta-CD inclusion complex to solubilize and stabilize the drug. Mean particle sizes were under 275 nm, and polydispersity indices were lower than 0.2 for all formulations. Drug-loading values were significantly higher for amphiphilic cyclodextrin nanoparticles when compared with those for PLGA and PCL nanoparticles. Nanoparticle formulations showed a significant controlled release profile extended up to 12 days for amphiphilic cyclodextrin nanoparticles and 48h for polymeric nanoparticles. Anticancer efficacy of the nanoparticles was evaluated in comparison with CPT solution in dimethyl sulfoxide (DMSO) on MCF-7 breast adenocarcinoma cells. Amphiphilic cyclodextrin nanoparticles showed higher anticancer efficacy than PLGA or PCL nanoparticles loaded with CPT and the CPT solution in DMSO. These results indicated that CPT-loaded amphiphilic cyclodextrin nanoparticles might provide a promising carrier system for the effective delivery of this anticancer drug having bioavailability problems.
Cyclodextrins, blood-brain barrier, and treatment of neurological diseases.
Vecsernyés, Miklós; Fenyvesi, Ferenc; Bácskay, Ildikó; Deli, Mária A; Szente, Lajos; Fenyvesi, Éva
2014-11-01
Biological barriers are the main defense systems of the homeostasis of the organism and protected organs. The blood-brain barrier (BBB), formed by the endothelial cells of brain capillaries, not only provides nutrients and protection to the central nervous system but also restricts the entry of drugs, emphasizing its importance in the treatment of neurological diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to their favorable profile to form hydrophilic inclusion complexes with poorly soluble active pharmaceutical ingredients, they are present as excipients in many marketed drugs. Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pulmonary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodextrins can be used not only as excipients for centrally acting marketed drugs like antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases. Hydroxypropyl-β-cyclodextrin received orphan drug designation for the treatment of Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with neurological symptoms, experimental research revealed the potential therapeutic use of cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neuroinfections and brain tumors. In this context, the biological effects of cyclodextrins, their interaction with plasma membranes and extraction of different lipids are highly relevant at the level of the BBB. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Rode, T; Frauen, M; Müller, B W; Düsing, H J; Schönrock, U; Mundt, C; Wenck, H
2003-03-01
The main objective of this study was to devise novel methods for improving the solubility of the anti-inflammatory triterpenoid sericoside, the main component of Terminalia sericea extract, thus enabling its incorporation into topical formulations. Sericoside was stabilized by complex formation with hydrophilic derivatives of beta- and gamma-cyclodextrins in a molar ratio of 1.0:1.1. The complex of extract and cyclodextrin was equilibrated in water at 25 degrees C for approximately 24 h. The dehydrated complexes of T. sericea extract and cyclodextrin were characterized by differential scanning calorimetry, thermogravimetry analysis and X-ray diffraction. Complex formation with beta-cyclodextrin as well as gamma-cyclodextrin derivatives was detectable using these three analytical tools; however, only complexes with gamma-cyclodextrin derivatives showed stability upon storage after incorporation into topical o/w or w/o formulations. Furthermore, a T. sericea extract/gamma-cyclodextrin complex incorporated in an o/w formulation resulted in a 2.6-fold higher percutaneous penetration of sericoside in in vitro excised pig skin as compared to pure T. sericea extract. For the first time, the virtually insoluble anti-inflammatory active sericoside was incorporated into a topical emulsion based formulation in a stable manner, resulting in efficient skin penetration. Copyright 2003 Elsevier Science B.V.
Liu, Yongjing; Deng, Miaoduo; Yu, Jia; Jiang, Zhen; Guo, Xingjie
2016-05-01
A novel single-isomer cyclodextrin derivative, heptakis {2,6-di-O-[3-(1,3-dicarboxyl propylamino)-2-hydroxypropyl]}-β-cyclodextrin (glutamic acid-β-cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid-β-cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused-silica capillary of 50 cm (effective length 40 cm) × 50 μm id with 120 mM phosphate buffer (pH 2.5-4.0) containing 0.5-4.5 mM glutamic acid-β-cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid-β-cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid-β-cyclodextrin was investigated using the semi-empirical Parametric Method 3. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg; Kubik, Stefan
2011-01-01
The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (-)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents.
Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg
2011-01-01
Summary The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (−)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents. PMID:22238531
Daschner De Tercero, Maren; Abbott, Nicholas L.
2013-01-01
Recent studies have reported that full monolayers of L-α-dilaurylphosphatidylcholine (L-DLPC) and D-α-dipalmitoylphosphatidylcholine (D-DPPC) formed at interfaces between thermotropic liquid crystals (LCs) and aqueous phases lead to homeotropic (perpendicular) orientations of nematic LCs and that specific binding of proteins to these interfaces (such as phospholipase A2 binding to D-DPPC) can trigger orientational ordering transitions in the liquid crystals. We report on the nonspecific interactions of proteins with aqueous-LC interfaces decorated with partial monolayer coverage of L-DLPC. Whereas nonspecific interactions of four proteins (cytochrome c, bovine serum albumin,immunoglobulins, and neutravidin) do not perturb the ordering of the LC when a full monolayer of L-DLPC is assembled at the aqueous-LC interface, we observe patterned orientational transitions in the LC that reflect penetration of proteins into the interface of the LC with partial monolayer coverage of L-DLPC. The spatial patterns formed by the proteins and lipids at the interface are surprisingly complex, and in some cases the protein domains are found to compartmentalize lipid within the interfaces. These results suggest that phospholipid-decorated interfaces between thermotropic liquid crystals and aqueous phases offer the basis of a simple and versatile tool to study the spatial organization and dynamics ofprotein networks formed at mobile, lipid-decorated interfaces. PMID:23671353
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
Zerkoune, Leïla; Angelova, Angelina; Lesieur, Sylviane
2014-01-01
A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media. PMID:28344245
NASA Astrophysics Data System (ADS)
Varghese, Beena; Suliman, FakhrEldin O.; Al-Hajri, Aalia; Al Bishri, Nahed Surur S.; Al-Rwashda, Nathir
2018-02-01
The inclusion complexes of sulfamethoxazole (SMX) with β-cyclodextrin (βCD) and (2-hydroxypropyl) β-cyclodextrin (HPβCD) were prepared. Fluorescence spectroscopy and electrospray mass spectrometry, ESI-MS, were used to investigate and characterize the inclusion complexation of SMX with cyclodextrins in solutions. Whereas in the solid state the complexes were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and Raman techniques. Enhanced twisted intramolecular charge transfer (TICT), emission as well as local excited (LE) bands were observed upon addition of HPβCD indicate that SMX enters deeper into the cyclodextrins cavity. The stoichiometries and association constants of these complexes have been determined by monitoring the fluorescence data. The effect of presence of ternary components like arginine and cysteine on the complexation efficiency of SMX with cyclodextrins was investigated. Molecular Dynamic simulations were also performed to shed an atomistic insight into the complexation mechanism. The results obtained showed that complexes of SMX with both cyclodextrins are stabilized in aqueous media by strong hydrogen bonding interactions.
Dandawate, Prasad R; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine; Padhye, Subhash; Sarkar, Fazlul H
2012-07-01
Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.
Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin.
Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C; Botros, Youssry Y; Farha, Omar K; Hupp, Joseph T; Mirkin, Chad A; Fraser Stoddart, J
2013-01-01
Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH₂)₆][AuBr₄](α-cyclodextrin)₂}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr₄ in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr₄ and KAuCl₄, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr₄](-) leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr₄](-) and [K(OH₂)₆](+) and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host-guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin-an inexpensive and environmentally benign carbohydrate.
Klinkspoor, J H; Yoshida, T; Lee, S P
1998-05-15
1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.
Kaur, Navdeep; Garg, Tarun; Goyal, Amit K; Rath, Goutam
2016-09-01
The present study was designed to determine the role of curcumin-β-cyclodextrin-loaded sponge on burn wound healing in rats. Curcumin-β-cyclodextrin complex was prepared by the solvent evaporation encapsulation method. Molecular inclusion complex of curcumin-β-cyclodextrin was incorporated into gelatin sponge. The developed sponge was characterized for drug entrapment, drug release and morphology. The biological activity of optimized formulation was determined on burn wounds which were made on rats. The burn wound healing efficacy was analyzed through physical and histological changes observed at the wound sites. There was a significant decrease in rate of wound contraction in experimental groups then the control group. Curcumin-β-cyclodextrin-loaded sponge treated wound was found to heal in rate comparable to marketed formulation with no sign of adverse consequence. The result clearly substantiates the beneficial effects of curcumin-β-cyclodextrin-loaded sponge in the acceleration of wound healing.
Van Doorne, H; Bosch, E H; Lerk, C F
1988-04-22
Complex formation between beta-cyclodextrin and six antimycotic imidazole derivatives has been studied. The solubility of all drugs was increased in the presence of beta-cyclodextrin. The smallest increase (approx. 5-fold) was observed for miconazol, and the largest increase (approx. 160-fold) was observed for bifonazol. Apparent 1:1-complex constants were measured and found to decrease in the order: bifonazol greater than ketoconazol greater than tioconazol greater than miconazol greater than itraconazol greater than clotrimazol. The complexes appeared to possess a low, if any, antimicrobial activity. Measurement of inhibition zone sizes, with four test organisms was used to study the release of the antimycotic drugs from topical preparations. The antimycotic drugs were more readily released from topical preparations containing beta-cyclodextrin than from the same vehicles without beta-cyclodextrin. The rationale of beta-cyclodextrin addition to antimycotic topical preparations is discussed.
Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly
Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen
2015-01-01
We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwen; Xue, Zhongying; Zhang, Miao
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...
2017-05-31
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
NASA Astrophysics Data System (ADS)
Sah, Bijay Kumar; Kundu, Sarathi
2017-05-01
Langmuir monolayers of phospholipids at the air-water interface are well-established model systems for mimicking biological membranes and hence are useful for studying lipid-protein interactions. In the present work, phases and phase transformations occurring in the lipid (DMPA) monolayer in the presence of globular protein (BSA) at neutral subphase pH (≈7.0) are highlighted and the corresponding in-plane pattern and morphology are explored from the surface pressure (π) - specific molecular area (A) isotherm, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) both at air-water and air-solid interfaces. Films of pure lipid and lipid-protein complexes are deposited on solid surfaces by Langmuir-Blodgett method. Due to the presence of BSA molecules, phases and domain pattern changes in comparison with that of the pure DMPA. Moreover, accumulations of globular proteins in between lipid domains are also visible through BAM. AFM shows that the mixed film has relatively bigger globular-like morphology in comparison with that of pure DMPA domains. Combination of electrostatic and hydrophobic interactions between protein and lipid are responsible for such modifications.
Novel band structures in silicene on monolayer zinc sulfide substrate.
Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping
2014-10-01
Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.
Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"
NASA Astrophysics Data System (ADS)
Williams, Mackenzie G.; Teplyakov, Andrew V.
2018-07-01
Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.
Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.
Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng
2015-09-15
Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.
Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers
NASA Astrophysics Data System (ADS)
Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun
2010-03-01
Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.
NASA Astrophysics Data System (ADS)
Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola
2010-11-01
A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.
Tong, Shengqiang; Zhang, Hu; Shen, Mangmang
2014-01-01
The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270
Amphiphilic cyclodextrin nanoparticles.
Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem
2017-10-15
Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Belenguer-Sapiña, Carolina; Pellicer-Castell, Enric; El Haskouri, Jamal; Guillem, Carmen; Simó-Alfonso, Ernesto Francisco; Amorós, Pedro; Mauri-Aucejo, Adela
2018-08-17
Determination of organic pollutants in environmental samples presents great difficulties due to the lack of sensitivity and selectivity in many of the existing analytical methods. In this work, the efficiency of materials based on silica structures containing bounded γ-cyclodextrin has been evaluated to determinate phenolic compounds and polycyclic aromatic hydrocarbons in air and water samples, respectively, in comparison with materials made of β-cyclodextrin. According to the results obtained for the material characterization, the new γ-cyclodextrin solid phase does not apparently present any porosity when used in air samples, but it has been shown to work efficiently for the preconcentration of polycyclic aromatic hydrocarbons in water, with recoveries around 80%. In addition, the use of the β-cyclodextrin material for phenolic compounds sampling can be highlighted with recoveries between 83% and 95%, and recoveries for 4-vinylphenol and 2-methoxy-4-vinylphenol have been especially improved in comparison with the use of materials containing trapped β-cyclodextrin in our previous researches. The observed phenomena can be explained on the basis of the analyte molecules size and the diameter of the cyclodextrin cavities, the influence of the cyclodextrin type in the material structure as well as on the interactions taking place with the pollutants and the influence of the matrix type in the retention and desorption mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Zhao-Yang; Shen, Ming-Xing; Yang, An-Wen; Liang, Cong-Qiang; Wang, Nan; Cao, Gui-Ping
2011-01-21
Biodegradable copolymers with molecule inclusion ability was prepared by introduction of β-cyclodextrin into poly(aspartic acid) matrices. The ibuprofen loading and dissolution properties of poly(aspartic acid)-β-cyclodextrin were investigated.
Tokumura, T; Nanba, M; Tsushima, Y; Tatsuishi, K; Kayano, M; Machida, Y; Nagai, T
1986-04-01
The present investigation is concerned with an improvement of the bioavailability of cinnarizine by administering its beta-cyclodextrin complex together with another compound which competes with the beta-cyclodextrin molecule in complex formation in aqueous solution (competing agent). The bioavailability of cinnarizine on oral administration of the cinnarizine-beta-cyclodextrin inclusion complex was enhanced by the simultaneous administration of DL-phenylalanine as a competing agent, e.g., the AUC was 1.9 and 2.7 times as large as those of the cinnarizine-beta-cyclodextrin complex alone and cinnarizine alone, respectively. The enhancement of AUC and Cmax completely depended on the dose of DL-phenylalanine. It was found from these results that DL-phenylalanine acted as a competing agent in the GI tract and the minimum effective dose required of DL-phenylalanine might be 1 g for 50 mg of cinnarizine in the cinnarizine-beta-cyclodextrin complex. Evaluating the competing effect of DL-phenylalanine in vitro using an absorption simulator, it was found that the decreased penetration rate of cinnarizine through the artificial lipid barrier with addition of beta-cyclodextrin was restored with the addition of DL-phenylalanine.
Patterning of self-assembled monolayers based on differences in molecular conductance.
Shen, Cai; Buck, Manfred
2009-06-17
Scanning tunneling microscopy (STM) is used for replacement patterning of self-assembled monolayers (SAMs) of thiols on a sub-10 nm scale. Contrasting other schemes of scanning probe patterning of SAMs, the exchange of molecules relies on differences in conductance and, thus, occurs under tunneling conditions where the resolution of the tip is maintained. Exchange takes place at the boundary between different thiols but only when the tip moves from areas of lower to higher conductance. In combination with SAMs which exhibit excellent structural quality, patterns with a contour definition of +/- 1 molecule, lines as thin as 2.5 nm and islands with an area of less than 20 nm2 are straightforwardly produced. It is suggested that the shear force exerted onto the molecules with the lower conductance triggers displacement of the one with higher conductance.
Cell membrane organization is important for inner hair cell MET-channel gating
NASA Astrophysics Data System (ADS)
Effertz, Thomas; Scharr, Alexandra L.; Ricci, Anthony J.
2018-05-01
Specialized sensory cells, hair cells, translate mechanical stimuli into electro/chemical responses. This process, termed mechano-electrical transduction (MET), is localized to the hair cell's sensory organelle, the hair bundle. The mature hair bundle comprises three rows of actin filled stereocilia, arranged in a staircase pattern. Deflections towards the tallest row of stereocilia activate MET channels, residing at the top of stereocilia. While other MET channels can be activated or modulated by changes to their lipid environment, this remains unknown for the mammalian auditory MET channel. We show here that the effect of lipid and cholesterol depletion from the cell membrane affect the MET current as well. We used γ-cyclodextrin to extract lipids form the membrane, reversibly reducing the peak MET current, current adaptation, and decreasing the channels resting open probability. The recovery after γ-cyclodextrin treatment was slower than the initial peak current reduction, suggesting that a specific lipid organization is required for normal MET channel function, which requires time reestablish. Extraction of cholesterol, using Mβ-cyclodextrin, irreversibly reduces the peak MET current and reversibly increases the channel resting open probability, suggesting that cholesterol restricts MET channel opening. This restriction could be useful to increase the channel's signal to noise ratio. Together this data suggests that the cell membrane is part of the force relay machinery to the MET channel and could possibly restrict gating associated conformational changes of the MET channel.
NASA Astrophysics Data System (ADS)
Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan
2013-11-01
The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.
NASA Astrophysics Data System (ADS)
Yonezawa, Tetsu; Asano, Takashi; Fujino, Tatsuya; Nishihara, Hiroshi
2013-06-01
A mass measurement technique for detecting low-molecular-weight drugs with a cyclodextrin-supported organic matrix was investigated. By using cyclodextrin-supported 2,4,6-trihydroxyacetophenone (THAP), the matrix-related peaks of drugs were suppressed. The peaks of protonated molecules of the sample and THAP were mainly observed, and small fragments were detected in a few cases. Despite the Na+ and K+ peaks were observed in the spectrum, Na+ or K+ adduct sample molecules were undetected, owing to the sugar units of cyclodextrin. The advantages of MALDI-MS with cyclodextrin-supported matrices as an analytical tool for forensic samples are discussed. The suppression of alkali adducted molecules and desorption process are also discussed.
Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective
Zhang, Jianxiang; Ma, Peter X
2013-01-01
The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed. PMID:23673149
Cloning and sequencing of CGTase genes of two Thermoanaerobacter strains
USDA-ARS?s Scientific Manuscript database
Cyclodextrin glycosyltransferase (CGTase; EC 2.4.1.19) is an important industrial enzyme that catalyzes the formation of cyclodextrins from starch and related substrates via transglycosylation reaction. Cyclodextrins are cyclic oligosaccharides, composed of 6,7 or 8 glucose units, which are used in...
Fletcher, Heidi J.; Stenken, Julie A.
2008-01-01
Cyclodextrins and antibodies have been used as affinity agents to improve relative recovery during microdialysis sampling. Two neuropeptides, methionine-enkephalin (ME) and leucine-enkephalin (LE), were chosen to compare the use of cyclodextrins and antibodies as possible affinity agents for improving their relative recovery across polycarbonate and polyethersulfone membranes during in vitro sampling. Cyclodextrins (CD) including β-CD, 2-hydroxypropyl-β-cyclodextrin (2HPβ-CD), and γ-CD gave improvements of relative recovery for both peptides of less than 2-fold as compared to controls. Comparisons of relative recovery between tyrosine-glycine-glycine, tyrosine, and phenylalanine using different cyclodextrins in the perfusion fluid were also obtained. Inclusion of an antibody against met-enkephalin in the microdialysis perfusion fluid resulted in relative recovery increases of up to 2.5-fold. These results show that using antibodies as affinity agents during microdialysis sampling may be more effective agents to improve the relative recovery of these opioid neuropeptides. PMID:18558138
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Superheating of monolayer ice in graphene nanocapillaries
NASA Astrophysics Data System (ADS)
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2017-04-01
The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.
Superheating of monolayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2017-04-07
The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.
Scalia, Santo; Casolari, Alberto; Iaconinoto, Antonietta; Simeoni, Silvia
2002-11-07
The effects of beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) on the base-catalyzed degradation and light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC) were investigated. Reversed-phase liquid chromatography was used to study the interaction between natural and modified cyclodextrins, added to the mobile phase, and the sunscreen. Among the available cyclodextrins (beta-CD, HP-beta-CD, hydroxypropyl-alpha-cyclodextrin and hydroxypropyl-gamma-cyclodextrin), only HP-beta-CD and beta-CD produced a significant decrease in the chromatographic retention of trans-EHMC. The complexation of the sunscreen agent with HP-beta-CD and beta-CD was confirmed by thermal analysis and nuclear magnetic resonance spectroscopy. beta-CD depressed the decomposition of trans-EHMC in alkaline solutions more effectively than HP-beta-CD. Moreover, the irradiation-induced degradation of the sunscreen agent in emulsion vehicles was reduced by complexation with beta-CD (the extent of degradation was 26.1% for the complex compared to 35.8% for free trans-EHMC) whereas HP-beta-CD had no significant effect. Therefore, the complex of beta-CD with trans-EHMC enhances the chemical- and photo-stability of the sunscreen agent. Moreover, it limits adverse interactions of the UV filter with other formulation ingredients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boving, T.B.; Wang, X.; Brusseau, M.L.
1999-03-01
The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced bymore » up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.« less
Gubica, Tomasz; Pełka, Agnieszka; Pałka, Katarzyna; Temeriusz, Andrzej; Kańska, Marianna
2011-09-27
Cyclomaltohexaose (α-cyclodextrin) and cyclomaltoheptaose (β-cyclodextrin) as well as their four methyl ether derivatives, that is, hexakis(2,3-di-O-methyl)cyclomaltohexaose, hexakis(2,3,6-tri-O-methyl)cyclomaltohexaose, heptakis(2,3-di-O-methyl)cyclomaltoheptaose, and heptakis(2,3,6-tri-O-methyl)cyclomaltoheptaose were investigated as the additives in the course of enzymatic decomposition of l-phenylalanine catalyzed by phenylalanine ammonia-lyase. Only a few of those additives behaved like classical inhibitors of the enzymatic reaction under investigation because the values of the Michaelis constants that were obtained, as well as the maximum velocity values depended mostly atypically on the concentrations of those additives. In most cases cyclodextrins caused mixed inhibition, both competitive and noncompetitive, but they also acted as activators for selected concentrations. This atypical behaviour of cyclodextrins is caused by three different and independent effects. The inhibitory effect of cyclodextrins is connected with the decrease of substrate concentration and unfavourable influence on the flexibility of the enzyme molecules. On the other hand, the activating effect is connected with the decrease of product concentration (the product is an inhibitor of the enzymatic reaction under investigation). All these effects are caused by the ability of the cyclodextrins to form inclusion complexes. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Forman, R.
1976-01-01
The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.
NASA Astrophysics Data System (ADS)
Sun, Dezheng; Kim, Daeho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jon; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat; Hyldgaard, Per; Bartels, Ludwig
2011-03-01
Intermolecular force plays an important role in self-assembly and surface pattern formation. Anthracene and similar unsubstituted arenes attach to a metallic substrate predominantly through van der Waals interaction leading. In this contribution we present images how anthracene on Cu(111) forms a large number of highly ordered patterns that feature a broad array of structural motifs. Density functional theory modeling including vdW interactions allows us to model the energetic of the pattern formation at high fidelity. Moreover, it allows us to deduce the strain energy associated with films of varying coverage. From this work, we obtain the Young's modulus and Poisson Ratio of a molecular monolayer, which resemble properties conventionally found for porous materials. These patterns are in marked contrast to those found after introduction of functional groups in the molecules, such as carbonyls or thiols.
Physical properties and application in the confined geometrical systems
NASA Astrophysics Data System (ADS)
Pak, Hunkyun
Surface viscoelasticity of a vitamin E modified polyethylene glycol (vitamin E-TPGS) monolayers at the air/water interface is deduced by the surface light scattering method and Wilhelmy plate method. It was found that the viscoelasticity of vitamin E-TPGS monolayer is similar to that of PEO monolayer at the surface pressure lower than the collapse pressure of the polyethylene oxide (PEO). However, at higher surface pressure than the collapse pressure of PEO, it deviates from the viscoelastic behavior of PEO. Lateral diffusion constants of a probe lipid (NBD-PC) in a binary monolayer of L-a-dilauroylphosphatidylcholine (DLPC) and poly-(di-isobutylene-alt-maleic acid) (PDIBMA) were determined by the fluorescence recovery after photobleaching (FRAP) method at the air/pH 7 buffer interface as a function of composition. The diffusion constant is found to retard down to less than one hundredth to that at pure DLPC monolayers as the mole fraction of PDIBMA increased. The free area model was used to interpret the probe diffusion retardation. Translational diffusion constants of a probe molecule, 4-octadecylamino-7-nitrobenzo-2-oxa-1,3-diazole (C18-NBD), in thin polyisoprene (PI) and polydimethyl siloxane (PDMS) films, spin coated on methylated and propylyaminated silicon wafers, are studied by the FRAP method as a function of film thickness. Reduction of the diffusion constant is observed as thickness of the films is decreased. Two empirical models, the two-layer model and the continuous layer model are proposed to account for the diffusion constant dependence on the film thickness vs. thickness. It was observed that the diffusion profiles in the films are dependet on the nature of the substrate surfaces. Self-assembled patterns of magnetic particles were made and fixed by applying magnetic field on the particles dispersed at the air/liquid interface, followed by gelling of the liquid subphase. With this method, the large patterns with controllable lattice constant can be made. The fixation of the subphase enhances the stability of the patterns. Further, three-dimensional self-assembled patterns can be made by this method when the fixation process is incorporated.
Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.
Alsbaiee, Alaaeddin; Smith, Brian J; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E; Dichtel, William R
2016-01-14
The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
NASA Astrophysics Data System (ADS)
Alsbaiee, Alaaeddin; Smith, Brian J.; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E.; Dichtel, William R.
2016-01-01
The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Bangalore, Dharmendra V; McGlynn, William; Scott, Darren D
2005-03-23
Lycopene, a lipophilic antioxidant, plays a crucial role in biological systems. It may play an important role in human biological systems by providing protection against cardiovascular disease and some cancers and by boosting the immune system. The oxygen radical absorbance capacity (ORAC) has been validated as an index of antioxidant activity for many hydrophilic antioxidants but not for lycopene. This study validates the ORAC assay for different concentrations of lycopene in the presence of beta-cyclodextrin, a water-solubility enhancer. Lyc-O-Mato 6% extract was used as a source of lycopene for these experiments. Lycopene was extracted according to a standard spectrophotometric assay procedure in the presence of beta-cyclodextrin at concentrations of 0, 0.4, 0.8, and 1.6%, and the antioxidant activity of lycopene was measured with the ORAC assay. Experiments were conducted in quadruplicate and statistical pooled correlations analyzed. Statistical analysis showed a very high correlation (R2 = 0.99) between ORAC and ascorbic acid concentrations, validating this method. Lycopene concentration correlated poorly with ORAC (R2 = 0.33) in the absence of beta-cyclodextrin. Correlations improved with increasing levels of beta-cyclodextrin (R2 = 0.58 and 0.91 for 0.4 and 0.8% beta-cyclodextrin, respectively). A very high beta-cyclodextrin concentration (1.6%) decreased the correlation between ORAC and lycopene concentration. Inclusion of beta-cyclodextrin in the ORAC assay improves correlation between ORAC and lycopene concentration, thus expanding the scope of the ORAC assay to include an additional fat-soluble antioxidant.
Synthesis of polyrotaxanes from acetyl-β-cyclodextrin
NASA Astrophysics Data System (ADS)
Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.
2011-12-01
Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.
Brewster, M E; Estes, K S; Loftsson, T; Perchalski, R; Derendorf, H; Mullersman, G; Bodor, N
1988-11-01
A dihydropyridine in equilibrium pyridinium salt chemical delivery system (CDS) for estradiol (E2CDS) was complexed with various modified beta-cyclodextrins including hydroxyethyl-beta-cyclodextrin (HECD), hydroxypropyl-beta-cyclodextrin (HPCD), and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DMCD). Complex formation with all of these cyclodextrins resulted in dramatic increases in the water solubility of E2CDS. Studies on the complex of E2CDS and HPCD (E2CDS-CD) indicated that the encapsulated estrogen was approximately four times more stable than the unmanipulated CDS, producing an estimated half-life of degradation of 4 years compared with 1.2 years for the uncomplexed drug at room temperature. The complexation of E2CDS and HPCD also stabilized the dihydronicotinate in solutions containing potassium ferricyanide. This formulation was shown to be equivalent to E2CDS in dimethyl sulfoxide in delivering the oxidized, estradiol precursor (E2Q+) to the brain, and also produced similar biological responses; these included decreased luteinizing hormone (LH) secretion and a decrease in the rate of weight gain in castrated female rats.
Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations.
Fenyvesi, É; Vikmon, M; Szente, L
2016-09-09
Cyclodextrins are tasteless, odorless, nondigestible, noncaloric, noncariogenic saccharides, which reduce the digestion of carbohydrates and lipids. They have low glycemic index and decrease the glycemic index of the food. They are either non- or only partly digestible by the enzymes of the human gastrointestinal (GI) tract and fermented by the gut microflora. Based on these properties, cyclodextrins are dietary fibers useful for controlling the body weight and blood lipid profile. They are prebiotics, improve the intestinal microflora by selective proliferation of bifidobacteria. These antiobesity and anti-diabetic effects make them bioactive food supplements and nutraceuticals. In this review, these features are evaluated for α-, β- and γ-cyclodextrins, which are the cyclodextrin variants approved by authorities for food applications. The mechanisms behind these effects are reviewed together with the applications as solubilizers, stabilizers of dietary lipids, such as unsaturated fatty acids, phytosterols, vitamins, flavonoids, carotenoids and other nutraceuticals. The recent applications of cyclodextrins for reducing unwanted components, such as trans-fats, allergens, mycotoxins, acrylamides, bitter compounds, as well as in smart active packaging of foods are also overviewed.
Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R
2003-05-16
In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.
An MM and QM Study of Biomimetic Catalysis of Diels-Alder Reactions Using Cyclodextrins
Chen, Wei; Sun, Lipeng; Tang, Zhiye; Ali, Zulfikhar A.; Wong, Bryan M.; Chang, Chia-en A.
2018-01-01
We performed a computational investigation of the mechanism by which cyclodextrins (CDs) catalyze Diels-Alder reactions between 9-anthracenemethanol and N-cyclohexylmaleimide. Hydrogen bonds (Hbonds) between N-cyclohexylmaleimide and the hydroxyl groups of cyclodextrins were suggested to play an important role in this catalytic process. However, our free energy calculations and molecular dynamics simulations showed that these Hbonds are not stable, and quantum mechanical calculations suggested that the reaction is not promoted by these Hbonds. The binding of 9-anthracenemethanol and N-cyclohexylmaleimide to cyclodextrins was the key to the catalytic process. Cyclodextrins act as a container to hold the two reactants in the cavity, pre-organize them for the reactions, and thus reduce the entropy penalty to the activation free energy. Dimethyl-β-CD was a better catalyst for this specific reaction than β-CD because of its stronger van der Waals interaction with the pre-organized reactants and its better performance in reducing the activation energy. This computational work sheds light on the mechanism of the catalytic reaction by cyclodextrins and introduces new perspectives of supramolecular catalysis. PMID:29938117
Kelley, Algernon T; Ngunjiri, Johnpeter N; Serem, Wilson K; Lawrence, Steve O; Yu, Jing-Jiang; Crowe, William E; Garno, Jayne C
2010-03-02
Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.
Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene
NASA Astrophysics Data System (ADS)
Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team
2013-03-01
We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science
Directed Assembly of Molecules on Graphene/Ru(0001)
NASA Astrophysics Data System (ADS)
Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.
2012-02-01
Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.
Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong
2013-08-23
Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.
Fundamental physics issues of multilevel logic in developing a parallel processor.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Anirban; Miki, Kazushi
2007-06-01
In the last century, On and Off physical switches, were equated with two decisions 0 and 1 to express every information in terms of binary digits and physically realize it in terms of switches connected in a circuit. Apart from memory-density increase significantly, more possible choices in particular space enables pattern-logic a reality, and manipulation of pattern would allow controlling logic, generating a new kind of processor. Neumann's computer is based on sequential logic, processing bits one by one. But as pattern-logic is generated on a surface, viewing whole pattern at a time is a truly parallel processing. Following Neumann's and Shannons fundamental thermodynamical approaches we have built compatible model based on series of single molecule based multibit logic systems of 4-12 bits in an UHV-STM. On their monolayer multilevel communication and pattern formation is experimentally verified. Furthermore, the developed intelligent monolayer is trained by Artificial Neural Network. Therefore fundamental weak interactions for the building of truly parallel processor are explored here physically and theoretically.
Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke
2007-11-01
High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.
A Supramolecular Approach for Liver Radioembolization
Spa, Silvia J.; Welling, Mick M.; van Oosterom, Matthias N.; Rietbergen, Daphne D. D.; Burgmans, Mark C.; Verboom, Willem; Huskens, Jurriaan; Buckle, Tessa; van Leeuwen, Fijs W. B.
2018-01-01
Hepatic radioembolization therapies can suffer from discrepancies between diagnostic planning (scout-scan) and the therapeutic delivery itself, resulting in unwanted side-effects such as pulmonary shunting. We reasoned that a nanotechnology-based pre-targeting strategy could help overcome this shortcoming by directly linking pre-interventional diagnostics to the local delivery of therapy. Methods: The host-guest interaction between adamantane and cyclodextrin was employed in an in vivo pre-targeting set-up. Adamantane (guest)-functionalized macro albumin aggregates (MAA-Ad; d = 18 μm) and (radiolabeled) Cy5 and β-cyclodextrin (host)-containing PIBMA polymers (99mTc-Cy50.5CD10PIBMA39; MW ~ 18.8 kDa) functioned as the reactive pair. Following liver or lung embolization with (99mTc)-MAA-Ad or (99mTc)-MAA (control), the utility of the pre-targeting concept was evaluated after intravenous administration of 99mTc-Cy50.5CD10PIBMA39. Results: Interactions between MAA-Ad and Cy50.5CD10PIBMA39 could be monitored in solution using confocal microscopy and were quantified by radioisotope-based binding experiments. In vivo the accumulation of the MAA-Ad particles in the liver or lungs yielded an approximate ten-fold increase in accumulation of 99mTc-Cy50.5CD10PIBMA39 in these organs (16.2 %ID/g and 10.5 %ID/g, respectively) compared to the control. Pre-targeting with MAA alone was shown to be only half as efficient. Uniquely, for the first time, this data demonstrates that the formation of supramolecular interactions between cyclodextrin and adamantane can be used to drive complex formation in the chemically challenging in vivo environment. Conclusion: The in vivo distribution pattern of the cyclodextrin host could be guided by the pre-administration of the adamantane guest, thereby creating a direct link between the scout-scan (MAA-Ad) and delivery of therapy. PMID:29721086
NASA Astrophysics Data System (ADS)
Zhou, Shu-Ya; Ma, Shui-Xian; Cheng, Hui-Lin; Yang, Li-Juan; Chen, Wen; Yin, Yan-Qing; Shi, Yi-Min; Yang, Xiao-Dong
2014-01-01
The inclusion complexation behavior, characterization and binding ability of pinocembrin with β-cyclodextrin (β-CD) and its derivative 2-hydroxypropyl-β-cyclodextrin (HPβCD) were investigated in both solution and the solid state by means of XRD, DSC, 1H and 2D NMR and UV-vis spectroscopy. The results showed that the water solubility and thermal stability of pinocembrin were obviously increased in the inclusion complex with cyclodextrins. This satisfactory water solubility and high stability of the pinocembrin/CD complexes will be potentially useful for their application as herbal medicines or healthcare products.
Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors.
Fanali, S
2000-04-14
This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.
Charoenchaitrakool, M; Dehghani, F; Foster, N R
2002-06-04
The dissolution rate of a drug into the biological environment can be enhanced by forming complexes with cyclodextrins and their derivatives. In this study, ibuprofen-methyl-beta-cyclodextrin complexes were prepared successfully by passing ibuprofen-laden CO(2) through a methyl-beta-cyclodextrin packed bed. The maximum drug loading obtained in this work was 10.8 wt.%, which was comparable to that of a 1:1 complex (13.6 wt.% of ibuprofen). The complex exhibited instantaneous dissolution profiles in water solution. The enhanced dissolution rate was attributed to the amorphous character and improved wettability of the product.
Creamer, Jessica S; Mora, Maria F; Willis, Peter A
2017-01-17
Amino acids are fundamental building blocks of terrestrial life as well as ubiquitous byproducts of abiotic reactions. In order to distinguish between amino acids formed by abiotic versus biotic processes it is possible to use chemical distributions to identify patterns unique to life. This article describes two capillary electrophoresis methods capable of resolving 17 amino acids found in high abundance in both biotic and abiotic samples (seven enantiomer pairs d/l-Ala, -Asp, -Glu, -His, -Leu, -Ser, -Val and the three achiral amino acids Gly, β-Ala, and GABA). To resolve the 13 neutral amino acids one method utilizes a background electrolyte containing γ-cyclodextrin and sodium taurocholate micelles. The acidic amino acid enantiomers were resolved with γ-cyclodextrin alone. These methods allow detection limits down to 5 nM for the neutral amino acids and 500 nM for acidic amino acids and were used to analyze samples collected from Mono Lake with minimal sample preparation.
Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Tenberken, Oliver; Thiermann, Horst; Worek, Franz; Kubik, Stefan; Reiter, Georg
2012-12-16
The ability of 13 β-cyclodextrin and 2 glucose derivatives containing substituents with oxime groups as nucleophilic components to accelerate the degradation of tabun at physiological pH has been evaluated. To this end, a qualitative and a quantitative enzymatic assay as well as a highly sensitive enantioselective GC-MS assay were used. In addition, an assay was developed that provided information about the mode of action of the investigated compounds. The results show that attachment of pyridinium-derived substituents with an aldoxime group in 3- or 4-position to a β-cyclodextrin ring affords active compounds mediating tabun degradation. Activities differ depending on the structure, the number, and the position of the substituent on the ring. Highest activity was observed for a β-cyclodextrin containing a 4-formylpyridinium oxime residue in 6-position of one glucose subunit, which detoxifies tabun with a half-time of 10.2 min. Comparison of the activity of this compound with that of an analog in which the cyclodextrin ring was replaced by a glucose residue demonstrated that the cyclodextrin is not necessary for activity but certainly beneficial. Finally, the results provide evidence that the mode of action of the cyclodextrin involves covalent modification of its oxime group rendering the scavenger inactive after reaction with the first tabun molecule. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao
2013-08-01
In this work, β-Ni(OH)2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH)2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH)2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH)2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH)2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.
Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra
2011-01-01
Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615
Gidwani, Bina; Vyas, Amber
2016-03-01
PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks = 645 M(-1)). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4 ± 2.53 nm and - 31.9 ± (-3.08) mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3 ± 0.11 µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.
NASA Astrophysics Data System (ADS)
Khattabi, Areen M.; Alqdeimat, Diala A.
2018-02-01
One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.
Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z
2014-10-01
This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ~0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). Copyright © 2014 Elsevier B.V. All rights reserved.
Martinez, Angel; Smalyukh, Ivan I.
2015-02-12
Oscillatory and excitable systems very commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topologicalmore » solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. Finally, we uncover underpinning physical mechanisms and discuss potential uses.« less
Schilardi, Patricia L; Dip, Patricio; dos Santos Claro, Paula C; Benítez, Guillermo A; Fonticelli, Mariano H; Azzaroni, Omar; Salvarezza, Roberto C
2005-12-16
Pattern transfer with high resolution is a frontier topic in the emerging field of nanotechnologies. Electrochemical molding is a possible route for nanopatterning metal, alloys and oxide surfaces with high resolution in a simple and inexpensive way. This method involves electrodeposition onto a conducting master covered by a self-assembled alkanethiolate monolayer (SAMs). This molecular film enables direct surface-relief pattern transfer from the conducting master to the inner face of the electrodeposit, and also allows an easy release of the electrodeposited film due their excellent anti-adherent properties. Replicas of the original conductive master can be also obtained by a simple two-step procedure. SAM quality and stability under electrodeposition conditions combined with the formation of smooth electrodeposits are crucial to obtain high-quality pattern transfer with sub-50 nm resolution.
NASA Astrophysics Data System (ADS)
Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.
2003-06-01
Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.
NASA Technical Reports Server (NTRS)
Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis
2000-01-01
The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.
Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs
Becker, Lisa F; Schwarz, Dennis H
2014-01-01
Summary Methyl and ethyl thioether groups were introduced at all primary positions of α-, β-, and γ-cyclodextrin by nucleophilic displacement reactions starting from the corresponding per-(6-deoxy-6-bromo)cyclodextrins. Further modification of all 2-OH positions by etherification with iodo terminated triethylene glycol monomethyl ether (and tetraethylene glycol monomethyl ether, respectively) furnished water-soluble hosts. Especially the β-cyclodextrin derivatives exhibit very high binding potentials towards the anaesthetic drugs sevoflurane and halothane. Since the resulting inclusion compounds are highly soluble in water at temperatures ≤37 °C they are good candidates for new aqueous dosage forms which would avoid inhalation anaesthesia. PMID:25550759
Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review.
Mura, Paola
2014-12-01
Cyclodextrins are cyclic oligosaccharides endowed with a hydrophilic outer surface and a hydrophobic inner cavity, able to form inclusion complexes with a wide variety of guest molecules, positively affecting their physicochemical properties. In particular, in the pharmaceutical field, cyclodextrin complexation is mainly used to increase the aqueous solubility and dissolution rate of poorly soluble drugs, and to enhance their bioavailability and stability. Analytical characterization of host-guest interactions is of fundamental importance for fully exploiting the potential benefits of complexation, helping in selection of the most appropriate cyclodextrin. The assessment of the actual formation of a drug-cyclodextrin inclusion complex and its full characterization is not a simple task and often requires the use of different analytical methods, whose results have to be combined and examined together. The purpose of the present review is to give, as much as possible, a general overview of the main analytical tools which can be employed for the characterization of drug-cyclodextrin inclusion complexes in solution, with emphasis on their respective potential merits, disadvantages and limits. Further, the applicability of each examined technique is illustrated and discussed by specific examples from literature. Copyright © 2014 Elsevier B.V. All rights reserved.
Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin
Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.
2013-01-01
Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640
García, Agustina; Leonardi, Darío; Salazar, Mario Oscar; Lamas, María Celina
2014-01-01
The potential use of natural cyclodextrins and their synthetic derivatives have been studied extensively in pharmaceutical research and development to modify certain properties of hydrophobic drugs. The ability of these host molecules of including guest molecules within their cavities improves notably the physicochemical properties of poorly soluble drugs, such as albendazole, the first chosen drug to treat gastrointestinal helminthic infections. Thus, the aim of this work was to synthesize a beta cyclodextrin citrate derivative, to analyze its ability to form complexes with albendazole and to evaluate its solubility and dissolution rate. The synthesis progress of the cyclodextrin derivative was followed by electrospray mass spectrometry and the acid-base titration of the product. The derivative exhibited an important drug affinity. Nuclear magnetic resonance experiments demonstrated that the tail and the aromatic ring of the drug were inside the cavity of the cyclodextrin derivative. The inclusion complex was prepared by spray drying and full characterized. The drug dissolution rate displayed exceptional results, achieving 100% drug release after 20 minutes. The studies indicated that the inclusion complex with the cyclodextrin derivative improved remarkably the physicochemical properties of albendazole, being a suitable excipient to design oral dosage forms. PMID:24551084
NASA Astrophysics Data System (ADS)
Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens
2017-04-01
In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.
Measuring the Edge Recombination Velocity of Monolayer Semiconductors.
Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali
2017-09-13
Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.
ON THE FREEZING AND IDENTIFICATION OF LIPID MONOLAYER 2-D ARRAYS FOR CRYOELECTRON MICROSCOPY
Taylor, Dianne W.; Kelly, Deborah F.; Cheng, Anchi; Taylor, Kenneth A.
2008-01-01
Lipid monolayers provide a convenient vehicle for the crystallization of biological macromolecules for 3-D electron microscopy. Although numerous examples of 3-D images from 2-D protein arrays have been described from negatively stained specimens, only six structures have been done from frozen hydrated specimens. We describe here a method that makes high quality frozen-hydrated specimens of lipid monolayer arrays for cryoelectron microscopy. The method uses holey carbon films with patterned holes for monolayer recovery, blotting and plunge freezing to produce thin aqueous films which cover >90% of the available grid area. With this method, even specimens with relatively infrequent crystals can be screened using automated data collection techniques. Though developed for microscopic examination of 2-D arrays, the method may have wider application to the preparation of single particle specimens for 3-D image reconstruction. PMID:17561414
Belchí-Navarro, Sarai; Almagro, Lorena; Lijavetzky, Diego; Bru, Roque; Pedreño, María A
2012-01-01
In this work, the effect of different inducing factors on trans-resveratrol extracellular production in Monastrell grapevine suspension cultured cells is evaluated. A detailed analysis provides the optimal concentrations of cyclodextrins, methyljasmonate and UV irradiation dosage, optimal cell density, elicitation time and sucrose content in the culture media. The results indicate that trans-resveratrol production decreases as the initial cell density increases for a constant elicitor concentration in Monastrell suspension cultured cells treated with cyclodextrins individually or in combination with methyljasmonate; the decrease observed in cell cultures elicited with cyclodextrins alone is far more drastic than those observed in the combined treatment. trans-Resveratrol extracellular production observed by the joint use of cyclodextrins and methyljasmonate (1,447.8 ± 60.4 μmol trans-resveratrol g(-1) dry weight) is lower when these chemical compounds are combined with UV light short exposure (669.9 ± 45.2 μmol trans-resveratrol g(-1) dry weight). Likewise, trans-resveratrol production is dependent on levels of sucrose in the elicitation medium with the maximal levels observed with 20 g l(-1) sucrose and the joint action of cyclodextrins and 100 μM methyljasmonate. The sucrose concentration did not seem to limit the process although it affects significantly the specific productivity since the lowest sucrose concentration is 10 g l(-1), the highest productivity is reached (100.7 ± 5.8 μmol trans-resveratrol g(-1) dry weight g(-1) sucrose) using cyclodextrins and 25 μM methyljasmonate.
Topuz, Fuat; Uyar, Tamer
2017-07-01
Polycyclic aromatic hydrocarbons (PAHs) are the byproducts of the incomplete combustion of carbon-based fuels, and have high affinity towards DNA strands, ultimately exerting their carcinogenic effects. They are ubiquitousenvironmental contaminants,and can accumulate on tissues due to their lipophilic nature. In this article, we describe a novel concept for PAH removal from aqueous solutions using cyclodextrin-functionalized mesostructured silica nanoparticles (CDMSNs) and pristine mesostructured silica nanoparticles (MSNs). The adsorption applications of MSNs are greatly restricted due to the absence of surface functional groups on such particles. In this regard, cyclodextrins can serve as ideal functional molecules with their toroidal, cone-type structure, capable of inclusion-complex formation with many hydrophobic molecules, including genotoxic PAHs. The CDMSNs were synthesized by the surfactant-templated, NaOH-catalyzed condensation reactions of tetraethyl orthosilicate (TEOS) in the presence of two different types of cyclodextrin (i.e. hydroxypropyl-β-cyclodextrin (HP-β-CD) and native β-cyclodextrin (β-CD)). The physical incorporation of CD moieties was supported by XPS, FT-IR, NMR, TGA and solid-state 13 C NMR. The CDMSNs were treated with aqueous solutions of five different PAHs (e.g. pyrene, anthracene, phenanthrene, fluorene and fluoranthene). The functionalization of MSNs with cyclodextrin moieties significantly boosted the sorption capacity (q) of the MSNs up to ∼2-fold, and the q ranged between 0.3 and 1.65mg per gram CDMSNs, of which the performance was comparable to that of the activated carbon. Copyright © 2017 Elsevier Inc. All rights reserved.
Rudrangi, Shashi Ravi Suman; Trivedi, Vivek; Mitchell, John C; Wicks, Stephen Richard; Alexander, Bruce David
2015-10-15
The purpose of this study was to evaluate a single-step, organic solvent-free supercritical fluid process for the preparation of olanzapine-methyl-β-cyclodextrin complexes with an express goal to enhance the dissolution properties of olanzapine. The complexes were prepared by supercritical carbon dioxide processing, co-evaporation, freeze drying and physical mixing. The prepared complexes were then analysed by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, solubility and dissolution studies. Computational molecular docking studies were performed to study the formation of molecular inclusion complexation of olanzapine with methyl-β-cyclodextrin. All the binary mixtures of olanzapine with methyl-β-cyclodextrin, except physical mixture, exhibited a faster and greater extent of drug dissolution than the drug alone. Products obtained by the supercritical carbon dioxide processing method exhibited the highest apparent drug dissolution. The characterisation by different analytical techniques suggests complete complexation or amorphisation of olanzapine and methyl-β-cyclodextrin complexes prepared by supercritical carbon dioxide processing method. Therefore, organic solvent-free supercritical carbon dioxide processing method proved to be novel and efficient for the preparation of solid inclusion complexes of olanzapine with methyl-β-cyclodextrin. The preliminary data also suggests that the complexes of olanzapine with methyl-β-cyclodextrin will lead to better therapeutic efficacy due to better solubility and dissolution properties. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.
2009-04-01
By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.
Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.
Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas
2012-01-01
A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-04
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; ...
2015-07-22
The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe 2 monolayer crystals with SiO 2, and the exposed locations are selectively and totally converted to MoS 2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe 2/MoS 2 heterojunctions in predefinedmore » patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less
NASA Astrophysics Data System (ADS)
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-08-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.
Switchable host-guest systems on surfaces.
Yang, Ying-Wei; Sun, Yu-Long; Song, Nan
2014-07-15
CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli, such as light, pH variations, competitive binding, and enzyme. Rotaxanes have also been assembled onto the surfaces of gold nanodisks and microcantilevers to realize active molecular plasmonics and synthetic molecular actuators for device fabrication and function. Pillararenes have been successfully used to control and aid the synthesis of gold nanoparticles, semiconducting quantum dots, and magnetic nanoparticles. The resulting organic-inorganic hydrid nanomaterials have been successfully used for controlled self-assembly, herbicide sensing and detection, pesticide removal, and so forth, taking advantage of the selective binding of pillarenes toward target molecules. Cyclodextrins have also been successfully functionalized onto the surface of gold nanoparticles to serve as recycling extractors for C60. Many interesting prototypes of nanodevices based on synthetic macrocycles and their host-guest chemistry have been constructed and served for different potential applications. This Account will be a summary of the efforts made mainly by us, and others, on the host-guest chemistry of synthetic macrocyclic compounds on the surfaces of different solid supports.
Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron.
Zhang, Yuening; Yang, Dong; Han, Jianlei; Zhou, Jin; Jin, Qingxian; Liu, Minghua; Duan, Pengfei
2018-05-22
Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interest. Here, we report a pyrene-containing π-peptide dendron hydrogel, which shows 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendrons formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with β-cyclodextrin (PGAc@β-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@β-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of the pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.
Reineccius, Teresa A; Reineccius, Gary A; Peppard, Terry L
2005-01-26
Three commonly used flavor industry solvents (propylene glycol, triacetin, and triethyl citrate) were tested for their capacity to interfere with the ability of alpha-, beta-, and gamma-cyclodextrin to form molecular inclusion complexes with flavors. Six flavor compounds (ethyl butyrate, ethyl heptanoate, l-menthol, methyl anthranilate, neral, and geranial) were measured by headspace gas chromatography above 2:1 water/ethanol containing appropriate additions of cyclodextrin and flavor solvent. The smallest and most polar solvent molecule represented by propylene glycol had the least effect on cyclodextrin/flavorant complex formation. In contrast, triacetin, intermediate in size among the three flavor diluents studied, had the greatest effect, even though, based on at least some computed molecular parameters, it appears to be more polar than triethyl citrate. The explanation for this apparent anomaly may lie in differences in the extent to which triacetin and triethyl citrate are able to interact with cyclodextrins by means of partial interaction with the hydrophobic cavities of the latter.
Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution.
Koontz, John L; Marcy, Joseph E; Barbeau, William E; Duncan, Susan E
2003-11-19
Aqueous solutions of natamycin and its beta-cyclodextrin (beta-CD), hydroxypropyl beta-cyclodextrin, and gamma-cyclodextrin (gamma-CD) inclusion complexes were completely degraded after 24 h of exposure to 1000 lx fluorescent lighting at 4 degrees C. After 14 days of storage in darkness at 4 degrees C, 92.2% of natamycin remained in active form. The natamycin:beta-CD complex and natamycin:gamma-CD complex were significantly more stable (p < 0.05) than natamycin in its free state in aqueous solutions stored in darkness at 4 degrees C. Clear poly(ethylene terephthalate) packaging with a UV light absorber allowed 85.0% of natamycin to remain after 14 days of storage under 1000 lx fluorescent lighting at 4 degrees C. Natamycin:cyclodextrin complexes can be dissociated for analysis in methanol/water/acetic acid, 60:40:5, v/v/v. Natamycin and its complexes in dissociated form were quantified by reverse phase HPLC with detection by photodiode array at 304 nm.
Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.
Szejtli, J; Gerlóczy, A; Sebestyén, G; Fónagy, A
1981-04-01
After oral administration of 14C-labelled salicylic acid and its beta-cyclodextrin complex to rats, the blood radioactivity-level increases in the first 2 h than decreases. The blood level obtained with the inclusion complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid take place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves show that the free salicylic acid is completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increases the pK value of all hydroxy-benzoic acids. Direct observations reveals that complex formation decreases the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex.
Singh, Virendra; Jadhav, Swati B; Singhal, Rekha S
2015-09-01
Polysaccharides differing in structure and chemical nature were screened for their ability to bind non-covalently with polyphenol oxidase (PPO) from potato (as a model) and their effect on enzyme activity. All the polysaccharides selected inhibited the PPO but β-cyclodextrin showed maximum inhibition under optimum conditions. Process details for the inhibition of PPO were studied with respect to concentration of β-cyclodextrin, temperature, pH, and time. Higher inhibition constant and lower half life was obtained at 40 °C than at 30 °C in the presence of inhibitor. β-Cyclodextrin showed mixed type of inhibition of PPO. β-Cyclodextrin was further exploited as anti-browning agent in selected fruit juices. It not only showed a significant anti-browning effect on freshly prepared potato juice but was also effective in other fruit juices. Better effect was seen in pineapple, apple and pear as compared to banana, sugarcane and guava fruit juices. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge
2008-09-01
The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.
Lee, Yu Bin; Kim, Eun Mi; Byun, Hayeon; Chang, Hyung-Kwan; Jeong, Kwanghee; Aman, Zachary M; Choi, Yu Suk; Park, Jungyul; Shin, Heungsoo
2018-05-01
Numerous methods have been reported for the fabrication of 3D multi-cellular spheroids and their use in stem cell culture. Current methods typically relying on the self-assembly of trypsinized, suspended stem cells, however, show limitations with respect to cell viability, throughput, and accurate recapitulation of the natural microenvironment. In this study, we developed a new system for engineering cell spheroids by self-assembly of micro-scale monolayer of stem cells. We prepared synthetic hydrogels with the surface of chemically formed micropatterns (squares/circles with width/diameter of 200 μm) on which mesenchymal stem cells isolated from human nasal turbinate tissue (hTMSCs) were selectively attached and formed a monolayer. The hydrogel is capable of thermally controlled expansion. As the temperature was decreased from 37 to 4 °C, the cell layer detached rapidly (<10 min) and assembled to form spheroids with consistent size (∼100 μm) and high viability (>90%). Spheroidization was significantly delayed and occurred with reduced efficiency on circle patterns compared to square patterns. Multi-physics mapping supported that delamination of the micro-scale monolayer may be affected by stress concentrated at the corners of the square pattern. In contrast, stress was distributed symmetrically along the boundary of the circle pattern. In addition, treatment of the micro-scale monolayer with a ROCK inhibitor significantly retarded spheroidization, highlighting the importance of contraction mediated by actin stress fibers for the stable generation of spheroidal stem cell structures. Spheroids prepared from the assembly of monolayers showed higher expression, both on the mRNA and protein levels, of ECM proteins (fibronectin and laminin) and stemness markers (Oct4, Sox2, and Nanog) compared to spheroids prepared from low-attachment plates, in which trypsinized single cells are assembled. The hTMSC spheroids also presented enhanced expression levels of markers related to tri-lineage (osteogenic, chondrogenic and adipogenic) differentiation. The changes in microcellular environments and functionalities were double-confirmed by using adipose derived mesenchymal stem cells (ADSCs). This spheroid engineering technique may have versatile applications in regenerative medicine for functionally improved 3D culture and therapeutic cell delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biological activity of some derivatives of β-cyclodextrin.
Batalova, T A; Dorovskich, V A; Kurochkina, G I; Grachev, M K; Plastinin, M L; Sergievich, A A
2011-10-01
New compounds of β-cyclodextrin containing covalently bound (conjugated) residues of acetylsalicylic and 1-(4-isobutylphenyl)-propionic acids were synthesized in the reaction of chlorides of the corresponding acids with β-cyclodextrin. We studied antiplatelet and antiphlogistic properties of these substances. It was shown that new compounds are comparable and in some cases are superior to the reference drugs acetylsalicylic acid and ibuprofen by anti-inflammatory and antiaggregant activities.
Bursting at the Seams: Rippled Monolayer Bismuth on NbSe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Alan; Adamo, Carolina; Jia, Shuang
Bismuth, one of the heaviest semimetals in nature, ignited the interest of the materials-physics community for its potential impact on topological quantum-material systems that utilize its strong spin-orbit coupling (SOC) and unique orbital hybridization. In particular, recent theoretical predictions of unique topological and superconducting properties of thin bismuth films and interfaces prompted intense research on the growth of sub- to a few monolayers of bismuth on different substrates. Similar to bulk rhombohedral bismuth, the initial growth of bismuth films on most substrates results in buckled bilayers that either grow in the (111) or (110) directions, with a lattice constant closemore » to that of bulk Bi. By contrast, in this paper we show a new growth pattern for bismuth monolayers on NbSe 2. We find that the initial growth of Bi can form a strongly bonded commensurate layer, resulting in a compressively strained two-dimensional triangular lattice. A unique pattern of 1D ripples and domain walls is observed. The single layer of bismuth also introduces strong marks on the electronic properties at the surface.« less
Long-lived force patterns and deformation waves at repulsive epithelial boundaries
NASA Astrophysics Data System (ADS)
Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier
2017-10-01
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
Bursting at the Seams: Rippled Monolayer Bismuth on NbSe 2
Fang, Alan; Adamo, Carolina; Jia, Shuang; ...
2018-04-13
Bismuth, one of the heaviest semimetals in nature, ignited the interest of the materials-physics community for its potential impact on topological quantum-material systems that utilize its strong spin-orbit coupling (SOC) and unique orbital hybridization. In particular, recent theoretical predictions of unique topological and superconducting properties of thin bismuth films and interfaces prompted intense research on the growth of sub- to a few monolayers of bismuth on different substrates. Similar to bulk rhombohedral bismuth, the initial growth of bismuth films on most substrates results in buckled bilayers that either grow in the (111) or (110) directions, with a lattice constant closemore » to that of bulk Bi. By contrast, in this paper we show a new growth pattern for bismuth monolayers on NbSe 2. We find that the initial growth of Bi can form a strongly bonded commensurate layer, resulting in a compressively strained two-dimensional triangular lattice. A unique pattern of 1D ripples and domain walls is observed. The single layer of bismuth also introduces strong marks on the electronic properties at the surface.« less
Schönbeck, Christian; Madsen, Tobias L; Peters, Günther H; Holm, René; Loftsson, Thorsteinn
2017-10-15
The molecular mechanisms underlying the drug-solubilizing properties of γ-cyclodextrin were explored using hydrocortisone as a model drug. The B S -type phase-solubility diagram of hydrocortisone with γ-cyclodextrin was thoroughly characterized by measuring the concentrations of hydrocortisone and γ-cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM -1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase in hydrocortisone solubility while the precipitation of entities with a 3:2 ratio of γ-cyclodextrin:hydrocortisone is responsible for the plateau and the ensuing strong decrease in solubility once all solid hydrocortisone is used up. The complete phase-solubility diagram is well accounted for by a model employing the 1:1 binding constant and the solubility product of the precipitating 3:2 entity (K 32 S =5.51 mM 5 ). For such systems, a small surplus of γ-cyclodextrin above the optimum concentration may result in a significant decrease in drug solubility, and the implications for drug formulations are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina
2017-01-01
Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, J.E.; Boving, T.B.; Brusseau, M.L.
2000-12-31
Reagents that enhance the aqueous solubility of nonaqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous interfacial tension are measured. Their analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical groundmore » water contaminants is measured in the laboratory, and the results are related to the physiochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal relates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.« less
Pharmaceutical applications of cyclodextrins: basic science and product development.
Loftsson, Thorsteinn; Brewster, Marcus E
2010-11-01
Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.
Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells
Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.
2014-01-01
The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001
Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A
2003-06-13
The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.
Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice.
Cho, Youngjin; Gutierrez, Linda; Bordonaro, Michael; Russo, Daniel; Anzelmi, Frank; Hooven, Jayde T; Cerra, Carmine; Lazarova, Darina L
2016-09-01
Obesity is associated with colorectal cancer (CRC). This effect might be attributed to adipokine-supported signaling. We have established that propolis suppresses survival signaling in CRC cells in vitro; therefore, we ascertained the ability of a propolis supplement to modulate intestinal neoplastic development in C57BL/6J-ApcMin/+/J mice in the lean and obese state. To induce obesity, mice were fed with a Western diet containing 40% fat. Since the propolis supplement includes gamma-cyclodextrin, the interventions included diets supplemented with or without gamma-cyclodextrin. The animals were administered the following diets: (1) control diet, (2) control diet/gamma-cyclodextrin, (3) control diet/propolis, (4) Western diet, (5) Western diet/gamma-cyclodextrin, and (6) Western diet/propolis. Western diet, resulting in obesity, accelerated neoplastic progression, as evidenced by the larger size and higher grade dysplasia of the neoplasms. In the context of normal weight, gamma-cyclodextrin and propolis affected neoplastic progression, as determined by the size of the lesions and their grade of dysplasia. A statistically significant decrease in the number of adenomas was detected in mice fed a control diet with the propolis supplement (61.8 ± 10.6 vs. 35.3 ± 7.6, P = 0.008). Although there was no significant difference in the polyp numbers between the six groups, the mice with the lowest number and size of adenomas were those fed a Western diet with gamma-cyclodextrin. This unexpected outcome might be explained by the increased levels of apoptosis detected in the intestinal tissues of these obese mice. We posit that butyrate derived from the metabolism of gamma-cyclodextrin may contribute to the decreased neoplastic burden in the context of obesity; however, future studies are required to address this possibility. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Lambert, Daniel; O'Neill, Catherine A; Padfield, Philip J
2007-01-01
In a previous study we demonstrated that depletion of Caco-2 cell cholesterol results in the loss of tight junction (TJ) integrity through the movement of claudins 3 and 4 and occludin, but not claudin 1, out of the TJs [1]. The aims of this study were to determine whether the major tight junction (TJ) proteins in Caco-2 cells are associated with cholesterol rich, membrane raft-like domains and if the loss of TJ integrity produced by the extraction of cholesterol reflects the dissolution of these domains resulting in the loss of TJ organisation. We have demonstrated that in Caco-2 cells claudins 1, 3, 4 and 7, JAM-A and occludin, are associated with cholesterol rich membrane domains that are insoluble in Lubrol WX. Co-immunoprecipitation studies demonstrated that there is no apparent restriction on the combination of claudins present in the rafts and that interaction between the proteins is dependent on cholesterol. JAM-A was not co-immunoprecipitated with the other TJ proteins indicating that it is resident within in a distinct population of rafts and therefore is likely not directly associated with the claudins/occludin present in the TJ complexes. Depletion of Caco-2 cell cholesterol with methyl-beta-cyclodextrin resulted in the displacement of claudins 3, 4 and 7, JAM-A and occludin, but not claudin 1, out of the cholesterol rich domains. Our data indicate that depletion of cholesterol does not result in the loss of the TJ-associated membrane rafts. However, the sterol is required to maintain the association of key proteins with the TJ associated membrane rafts and therefore the TJs. Furthermore, the data suggest that cholesterol may actually directly stabilise the multi-protein complexes that form the TJ strands. Copyright (c) 2007 S. Karger AG, Basel.
Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography
NASA Astrophysics Data System (ADS)
Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.
2017-06-01
The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (<50% spread). The performance of our device demonstrates a feasible path to dramatic improvements in lithographic patterning systems, enabling continued progress in existing industries and opening opportunities in nanomanufacturing.
Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S
2014-01-01
Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.
Laser exposure induced alteration of WS2 monolayers in the presence of ambient moisture
NASA Astrophysics Data System (ADS)
Atkin, P.; Lau, D. W. M.; Zhang, Q.; Zheng, C.; Berean, K. J.; Field, M. R.; Ou, J. Z.; Cole, I. S.; Daeneke, T.; Kalantar-Zadeh, K.
2018-01-01
Photoluminescence (PL) emergence in monolayer transition metal dichalcogenides (TMDs) such as WS2, has been one of the key attractions of such materials. However, there have been many observational contradictions in PL measurements presented in the past literature. This work addresses such issues. Firstly, the observational changes of the flakes’ PL patterns under exposure to various intensities of radiant exposure via laser sources are presented. These experiments show that these changes are a function of radiant exposure. Interestingly, it is observed that PL loss is accompanied by a change of the profile height for WS2 monolayers. In order to explore the fundamental mechanism for PL and height variations, laser irradiation was applied to monolayer WS2 flakes with varying radiant exposure to obtain PL maps, under the absence and presence of oxygen, H2O and nitrogen molecules in the atmosphere. It was seen that, after relatively high radiant exposure (>15 mJ µm-2), the PL pattern loss occurs only in the presence of atmospheric H2O molecules (45% humidity) and is also accompanied by an increase in height. Compositional analysis determined that this height increase was due to the substitution of surface S atoms with sulphate groups. This discovery represents an important step forward in understanding the necessary precautions when investigating optical properties of 2D TMDs in atmospheric conditions, and highlights the need for precise evaluation of the thresholds for radiant exposure at which specific reactions begin to occur. This knowledge is crucial for efficient and effective control of ambient operating conditions for optical characterisation of monolayer WS2 and TMDs in general.
NASA Astrophysics Data System (ADS)
Zand, Iman; Dalir, Hamed; Chen, Ray T.; Dowling, Jonathan P.
2018-03-01
We investigate one-dimensional aperiodic multilayer microstructures in order to achieve near-total absorptions at preselected wavelengths in a graphene monolayer. The proposed structures are designed using a genetic optimization algorithm coupled to a transfer matrix code. Coupled-mode-theory analysis, consistent with transfer matrix method results, indicates the existence of a critical coupling in the graphene monolayer for perfect absorptions. Our findings show that the near-total-absorption peaks are highly tunable and can be controlled simultaneously or independently in a wide range of wavelengths in the near-infrared and visible ranges. The proposed approach is metal-free, does not require surface texturing or patterning, and can be also applied for other two-dimensional materials.
NASA Astrophysics Data System (ADS)
Shen, Zhi; Qin, Qi; Liao, Xiali; Yang, Bo
2017-12-01
The inclusion complexation behaviors of glycyrrhetic acid (CTA) with four polyamine-modified β-cyclodextrins (CDs) have been investigated by 1H and 2D NMR, thermal gravimetric analysis, X-ray power diffraction and scanning electron microscopy. The results showed that Glycyrrhetic acid was encapsulated into the cavity of cyclodextrin to form the complexes with 1:1 stoichiometry. The water solubility of GTA was significantly enhanced by inclusion complexation with polyamine-modified β-cyclodextrins. The calculated IC50 values indicated that the antitumor activities of inclusion complexes were better than that of GTA. Satisfactory aqueous solubility, along with high thermal stability of inclusion complexes will be potentially useful for their application on the formulation design of natural medicine.
Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond.
Shen, Cai; Buck, Manfred
2014-01-01
The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.
Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi
2015-01-01
Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338
NASA Astrophysics Data System (ADS)
Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.
2008-11-01
The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.
Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J
2013-08-21
In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.
NASA Astrophysics Data System (ADS)
Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.
2017-09-01
Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.
Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte
2017-01-01
The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus ® (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb ® ), sulfobutylether-β-cyclodextrin (Captisol ® ) and methyl-β-cyclodextrin (Crysmeb ® ). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol ® and Crysmeb ® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb ® even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian
2012-09-15
The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.
Giant fluctuations and structural effects in a flocking epithelium
NASA Astrophysics Data System (ADS)
Giavazzi, Fabio; Malinverno, Chiara; Corallino, Salvatore; Ginelli, Francesco; Scita, Giorgio; Cerbino, Roberto
2017-09-01
Epithelial cells cultured in a monolayer are very motile in isolation but reach a near-jammed state when mitotic division increases their number above a critical threshold. We have recently shown that a monolayer can be reawakened by over-expression of a single protein, RAB5A, a master regulator of endocytosis. This reawakening of motility was explained in terms of a flocking transition that promotes the emergence of a large-scale collective migratory pattern. Here we focus on the impact of this reawakening on the structural properties of the monolayer. We find that the unjammed monolayer is characterised by a fluidisation at the single cell level, and by enhanced non-equilibrium large-scale number fluctuations at a larger length scale. Also, with the help of numerical simulations, we trace back the origin of these fluctuations to the self-propelled active nature of the constituents, and to the existence of a local alignment mechanism, leading to the spontaneous breaking of the orientational symmetry.
Resolving the chemical nature of nanodesigned silica surface obtained via a bottom-up approach.
Rahma, Hakim; Buffeteau, Thierry; Belin, Colette; Le Bourdon, Gwenaëlle; Degueil, Marie; Bennetau, Bernard; Vellutini, Luc; Heuzé, Karine
2013-08-14
The covalent grafting on silica surfaces of a functional dendritic organosilane coupling agent inserted, in a long alkyl chain monolayer, is described. In this paper, we show that depending on experimental parameters, particularly the solvent, it is possible to obtain a nanodesigned surface via a bottom-up approach. Thus, we succeed in the formation of both homogeneous dense monolayer and a heterogeneous dense monolayer, the latter being characterized by a nanosized volcano-type pattern (4-6 nm of height, 100 nm of width, and around 3 volcanos/μm(2)) randomly distributed over the surface. The dendritic attribute of the grafted silylated coupling agent affords enough anchoring sites to immobilize covalently functional gold nanoparticles (GNPs), coated with amino PEG polymer to resolve the chemical nature of the surfaces and especially the volcano type nanopattern structures of the heterogeneous monolayer. Thus, the versatile surface chemistry developed herein is particularly challenging as the nanodesign is straightforward achieved in a bottom-up approach without any specific lithography device.
Ndong Ntoutoume, Gautier M A; Granet, Robert; Mbakidi, Jean Pierre; Brégier, Frédérique; Léger, David Y; Fidanzi-Dugas, Chloë; Lequart, Vincent; Joly, Nicolas; Liagre, Bertrand; Chaleix, Vincent; Sol, Vincent
2016-02-01
The synthesis of curcumin-cyclodextrin/cellulose nanocrystals (CNCx) nano complexes was performed. CNCx were functionalized by ionic association with cationic β-cyclodextrin (CD) and CD/CNCx complexes were used to encapsulate curcumin. Preliminary in vitro results showed that the resulting curcumin-CD/CNCx complexes exerted antiproliferative effect on colorectal and prostatic cancer cell lines, with IC50s lower than that of curcumin alone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu
2017-04-01
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo
2017-06-01
Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; ...
2016-02-12
Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS 2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects themore » range of key opto-electronic, structural, and morphological properties of monolayer MoS 2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO 2 substrates. Lastly, our demonstration provides a way of integrating MoS 2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.« less
Interplay between intercalated oxygen superstructures and monolayer h -BN on Cu(100)
Ma, Chuanxu; Park, Jewook; Liu, Lei; ...
2016-08-18
The confinement effect of intercalated atoms in van der Waals heterostructures can lead to interesting interactions between the confined atoms or molecules and the overlaying two-dimensional (2D) materials. In this paper, we report the formation of ordered Cu(100) p(2×2) oxygen superstructures by oxygen intercalation under the monolayer hexagonal boron nitride (h-BN) on Cu after annealing. By using scanning tunneling microscopy and x-ray photoelectron spectroscopy, we identify the superstructure and reveal its roles in passivating the exposed Cu surfaces, decoupling h-BN and Cu, and disintegrating h-BN monolayers. The oxygen superstructure appears as a 2D pattern on the exposed Cu surface ormore » quasi-1D stripes of paired oxygen intercalated in the interface of h-BN and Cu predominantly oriented along the moiré modulations. The oxygen superstructure is shown to etch the overlaying h-BN monolayer in a thermal annealing process. After extended annealing, the h-BN monolayer disintegrates into nanoislands with zigzag edges. Finally, we discuss the implications of these findings on the stability and oxidation resistance of h-BN and relate them to challenges in process integration and 2D heterostructures.« less
Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali
2017-05-23
Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.
Cyclodextrins as Protective Agents of Protein Aggregation: An Overview.
Oliveri, Valentina; Vecchio, Graziella
2016-06-06
Cyclodextrins are extensively used in different fields (e.g., catalysis, chromatography, pharma, supramolecular chemistry, bioorganic chemistry, and bioinorganic chemistry), and their applications have been widely reviewed. Their main application in the field of pharmaceutical is as a drug carrier. This review overviews, for the first time, the use of cyclodextrins and their derivatives as antiaggregant agents in a number of proteins (e.g., amyloid-β, insulin, recombinant human growth hormone, prion protein, transthyretin, and α-synuclein) and some multimeric enzymes. There are many diseases that are correlated to protein misfolding and amyloid formation processes affecting numerous organs and tissues. There are over 30 different amyloid proteins and a number of corresponding diseases. Alzheimer's disease is the most common neurodegenerative disease. Treatment of these diseases is still a goal to reach, and many molecules are studied in this perspective. Cyclodextrins have also been studied, and they show great potential; as such, further studies could be very promising. This review aims to be a stimulus for the design of new cyclodextrin derivatives to obtain multifunctional systems with antiaggregant activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alamdarnejad, Ghazaleh; Sharif, Alireza; Taranejoo, Shahrouz; Janmaleki, Mohsen; Kalaee, Mohammad Reza; Dadgar, Mohsen; Khakpour, Mazyar
2013-08-01
A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.
NASA Astrophysics Data System (ADS)
Varghese, Beena; Al-Busafi, Saleh N.; Suliman, FakhrEldin O.; Al-Kindy, Salma M. Z.
2017-02-01
The modulation in the photophysics of a pyrazoline dye 3-naphthyl-1-phenyl-5-(4-carboxyphenyl)-2-pyrazoline (NPCP), when it drifts from bulk water into the nanocages of aqueous cyclodextrin solutions was investigated. The intramolecular charge transfer (ICT) fluorescence band intensity was found to increase with a blue shift in the presence of cyclodextrins. The results from 1H NMR and 1Hsbnd H COSY NMR spectral analysis clearly points out the position of pyrazoline ring inside the cavity and its role in complexation process. A quantitative assessment of the emission intensity data on Benesi-Hildebrand (B-H) equation along with ESI-MS spectra reveals the probable stoichiometry of NPCP-CD complexes. Molecular docking and molecular dynamics studies were conducted for β/γ cyclodextrin associated inclusion complexes of NPCP. The results obtained by computational studies are in good relation with the data obtained through experimental methods and both ascertain the encapsulation of NPCP into cyclodextrins.
A Reversible Light-Operated Nanovalve on Mesoporous Silica Nanoparticles
Tarn, Derrick; Ferris, Daniel P.; Barnes, Jonathan C.; Ambrogio, Michael W.; Stoddart, J. Fraser
2014-01-01
Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. When in aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis- photoisomerization of azobenzene initiates a dethreading process, which causes the cyclodextrin cap to unbind followed by the release of cargo. The addition of a bulky stopper group to the end of the stalk allows this design to be reversible; complete dethreading of cyclodextrin as a result of unbinding with azobenzene is prevented as a consequence of steric interference. As a result, thermal relaxation of cis- to trans-azobenzene allows for the rebinding of cyclodextrin and resealing of the nanopores, a process which entraps the remaining cargo. Two stalks were designed with different lengths and tested with alizarin red S and propidium iodide. No cargo release was observed prior to light irradiation, and the system was capable of multiuse. On / off control was also demonstrated by monitoring the release of cargo when the light stimulus was applied and removed, respectively. PMID:24519642
Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia
2018-03-30
The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.
Hulshof, Frits; Schophuizen, Carolien; Mihajlovic, Milos; van Blitterswijk, Clemens; Masereeuw, Rosalinde; de Boer, Jan; Stamatialis, Dimitrios
2018-02-01
Increasing incidence of renal pathology in the western world calls for innovative research for the development of cell-based therapies such as a bioartificial kidney (BAK) device. To fulfil the multitude of kidney functions, the core component of the BAK is a living membrane consisting of a tight kidney cell monolayer with preserved functional organic ion transporters cultured on a polymeric membrane surface. This membrane, on one side, is in contact with blood and therefore should have excellent blood compatibility, whereas the other side should facilitate functional monolayer formation. This work investigated the effect of membrane chemistry and surface topography on kidney epithelial cells to improve the formation of a functional monolayer. To achieve this, microtopographies were fabricated with high resolution and reproducibility on polystyrene films and on polyethersulfone-polyvinyl pyrrolidone (PES-PVP) porous membranes. A conditionally immortalized proximal tubule epithelial cell line (ciPTEC) was cultured on both, and subsequently, the cell morphology and monolayer formation were assessed. Our results showed that L-dopamine coating of the PES-PVP was sufficient to support ciPTEC monolayer formation. The polystyrene topographies with large features were able to align the cells in various patterns without significantly disruption of monolayer formation; however, the PES-PVP topographies with large features disrupted the monolayer. In contrast, the PES-PVP membranes with small features and with large spacing supported well the ciPTEC monolayer formation. In addition, the topographical PES-PVP membranes were compatible as a substrate membrane to measure organic cation transporter activity in Transwell® systems. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Spatial Pattern of Cell Damage in Tissue from Heavy Ions
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.
Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate
NASA Astrophysics Data System (ADS)
Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo
2017-01-01
Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.
Preparation and Cyclodextrin Solubilization of the Antibacterial Agent Benzoyl Metronidazole
Yang, Shuo
2013-01-01
A one-pot method for the preparation of benzoyl metronidazole was achieved by using N,N′-carbonyldiimidazole as a coupling reagent. Moreover, it was found that the byproduct imidazole as the catalyst promoted the reaction. In addition, the β-cyclodextrin solubilization of benzoyl metronidazole was investigated by phase-solubility method. The phase-solubility studies indicated that the solubility of benzoyl metronidazole (S = 0.1435 g/L) was substantially increased 9.7-fold (S′ = 1.3881 g/L) by formation of 1 : 1 benzoyl metronidazole/β-cyclodextrin complexes in water, and the association constant K a value was determined to be 251 (±23) dm3/mol. Therefore, β-cyclodextrin can work as a pharmaceutical solubilizer for benzoyl metronidazole and may improve its oral bioavailability. PMID:23970831
Druzhinina, A V; Andriushina, V A; Stytsenko, T S; Voĭshvillo, N E
2008-01-01
Conditions of conversion of 17 alpha-methyltestosterone to methandrostenolone with the presence of modified beta-cyclodextrins (methylcyclodextrin, hydroxypropylcyclodextrin, and hydroxyethylcyclodextrin) in the steroid:cyclodextrin ratio 1:1 were studied. The experimental solutions of modified beta-cyclodextrins were prepared in deionized water with 5-7% methanol. Under the conditions found to be optimal, 1,2-dehydrogenation of 17 alpha-methyltestosterone was carried out with 2-4 g/l Pimelobacter simplex VKPM Ac-1632 biomass. At the substrate concentration 5-20 g/l, the reaction occurred for 1-15 h without any by-products. The maximum rate of methandrostenolone accumulation was observed with hydroxypropylcyclodextrin. The methylcyclodextrin solution can be reused for complete 17 alpha-methyltestosterone conversion at the concentration 5 g/l.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Sze-Shun Season
1999-12-10
This dissertation presented several results which add to the general knowledge base regarding organothiolates monolayer spontaneously adsorbed at gold films. Common to the body of this work is the use of voltammetric reductive resorption and variants of scanning probe microscopy to gain insight into the nature of the monolayer formation process as well as the resulting interface. The most significant result from this work is the success of using friction force microscopy to discriminate the end group orientation of monolayer chemisorbed at smooth gold surfaces with micrometer resolution (Chapter 4). The ability to detect the differences in the orientational dispositionmore » is demonstrated by the use PDMS polymer stamp to microcontact print an adlayer of n-alkanethiolate of length n in a predefine pattern onto a gold surface, followed by the solution deposition of a n-alkanethiol of n ± 1 to fill in the areas on the gold surface intentionally not coated by the stamping process. These two-component monolayers can be discriminated by using friction force microscopy which detects differences in friction contributed by the differences in the orientation of the terminal groups at surfaces. This success has recently led to the detection of the orientation differences at nanometer scale. Although the substrates examined in this work consisted entirely of smooth gold films, the same test can be performed on other smooth substrates and monolayer materials.« less
Neuron-like PC12 cell patterning on a photoactive self-assembled monolayer.
Cheng, Nan; Cao, Xudong
2013-11-01
A new approach to pattern cells using photochemistry and self-assembled monolayer (SAM) was described in this study. Photocleavable 4,5-dimethoxy-2-nitrobenzyl chloroformate (NVOC) protected amine on an alkanethiol-gold SAM was developed for cell patterning. The cleavage of NVOC and the deprotection of amines on the SAM were controlled spatially by two sequential UV exposures with a photomask. Biomolecule patterning was achieved by introducing cell nonadhesive poly(ethylene glycol) after the first exposure and subsequently cell adhesive protein laminin after the second exposure to create surface cell adhesiveness differential for cell patterning. UV-Vis spectrophotometry was used to determine the photolysis of caged self-assembled molecules; in addition, water contact angle, atomic force microscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy were used to characterize properties of different surfaces. To test the efficacy of resulting surfaces in patterning cells, a neuron-like cell line, PC12 cell line, was used. The in vitro cell studies showed successful PC12 cell patterns on the photoactive SAM surfaces. This patterning technique is unique in that it does not rely on cell adhesive or nonadhesive properties of the starting base material as both cell adhesive and cell nonadhesive molecules were individually introduced onto the base material surface through photo-uncaging at preselected regions for the ultimate cell patterning. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena
2017-10-01
The crystal structures of the complexes of β-cyclodextrin with (+)- and (-)-camphors are presented. The comparison of the obtained crystal structures with available data for other complexes of β-cyclodextrin with chiral bicyclic monoterpenes (hydrocarbon (+)-fenchene and alcohols: (-)-isopinocampheol, and (+)-, and (-)-borneols) obtained from Cambridge Structural Database (CSD) shows the trend of alcohols to form dimeric complexes of 2:3 stoichiometry, while hydrocarbons and ketones prefer to form 2:2 host-guest inclusion complexes.
Cyclodextrin–polysaccharide-based, in situ-gelled system for ocular antifungal delivery
Fernández-Ferreiro, Anxo; Fernández Bargiela, Noelia; Varela, María Santiago; Martínez, Maria Gil; Pardo, Maria; Piñeiro Ces, Antonio; Méndez, José Blanco; Barcia, Miguel González; Lamas, Maria Jesus
2014-01-01
Summary Fluconazole was studied with two different hydrophilic cyclodextrins (hydroxypropyl-β-cyclodextrin (HPBCD) and sulfobutyl ether-β-cyclodextrin (SBECD)) for the formation of inclusion complexes. HPBCD and SBECD showed low cell cytotoxicity in human keratocytes as assessed by the label-free xCELLigence system for real-time monitoring. The fluconazole–HPBCD complex was incorporated into an ion-sensitive ophthalmic gel composed of the natural polysaccharides gellan gum and κ-carrageenan. This system showed good bioadhesive properties and effective control of fluconazole release. PMID:25550757
Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo
2017-01-01
Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664
The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin.
Mikami, B; Hehre, E J; Sato, M; Katsube, Y; Hirose, M; Morita, Y; Sacchettini, J C
1993-07-13
New crystallographic findings are presented which offer a deeper understanding of the structure and functioning of beta-amylase, the first known exo-type starch-hydrolyzing enzyme. A refined three-dimensional structure of soybean beta-amylase, complexed with the inhibitor alpha-cyclodextrin, has been determined at 2.0-A resolution with a conventional R-value of 17.5%. The model contains 491 amino acid residues, 319 water molecules, 1 sulfate ion, and 1 alpha-cyclodextrin molecule. The protein consists of a core with an (alpha/beta)8 supersecondary structure, plus a smaller globular region formed by long loops (L3, L4, and L5) extending from beta-strands beta 3, beta 4, and beta 5. Between the two regions is a cleft that opens into a pocket whose floor contains the postulated catalytic center near the carboxyl group of Glu 186. The annular alpha-cyclodextrin binds in (and partly projects from) the cleft with its glucosyl O-2/O-3 face abutting the (alpha/beta)8 side and with its alpha-D(1 --> 4) glucosidic linkage progression running clockwise as viewed from that side. The ligand does not bind deeply enough to interact with the carboxyl group of Glu 186. Rather, it occupies most of the cleft entrance, strongly suggesting that alpha-cyclodextrin inhibits catalysis by blocking substrate access to the more deeply located reaction center. Of the various alpha-cyclodextrin interactions with protein residues in loops L4, L5, L6, and L7, most notable is the shallow inclusion complex formed with Leu 383 (in L7, on the core side of the cleft) through contacts of its methyl groups with the C-3 atoms of four of the ligand's D-glucopyranosyl residues. All six residues of the bound alpha-cyclodextrin are of 4C1 conformation and are joined by alpha-1,4 linkages with similar torsional angles to form a nearly symmetrical torus as reported for crystalline inclusion complexes with alpha-cyclodextrin. We envision a significant role for the methyl groups of Leu 383 at the cleft entrance with respect to the productive binding of the outer chains of starch.
Almagro, Lorena; García-Pérez, Pascual; Belchí-Navarro, Sarai; Sánchez-Pujante, Pedro Joaquín; Pedreño, M A
2016-02-01
In this work, suspension-cultured cells of Linum usitatissimum L. were used to evaluate the effect of two types of cyclodextrins, β-glucan and (Z)-3-hexenol separately or in combination on phytosterol and tocopherol production. Suspension-cultured cells of L. usitatissimum were able to produce high levels of phytosterols in the presence of 50 mM methylated-β-cyclodextrins (1325.96 ± 107.06 μg g dry weight(-1)) separately or in combination with β-glucan (1278.57 ± 190.10 μg g dry weight(-1)) or (Z)-3-hexenol (1507.88 ± 173.02 μg g dry weight(-1)), being cyclodextrins able to increase both the secretion and accumulation of phytosterols in the spent medium, whereas β-glucan and (Z)-3-hexenol themselves only increased its intracellular accumulation. Moreover, the phytosterol values found in the presence of hydroxypropylated-β-cyclodextrins were lower than those found in the presence of methylated-β-cyclodextrins in all cases studied. However, the results showed that the presence of methylated-β-cyclodextrins did not increase the tocopherols production and only an increase in tocopherol levels was observed when cells were elicited with 50 mM hydroxypropylated-β-cyclodextrins in combination with β-glucan (174 μg g dry weight(-1)) or (Z)-3-hexenol (257 μg g dry weight(-1)). Since the levels of tocopherol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. To sum up, flax cell cultures elicited with cyclodextrins alone or in combination with β-glucan or (Z)-3-hexenol were able produce phytosterols and tocopherols, and therefore, these elicited suspension-cultured cells of L. usitatissimum can provide an alternative system, which is at the same time more sustainable, economical and ecological for their production. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, María Angeles; Sabater-Jara, Ana Belén
2018-07-01
Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight -1 ) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.
Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.
Lotito, Valeria; Zambelli, Tomaso
2015-06-01
Plasmonic structures on graphene can tailor its optical properties, which is essential for sensing and optoelectronic applications, e.g. for the enhancement of photoresponsivity of graphene photodetectors. Control over their structural and, hence, spectral properties can be attained by using electron beam lithography, which is not a viable solution for the definition of patterns over large areas. For the fabrication of large-area plasmonic nanostructures, we propose to use self-assembled monolayers of nanospheres as a mask for metal evaporation and etching processes. An optimized approach based on self-assembly at air/water interface with a properly designed apparatus allows the attainment of monolayers of hexagonally closely packed patterns with high long-range order and large area coverage; special strategies are devised in order to protect graphene against damage resulting from surface treatment and further processing steps such as reactive ion etching, which could potentially impair graphene properties. Therefore we demonstrate that nanosphere lithography is a cost-effective solution to create plasmonic patterns on graphene. Copyright © 2014 Elsevier Inc. All rights reserved.
Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung
2016-01-01
Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978
Equilibrium location for spherical DNA and toroidal cyclodextrin
NASA Astrophysics Data System (ADS)
Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.
2018-05-01
Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.
Applications of cyclodextrins in medical textiles - review.
Radu, Cezar-Doru; Parteni, Oana; Ochiuz, Lacramioara
2016-02-28
This paper presents data on the general properties and complexing ability of cyclodextrins and assessment methods (phase solubility, DSC tests and X-ray diffraction, FTIR spectra, analytical method). It focuses on the formation of drug deposits on the surface of a textile underlayer, using a cyclodextrin compound favoring the inclusion of a drug/active principle and its release onto the dermis of patients suffering from skin disorders, or for protection against insects. Moreover, it presents the kinetics, duration, diffusion flow and release media of the cyclodextrin drug for in vitro studies, as well as the release modeling of the active principle. The information focuses on therapies: antibacterial, anti-allergic, antifungal, chronic venous insufficiency, psoriasis and protection against insects. The pharmacodynamic agents/active ingredients used on cotton, woolen and synthetic textile fabrics are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Cevher, Erdal; Açma, Ayşe; Sinani, Genada; Aksu, Buket; Zloh, Mire; Mülazımoğlu, Lütfiye
2014-08-01
Itraconazole (ITR) is commonly used in the treatment of Candida infections. It has a nephrotoxic effect and low bioavailability in patients who suffer from renal insufficiency, and its poor solubility in water makes ITR largely unavailable. Cyclodextrins (CyDs) are used to form inclusion complexes with drugs to improve their aqueous solubility and to reduce their side effects. In this study, ITR was complexed with γ-cyclodextrin (γ-CyD), hydroxypropyl-β-cyclodextrin (HP-β-CyD), methyl-β-cyclodextrin (Met-β-CyD) and sulphobutyl ether-β-cyclodextrin (SBE7-β-CyD) to increase its water solubility and to reduce the side effects of the drug without decreasing antifungal activity. Complex formation between ITR and CyDs was evaluated using SEM, (1)H NMR and XRD studies. The antifungal activity of the complexes was analyzed on Candida albicans strains, and the susceptibility of the strains was found to be higher for the ITR-SBE7-β-CyD complex than for the complexes that were prepared with other CyDs. Vaginal bioadhesive sustained release tablet formulations were developed using the ITR-SBE7-β-CyD inclusion complex to increase the residence time of ITR in the vagina, thereby boosting the efficacy of the treatment. The swelling, matrix erosion and bioadhesion properties of formulations and the drug release rate of these tablets were analyzed, and the most therapeutically effective vaginal formulation was determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Stupavska, Monika; Jerigova, Monika; Michalka, Miroslav; Hasko, Daniel; Szoecs, Vojtech; Velic, Dusan
2011-12-01
A technique for improving the sensitivity of high mass molecular analysis is described. Three carbon species, fullerenes, single walled carbon nanotubes, and highly ordered pyrolytic graphite are introduced as matrices for the secondary ion mass spectrometry analysis of cyclodextrin (C(42)H(70)O(35), 1134 u). The fullerene and nanotubes are deposited as single deposition, and 10, 20, or 30 deposition films and cyclodextrin is deposited on top. The cyclodextrin parent-like ions and two fragments were analyzed. A 30 deposition fullerene film enhanced the intensity of cationized cyclodextrin with Na by a factor of 37. While the C(6)H(11)O(5) fragment, corresponding to one glucopyranose unit, increased by a factor of 16. Although fragmentation on fullerene is not suppressed, the intensity is twice as low as the parent-like ion. Deprotonated cyclodextrin increases by 100× and its C(8)H(7)O fragment by 10×. While the fullerene matrix enhances secondary ion emission, the nanotubes matrix film generates a basically constant yield. Graphite gives rise to lower intensity peaks than either fullerene or nanotubes. Scanning electron microscopy and atomic force microscopy provide images of the fullerene and nanotubes deposition films revealing flat and web structured surfaces, respectively. A "colliding ball" model is presented to provide a plausible physical mechanism of parent-like ion enhancement using the fullerene matrix. © American Society for Mass Spectrometry, 2011
Panico, Anna Maria; Puglisi, Giovanni
2017-01-01
The aim of this study was to evaluate the antidegenerative effect in osteoarthritis damage of eriocitrin alone and eriocitrin formulated as innovative “dietary flavonoid supplement.” A complexation between eriocitrin and hydroxypropyl β-cyclodextrin by solubilization/freeze-drying method was performed. The complex in solution was evaluated by phase solubility studies and the optimal 1 : 2 flavanone/cyclodextrin molar ratio was selected. Hydroxypropyl β-cyclodextrin was able to complex eriocitrin as confirmed by UV-Vis absorption, DSC, and FTIR studies. The complex formed increased the eriocitrin water solubility (from 4.1 ± 0.2 g·L−1 to 11.0 ± 0.1 g·L−1) and dissolution rate (from 37.0% to 100%) in 30 min. The in vitro studies exhibit the notion that eriocitrin and its complex inhibit AGEs in a similar manner because hydroxypropyl β-cyclodextrin does not interfere with the flavanone intrinsic property. Instead, the presence of cyclodextrin improves eriocitrin antioxidant stability maintaining a high fluorescence value until 8 hours with respect to the pure materials. Moreover, hydroxypropyl β-cyclodextrin showed moderate GAGs restoration acting synergistically with the complexed compound to maintain the structural chondrocytes integrity. The results point out that ERT/HP-betaCD complex possesses technological and biological characteristics able to obtain an easily soluble nutraceutical product, which reduces the degenerative and oxidative damage which occurs in osteoarthritis, and improve the patient compliance. PMID:28367273
Culha, Mustafa; Schell, Fred M; Fox, Shannon; Green, Thomas; Betts, Thomas; Sepaniak, Michael J
2004-01-22
A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.
Bashir, Sajid; Giannakopulos, Anastassios E; Derrick, Peter J; Critchley, Peter; Bottrill, Andrew; Padley, Henry J
2004-01-01
In the first part of this study fragmentation patterns from a range of dextran oligomers (containing 4-20 anhydroglucose units) were compared in three different methods of analysis coupled with matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. Collision-induced-dissociation (CID), prompt in-source decay (ISD) and post-source decay (PSD) all caused cleavage of the glycosidic bonds. Both CID and to a lesser extent ISD caused further cleavage of pyranose rings of the individual sugar residues. There was very little cleavage of pyranose rings detected in the PSD spectrum. Derivatisation of the reducing end-groups of the oligodextrans with 1-phenyl-3-methyl-5-pyrazolone (PMP) restricted cleavage in the MALDI mass spectrometer to the non-reducing end, and further it enabled the saccharides to be separated by HPLC so that a single chain length could be examined as a standard. Maltoheptaose was also used as a standard. In the second part of the study prompt ISD-MALDI mass spectrometry was used to compare the fragmentation of three oligoglucans, dextran, maltodextrin and gamma cyclodextrin, that have different linkages and different secondary structure. The results showed that the degree of fragmentation correlated with the degree of freedom in the saccharide chains in solution determined by NMR. Dextran the most random conformation was fragmented most whereas there was little evidence of any fragments, not even glycosidic bond breakage from cyclodextrin, even when the laser power was increased considerably. The fragmentation pattern of maltodextrin was intermediate. The patterns of fragmentation produced by MALDI mass spectrometry, particularly where standards are available to calibrate the spectrum and the energy of the laser is controlled, can be used to predict the type of linkage present.
Nanopatterns by phase separation of patterned mixed polymer monolayers
Huber, Dale L; Frischknecht, Amalie
2014-02-18
Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).
Wei, Mingjie; Wang, Yong
2015-01-01
Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407
Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.
Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo
2016-08-05
Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).
Toward the growth of an aligned single-layer MoS2 film.
Kim, Daeho; Sun, Dezheng; Lu, Wenhao; Cheng, Zhihai; Zhu, Yeming; Le, Duy; Rahman, Talat S; Bartels, Ludwig
2011-09-20
Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth. © 2011 American Chemical Society
Dos Passos Menezes, Paula; Dos Santos, Polliana Barbosa Pereira; Dória, Grace Anne Azevedo; de Sousa, Bruna Maria Hipólito; Serafini, Mairim Russo; Nunes, Paula Santos; Quintans-Júnior, Lucindo José; de Matos, Iara Lisboa; Alves, Péricles Barreto; Bezerra, Daniel Pereira; Mendonça Júnior, Francisco Jaime Bezerra; da Silva, Gabriel Francisco; de Aquino, Thiago Mendonça; de Souza Bento, Edson; Scotti, Marcus Tullius; Scotti, Luciana; de Souza Araujo, Adriano Antunes
2017-02-01
This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and β-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with β-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by β-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.
Characterization of aspartame-cyclodextrin complexation.
Sohajda, Tamás; Béni, Szabolcs; Varga, Erzsébet; Iványi, Róbert; Rácz, Akos; Szente, Lajos; Noszál, Béla
2009-12-05
The inclusion complex formation of aspartame (guest) and various cyclodextrins (host) were examined using 1H NMR titration and capillary electrophoresis. Initially the protonation constants of aspartame were determined by NMR-pH titration with in situ pH measurement to yield log K1=7.83 and log K2=2.96. Based on these values the stability of the complexes formed by aspartame and 21 different cyclodextrins (CDs) were studied at pH 2.5, pH 5.2 and pH 9.0 values where aspartame exists predominantly in monocationic, zwitterionic and monoanionic form, respectively. The host cyclodextrin derivatives differed in various sidechains, degree of substitution, charge and purity so that the effect of these properties could be examined systematically. Concerning size, the seven-membered beta-cyclodextrin and its derivatives have been found to be the most suitable host molecules for complexation. Highest stability was observed for the acetylated derivative with a degree of substitution of 7. The purity of the CD enhanced the complexation while the degree of substitution did not provide obvious consequences. Finally, geometric aspects of the inclusion complex were assessed by 2D ROESY NMR and molecular modelling which proved that the guest's aromatic ring enters the wider end of the host cavity.
Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria
Shishido, Tania K.; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P.; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina
2015-01-01
Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria. PMID:26474830
Antidiabetic effect of the α-lipoic acid γ-cyclodextrin complex.
Naito, Yuki; Ikuta, Naoko; Nakata, Daisuke; Terao, Keiji; Matsumoto, Kinuyo; Kajiwara, Naemi; Okano, Ayaka; Yasui, Hiroyuki; Yoshikawa, Yutaka
2014-09-01
In recent years, the number of patients suffering from diabetes mellitus has been increasing worldwide. In particular, type 2 diabetes mellitus, a lifestyle-related disease, is recognized as a serious disease with various complications. Many types of pharmaceutics or specific health foods have been used for the management of diabetes mellitus. At the same time, the relationship between diabetes mellitus and α-lipoic acid has been recognized for many years. In this study, we found that the α-lipoic acid γ-cyclodextrin complex exhibited an HbA1c lowering effect for treating type 2 diabetes mellitus in animal models. Moreover, in this study, we investigated the activation of phosphorylation of AMP-activated protein kinase, which plays a role in cellular energy homeostasis, in the liver of KKA(y) mice by using α-lipoic acid and the α-lipoic acid γ-cyclodextrin complex. Our results show that the α-lipoic acid γ-cyclodextrin complex strongly induced the phosphorylation of AMP-activated protein kinase. Thus, we concluded that intake of the α-lipoic acid γ-cyclodextrin complex exerted an antidiabetic effect by suppressing the elevation of postprandial hyperglycemia as well as doing exercise.
Lobo, Francine Albernaz Tf; Silva, Vitoria; Domingues, Josiane; Rodrigues, Silvana; Costa, Valéria; Falcão, Deborah; de Lima Araújo, Kátia G
2018-05-01
This work aimed to prepare inclusion complexes using yellow bell pepper pigments and β-cyclodextrin by two different procedures (method A, ultrasonic homogenisation; method B, kneading), to characterise them and evaluate their colour stability in an isotonic beverage model. The extract/β-cyclodextrin ratio was 1:2 for both inclusion methodologies evaluated. The formed extract-β-cyclodextrin complexes and a physical mixture of extract and β-cyclodextrin were evaluated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Both methodologies resulted in good complex yield and inclusion efficiency. The colour indices L* (lightness), a* (green/red) and b* (blue/yellow) of isotonic drinks added with the complexes were measured during storage under irradiance (1400 lx) and in the absence of light at temperatures between 25 and 31 °C for 21 days. The complex obtained by inclusion method B promoted better colour protection for the beverage compared with the use of the crude extract, showing that the molecular inclusion of yellow bell pepper carotenoids can provide good results for that purpose. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Abushoffa, Adel M; Fillet, Marianne; Hubert, Phillipe; Crommen, Jacques
2002-03-01
The single-isomer polyanionic cyclodextrin (CD) derivative heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) has been tested as chiral additive for the enantioseparation of non-steroidal anti-inflammatory drugs, such as fenoprofen, flurbiprofen, ibuprofen and ketoprofen, in capillary electrophoresis, using a pH 2.5 phosphoric acid-triethanolamine buffer in the reversed polarity mode. In most cases, the enantiomers of these acidic compounds, present in uncharged form at that pH, were only poorly resolved with HSbetaCD alone. However, the use of HSbetaCD in combination with the neutral CD derivative, heptakis-(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD), which has a particularly high enantioselectivity towards these compounds, has led to complete enantioresolution in reasonably low migration times in most cases. Affinity constants for the enantiomers with the two cyclodextrins were determined, using linear regression in a two-step approach. Affinity constants with the charged HSbetaCD were first calculated in single systems while those with the neutral TMbetaCD were determined in dual systems. Selectivity for the enantiomeric separation of these compounds in dual CD systems could be predicted using recently developed mathematical models.
Šoškić, Milan; Porobić, Ivana
2016-01-01
Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734
Aigner, Z; Berkesi, O; Farkas, G; Szabó-Révész, P
2012-01-05
The steps of formation of an inclusion complex produced by the co-grinding of gemfibrozil and dimethyl-β-cyclodextrin were investigated by differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD) and Fourier transform infrared (FTIR) spectroscopy with curve-fitting analysis. The endothermic peak at 59.25°C reflecting the melting of gemfibrozil progressively disappeared from the DSC curves of the products on increase of the duration of co-grinding. The crystallinity of the samples too gradually decreased, and after 35min of co-grinding the product was totally amorphous. Up to this co-grinding time, XRPD and FTIR investigations indicated a linear correlation between the cyclodextrin complexation and the co-grinding time. After co-grinding for 30min, the ratio of complex formation did not increase. These studies demonstrated that co-grinding is a suitable method for the complexation of gemfibrozil with dimethyl-β-cyclodextrin. XRPD analysis revealed the amorphous state of the gemfibrozil-dimethyl-β-cyclodextrin product. FTIR spectroscopy with curve-fitting analysis may be useful as a semiquantitative analytical method for discriminating the molecular and amorphous states of gemfibrozil. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue
2004-01-01
The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.
NASA Astrophysics Data System (ADS)
Abdur, Rahim; Lim, Jeongeun; Jeong, Kyunghoon; Rahman, Mohammad Arifur; Kim, Jiyoung; Lee, Jaegab
2016-03-01
An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of -1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Biton, Yaacov; Rabinovitch, Avinoam; Braunstein, Doron; Aviram, Ira; Campbell, Katherine; Mironov, Sergey; Herron, Todd; Jalife, José; Berenfeld, Omer
2018-01-01
Cardiac fibrillation is a major clinical and societal burden. Rotors may drive fibrillation in many cases, but their role and patterns are often masked by complex propagation. We used Singular Value Decomposition (SVD), which ranks patterns of activation hierarchically, together with Wiener-Granger causality analysis (WGCA), which analyses direction of information among observations, to investigate the role of rotors in cardiac fibrillation. We hypothesized that combining SVD analysis with WGCA should reveal whether rotor activity is the dominant driving force of fibrillation even in cases of high complexity. Optical mapping experiments were conducted in neonatal rat cardiomyocyte monolayers (diameter, 35 mm), which were genetically modified to overexpress the delayed rectifier K+ channel IKr only in one half of the monolayer. Such monolayers have been shown previously to sustain fast rotors confined to the IKr overexpressing half and driving fibrillatory-like activity in the other half. SVD analysis of the optical mapping movies revealed a hierarchical pattern in which the primary modes corresponded to rotor activity in the IKr overexpressing region and the secondary modes corresponded to fibrillatory activity elsewhere. We then applied WGCA to evaluate the directionality of influence between modes in the entire monolayer using clear and noisy movies of activity. We demonstrated that the rotor modes influence the secondary fibrillatory modes, but influence was detected also in the opposite direction. To more specifically delineate the role of the rotor in fibrillation, we decomposed separately the respective SVD modes of the rotor and fibrillatory domains. In this case, WGCA yielded more information from the rotor to the fibrillatory domains than in the opposite direction. In conclusion, SVD analysis reveals that rotors can be the dominant modes of an experimental model of fibrillation. Wiener-Granger causality on modes of the rotor domains confirms their preferential driving influence on fibrillatory modes.
Optical characterization of glutamate dehydrogenase monolayers chemisorbed on SiO2
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Blasi, L.; Longo, L.; Cingolani, R.; Ciccarella, G.; Vasapollo, G.; Rinaldi, R.; Rizzello, A.; Storelli, C.; Maffia, M.
2003-04-01
This paper describes the formation of glutamate dehydrogenase monolayers on silicon dioxide, and their characterization by means of physical techniques, i.e., fluorescence spectroscopy and Fourier-transform infrared spectroscopy. Detailed investigations of the intrinsic stability of native proteins in solution were carried out to elucidate the occurrence of conformational changes induced by the immobilization procedure. The enzyme monolayers were deposited on SiO2 after preexposing silicon surfaces to 3-aminopropyltriethoxysilane and reacting the silylated surfaces with glutaric dialdehyde. The optical characterization demonstrates that the immobilization does not interfere with the fold pattern of the native enzyme. In addition, fluorescence spectroscopy, thermal denaturation, and quenching studies performed on the enzyme in solution well describe the folding and unfolding properties of glutamate dehydrogenase. The photophysical studies reported here are relevant for nanobioelectronics applications requiring protein immobilization on a chip.
Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.
Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L
2014-01-01
Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.
Study on vitamin K 3-cyclodextrin inclusion complex and analytical application
NASA Astrophysics Data System (ADS)
Zhenming, Dong; Xiuping, Liu; Guomei, Zhang; Shaomin, Shuang; Jinghao, Pan
2003-07-01
The inclusion interaction of the complexes between Vitamin K3 (VK3) and β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) were studied by using steady-state fluorescence measurements. The various factors affecting the inclusion process were examined in detail. The formation constants and inclusion stoichiometry for VK3-CDs were determined. The results showed that the inclusion ability of β-CD and its derivatives was the order: SBE-β-CD>HP-β-CD>β-CD. The related inclusion mechanism is proposed to explain the inclusion process. A method of determining VK3 was established with the linear range was 2.5×10-6-5.0×10-4 M, and was used to determine the VK3 tablets. The recoveries were in the range of 97.52-103.5%. The results were satisfactory.
Blanco, M; Coello, J; Iturriaga, H; Maspoch, S; Pérez-Maseda, C
1998-01-09
A method for resolving the enantiomers of various 2-arylpropionic acids (viz. ketoprofen, ibuprofen and fenoprofen) by capillary zone electrophoresis (CZE) using a background electrolyte (BGE) containing a cyclodextrin as chiral selector is proposed. The effects of the type of cyclodextrin used and its concentration on resolution were studied and heptakis-2,3,6-tri- O-methyl-beta-cyclodextrin was found to be the sole effective choice for the quantitative enantiomeric resolution of all the compounds tested. The influence of pH, BGE concentration, capillary temperature and addition of methanol to the BGE on resolution and other separation-related parameters was also studied. The three compounds studied can be enantiomerically resolved with a high efficiency in a short time (less than 20 min) with no capillary treatment. This makes the proposed method suitable for assessing the enantiomeric purity of commercially available pharmaceuticals.
García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza
2013-12-18
Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.
Cala, Antonio; Molinillo, José M G; Fernández-Aparicio, Mónica; Ayuso, Jesús; Álvarez, José A; Rubiales, Diego; Macías, Francisco A
2017-08-09
Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, β- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.
Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N
2011-08-04
The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.
NASA Astrophysics Data System (ADS)
Bai, Ke-Ke; Zhou, Jiao-Jiao; Wei, Yi-Cong; Qiao, Jia-Bin; Liu, Yi-Wen; Liu, Hai-Wen; Jiang, Hua; He, Lin
2018-01-01
Creation of high-quality p -n junctions in graphene monolayer is vital in studying many exotic phenomena of massless Dirac fermions. However, even with the fast progress of graphene technology for more than ten years, it remains conspicuously difficult to generate nanoscale and atomically sharp p -n junctions in graphene. Here, we realized nanoscale p -n junctions with atomically sharp boundaries in graphene monolayer by using monolayer vacancy island of Cu surface. The generated sharp p -n junctions with the height as high as 660 meV isolate the graphene above the Cu monolayer vacancy island as nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. Massless Dirac fermions are confined by the p -n junctions for a finite time to form quasibound states in the GQDs. By using scanning tunneling microscopy, we observe resonances of quasibound states in the GQDs with various sizes and directly visualize effects of geometries of the GQDs on the quantum interference patterns of the quasibound states, which allow us to test the quantum electron optics based on graphene in atomic scale.
Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah; Jensen, Oliver E
2018-01-01
Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted. PMID:28992197
Zhang, Dongliang; Cao, Yanfei; Ma, Chengye; Chen, Shanfeng; Li, Hongjun
2017-03-29
There is a paradox when incorporating enzyme into an edible chitosan film that chitosan is dissolved in acid solution and enzyme activity is maintained under mild conditions. A method for maintaining the pH of the chitosan solution at 4-6 to prepare a chitosan film containing β-cyclodextrin, resveratrol-β-cyclodextrin inclusion (RCI), was developed, using glucamylase and acetic acid. A considerable amount of resveratrol was released by the glucamylase-incorporated film within 15 days, and the maximum amount released was 46% of the total resveratrol content. The highest resveratrol release ratio (released resveratrol/total resveratrol) was obtained in the film with 6 mL of RCI. Scratches and spores were generated on the surface of the glucamylase-added film immersed in water (GAFW) for 7 days because of β-cyclodextrin hydrolysis during film drying and water immersion. RCI and β-cyclodextrin were extruded from the film surface and formed teardrops, which were erased by water on the GAFW surface but appeared on the glucamylase-added film without water immersion (GAF). The bubbles generated by the reaction of acetic acid and residual sodium bicarbonate were observed in both glucamylase-free films immersed in water (GFFW) for 7 days and without water immersion (GFF). The FT-IR spectra illustrated that the covalent bond was not generated during water immersion and β-cyclodextrin hydrolysis. The crystal structure of chitosan was destroyed by water immersion and β-cyclodextrin hydrolysis, resulting in the lowest chitosan crystallization peak at 22°. The increasing of water holding capacity determined by EDX presented the following order: GAF, GFFW, GFF, and GAFW.
Complexation of phytochemicals with cyclodextrin derivatives - An insight.
Suvarna, Vasanti; Gujar, Parul; Murahari, Manikanta
2017-04-01
Natural compounds have been attracting huge attention because of their broad therapeutic properties with specificity in their action in human health care as functional foods, pharmaceuticals and nutraceuticals. However poor bioavailability and reduced bioactivity attributed to poor solubility and instability is the major drawback hindering the incorporation of these therapeutically potential molecules in novel drug delivery systems. Based on the findings of reported research investigations; complexation of poorly water soluble phytochemicals with cyclodextrins has emerged to be a promising approach to improve their aqueous solubility, stability, rate of dissolution and bioavailability. The present article summarizes the encapsulation of natural compounds ranging from various flavonoids, phenolic derivatives, coumestans to triterpenes, with cyclodextrin and their derivatives. Also the article highlights the method of complexation, complexation ability, drug solubility, stability, bioavailability and safety aspects of reported natural compounds. Additionally we present the glimpses of patents published in recent 10-15 years to highlight the significance of inclusion of phytochemicals in cyclodextrins. In patents narrated, improvement in stability and solubility of curcumin by complexation with alkyl ether derivative of gamma-cyclodextrin is claimed. Another patent mentioned, complexation of artemisinins with β-cyclodextrin, improved the stability and integrity of peroxide part of artemisinins for long period. On the other hand the complex of dihydromyricetin with γ-CD has shown improved solubility, stability and bioavailability. Thus it can be concluded that phytochemicals have multiple biological activities with broader safety index and improvement of their solubility will be truly beneficial to aid their effective delivery in healthcare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
M. Badr-Eldin, Shaimaa; A. Ahmed, Tarek; R Ismail, Hatem
2013-01-01
Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility. Materials and Methods: Phase solubility of aripiprazole with the studied CDs and the complexation efficiency values (CE) which reflect the solubilizing power of the CDs towards the drug was performed. Solid binary systems of aripiprazole with CDs were prepared by kneading, microwave irradiation and freeze-drying techniques at 1:1 and 1:2 (drug to CD) molar ratios. Drug-CD physical mixtures were also prepared in the same molar ratios for comparison. The dissolution of aripiprazole-binary systems was carried out to select the most appropriate CD type, molar ratio and preparation technique. Results: Phase solubility study indicated formation of higher order complexes and the complexation efficiency values was higher for HP-β-CD compared to β-CD. Drug dissolution study revealed that aripiprazole dissolution was increased upon increasing the CD molar ratio and, the freeze-drying technique was superior to the other studied methods especially when combined with the HP-β-CD. The cyclodextrin type, preparation technique and molar ratio exhibited statistically significant effect on the drug dissolution at P≤ 0.05. Conclusion: The freeze-dried system prepared at molar ratio 1:2 (drug: CD) can be considered as efficient tool for enhancing aripiprazole dissolution with the possibility of improving its bioavailability. PMID:24570827
Yáñez, Claudia; Cañete-Rosales, Paulina; Castillo, Juan Pablo; Catalán, Nicole; Undabeytia, Tomás; Morillo, Esmeralda
2012-01-01
The knowledge of the host-guest complexes using cyclodextrins (CDs) has prompted an increase in the development of new formulations. The capacity of these organic host structures of including guest within their hydrophobic cavities, improves physicochemical properties of the guest. In the case of pesticides, several inclusion complexes with cyclodextrins have been reported. However, in order to explore rationally new pesticide formulations, it is essential to know the effect of cyclodextrins on the properties of guest molecules. In this study, the inclusion complexes of bentazon (Btz) with native βCD and two derivatives, 2-hydroxypropyl-β-cyclodextrin (HPCD) and sulfobutylether-β-cyclodextrin (SBECD), were prepared by two methods: kneading and freeze-drying, and their characterization was investigated with different analytical techniques including Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), X-ray diffractometry (XRD) and differential pulse voltammetry (DPV). All these approaches indicate that Btz forms inclusion complexes with CDs in solution and in solid state, with a stoichiometry of 1∶1, although some of them are obtained in mixtures with free Btz. The calculated association constant of the Btz/HPCD complex by DPV was 244±19 M−1 being an intermediate value compared with those obtained with βCD and SBECD. The use of CDs significantly increases Btz photostability, and depending on the CDs, decreases the surface tension. The results indicated that bentazon forms inclusion complexes with CDs showing improved physicochemical properties compared to free bentazon indicating that CDs may serve as excipient in herbicide formulations. PMID:22952577
INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS
Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...
NASA Astrophysics Data System (ADS)
Anderson, Ian Mark
Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented. Finally, it was found that quantum dots attach in high amounts to linker-functionalized TiO2 when suspended in pyridine. This increased surface attachment was present even when the linker molecule used lacked a functional group which would bind to the CdSe surface.
Ho, Thao M; Howes, Tony; Jack, Kevin S; Bhandari, Bhesh R
2016-09-01
This study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.b.) at 0.4 and 1.6MPa pressure for 72h. The results of (13)C NMR, SEM, DSC and X-ray analyses showed that these MC levels were high enough to induce crystallization of CO2-α-CD complexed powders during encapsulation, by which amount of CO2 encapsulated by amorphous α-CD powder was significantly increased. The formation of inclusion complexes were well confirmed by results of FTIR and (13)C NMR analyses through an appearance of a peak associated with CO2 on the FTIR (2334cm(-1)) and NMR (125.3ppm) spectra. Determination of crystal packing patterns of CO2-α-CD complexed powders showed that during crystallization, α-CD molecules were arranged in cage-type structure in which CO2 molecules were entrapped in isolated cavities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bui, Minh-Phuong N; Seo, Seong S
2014-01-01
We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.
In-vitro dissolution rate and molecular docking studies of cabergoline drug with β-cyclodextrin
NASA Astrophysics Data System (ADS)
Shanmuga priya, Arumugam; Balakrishnan, Suganya bharathi; Veerakanellore, Giri Babu; Stalin, Thambusamy
2018-05-01
The physicochemical properties and dissolution profile of cabergoline drug (CAB) with β-cyclodextrin (β-CD) inclusion complex were investigated by the UV spectroscopy. The inclusion complex has used to calculate the stability constant and gives the stoichiometry molar ratio is 1:1 between CAB and β-CD. The phase solubility diagram and the aqueous solubility of CAB (60%) was found to be enhanced by β-CD. In addition, the phase solubility profile of CAB with β-CD was classified as AL-type. Binary systems of CAB with β-CD were prepared by Physical mixture, Kneading and solvent evaporation methods. The solid-state properties of the inclusion complex were characterized by Fourier transformation-infrared spectroscopy, Differential scanning calorimetry, Powder X-ray diffractometric patterns and Scanning electron microscopic techniques. Theoretically, β-CD and CAB inclusion complex obtained by molecular docking studies, it is in good correlation with the results obtained through experimental methods using the Schrödinger software program. In-vitro dissolution profiles of the inclusion complexes were carried out and obvious increase in dissolution rate was observed when compared with pure CAB drug and the complexes.
Molecular self-assembly for biological investigations and nanoscale lithography
NASA Astrophysics Data System (ADS)
Cheunkar, Sarawut
Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.
A thermostable cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 5K
USDA-ARS?s Scientific Manuscript database
Cyclodextrin glycosyltransferase (CGTase) from the thermophilic anaerobe Thermoanaerobacter sp. 5K was purified and characterized. The enzyme was purified with ammonium sulfate precipitation followed by a-CD-bound, epoxy-activated Sepharose 6B affinity chromatography. Molecular weight of the purifie...
Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes.
1987-08-15
Spectroscopy iip 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number) FIELD GROUP SUB-GROUP fluorescence lifetime...measurements cyclodextrins spectroscopic techniques 19. TRACT (Continue on revere if necsary and identify by block number
Tabun scavengers based on hydroxamic acid containing cyclodextrins.
Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Bierwisch, Anne; Koller, Marianne; Reiter, Georg; Worek, Franz; Kubik, Stefan
2013-04-28
Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.
Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments.
Serio, Nicole; Chanthalyma, Chitapom; Prignano, Lindsey; Levine, Mindy
2013-11-27
Reported herein is the use of γ-cyclodextrin for two tandem functions: (a) the extraction of carcinogenic polycyclic aromatic hydrocarbons (PAHs) from oil samples into aqueous solution and (b) the promotion of highly efficient energy transfer from the newly extracted PAHs to a high-quantum-yield fluorophore. The extraction proceeded in moderate to good efficiencies, and the resulting cyclodextrin-promoted energy transfer led to a new, brightly fluorescent signal in aqueous solution. The resulting dual-function system (extraction followed by energy transfer) has significant relevance in the environmental detection and cleanup of oil-spill-related carcinogens.
Biophysical aspects of cyclodextrin interaction with paraoxon.
Soni, Sunil-Datta; Bhonsle, Jayendra B; Garcia, Gregory E
2014-03-01
Cyclodextrins are torus-shaped polymers of glucose that can bind organophosphorous compounds such as nerve agents and pesticides. We demonstrate here that cyclodextrin can bind up to two paraoxon molecules with a K(av) of 6775 M(-1). Molecular modeling shows that the paraoxon appears to bind in polar opposite orientation and have an average binding energy of -89 Kcals/mol. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Do, Thao Thi; Van Hooghten, Rob; Van den Mooter, Guy
2017-04-15
The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and 1 H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K 2 -K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient synthesis of pure monotosylated beta-cyclodextrin and its dimers.
Tripodo, Giuseppe; Wischke, Christian; Neffe, Axel T; Lendlein, Andreas
2013-11-15
6-O-Monotosyl-β-cyclodextrin (mono-Ts-βCD) is one of the most important intermediates in the production of substituted βCD. So far, performing the monotosylation reaction and, in particular, the purification steps was challenging, relied on toxic solvents, and resulted in long and expensive procedures at, importantly, low yields. Here, the reaction of cyclodextrin with p-toluenesulfonyl chloride in aqueous environment is described to obtain a highly pure mono-Ts-βCD, for which a single-step purification with a cation exchange resin was applied. With this synthetic route and purification, yields could be increased from typically <10-15% to 35%, and organic solvents could be avoided. As characterized by FTIR, mass spectrometry, elemental analysis, and NMR, mono-Ts-βCD was obtained with a molar purity of >98mol%. From mono-Ts-βCD, β-cyclodextrin dimers linked by ethylenediamine (bis-Et-βCD) were successfully prepared (yield 93%, purity 96mol%) in a one-step approach using an anion exchange resin to trap leaving groups that typically interfere in the reaction. This synthesis procedure with a direct collection of side-products may be a general strategy applicable for nucleophilic substitution of tosylated cyclodextrins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Puliti, R; Mattia, C A; Paduano, L
1998-08-01
The crystallographic study of a new hydrated form of alpha-cyclodextrin (cyclohexaamylose) is reported. C36H60O30 . 11H2O; space group P2(1)2(1)2(1) with cell constants a = 13.839(3), b = 15.398(3), c = 24.209(7) A; final discrepancy index R = 0.057 for the 5182 observed reflections and 632 refined parameters. Besides four ordered water molecules placed outside alpha-cyclodextrins, the structure shows regions of severely disordered solvent mainly confined in the oligosaccharide cavities. The contribution of the observed disorder has been computed via Fourier inversions of the residual electron density and incorporated into the structure factors in further refinements of the ordered part. The alpha-cyclodextrin molecule assumes a relaxed round shape stabilised by a ring sequence of all the six possible O2 ... O3 intramolecular hydrogen bonds. The four ordered water molecules take part in an extensive network of hydrogen bonds (infinite chains and loops) without modifying the scheme of intramolecular H-bonds or the (-)gauche conformation of O-6-H hydroxyl groups. The structure shows a new molecular arrangement, for an "empty" hydrated alpha-cyclodextrin, like that "brick-type" observed for alpha-CD in the iodoanilide trihydrate complex crystallising in an isomorphous cell.
Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia
2009-01-01
Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.
Rehman, K; Amin, M C I M; Muda, S
2013-12-01
The increase in diseases of the colon underscores the need to develop cost-effective site-directed therapies. We formulated a polysaccharide-based matrix system that could release ibuprofen under conditions simulating those in the colon by employing a wet granulation method. Tablets were prepared in a series of formulations containing a polysaccharide (beta-cyclodextrin and chitosan) matrix system along with ethylcellulose. We characterized physicochemical properties and performed an in vitro drug release assay in the absence and presence of digestive enzymes to assess the ability of the polysaccharides to function as a protective barrier against the upper gastrointestinal environment. Fourier transform infrared spectroscopy studies revealed no chemical interaction between ibuprofen and polysaccharides; however, spectrum analysis suggested the formation of an inclusion complex of beta-cyclodextrin with ibuprofen. The formulations contained 50% ethylcellulose and 50% beta-cyclodextrins (1:1) were proven to be the better formulation that slowly released the drug until 24 h (101.04 ± 0.65% maximum drug release in which 83.08 ± 0.89% drug was released in colonic medium) showed better drug release profiles than the formulations containing chitosan. We conclude that a beta-cyclodextrin drug carrier system may represent an effective approach for treatment of diseases of the colon. © Georg Thieme Verlag KG Stuttgart · New York.
Hussein, Khaled; Türk, Michael; Wahl, Martin A
2007-03-01
The preparation of drug/cyclodextrin complexes is a suitable method to improve the dissolution of poor soluble drugs. The efficacy of the Controlled Particle Deposition (CPD) as a new developed method to prepare these complexes in a single stage process using supercritical carbon dioxide is therefore compared with other conventional methods. Ibuprofen/beta-cyclodextrin complexes were prepared with different techniques and characterized using FTIR-ATR spectroscopy, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In addition, the influences of the processing technique on the drug content (HPLC) and the dissolution behavior were studied. Employing the CPD-process resulted in a drug content of 2.8+/-0.22 wt.% in the carrier. The material obtained by CPD showed an improved dissolution rate of ibuprofen at pH 5 compared with the pure drug and its physical mixture with beta-cyclodextrin. In addition CPD material displays the highest dissolution (93.5+/- 2.89% after 75 min) compared to material obtained by co-precipitation (61.3 +/-0.52%) or freeze-drying (90.6 +/-2.54%). This study presents the CPD-technique as a well suitable method to prepare a drug/beta-cyclodextrin complex with improved drug dissolution compared to the pure drug and materials obtained by other methods.
Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.
2016-01-01
A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978
NASA Astrophysics Data System (ADS)
Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.
2016-07-01
Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.
Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan
2010-01-01
FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007
Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
2017-01-01
We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.
Spreading of triboelectrically charged granular matter
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Sane, A.; Gohil, Smita.; Bandaru, P. R.; Bhattacharya, S.; Ghosh, Shankar
2014-06-01
We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.
Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David
2016-07-01
The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.
Dufour, Gilles; Bigazzi, William; Wong, Nelson; Boschini, Frederic; de Tullio, Pascal; Piel, Geraldine; Cataldo, Didier; Evrard, Brigitte
2015-11-30
To achieve an efficient lung delivery and efficacy, both active ingredient aerosolisation properties and permeability through the lung need to be optimized. To overcome these challenges, the present studies aim to develop cyclodextrin-based spray-dried microparticles containing a therapeutic corticosteroid (budesonide) that could be used to control airway inflammation associated with asthma. The complexation between budesonide and hydroxypropyl-β-cyclodextrin (HPBCD) has been investigated. Production of inhalation powders was carried out using a bi-fluid nozzle spray dryer and was optimized based on a design of experiments. Spray-dried microparticles display a specific "deflated-ball like shape" associated with an appropriate size for inhalation. Aerodynamic assessment show that the fine particle fraction was increased compared to a classical lactose-based budesonide formulation (44.05 vs 26.24%). Moreover, the budesonide permeability out of the lung was shown to be reduced in the presence of cyclodextrin complexes. The interest of this sustained budesonide release was evaluated in a mouse model of asthma. The anti-inflammatory effect was compared to a non-complexed budesonide formulation at the same concentration and attests the higher anti-inflammatory activity reach with the cyclodextrin-based formulation. This strategy could therefore be of particular interest for improving lung targeting while decreasing systemic side effects associated with high doses of corticosteroids. In conclusion, this works reports that cyclodextrins could be used in powder for inhalation, both for their abilities to improve active ingredient aerosolisation properties and further to their dissolution in lung fluid, to decrease permeability out of the lungs leading to an optimized activity profile. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi
2018-06-01
The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS 2
Xiao, Zhiyong; Song, Jingfeng; Ferry, David K.; ...
2017-06-08
Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS 2 between a transistor and a junction state. In the presence of a domain wall, MoS 2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height Φ eff Β varies from 0.38 eV to 0.57 eV and is tunabe by a SiO 2 global back-gate, while the tuning range of Φ eff Β the barrier height depends sensitively on the conduction band tail trapping states. Our work points tomore » a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.« less
She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred
2012-01-01
Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Gao, Wei; Song, Hanfa; Chu, Saisai; Yang, Hong; Gong, Qihuang
2018-06-01
Two-dimensional van der Waals materials are interesting for fundamental physics exploration and device applications because of their attractive physical properties. Here, we report a strategy to realize photoluminescence (PL) enhancement of two-dimensional transition-metal dichalcogenides (TMDCs) in the visible range using a plasmonic microstructure with patterned gold nanoantennas and a metal-insulator-semiconductor-insulator-metal structure. The PL intensity was enhanced by a factor of two under Y-polarization due to the increased radiative decay rate by the surface plasmon radiation channel in the gold nanoantennas and the decreased nonradiative decay rate by suppressing exciton quenching in the SiO2 isolation layer. The fluorescence lifetime of monolayer tungsten disulfide in this structure was shorter than that of a sample without patterned gold nanoantennas. Tailoring the light-matter interactions between two-dimensional TMDCs and plasmonic nanostructures may provide highly efficient optoelectronic devices such as TMDC-based light emitters.
Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhiyong; Song, Jingfeng; Ferry, David K.
Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS 2 between a transistor and a junction state. In the presence of a domain wall, MoS 2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height Φ eff Β varies from 0.38 eV to 0.57 eV and is tunabe by a SiO 2 global back-gate, while the tuning range of Φ eff Β the barrier height depends sensitively on the conduction band tail trapping states. Our work points tomore » a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.« less
Clay mineral colloids play important roles in the adsorption of polar organic contaminants in the environment. Similarly, cyclodextrins (CD) can entrap poorly water-soluble organic compounds. A combination of CDs and clay minerals affords great opportunities to investigate simult...
AN ENZYME MIMIC THAT HYDROLYZES AN UNACTIVATED ESTER WITH CATALYTIC TURNOVER. (R826653)
The Cu(II) complex of a cyclodextrin dimer linked by a bipyridyl unit catalyzes the hydrolysis of an unactivated doubly-bound benzyl ester.
Author Keywords: cyclodextrin dimer; copper
USDA-ARS?s Scientific Manuscript database
Patulin is a mycotoxin produced by fungi that contaminate fruits, juices, and other agricultural commodities. Sorption properties of polyurethane-beta-cyclodextrin polymers were evaluated for the ability to remove patulin from solutions, including apple juice. Freundlich isotherm analysis determin...
Microwave-assisted synthesis of cyclodextrin polyurethanes
USDA-ARS?s Scientific Manuscript database
Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of alpha-, ß-, and gamma-CD and thr...
THE BINDING OF COCAINE TO CYCLODEXTRINS. (R826653)
Cocaine binds into
-cyclodextrin, but not detectably into
NASA Astrophysics Data System (ADS)
Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.
2018-05-01
Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.
Moreira, Mirna Pereira; Andrade, George Ricardo Santana; de Araujo, Marcia Valeria Gaspar; Kubota, Tatiana; Gimenez, Iara F
2016-10-20
Synthesis of ternary polyurethanes (PUs) from hexamethylenediisocyanate, β-cyclodextrin and β-glycerophosphate (acid and calcium salt) was studies varying synthesis parameters such as monomer proportion, heating method (reflux and microwave), and catalyst amount. Favorable conditions were provided by microwave irradiation and use of β-glycerophosphoric acid although the results suggest that it is possible to obtain ternary PUs with the calcium salt. FTIR data indicated the existence of secondary urea linkages. After characterization of ternary PUs by FTIR spectroscopy, XRD and thermal analysis, as well as evidences that the cyclodextrin cavities remained active toward inclusion of guest molecules, the possibility of inclusion of the antibiotic ciprofloxacin was evaluated. Absence of ciprofloxacin melting peak in DSC curves indicated that it is molecularly dispersed within the polymer, possibly included in the cyclodextrin. In vitro release experiments suggested additional non-inclusion interactions, showing also that the use of dialysis membranes may mask the actual release profile. Copyright © 2016. Published by Elsevier Ltd.
Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability
Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva
2014-01-01
Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750
Temtem, M; Pompeu, D; Jaraquemada, G; Cabrita, E J; Casimiro, T; Aguiar-Ricardo, A
2009-07-06
Cyclodextrin-containing polymers have proved themselves to be useful for controlled release. Herein we describe the preparation of membranes of poly(methylmethacrylate) (PMMA) containing hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) using a supercritical CO(2)-assisted phase inversion method, for potential application as drug delivery devices. Results are reported on the membrane preparation, physical properties, and drug elution profile of a model drug. The polymeric membranes were obtained with HP-beta-CD contents ranging from 0 to 33.4 wt%, by changing the composition of the casting solution, and were further impregnated with ibuprofen using supercritical carbon dioxide (scCO(2)) in batch mode. The influence of the membrane functionalization in the controlled release of ibuprofen was studied by performing in vitro experiments in buffer solution pH at 7.4. The release of the anti-inflammatory drug could be tuned by varying the cyclodextrin content on the membranes.
Nanosponge Carriers- An Archetype Swing in Cancer Therapy: A Comprehensive Review.
Osmani, Riyaz Ali M; Hani, Umme; Bhosale, Rohit R; Kulkarni, Parthasarathi K; Shanmuganathan, Seetharaman
2017-01-01
Nanotechnology and nanomedicines are emerging research meadows; which chiefly focuses on creating and manipulating materials at a nanometer level for the betterment in imaging, diagnosis and treatment of a range of diseases together with cancer. Cyclodextrin-based nanosponges, anticipated as a new-fangled nanosized delivery system, are ground-breaking hyper-crosslinked cyclodextrin polymers nanostructured within a three-dimensional network. Nanosponges based systems hold the potential of elevating the solubility, absorption, penetration, bioavailability, in vivo stability, targeted as well as sustained delivery, and therapeutic efficiency of numerous anticancer agents. The extension of nanosponges based drug delivery systems is an exhilarating and demanding research pasture, predominantly to overcome aforementioned problems allied to existing anticancer formulations and for the further progressions in cancer therapies. Nanosponges in cancer therapy, particularly cyclodextrin based nanosponges are brought up in this review. By quoting diverse attempts made in pertinent direction, efforts have been made to exemplify the characteristics, suitability and versatility of cyclodextrin based nanosponges for their promising applications in cancer treatment.
Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Yanai, Hiroko
2004-08-01
Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.
Pinho, R O; Lima, D M A; Shiomi, H H; Siqueira, J B; Silveira, C O; Faria, V R; Lopes, P S; Guimarães, S E F; Guimarães, J D
2016-08-01
The objective of this study was to investigate the effect of cyclodextrin-loaded cholesterol conjugates addition to freezing extenders on plasma membrane viability of frozen-thawed spermatozoa of the Piau swine breed. Twenty semen samples were used from five males. The freezing extender was based on lactose-egg yolk extender, added to 2% glycerol, 3% dimethylacetamide. The addition of cyclodextrin-loaded cholesterol conjugates was performed after centrifugation, when semen was diluted with the cooling extender. Four groups were subjected to the following treatment: without addition (group 1); 1.5 mg of cyclodextrin-loaded cholesterol/120 × 10(6) sperm (group 2); 1.5 mg of cyclodextrin-loaded cholestanol/120 × 10(6) sperm (group 3); 1.5 mg of cyclodextrin-loaded desmosterol/120 × 10(6) sperm (group 4). To check post-thawing sperm quality sperm motility and sperm morphology evaluation were used. Additionally, to check sperm viability the hypoosmotic swelling test, supravital staining, and fluorescent assay were used. The mean values recorded for total sperm motility of semen immediately after thawing were 54.5 ± 5.8, 55.5 ± 5.3, 53.7 ± 6.7, and 52.5 ± 6.6% respectively for groups one to four, without difference between themselves (p > 0.05). Regarding fluorescent assay the results were 28.3 ± 13.2, 26.9 ± 12.2, 22.2 ± 11.4, and 32.0 ± 15.3% respectively for groups one to four, also without difference between groups (p > 0,05). Similarly, complementary tests for evaluating the integrity and functionality of the plasma membrane showed no difference between treatments (p > 0.05). In conclusion, use of cyclodextrin-loaded cholesterol conjugates added to the plasma membrane of sperm did not demonstrate any additive effect on increasing and/or maintaining sperm motility. Copyright © 2016 Elsevier Inc. All rights reserved.
Davis, M E; Pun, S H; Bellocq, N C; Reineke, T M; Popielarski, S R; Mishra, S; Heidel, J D
2004-01-01
Non-viral (synthetic) nucleic acid delivery systems have the potential to provide for the practical application of nucleic acid-based therapeutics. We have designed and prepared a tunable, non-viral nucleic acid delivery system that self-assembles with nucleic acids and centers around a new class of polymeric materials; namely, linear, water-soluble cyclodextrin-containing polymers. The relationships between polymer structure and gene delivery are illustrated, and the roles of the cyclodextrin moieties for minimizing toxicity and forming inclusion complexes in the self-assembly processes are highlighted. This vehicle is the first example of a polymer-based gene delivery system formed entirely by self-assembly.
NASA Astrophysics Data System (ADS)
Alvira, Elena
2017-07-01
The influence of enantiomeric configurations on the separation of valine by β-cyclodextrin with different solvents, is analysed by a molecular dynamics simulation at constant temperature. Different methods to select the initial dispositions of valine enantiomers in the trajectories are proposed, and their influence on the interaction energy, residence time, elution order and capacity to form inclusion complexes is studied. The residence time is the most influenced quantity, whereas the capacity to form inclusion complexes is hardly affected by enantiomeric dispositions. In any case, guests tend to locate in the same areas of β-cyclodextrin but with different orientations according to disposition.
Selvam, S; Rajiv Gandhi, R; Suresh, J; Gowri, S; Ravikumar, S; Sundrarajan, M
2012-09-15
Sulfated β-cyclodextrin was synthesized from sulfonation of β-cyclodextrin and sulfated polymer was crosslinked with cotton fabric using ethylenediaminetetraacetic acid as crosslinker. ZnO, TiO(2) and Ag nanoparticles were prepared and characterized by XRD, UV, DLS, SEM and PSA. The prepared nanoparticles were coated on crosslinked cotton fabric. The crosslinking and nanoparticles coating effects of cotton fabrics were studied by FTIR and SEM analysis. The antibacterial test was done against gram positive Staphylococcus aureus and gram negative Escherichia coli bacterium. Copyright © 2012 Elsevier B.V. All rights reserved.
Gerber, Adrian; Kleser, Michael; Biedendieck, Rebekka; Bernhardt, Rita; Hannemann, Frank
2015-07-29
Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism's PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the biggest groups of drugs for the treatment of a wide variety of diseases.
NASA Astrophysics Data System (ADS)
Saha, Indranil
2017-04-01
Prolonged use of fluoride contaminated water (>1.5mg L-1) causes serious problems to public health and ultimately leads to skeletal fluorosis. There is an urgent need to develop more efficient fluoride scavenging materials for designing water filters. A simple and efficient adsorbent (CHIZO, beta-Cyclodextrin (b-CD) amended hydrous iron-zirconium hybrid oxide), has been developed, characterised and tested. The results indicate the efficacy of CHIZO on fluoride removal from an aqueous solution. The agglomerated micro structured composite material has several new features such as very poor crystallinity confirmed from TEM images. BET experiment reveals a surface area of 0.2070 m2 g-1 and pore volume of 0.0476 cm3 g-1. The findings also indicate the highly pH dependent fluoride adsorption by CHIZO which decreases with an increase in pH, and pseudo-second order kinetics control the reaction.Isotherm study indicates Langmuir isotherm was the best fit model to describe the adsorption equilibrium. Significantly higher monolayer adsorption capacity of fluoride (31.35 mg g-1) than the host hydrous Fe-Zr oxide (8.21 mg g-1) at pH 7.0 and 303 K was observed. Thermodynamic parameter indicates spontaneous nature of CHIZO which is due to the exothermic nature of the reaction. Apart from this phosphate and sulphate have some impact (interference) on fluoride adsorption. b-CD forms inclusion complexes by taking up fluoride ions from water into its central cavity. Several factors are involved regarding high efficacy of the system such as the release of enthalpy-rich water molecules from its cavity, electrostatic interactions, hydrogen bonding and release of conformational strain. However, the regeneration is difficult because of probable entrapping of fluoride inside the cavity of b-CD with hydrogen bonding. It has been found that only 0.9 g of CHIZO is able to reduce the fluoride level to below 1.0 mg L-1 in one-litre of fluoride spiked (5.0 mg L-1) natural water sample. The study highlights the potentiality of the developed adsorbent. Examples are high adsorption capacity and economical viability.
Seven commercially-available chiral capillary gas chromatography columns containing modified cyclodextrins were evaluated for their ability to separate enantiomers of the 19 stable chiral polychlorinated biphenyl (PCB) atropisomers, and for their ability to separate these enantio...
Supramolecular Inclusion in Cyclodextrins: A Pictorial Spectroscopic Demonstration
ERIC Educational Resources Information Center
Haldar, Basudeb; Mallick, Arabinda; Chattopadhyay, Nitin
2008-01-01
A spectroscopic experiment is presented that reveals that the hydrophobically end-modified water-soluble polymeric fluorophore, pyrene end-capped poly(ethylene oxide) (PYPY), interacts differently with [alpha], [beta], and [gamma]-cyclodextrins (CD) to form supramolecular inclusion complexes. The emission spectrum of PYPY in aqueous solution shows…
Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer
USDA-ARS?s Scientific Manuscript database
The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...
Li, Xiaolei; Zhao, Jiahui; Fu, Jingchao; Pan, Yutian; Li, Dan
2018-07-15
The acidophilic and thermophilic pullulanases have many potential applications in the processes of starch liquefaction and saccharification. In this study, a gene encoding an amylopullulanase from Thermofilum pendens (TPApu) was heterologously expressed in Escherichia coli. Although TPApu possessed the same continuous GH57N_Apu domain and the succeeding α-helical region as other two amylopullulanases from Staphylothermus marinus (SMApu) and Caldivirga maquilingensis (CMApu), it only showed maximal amino acid identities of 25.7-28.7% with CMApu and SMApu. The purified TPApu appeared as a single band of SDS-PAGE with a molecular mass of 65.5kDa and exhibited the maximal activity at pH3.5 and 95-100°C. TPApu had the highest catalytic efficiency towards pullulan (kcat/km, 8.79s -1 mLmg -1 ) and α-cyclodextrin (kcat/km, 0.36s -1 mM -1 ). In the initial stages, the ring-opening reactions of γ-cyclodextrin, 6-O-glucosyl-β-cyclodextrin, 6-O-maltosyl-β-cyclodextrin and the debranching reactions of 6-O-maltooctaosyl-β-cyclodextrin were firstly catalyzed. In the subsequent reactions, a serial of maltooligosaccharides were produced. As the most acidophilic amylopullulanase among thermophilic pullulanases reported to date, TPApu preferred to debranch the DP6-12 side chains of amylopectin at pH4.5 and 100°C. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.
We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.
Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon
2011-03-30
Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.
2004-05-01
Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical
Biological and Computational Modeling of Mammographic Density and Stromal Patterning
2010-07-01
clumping Score Monolayer Absent Many Absent Absent Absent 1 Nucl. overlap Mild Moderate Mild Micro- nucleoli Rare 2 Clustering Moderate...Few Moderate Micro- nucleoli Occasional 3 Loss cohesion Conspicuous Absent Frequent Macro- nucleoli Frequent 4 We performed serial RPFNA
2018-01-01
Sodium dodecyl sulfate electrophoresis (SDS) is a protein separation technique widely used, for example, prior to immunoblotting. Samples are usually prepared in a buffer containing both high concentrations of reducers and high concentrations of SDS. This conjunction renders the samples incompatible with common protein assays. By chelating the SDS, cyclodextrins make the use of simple, dye-based colorimetric assays possible. In this paper, we describe the optimization of the assay, focussing on the cyclodextrin/SDS ratio and the use of commercial assay reagents. The adaptation of the assay to a microplate format and using other detergent-containing conventional extraction buffers is also described. PMID:29641569
NASA Astrophysics Data System (ADS)
Rostamnia, Sadegh; Doustkhah, Esmail
2015-07-01
Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.
Spray drying of Pomegranate Juice using maltodextrin/cyclodextrin blends as the wall material
USDA-ARS?s Scientific Manuscript database
Microencapsulation protects sensitive nutrients for preservation, masking flavors, or to enhance delivery. Ratios of maltodextrin and '-cyclodextrin (20:0, 19:1, and 17:3 % w/w) were dissolved in water and mixed with pomegranate juice for spray drying with inlet temperatures of 120, 140 and 160°C. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
Meng, Bo; Li, Haiyang; East China Univ. of Science and Technology, Shanghai; ...
2016-11-11
We designed and synthesized the cyclodextrin (CD)-based hyper-crosslinked porous polymers (HCPPs) for selective CO 2 adsorption and storage. We also explored the effect of monomer size on micropore formation, and determined a feasible way to tailor the porosity of the materials during the hyper-crosslinking process.
Cyclodextrin-based microcapsules as bioreactors for ATP biosynthesis.
Li, Jian-Hu; Wang, Yi-Fu; Ha, Wei; Liu, Yan; Ding, Li-Sheng; Li, Bang-Jing; Zhang, Sheng
2013-09-09
A biomimetic energy converter was fabricated via the assembly of CF0F1-ATPase on lipid-coated hollow nanocapsules composed of α-cyclodextrins/chitosan-graft-poly(ethylene glycol) methacrylate. Upon entrapped GOD into these capsules, the addition of glucose could trigger proton-motive force and then drive the rotation of ATPase to synthesize ATP.
NASA Astrophysics Data System (ADS)
Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.
2014-06-01
It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.
NASA Astrophysics Data System (ADS)
Rhinow, Daniel; Hampp, Norbert A.
2012-06-01
Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).
NASA Astrophysics Data System (ADS)
Hasan, Dihan; Lee, Chengkuo
2018-06-01
We experimentally demonstrate a modified abstraction of a fractal geometry (up to order M = 2), namely the Sierpiński fractal, with intrinsic self-similarity for a multitude of infrared sensing applications. The modification particularly strengthens the dipolar resonance and enables optical magnetism at longer wavelengths on a relatively miniaturized footprint. In contrast to the conventional resonant sensing, we harness the broadband electric field enhancement of the modified fractal patterns originating from the lightning rod effect in the non-resonant regime. We demonstrate strong enhancement of molecular absorption at mid-IR by the fractal patterns in the non-resonant regime even under extreme thermal broadening. Finally, we extend the work towards the functional study of the molecular fingerprint of ultra-thin film (∼5 nm) on a non-complementary metamaterial platform in the non-resonant regime. With the help of the solid state chemical dewetting of the monolayer, we also successfully demonstrate a new type of cross-coupling mediated sensitivity of the multispectral and mutually coupled fractal patterns. The research clearly indicates the usefulness of broadband electric field enhancement by the second order fractal pattern for on chip, complete profiling of mid-IR fingerprints of biological elements, i.e. cell, and protein monolayer on a limited footprint and under versatile morphological states.
Construction and DNA condensation of cyclodextrin-coated gold nanoparticles with anthryl grafts.
Zhao, Di; Chen, Yong; Liu, Yu
2014-07-01
The condensation of DNA in a controlled manner is one of the key steps in gene delivery and gene therapy. For this purpose, a water-soluble supramolecular nanostructure is constructed by coating 14 β-cyclodextrins onto the surface of a gold nanoparticle, followed by the noncovalent association of different amounts of anthryl-modified adamantanes with coated β-cyclodextrins. The strong binding of β-cyclodextrins with anthryl adamantanes (K(S) =8.61×10(4) M(-1)) efficiently stabilizes the supramolecular nanostructure. Spectrophotometric fluorescence spectra and microscopic studies demonstrated that, with many anthryl grafts that can intercalate in the outer space of the DNA double helix, this supramolecular nanostructure showed good condensation abilities to calf thymus DNA. Significantly, the condensation efficiency of supramolecular nanostructure towards DNA could be conveniently controlled by adjusting the ratio between gold nanoparticles and anthryl adamantane grafts, leading to the formation of DNA condensates of a size that are suitable for the endocytosis of hepatoma cells, which will make it potentially applicable in many fields of medicinal science and biotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce
2015-12-01
A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Milles, Sigrid; Meyer, Thomas; Scheidt, Holger A; Schwarzer, Roland; Thomas, Lars; Marek, Magdalena; Szente, Lajos; Bittman, Robert; Herrmann, Andreas; Günther Pomorski, Thomas; Huster, Daniel; Müller, Peter
2013-08-01
To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor. Copyright © 2013 Elsevier B.V. All rights reserved.
Determination of the glass transition temperature of cyclodextrin polymers.
Tabary, Nicolas; Garcia-Fernandez, Maria Jose; Danède, Florence; Descamps, Marc; Martel, Bernard; Willart, Jean-François
2016-09-05
The aim of this work was to determine the main physical characteristics of β-cyclodextrin polymers, well known for improving complexation capacities and providing enhanced and sustained release of a large panel of drugs. Two polymers were investigated: a polymer of β-cyclodextrin (polyβ-CD) and a polymer of partially methylated (DS=0.57) β-cyclodextrin (polyMe-β-CD). The physical characterizations were performed by powder X-ray diffraction and differential scanning calorimetry. The results indicate that these polymers are amorphous and that their glass transition is located above the thermal degradation point of the materials preventing their direct observation and thus their full characterization. We could however estimate the virtual glass transition temperatures by mixing the polymers with different plasticizers (trehalose and mannitol) which decreases Tg sufficiently to make the glass transition observable. Extrapolation to zero plasticizer concentration then yield the following Tg values: Tg (polyMe-β-CD)=317°C±5°C and Tg (polyβ-CD)=418°C±6°C. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.
We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...
2016-02-04
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard
2018-02-21
Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taddeo, Vito Alessandro; Epifano, Francesco; Fiorito, Serena; Genovese, Salvatore
2016-09-10
In this paper the presence of selected prenylated and unprenylated phenylpropanoids, namely ferulic acid 1, boropinic acid 2, 4'-geranyloxyferulic acid 3, umbelliferone 4, 7-isopentenyloxycoumarin 5, and auraptene 6, have been determined in Italian raw propolis after having been extracted with different methodologies. An aqueous solution of β-cyclodextrin was the best extraction method for ferulic acid 1, treatment with indifferently EtOH or aqueous β-cyclodextrin were the most effective one for umbelliferone 4, boropinic acid 2 gave the best yields either with H2O/β-cyclodextrin or olive oil treatment or in biphasic systems, maceration with biphasic mixtures of aqueous β-cyclodextrin and olive oil was seen to be the most effective procedure for 7-isopentenyloxycoumarin 5, the only method providing significant quantities of 4'-geranyloxyferulic acid 3 was the maceration of raw propolis with olive oil, and finally auraptene 4 was best extracted with absolute EtOH. "Classic" maceration in general performed better than ultrasound-assisted one. Copyright © 2016 Elsevier B.V. All rights reserved.
Delahousse, Guillaume; Peulon-Agasse, Valérie; Debray, Jean-Christophe; Vaccaro, Marie; Cravotto, Giancarlo; Jabin, Ivan; Cardinael, Pascal
2013-11-29
New polyethylene-glycol-based sol-gels containing cyclodextrin or calix[6]arene derivatives have been synthesized. An original method for sol-gel preparation and capillary column coating, which consumes smaller quantities of selectors and allows for control of their amounts in the stationary phase, is reported herein. The new stationary phases exhibited excellent column efficiencies over a large range of temperatures and thermal stability up to 280°C. The cyclodextrin derivative generally showed the best separation factors for aromatic positional isomers. The calix[6]arene derivative exhibited the best selectivity for the polychlorobiphenyl congeners and some polycyclic aromatic hydrocarbon isomers. The relationship between the structure and the chromatographic properties of the selectors is discussed. The tert-butyl groups on the upper rim of the calix[6]arene were found to possibly play an important role in the recognition of solutes. The incorporation of the cyclodextrin derivative into the sol-gel matrix did not affect its enantioselective recognition capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Jug, Mario; Kosalec, Ivan; Maestrelli, Francesca; Mura, Paola
2012-11-06
A novel mucoadhesive buccal patch formulation of triclosan (TR), a broad spectrum antibacterial agent, was developed using low methoxy amidated pectin (AMP). The integrity of AMP matrix was improved by addition of 20% (w/w) Carbopol (CAR). The efficiency of β-cyclodextrin-epichlorohydrin polymer (EPIβCD) and anionic carboxymethylated β-cyclodextrin-epichlorohydrin polymer (CMEPIβCD) in optimization of TR solubility and release from such a matrix was investigated and confronted to that of parent β-cyclodextrin (βCD). Loading of TR/βCD co-ground complex into AMP/CAR matrix resulted in a biphasic release profile which was sensitive upon the hydration degree of the matrix, due to lower solubilizing efficiency of βCD, while the drug release from patches loaded with TR/EPIβCD complex was significantly faster with a constant release rate. Microbiological studies evidenced faster onset and more pronounced antibacterial action of TR/EPIβCD loaded patches, clearly demonstrating their good therapeutic potential in eradication of Streptococcus mutans, a cariogenic bacteria, from the oral cavity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Porous silicon-cyclodextrin based polymer composites for drug delivery applications.
Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B
2014-09-22
One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène
2013-01-01
Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.
Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A.; ...
2017-11-06
We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host–guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. Here, we found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantanemore » as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host–guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV.« less
Separation of drug stereoisomers by the formation of. beta. -cyclodextrin inclusion complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, D.W.; Ward, T.J.; Armstrong, R.D.
For many drugs, only racemic mixtures are available for clinical use. Because different stereoisomers of drugs often cause different physiological responses, the use of pure isomers could elicit more exact therapeutic effects. Differential complexation of a variety of drug stereoisomers by immobilized ..beta..-cyclodextrin was investigated. Chiral recognition and racemic resolution were observed with a number of compounds from such clinically useful classes as ..beta..-blockers, calcium-channel blockers, sedative hypnotics, antihistamines, anticonvulsants, diuretics, and synthetic opiates. Separation of the diastereomers of the cardioactive and antimalarial cinchona alkaloids and of two antiestrogens was demonstrated as well. Three dimensional projections of ..beta..-cyclodextrin complexes ofmore » propanol, which is resolved by this technique, and warfarin, which is not, are compared. These studies have improved the understanding and application of the chiral interactions of ..beta..-cyclodextrin, and they have demonstrated a means to measure optical purity and to isolate or produce pure enantiomers of drugs. In addition, this highly specific technique could also be used in the pharmacological evaluation of enantiometric drugs. 27 references, 3 figures, 2 tables.« less
Vieira Ferreira, Luis F; Ferreira Machado, Isabel; Da Silva, José P; Oliveira, Anabela S
2004-02-01
Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and [small beta]-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/[small beta]-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet-triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into [small beta]-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.
Theoretical study of β- and γ-cyclodextrin complexes with ferrocene-containing azoles
NASA Astrophysics Data System (ADS)
Kiselev, S. S.; Snegur, L. V.; Simenel, A. A.; Davankov, V. A.; Il'in, M. M.; Borisov, Yu. A.
2017-12-01
The interaction between cyclodextrins (β- and γ-CD) and ferrocenyl azoles (i.e., pyrazole ferrocenes (I, III-V) and benzimidazole ferrocenes (VI, VII)), along with 1-ferrocenylethanol (II), each in the form of (R)- and (S)-enantiomers, in forming inclusion complexes is studied for the first time using detailed quantum chemical calculations. Compounds are calculated in terms of the density functional theory (DFT), using the Becke-Lee-Yang-Parr (B3LYP) approach in the 6-31G* basis sets. For the considered CD complexes with enantiomers of I-VII, structures in which a guest partially enters a host cavity from the side of the heterocyclic substituent (pyrazole or benzimidazole) are found to be energetically advantageous. It is shown that for successful resolution of (R,S)-enantiomers on chiral phases containing cyclodextrins, we must consider the interaction between outer hydroxyl groups on the CD cone's surface, in addition to the correspondence of geometric dimensions. The calculated data correlate well with the data from the chromatographic separation of guest enantiomers on cyclodextrin sorbents.
Lauro, Maria Rosaria; Crascì, Lucia; Giannone, Virgilio; Ballistreri, Gabriele; Fabroni, Simona; Sansone, Francesca; Rapisarda, Paolo; Panico, Anna Maria; Puglisi, Giovanni
2017-01-01
Alginate and β -cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35-40% higher than that of the starting material. They were also effective in producing microparticles with 80-100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life , while the beta-cyclodextrin (1 : 1 molar ratio with dried extract) prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin.
Giannone, Virgilio; Ballistreri, Gabriele; Fabroni, Simona; Rapisarda, Paolo; Panico, Anna Maria; Puglisi, Giovanni
2017-01-01
Alginate and β-cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35–40% higher than that of the starting material. They were also effective in producing microparticles with 80–100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life, while the beta-cyclodextrin (1 : 1 molar ratio with dried extract) prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin. PMID:29230268
Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology
NASA Astrophysics Data System (ADS)
Sumarno, Rahim, Rizki; Trisanti, Prida Novarita
2017-05-01
Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.
Hydroxypropyl-β-cyclodextrin-containing hydrogel enhances skin formononetin permeation/retention.
Dias, Paula Hollweg; Scopel, Marina; Martiny, Simony; Bianchi, Sara Elis; Bassani, Valquiria Linck; Zuanazzi, José Angelo Silveira
2018-04-10
This study was aimed to investigate the in vitro permeation potential of hydrogel formulations containing the isoflavones formononetin and biochanin A and cyclodextrins in different combinations. The permeation assay was performed using porcine skin discs on Franz diffusion cells model. The isoflavone contents of the formulations were quantified in the different layers of the skin using a validated HPLC-PDA method. The isoflavones individually incorporated into the formulations showed high permeation potential, especially formononetin, after the incorporation of hydroxypropyl-β-cyclodextrin that enhanced its permeation in the epidermis and dermis. Biochanin A showed 2.7 times of permeation capacity in the epidermis and dermis mainly after incorporation of cyclodextrins in the formulations. Formononetin showed reduction in its permeation when incorporated in the formulations together to biochanin A, showing the absence of synergism. Our results indicated a noticeable skin permeation promoting effect of HPβCD in formononetin formulation. Furthermore, formononetin and biochanin A can permeate the skin being mostly retained in the epidermis and dermis, revealing its potential use in cosmetic preparations intended to prevent skin aging. © 2018 Royal Pharmaceutical Society.
Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A
2015-12-01
In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Brewster, M E; Vandecruys, R; Verreck, G; Peeters, J
2008-03-01
Supersaturating drug delivery systems (SDDS) utilize two important design elements in their preparation including converting the drug of interest into a high energy state or other rapidly dissolving form to facilitate the formation of supersaturated drug solutions and providing a means for stabilizing the formed supersaturated solution such that significant drug absorption is possible from the gastrointestinal tract. This has been referred to as a "spring" and "parachute" approach. The current effort is designed to assess materials which may affect properties in SDDS. To this end, a series of excipients was tested in a co-solvent/solvent quench method to assess their ability to attain and maintain supersaturation for a group of 14 drug development candidates. The approach focussed on hydrophilic cyclodextrins including hydroxypropyl-beta-cyclodextrin (HPbetaCD) and sulfobutyl-beta-cyclodextrin (SBEbetaCD). Various rheological polymers and surfactants were also included in the study. Consistent with previous investigations, the pharmaceutical polymers, as a class, had minimal effects on the extent of supersaturation but tended to be good stabilizers while the surfactants tended to provide for the greatest degree of supersaturation but the formed systems were poorly stable. This study found that hydrophilic cyclodextrins, especially SBEbetaCD, gave superior results in terms of attaining and maintaining supersaturation. A knowledge of the behavior and performance of excipients in this context can be useful in designing solid oral dosage forms for difficult-to-formulate drugs and drug candidates.
Yuvaraja, K; Khanam, Jasmina
2014-08-05
Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.
Takeo, Toru; Nakagata, Naomi
2011-11-01
Sperm cryopreservation is useful for the effective storage of genomic resources derived from genetically engineered mice. However, freezing the sperm of C57BL/6 mice, the most commonly used genetic background for genetically engineered mice, considerably reduces its fertility. We previously reported that methyl-beta-cyclodextrin dramatically improved the fertility of frozen/thawed C57BL/6 mouse sperm. Recently, it was reported that exposing sperm to reduced glutathione may alleviate oxidative stress in frozen/thawed mouse sperm, thereby enhancing in vitro fertilization (IVF); however, the mechanism underlying this effect is poorly understood. In the present study, we examined the combined effects of methyl-beta-cyclodextrin and reduced glutathione on the fertilization rate of IVF with frozen/thawed C57BL/6 mouse sperm and the characteristic changes in the zona pellucida induced by reduced glutathione. Adding reduced glutathione to the fertilization medium increased the fertilization rate. Methyl-beta-cyclodextrin and reduced glutathione independently increased fertilization rates, and their combination produced the strongest effect. We found that reduced glutathione increased the amount of free thiols in the zona pellucida and promoted zona pellucida enlargement. Finally, 2-cell embryos produced by IVF with the addition of reduced glutathione developed normally and produced live offspring. In summary, we have established a novel IVF method using methyl-beta-cyclodextrin during sperm preincubation and reduced glutathione during the IVF procedure to enhance fertility of frozen/thawed C57BL/6 mouse sperm.
Schmarr, Hans-Georg; Mathes, Maximilian; Wall, Kristina; Metzner, Frank; Fraefel, Marius
2017-09-22
The chiral lactone 5-butyl-4-methyloxolan-2-one or 5-butyl-4-methyldihydro-2(3H)-furanone, often named whisky lactone, is found in oak wood, then contributing to the appreciated flavor of beverages stored in such wooden barrels. Its next higher homologue is named cognac lactone (5-pentyl-4-methyloxolan-2-one or 5-pentyl-4-methyldihydro-2(3H)-furanone), however is much less known, probably due to its minor concentration level. In order to study the direct enantioseparation of both lactones by gas chromatography on chiral stationary phases, individual enantiomers, particularly for cognac lactone were made available. This was achieved by baker's yeast reduction of synthesized ethyl 3-methyl-4-oxononanoate or, after hydrolysis, of the corresponding 4-ketoacid, that gave access to individual enantiomers of cognac lactone. Good enantioseparation was achieved for both whisky and cognac lactone with high values for the chiral resolution with 6-O-tert. butyl dimethylsilyl-2,3-dialkylated or 6-O-tert. butyl dimethylsilyl-2,3-diacylated cyclodextrin derivatives as chiral selectors. The influence of the nature and position of derivatization of the cyclodextrin moiety revealed a strong impact on the chiral recognition mechanism, as the investigated alkylated derivatives heptakis-(2,6-di-O-iso-pentyl-3-O-allyl)-β-cyclodextrin and octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin did not provide any or only minor chiral selectivity for the two lactones. Copyright © 2017 Elsevier B.V. All rights reserved.
Jeon, Hye-Yeon; Kim, Na-Ri; Lee, Hye-Won; Choi, Hye-Jeong; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; Shim, Jae-Hoon
2016-03-23
A novel maltose (G2)-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III was expressed in Escherichia coli and characterized. Analysis of conserved amino acid sequence alignments showed that L. plantarum maltose-producing α-amylase (LpMA) belongs to glycoside hydrolase family 13. The recombinant enzyme (LpMA) was a novel G2-producing α-amylase. The properties of purified LpMA were investigated following enzyme purification. LpMA exhibited optimal activity at 30 °C and pH 3.0. It produced only G2 from the hydrolysis of various substrates, including maltotriose (G3), maltopentaose (G5), maltosyl β-cyclodextrin (G2-β-CD), amylose, amylopectin, and starch. However, LpMA was unable to hydrolyze cyclodextrins. Reaction pattern analysis using 4-nitrophenyl-α-d-maltopentaoside (pNPG5) demonstrated that LpMA hydrolyzed pNPG5 from the nonreducing end, indicating that LpMA is an exotype α-amylase. Kinetic analysis revealed that LpMA had the highest catalytic efficiency (kcat/Km ratio) toward G2-β-CD. Compared with β-amylase, a well-known G2-producing enzyme, LpMA produced G2 more efficiently from liquefied corn starch due to its ability to hydrolyze G3.
NASA Astrophysics Data System (ADS)
Fourtaka, Katerina; Christoforides, Elias; Mentzafos, Dimitris; Bethanis, Kostas
2018-06-01
The crystal structures of the inclusion complexes of the β-citronellol (cl) inβ-Cyclodextrin (β-CD), heptakis(2,6-di-O-methyl)-β-Cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin (TM-β-CD) have being investigated by X-ray crystallography. The cl/β-CD inclusion complex crystallizes in the P1space group forming dimers which are arranged along the c-axis according to the Intermediate Channel packing mode. Inside the dimeric host cavity two enantiomeric guest molecules are accommodated. The inclusion complexes of cl/DM-β-CD and cl/TM-β-CD crystallize in the P212121 space group having both 1:1 guest:host stoichiometry, the guest found always with the (-)-cl enantiomeric configuration. The guest is fully encapsulated inside the DM-β-CD host cavity whereas is partially encapsulated in the TM-β-CD which is severely puckered as in all TM-β-CD complexes and its primary side is efficiently blocked by the methoxy groups. The complex units in the case of cl/DM-β-CD pack along the crystallographic a-axis in a head-to-tail manner forming columns of herringbone mode whereas in the case of cl/TM-β-CD are arranged also head-to-tail, parallel to the b-axis, in a screw-channel mode. MD simulations based on the determined crystal structures showed that in a simulated aqueous environment the guest maintains the inclusion mode observed crystallographically in every case. MM/GBSA-calculations used for comparison of the inclusion complexes binding affinity with each other, indicated that the inclusion of β-citronellol in TM-β-CD is less favorable than in β-CD and DM-β-CD.
Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk
Crumling, Mark A.; King, Kelly A.; Duncan, R. Keith
2017-01-01
Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids. In particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD) has garnered attention because of its cholesterol chelating properties, which appear to treat a rare neurodegenerative disorder and to promote atherosclerosis regression related to stroke and heart disease. Despite the potential health benefits, use of HPβCD has been linked to significant hearing loss in several species, including humans. Evidence in mice supports a rapid onset of hearing loss that is dose-dependent. Ototoxicity can occur following central or peripheral drug delivery, with either route resulting in the preferential loss of cochlear outer hair cells (OHCs) within hours of dosing. Inner hair cells and spiral ganglion cells are spared at doses that cause ~85% OHC loss; additionally, no other major organ systems appear adversely affected. Evidence from a first-to-human phase 1 clinical trial mirrors animal studies to a large extent, indicating rapid onset and involvement of OHCs. All patients in the trial experienced some permanent hearing loss, although a temporary loss of function can be observed acutely following drug delivery. The long-term impact of HPβCD use as a maintenance drug, and the mechanism(s) of ototoxicity, are unknown. β-cyclodextrins preferentially target membrane cholesterol, but other lipid species and proteins may be directly or indirectly involved. Moreover, as cholesterol is ubiquitous in cell membranes, it remains unclear why OHCs are preferentially susceptible to HPβCD. It is possible that HPβCD acts upon several targets—for example, ion channels, tight junctions (TJ), membrane integrity, and bioenergetics—that collectively increase the sensitivity of OHCs over other cell types. PMID:29163061
Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra
2013-04-01
The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.
Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika
2016-01-01
Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the host–guest complex. PMID:28144360
Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva
2016-01-01
Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the host-guest complex.
Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard
2015-02-20
The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tambe, Amruta; Pandita, Nancy; Kharkar, Prashant; Sahu, Niteshkumar
2018-02-01
Boswellic acids (BAs) are a group of pentacyclic triterpenes present in gum-resin of Boswellia serrata. They are well known for their anti-inflammatory, hypolipidemic, immunomodulatory and anti-tumor activity, but they have poor aqueous solubility and limited bioavailability. In order to enhance their aqueous solubility, inclusion complexes of BAs with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were synthesized and their drug release profiles were studied. Molecular associations of β-CD and HP-β-CD with BAs were investigated by phase solubility studies. The stability constants were found to be 380.2 and 145.9 M-1 for BA: β-CD and BA: HP-β-CD inclusion complexes, respectively with AN- type curve. BA: β-CD and BA: HP-β-CD inclusion complexes were synthesized using kneading (KN), co-precipitation (CP) and solvent evaporation (SE) methods in 1:1 as well as 1:2 ratios. Further these were characterized by Fourier transform infrared (FTIR) spectrophotometry, Powder X-ray Diffraction (P-XRD) and Differential scanning calorimetric (DSC) analysis. FTIR analysis showed shifting of frequencies in complexes as compared to CDs and BAs. P-XRD data obtained for BA: β-CD complexes synthesized by CP and SE methods showed amorphous pattern. Also, DSC analysis showed a change in thermal behaviour for synthesized complexes. In vitro drug release studies of BA: β-CD complexes showed enhanced release with 1:2 complexes than 1:1 complexes at pH 1.2 and pH 6.8. Similarly, drug release enhancement was observed more with BA: HP-β-CD complexes in 1:2 ratio than 1:1. To understand the interaction of BAs with CD cavity molecular modelling studies were performed which favored 1:2 complex formation over 1:1 complexes. The study thus highlights that CDs can be used for solubility and dissolution enhancement of BAs.
Ballistic interference in ultraclean suspended monolayer graphene
NASA Astrophysics Data System (ADS)
Schonenberger, Christian; Rickhaus, Peter; Maurand, Romain; Makk, Peter; Hess, Samuel; Tovari, Endre; Weiss, Markus; Liu, Ming-Hao; Richter, Klaus
2014-03-01
We have developed a versatile technology that allows to suspend graphene and complement it with arbitrary bottom and top-gate structures. Using current annealing we demonstrate exceptional high mobililties in monolayer graphene approaching 100 m2/Vs. These suspended devices are ballistic over micrometer length scales and display intriguing interference patterns in the electrical con-ductance when different gate potentials are applied. Specifically we will discuss different types of Fabry-Perot resonances that appear in different gate voltage regimes of ballistic pn devices. We will go beyond our recent publication and also show electric transport measurements in magnetic field, where intriguing features appear in the intermediate field range in between the low-field Klein-tunneling regime and the quantum Hall regime. We observe a large number of non-dispersing states which might be due to so-called snake states confined to the pn interface. We will also discuss first results on electron guiding in ultraclean monolayer graphene. We acknowledge funding from the Swiss NFS and the EC.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zheng, Gaige
2018-04-01
The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.
First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer
NASA Astrophysics Data System (ADS)
Nie, Yifan; Liang, Chaoping; Zhang, Kehao; Zhao, Rui; Eichfeld, Sarah M.; Cha, Pil-Ryung; Colombo, Luigi; Robinson, Joshua A.; Wallace, Robert M.; Cho, Kyeongjae
2016-06-01
The control of domain morphology and defect level of synthesized transition metal dichalcogenides (TMDs) is of crucial importance for their device applications. However, current TMDs synthesis by chemical vapor deposition and molecular beam epitaxy is in an early stage of development, where much of the understanding of the process-property relationships is highly empirical. In this work, we use a kinetic Monte Carlo coupled with first principles calculations to study one specific case of the deposition of monolayer WSe2 on graphene, which can be expanded to the entire TMD family. Monolayer WSe2 domains are investigated as a function of incident flux, temperature and precursor ratio. The quality of the grown WSe2 domains is analyzed by the stoichiometry and defect density. A phase diagram of domain morphology is developed in the space of flux and the precursor stoichiometry, in which the triangular compact, fractal and dendritic domains are identified. The phase diagram has inspired a new synthesis strategy for large TMD domains with improved quality.
Ruiz-Taylor, L. A.; Martin, T. L.; Zaugg, F. G.; Witte, K.; Indermuhle, P.; Nock, S.; Wagner, P.
2001-01-01
We report on the design and characterization of a class of biomolecular interfaces based on derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers adsorbed on negatively charged surfaces. As a model system, we synthesized biotin-derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers, PLL-g-[(PEGm)(1−x) (PEG-biotin)x], where x varies from 0 to 1. Monolayers were produced on titanium dioxide substrates and characterized by x-ray photoelectron spectroscopy. The specific biorecognition properties of these biotinylated surfaces were investigated with the use of radiolabeled streptavidin alone and within complex protein mixtures. The PLL-g-PEG-biotin monolayers specifically capture streptavidin, even from a complex protein mixture, while still preventing nonspecific adsorption of other proteins. This streptavidin layer can subsequently capture biotinylated proteins. Finally, with the use of microfluidic networks and protein arraying, we demonstrate the potential of this class of biomolecular interfaces for applications based on protein patterning. PMID:11158560
USDA-ARS?s Scientific Manuscript database
We tested the efficacy of attractive toxic sugar bait (ATSB) with garlic oil microencapsulated in beta-cyclodextrin as active ingredient against Aedes albopictus in suburban Haifa, Israel. Two three-acre gardens with high numbers of Ae. albopictus were chosen for perimeter spray treatment with ATSB ...
Letort, Sophie; Bosco, Michaël; Cornelio, Benedetta; Brégier, Frédérique; Daulon, Sébastien; Gouhier, Géraldine
2017-01-01
New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative. PMID:28382180
Letort, Sophie; Bosco, Michaël; Cornelio, Benedetta; Brégier, Frédérique; Daulon, Sébastien; Gouhier, Géraldine; Estour, François
2017-01-01
New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative.
NASA Astrophysics Data System (ADS)
Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola
2002-06-01
Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.
NASA Astrophysics Data System (ADS)
Ceborska, Magdalena; Szwed, Kamila; Asztemborska, Monika; Wszelaka-Rylik, Małgorzata; Kicińska, Ewa; Suwińska, Kinga
2015-11-01
Geraniol and α-terpineol are insoluble in water volatile compounds. α-Terpineol is a potentially important agent for medical applications. Formation of molecular complexes with β-cyclodextrin would lead to the increase of water solubility and bioavailability. β-Cyclodextrin forms 2:2 inclusion complexes with both enantiomers of α-terpineol and their precursor geraniol. Solid state complexes are thoroughly characterized by single X-ray crystallography and their stability over vast range of temperatures is proven by TG analysis. Intermolecular host-guest, host-host and guest-guest interactions give good insight into the nature of formed inclusion complexes. Stability constants of the complexes in solution are determined by HPLC.
Peptide-Appended Permethylated β-Cyclodextrins with Hydrophilic and Hydrophobic Spacers
2017-01-01
A novel synthetic methodology, employing a combination of the strain-promoted azide–alkyne cycloaddition and maleimide–thiol reactions, for the preparation of permethylated β-cyclodextrin-linker-peptidyl conjugates is reported. Two different bifunctional maleimide cross-linking probes, the polyethylene glycol containing hydrophilic linker bicyclo[6.1.0] nonyne-maleimide and the hydrophobic 5′-dibenzoazacyclooctyne-maleimide, were attached to azide-appended permethylated β-cyclodextrin. The successfully introduced maleimide function was exploited to covalently graft a cysteine-containing peptide (Ac-Tyr-Arg-Cys-Amide) to produce the target conjugates. The final target compounds were isolated in high purity after purification by isocratic preparative reverse-phase high-performance liquid chromatography. This novel synthetic approach is expected to give access to many different cyclodextrin–linker peptides. PMID:28697600
NASA Astrophysics Data System (ADS)
Kshirsagar, Aditya
Semiconductor nanocrystalline quantum dots (NQDs) have material properties remarkably different compared to bulk semiconductors with the same material composition. These NQDs have various novel applications in the electronic and photonic industry, such as light emitting diodes (LEDs) and flat-panel displays. In these applications, ultra-thin films of NQDs in the monolayer regime are needed to ensure optimal current transport properties and device efficiency. There is ongoing search to find a suitable method to deposit and pattern such ultra-thin films of quantum dots with few monolayer thicknesses. Several competing approaches are available, each with its pros and cons. This study explores mist deposition as the technique to fill this void. In this study, ultra-thin films of quantum dots are deposited on diverse substrates and are characterized to understand the mechanics of mist deposition. Various applications of blanket deposited and patterned quantum dot films are studied. The results discussed here include atomic force microscopy analysis of the films to study surface morphology, fluorescence microscopy to study light emission and optical microscope images to study patterning techniques. These results demonstrate the ability of mist deposition to form 1-4 monolayers thick, uniform, defect-free patterned films with root mean square (RMS) surface roughness less than 2 nm. LEDs fabricated using mist deposition show a peak luminescence greater than 500 cd/m2 for matched red, yellow and green devices using Alq3 as the electron transport layer, and over 9000 cd/m2 for red devices using ZnO as the electron transport layer, respectively. In addition to the experimental approach to study the process and explore potential applications, simulation and modeling are carried out to understand the various aspects of mist deposition. A mathematical model is presented which discusses the atomization process of the precursor solution, the physics involved during the deposition process, and the mechanics of film formation. Results of film morphology simulation using Monte Carlo techniques and process simulation using multi-physics approach are discussed. Problems in pattern transfer due to electrostatic effects when using shadow masks are presented in a separate chapter.
Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off
She, Zhe; DiFalco, Andrea; Hähner, Georg
2012-01-01
Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101
Arcamone, J; van den Boogaart, M A F; Serra-Graells, F; Fraxedas, J; Brugger, J; Pérez-Murano, F
2008-07-30
Wafer-scale nanostencil lithography (nSL) is used to define several types of silicon mechanical resonators, whose dimensions range from 20 µm down to 200 nm, monolithically integrated with CMOS circuits. We demonstrate the simultaneous patterning by nSL of ∼2000 nanodevices per wafer by post-processing standard CMOS substrates using one single metal evaporation, pattern transfer to silicon and subsequent etch of the sacrificial layer. Resonance frequencies in the MHz range were measured in air and vacuum. As proof-of-concept towards an application as high performance sensors, CMOS integrated nano/micromechanical resonators are successfully implemented as ultra-sensitive areal mass sensors. These devices demonstrate the ability to monitor the deposition of gold layers whose average thickness is smaller than a monolayer. Their areal mass sensitivity is in the range of 10(-11) g cm(-2) Hz(-1), and their thickness resolution corresponds to approximately a thousandth of a monolayer.
Schmid, Ernst; Roos, H
2009-04-01
A recent publication on both chromosome-type and chromatid-type aberrations in lymphocytes of patients during treatment with radium-224 for ankylosing spondilitis has revived the question of whether the chromatid-type aberrations may be the consequence of factors released by irradiated cells. Therefore, the aim of the present study was to investigate the influence of such a bystander phenomenon on the chromosome aberration pattern of lymphocytes. Monolayers of human lymphocytes were irradiated with 1 Gy of alpha-particles from an americium-241 source in the absence or presence of whole blood, autologous plasma or culture medium. In the presence of any liquid covering the monolayer during irradiation, the chromatid-type aberrations were, contrary to expectation, elevated. Whereas the intercellular distribution of dicentrics was significantly overdispersed, the chromatid-type aberrations showed a regular dispersion. It can be concluded that the enhanced frequency of chromatid aberrations is the result of a damage signal or a bystander phenomenon released by irradiated cells.
Strugnell, R A; Underwood, J R; Clarke, F M; Pedersen, J S; Chalmers, P J; Faine, S; Toh, B H
1983-01-01
A monoclonal IgM smooth muscle antibody secreted by a hybrid (MMI-1) of mouse plasmacytoma NS-1 with spleen cells from mouse immunized with Treponema pallidum was detected by indirect immunofluorescence tests on frozen tissue sections and on acetone fixed monolayers of rat and human fibroblasts. The antibody did not react with acetone fixed smears of T. pallidum but reacted with smooth muscle fibres and with striations of skeletal and cardiac muscle. In non-muscle cells, the antibody stained liver in a 'polygonal' pattern, thymus with accentuated staining of the thymic medulla, renal glomeruli and the brush border and peritubular fibrils of renal tubules. In fibroblast monolayers, the antibody stained stress fibres in an interrupted pattern. Immunoblotting with muscle proteins and the antibody showed labelling of a 100K molecule. The cellular distribution of the mouse monoclonal antibody is similar to that obtained with anti-actin antibody suggesting that the corresponding antigen may be an actin binding protein. Images Fig. 3 PMID:6347470
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin
2018-01-01
This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.
NASA Astrophysics Data System (ADS)
Ding, Weihua; Huang, Chuanqi; Guan, Lingmei; Liu, Xianhu; Luo, Zhixun; Li, Weixue
2017-05-01
Here we report a successful synthesis of water-soluble 13-atoms gold clusters under the monolayer protection of binary thiolates, glutathione and penicillamine, under a molecular formula of Au13(SG)5(PA)7. This monolayer-protected cluster (MPC) finds decent stability and is demonstrated to possess an icosahedral geometry pertaining to structural accommodation in contrast to a planar bare Au13 of local minima energy. Natural bond orbital (NBO) analysis depicts the interaction patterns between gold and the ligands, enlightening to understand the origin of enhanced stability of the Au13 MPCs. Further, the water-soluble Au13 MPCs are found to be a decent candidate for chemosensing and bioimaging.
Protecting nickel with graphene spin-filtering membranes: A single layer is enough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.
2015-07-06
We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the signmore » reversal of the measured magnetoresistance.« less
Lindquist, Desirae E; Rowe, A Shaun; Heidel, Eric; Fleming, Travis; Yates, John R
2015-12-01
Two of the excipients in intravenous formulations of amiodarone, polysorbate 80 and benzyl alcohol, have been shown to cause hypotension. A newer formulation of amiodarone, which contains cyclodextrin, is devoid of these excipients. To evaluate the change in mean arterial pressure when utilizing 2 intravenous amiodarone formulations. This was a retrospective cohort analysis conducted at an academic medical center. Patients received intravenous amiodarone containing either polysorbate 80/benzyl alcohol (control) or cyclodextrin (cyclodextrin). Patients received these formulations based on a standard institutional protocol of 1 mg/min for 6 hours, followed by 0.5 mg/min for at least 18 hours or until discontinued by the provider. All data were collected from the medical record and included changes in blood pressures, time to lowest systolic blood pressure, concurrent antihypertensive use, and number of patients requiring treatment for hypotension. A total of 160 patients (120 control, 40 cyclodextrin) were included. There was a statistically significant difference in mean arterial pressure between the groups receiving the control formulation of amiodarone compared with the cyclodextrin formulation across the 24-hour maintenance phase infusion (P < 0.001). There was a significant difference between formulations with regard to the change in mean arterial pressure during the 0- to 6-hour and 12- to 18-hour time blocks. There was a statistically significant difference in the number of patients receiving fluid boluses for treatment of hypotension (P = 0.001). The excipients in the formulation of intravenous amiodarone may have a significant role in the hypotensive effects seen throughout the duration the maintenance phase infusion. © The Author(s) 2015.
Krait, Sulaiman; Heuermann, Matthias; Scriba, Gerhard K E
2018-03-01
Dextromethorphan is a centrally acting antitussive drug, while its enantiomer levomethorphan is an illicit drug with opioid analgesic effects. As capillary electrophoresis has been proven as an ideal technique for enantiomer analysis, the present study was conducted in order to develop a capillary electrophoresis-based limit test for levomethorphan. The analytical target profile was defined as a method that should be able to determine levomethorphan with acceptable precision and accuracy at the 0.1 % level. From initial scouting experiments, a dual selector system consisting of sulfated β-cyclodextrin and methyl-α-cyclodextrin was identified. The critical process parameters were evaluated in a fractional factorial resolution IV design followed by a central composite face-centered design and Monte Carlo simulations for defining the design space of the method. The selected working conditions consisted of a 30/40.2 cm, 50 μm id fused-silica capillary, 30 mM sodium phosphate buffer, pH 6.5, 16 mg/mL sulfated β-cyclodextrin, and 14 mg/mL methyl-α-cyclodextrin at 20°C and 20 kV. The method was validated according to ICH guideline Q2(R1) and applied to the analysis of a capsule formulation. Furthermore, the apparent binding constants between the enantiomers and the cyclodextrins as well as complex mobilities were determined to understand the migration behavior of the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Celebioglu, Asli; Uyar, Tamer
2012-01-01
High molecular weight polymers and high polymer concentrations are desirable for the electrospinning of nanofibers since polymer chain entanglements and overlapping are important for uniform fiber formation. Hence, the electrospinning of nanofibers from non-polymeric systems such as cyclodextrins (CDs) is quite a challenge since CDs are cyclic oligosaccharides. Nevertheless, in this study, we have successfully achieved the electrospinning of nanofibers from chemically modified CDs without using a carrier polymer matrix. Polymer-free nanofibers were electrospun from three different CD derivatives, hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD) in three different solvent systems, water, dimethylformamide (DMF) and dimethylacetamide (DMAc). We observed that the electrospinning of these CDs is quite similar to polymeric systems in which the solvent type, the solution concentration and the solution conductivity are some of the key factors for obtaining uniform nanofibers. Dynamic light scattering (DLS) measurements indicated that the presence of considerable CD aggregates and the very high solution viscosity were playing a key role for attaining nanofibers from CD derivatives without the use of any polymeric carrier. The electrospinning of CD solutions containing urea yielded no fibers but only beads or splashes since urea caused a notable destruction of the self-associated CD aggregates in their concentrated solutions. The structural, thermal and mechanical characteristics of the CD nanofibers were also investigated. Although the CD derivatives are amorphous small molecules, interestingly, we observed that these electrospun CD nanofibers/nanowebs have shown some mechanical integrity by which they can be easily handled and folded as a free standing material.
Mol, Roelof; de Jong, Gerhardus J; Somsen, Govert W
2008-01-01
Non-aqueous electrokinetic chromatography (NAEKC) using cationic cyclodextrins (CDs) was coupled to electrospray ionization mass spectrometry (ESI-MS). A methanolic background electrolyte (BGE) was used which contained the hydrochloride salts of the single-isomer derivative cyclodextrins 6-monodeoxy-6-mono(2-hydroxy)propylamino-beta-cyclodextrin (IPA-beta-CD) or 6-monodeoxy-6-mono(3-hydroxy)propylamino-beta-cyclodextrin (PA-beta-CD). Applying a reversed capillary electrophoresis (CE) polarity (-30 kV), efficient separation of negatively charged compounds was achieved with plate numbers of up to 190,000. PA-beta-CD appeared to be the most suitable for the separation of various acidic drugs while also providing a high chiral selectivity. Analyte detection was achieved by ESI-MS in the negative-ion mode using a sheath-liquid interface. In order to prevent current drops caused by the cathodic electroosmotic flow, a pressure of 15 mbar was applied on the inlet vial during NAEKC/MS analysis. The effect of the cationic CDs on the MS signal intensities of acidic test drugs was thoroughly studied. When a voltage is applied across the CE capillary, the overall mobility of the cationic CDs is towards the inlet vial so that no CD molecules enter the ion source. The chloride counter ions of the CDs, which migrated towards the capillary outlet, were found to cause ionization suppression, although significant analyte signals could still be detected. Depending on the CD concentration in the BGE, limits of detection for acidic drugs were in the 50-400 ng/mL range in full-scan mode.
β -Cyclodextrin polymer binding to DNA: Modulating the physicochemical parameters
NASA Astrophysics Data System (ADS)
Rocha, J. C. B.; Silva, E. F.; Oliveira, M. F.; Sousa, F. B.; Teixeira, A. V. N. C.; Rocha, M. S.
2017-05-01
Cyclodextrins and cyclodextrins-modified molecules have interesting and appealing properties due to their capacity to host components that are normally insoluble or poorly soluble in water. In this work, we investigate the interaction of a β -cyclodextrin polymer (poly-β -CD) with λ -DNA. The polymers are obtained by the reaction of β -CD with epichlorohydrin in alkaline conditions. We have used optical tweezers to characterize the changes of the mechanical properties of DNA molecules by increasing the concentration of poly-β -CD in the sample. The physical chemistry of the interaction is then deduced from these measurements by using a recently developed quenched-disorder statistical model. It is shown that the contour length of the DNA does not change in the whole range of poly-β -CD concentration (<300 μ M ). On the other hand, significant alterations were observed in the persistence length that identifies two binding modes corresponding to the clustering of ˜2.6 and ˜14 polymer molecules along the DNA double helix, depending on the polymer concentration. Comparing these results with the ones obtained for monomeric β -CD, it was observed that the concentration of CD that alters the DNA persistence length is considerably smaller when in the polymeric form. Also, the binding constant of the polymer-DNA interaction is three orders of magnitude higher than the one found for native (monomeric) β -CD. These results show that the polymerization of the β -CD strongly increases its binding affinity to the DNA molecule. This property can be wisely used to modulate the binding of cyclodextrins to the DNA double helix.
Shlar, Ilya; Droby, Samir; Rodov, Victor
2018-04-01
Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA) 6 -(PLL-PLGA-PLL-CMBCD) n , with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread. Copyright © 2018 Elsevier B.V. All rights reserved.
The purpose of this paper is to present an overview and the initial results of a pilot-scale experiment designated to test the use of cyclodextrin for enhanced in-situ flushing of an aquifer contaminated by immiscible liquid. This is the first field test of this technology, terme...
ERIC Educational Resources Information Center
Smith, Merry K.; Angle, Samantha R.; Northrop, Brian H.
2015-01-01
?-Cyclodextrin can assemble in the presence of KOH or RbOH into metal-organic frameworks (CD-MOFs) with applications in gas adsorption and environmental remediation. Crystalline CD-MOFs are grown by vapor diffusion and their reversible adsorption of CO[subscript 2](g) is analyzed both qualitatively and quantitatively. The experiment can be…
Vukićević, Milica; Tønnesen, Hanne Hjorth
2016-01-01
Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect.
Raoov, Muggundha; Mohamad, Sharifah; Abas, Mhd Radzi
2014-01-01
β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m2/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V). PMID:24366065
Aytac, Zeynep; Yildiz, Zehra Irem; Kayaci-Senirmak, Fatma; Tekinay, Turgay; Uyar, Tamer
2017-09-15
The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Mengke; Wang, Jinpeng; Jin, Zhengyu
2018-07-15
Chitosan-cyclodextrin hydrogel (CFCD) was prepared via Diels-Alder reaction between furfural functionalized chitosan (CF) and N-maleoyl alanine functionalized hydroxypropyl β-cyclodextrin (HPCD-AMI) in aqueous media without any catalyst or initiator. The CF and HPCD-AMI were confirmed by Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The resultant CFCD hydrogel was characterized in terms of thermal peripteries, microstructure, rheology behavior, and swelling capacity. The rheology analysis found that the storage modulus G' ranged from 1pa to 1200pa as the degree of furfural substitute on chitosan increased from 2.6% to 28.3%, indicating the hydrogel strength can be tuned readily by reaction stoichiometry. The swelling behaviors proved that CFCD hydrogel was pH-responsive with low swelling capacity, which would be preferable for drug delivery. Drug adsorption analysis showed the introduction of cyclodextrin into CFCD hydrogels promoted drug adsorption capacity. In addition, methyl orange cumulative release in PBS buffer was only 48.85% after 24h, suggesting CFCD hydrogel had good sustained release capacity on the loaded drug. Copyright © 2018 Elsevier B.V. All rights reserved.
Alonso, Ellen C P; Riccomini, Karina; Silva, Luis Antônio D; Galter, Daniela; Lima, Eliana M; Durig, Thomas; Taveira, Stephania F; Martins, Felipe Terra; Cunha-Filho, Marcílio S S; Marreto, Ricardo N
2016-10-01
This study sought to evaluate the achievement of carvedilol (CARV) inclusion complexes with modified cyclodextrins (HPβCD and HPγCD) using fluid-bed granulation (FB). The solid complexes were produced using FB and spray drying (SD) and were characterised by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, SEM, flowability and particle size analyses and in vitro dissolution. The DSC, FTIR and powder X-ray diffraction findings suggested successful CARV inclusion in the modified β- and γ-cyclodextrins, which was more evident in acidic media. The CARV dissolution rate was ~7-fold higher for complexes with both cyclodextrins prepared using SD than for raw CARV. Complexes prepared with HPβCD using FB also resulted in a significant improvement in dissolution rate (~5-fold) and presented superior flowability and larger particle size. The findings suggested that FB is the best alternative for large-scale production of solid dosage forms containing CARV. Additionally, the results suggest that HPγCD could be considered as another option for CARV complexation because of its excellent performance in inclusion complex formation in the solid state. © 2016 Royal Pharmaceutical Society.
Diniz, Tâmara Coimbra; Pinto, Tiago Coimbra Costa; Menezes, Paula Dos Passos; Silva, Juliane Cabral; Teles, Roxana Braga de Andrade; Ximenes, Rosana Christine Cavalcanti; Guimarães, Adriana Gibara; Serafini, Mairim Russo; Araújo, Adriano Antunes de Souza; Quintans Júnior, Lucindo José; Almeida, Jackson Roberto Guedes da Silva
2018-01-01
Depression is a serious mood disorder and is one of the most common mental illnesses. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these drugs, which have a slow onset of action in addition to producing undesirable side effects. Some scientific evidence suggests that cyclodextrins (CDs) can improve the physicochemical and pharmacological profile of antidepressant drugs (ADDs). The purpose of this paper is to disclose current data technology prospects involving antidepressant drugs and cyclodextrins. Areas covered: We conducted a patent review to evaluate the antidepressive activity of the compounds complexed in CDs, and we analyzed whether these complexes improved their physicochemical properties and pharmacological action. The present review used 8 specialized patent databases for patent research, using the term 'cyclodextrin' combined with 'antidepressive agents' and its related terms. We found 608 patents. In the end, considering the inclusion criteria, 27 patents reporting the benefits of complexation of ADDs with CDs were included. Expert opinion: The use of CDs can be considered an important tool for the optimization of physicochemical and pharmacological properties of ADDs, such as stability, solubility and bioavailability.
NASA Astrophysics Data System (ADS)
Miao, Jiabing; Guo, Zhaohua; Wang, Yongwang; Chen, Dong; Li, Yifan; Zhang, Feng
2017-08-01
The inclusion behavior between β-cyclodextrin derivatives (β-CDs) and flurbiprofen had been studied by fluorescence spectrophotometry. The effects of type and concentration of β-CDs; ionic strength; pH as well as temperature on inclusion behavior were investigated. And then the thermodynamic parameters ΔH/ΔS and ΔG of the inclusion complex of flurbiprofen and HP-β-CD were calculated, the driving force of the inclusion reaction had been also certified. The experimental results indicate, the fluorescence intensity (F) of flurbiprofen increases with the raising of β-CDs concentration, among the studied types of β-cyclodextrin derivatives, hydroxypropy l-β-cyclodextrin (HP-β-CD) has the most obvious enhancement, namely HP-β-CD has the strongest ability to complex with flurbiprofen. Plot of 1/ (F-F0) against 1/ [β-CD] yields a straight line, indicating 1:1 stoichiometric complex formed between β-CDs and flurbiprofen. Inclusion constant is enhanced with the increase in ionic strength of solution, whereas followes an opposite tendency with the rise of pH value. In the inclusive process, under normal temperature ΔG<0, it illustrates that this process is spontaneous, and the driving force is the change of enthalpy.
Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J
2002-04-16
In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.
Relationship between Fe2+ Ca2+ ions and cyclodextrin in olive trees infected with sooty mold
NASA Astrophysics Data System (ADS)
Aragão, P. H. A.; Andrade, C. G. T. J.; Ota, A. T.; Costa, M. F.
2012-07-01
In this work, Energy Dispersive X-ray Fluorescence (EDXRF) was used to observe the peak areas of chemical elements present in healthy and infected samples and a Scanning Electron Microscopy (SEM) to study the damage caused by sooty mold on olive tree leaves from the Mediterranean. Leaves infected with sooty mold presented a high concentration of Fe2+ and a low concentration of Ca2+. Our results show that the infected leaves cause a metabolic imbalance in the plants due to an anomalous behavior of macronutrients and micronutrients. Infected leaves start to develop a thin layer of glucose (Cyclodextrin) on their surface. Cyclodextrin (CD) molecules are oligosaccharides consisting of α-D-glucopyranose units linked to glucosides. The most common is β-cyclodextrin (β-CD), which has seven units of α-D-glucopyranose. There are different CDs which are widely used as molecular reactors. In this work, some connections between CD molecules conformations that were obtained in order to observe the relationship of Fe2+ and Ca2+ in the olive tree infected with sooty mold were studied. The results are discussed in terms of number of ions found inside and outside the cavity formed by the CD molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Thieo Hogen-Esch
1999-11-01
The effect of time on the viscosity of solutions of 0.50--1.0 weight % polyacrylamide copolymers containing 2-(N-ethylperfluorooctanesulfonamido)ethyl acrylate (FOSA) comonomer units was monitored at constant shear rates varying from 0.60 to 3.0 sec{sup {minus}1}. The viscosities decreased to a plateau over a period of about thirty minutes. The copolymer solutions sheared at much higher shear rates of 24 sec{sup {minus}1} showed pronounced shear thinning but regained most of their original viscosities after standing for 20 minutes. Heating the solutions less than one hour caused an increase in the low shear viscosity whereas longer heating times decreased solution viscosities presumably duemore » to hydrolysis of the acrylate groups. Addition of beta-cyclodextrin to solutions of the hydrophobically modified polyacrylamide resulted in sharply decreased copolymer viscosities at cyclodextrin concentrations on the order of about 10{sup {minus}3} M. The above is consistent with competitive hydrophobic association of the perfluorocarbon groups of the copolymer with the cyclodextrin disrupting the mutual association of the perfluorocarbon groups.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.
1999-02-02
The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less
Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes.
Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin
2018-01-01
The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy ( 1 H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1 H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.
Preparation and Characterization of Nanoparticle β-Cyclodextrin:Geraniol Inclusion Complexes
Hadian, Zahra; Maleki, Majedeh; Abdi, Khosro; Atyabi, Fatemeh; Mohammadi, Abdoreza; Khaksar, Ramin
2018-01-01
The aim of the present study was to formulate β-cyclodextrin (β-CD) nanoparticles loaded with geraniol (GR) essential oil (EO) with appropriate physicochemical properties. Complexation of GR with β-CD was optimized by evaluation of four formulations, using the co-precipitation method, and the encapsulation efficiency (EE), loading, size, particle size distribution (PDI) and zeta potential were investigated. Further characterization was performed with nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and infra-red (IR) spectroscopy analysis. Results showed that the physicochemical properties of the nanoparticles were affected by GR content in formulations that yielded nanoscale-size particles ranging from 111 to 258 nm. The highest encapsulation efficiency (79.4 ± 5.4%) was obtained when the molar ratio of EO to β-CD was 0.44: 0.13 with negative zeta potential (-21.1 ± 0.5 mV). The 1H-NMR spectrum confirmed the formation structure of the EO and β-CD nanoparticle complex. Complexation with geraniol resulted in changes of IR profile, NMR chemical shifts, DSC properties, and SEM of β-cyclodextrin. Inclusion complex of essential oil with β-cyclodextrin was considered as promising bioactive materials for designing functional food.
Raeisi, Ahmad; Faghihi, Khalil; Shabanian, Meisam
2017-10-15
The easy migration of di(2-ethylhexyl) phthalate (DEHP) from the plasticized PVC (P-PVC) poses a serious threat to human health and the ecosystems. Thus, its control migration from the P-PVC products is very important. In this work, a poly(β-cyclodextrin-ester) network (β-CDP) was synthesized via reaction of β-cyclodextrin with 3,3',4,4'-benzophenone tetracarboxylic dianhydride. As a potential inhibitor for reduction of the DEHP migration, the β-CDP was grafted to Fe 3 O 4 nanoparticles. Poly(β-cyclodextrin-ester) functionalized Fe 3 O 4 nanoparticles (MNP-CDP) has been used in PVC/DEHP system as a reactive nano-inhibitor to reduce DEHP migration. Thermal stability and mechanical properties of obtained films were investigated. DEHP migration tests of the P-PVC films were also carried out by using Gas chromatography. It was found that by incorporating the small amounts of nano-inhibitor in PVC/DEHP system, the migration of DEHP effectively reduced from the P-PVC samples about 65% without any serious changes in mechanical and thermal properties of the P-PVC films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Borba, Paola Aline Amarante; Pinotti, Marihá; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Olchanheski Junior, Luiz Renato; Fernandes, Daniel; de Campos, Carlos Eduardo Maduro; Stulzer, Hellen Karine
2015-11-20
Telmisartan (TEL) was entrapped into β-cyclodextrin aiming the improvement of its biopharmaceutical properties of low solubility. A solid state grinding process was used to prepare the molecular inclusion complex (MIC) for up to 30min. The inclusion ratio of drug and β-cyclodextrin was established as 1:2 and 1:3 (mol/mol) by phase solubility study and Job Plot. DSC, XRPD and FTIR confirmed the molecular interactions between TEL and β-cyclodextrin. Computer molecular modeling supports the presence of hydrogen bonds between guest and host and demonstrated the most probable complexes configuration. MIC_1:2_30 and MIC_1:3_30 enhanced the dissolution rate of the drug achieving a delivery rate comparable with the reference medicine available in the market (81% and 87% in 5min, for MIC_1:3_30 and Micardis(®), respectively). These formulations showed rapid and effective antihypertensive effect against angiotensin II in rats up to 180min, with statistically significant results against placebo and control in the first 30min after administration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gorjikhah, Fatemeh; Azizi Jalalian, Farid; Salehi, Roya; Panahi, Yunes; Hasanzadeh, Arash; Alizadeh, Effat; Akbarzadeh, Abolfazl; Davaran, Soodabeh
2017-05-01
Among all cancers that affect women, breast cancer has most mortality rate. It is essential to attain more safe and efficient anticancer drugs. Recent advances in medical nanotechnology and biotechnology have caused in novel improvements in breast and other cancer drug delivery. Methotrexate is an anticancer drug that prevents the dihydrofolate reductase enzyme, which inhibits in the formation of DNA, RNA and proteins which have poor water-solubility. For enhancing the solubility and stability of drugs in delivery systems, we used methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles. The PLGA- beta-cyclodextrin nanoparticles were synthesized by a double emulsion method and characterized with FT-IR and SEM. T47D breast cancer cell lines were treated with equal concentrations of methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles and free methotrexate. MTT assay confirmed that methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles enhanced cytotoxicity and drug delivery in T47D breast cancer cells. These results indicate that encapsulated drugs could be effective in controlled drug release for a sustained period would serve the purpose for long-term treatment of many diseases such as breast cancer.
Zhang, Xingwang; Wu, Danni; Lai, Jie; Lu, Yi; Yin, Zongning; Wu, Wei
2009-02-01
This work was aimed at investigating the feasibility of fluid-bed coating as a new method to prepare cyclodextrin inclusion complex. The inclusion complex of the model drug piroxicam (PIX) and 2-hydroxypropyl-beta-cyclodextrin (HPCD) in aqueous ethanol solution was sprayed and deposited onto the surface of the pellet substrate upon removal of the solvent. The coating process was fluent with high coating efficiency. Scanning electron microscopy revealed a coarse pellet surface, and a loosely packed coating structure. Significantly enhanced dissolution, over 90% at 5 min, was observed at stoichiometric PIX/HPCD molar ratio (1/1) and at a ratio with excessive HPCD (1/2). Differential scanning calorimetry and powder X-ray diffractometry confirmed absence of crystallinity of PIX at PIX/HPCD molar ratio of 1/1 and 1/2. Fourier transform-infrared spectrometry and Raman spectrometry revealed interaction between PIX and HPCD adding evidence on inclusion of PIX moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of PIX through the pyridine ring. It is concluded that fluid-bed coating has potential to be used as a new technique to prepare cyclodextrin inclusion complex.
Li, Lou; Xu, Liying; Chen, Meng; Zhang, Guangbin; Zhang, Hongfen; Chen, Anjia
2017-07-15
The purpose of this study was to develop a simple, quick and precise capillary zone electrophoresis method (CZE) for the separation and determination of uncaria alkaloids using dual cyclodextrins as additives for the separation. The four analytes were baseline separated within 15min at the applied voltage of 15kV with a running buffer (pH 5.7) consisting of 40.0mM phosphate buffer, 161.7mM 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and 2.21mM mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin (ED-β-CD). Under the optimum conditions, a good linearity was achieved with correlation coefficients from 0.9989 to 0.9992. The detection limits and the quantitation limits ranged from 0.63 to 0.98μg/mL and from 2.08 to 3.28μg/mL, respectively. Excellent accuracy and precision were obtained. Recoveries of the analytes varied from 97.1 to 103.2%. This method was suitable for the quantitative determination of these alkaloids in the stem with hook of Uncaria rhynchophylla and the formulations of Uncaria rhynchophylla. Copyright © 2017 Elsevier B.V. All rights reserved.
Porphyrin Cyclodextrin Conjugates Modulate Amyloid Beta Peptide Aggregation and Cytotoxicity.
Oliveri, Valentina; Zimbone, Stefania; Giuffrida, Maria Laura; Bellia, Francesco; Tomasello, Marianna Flora; Vecchio, Graziella
2018-04-25
Although fibrillar amyloid beta peptide (Aβ) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aβ oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aβ toxicity. In this work, the biological properties of 5[4-(6-O-β-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aβ and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aβ intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof
2013-01-01
Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458
Westcott, Nathan P; Pulsipher, Abigail; Lamb, Brian M; Yousaf, Muhammad N
2008-09-02
An expedient and inexpensive method to generate patterned aldehydes on self-assembled monolayers (SAMs) of alkanethiolates on gold with control of density for subsequent chemoselective immobilization from commercially available starting materials has been developed. Utilizing microfluidic cassettes, primary alcohol oxidation of tetra(ethylene glycol) undecane thiol and 11-mercapto-1-undecanol SAMs was performed directly on the surface generating patterned aldehyde groups with pyridinium chlorochromate. The precise density of surface aldehydes generated can be controlled and characterized by electrochemistry. For biological applications, fibroblast cells were seeded on patterned surfaces presenting biospecifc cell adhesive (Arg-Glyc-Asp) RGD peptides.
ERIC Educational Resources Information Center
Pullman, David; Peterson, Karen I.
2004-01-01
A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation
NASA Astrophysics Data System (ADS)
Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel
2018-01-01
Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.
Orlandini, S; Pasquini, B; Del Bubba, M; Pinzauti, S; Furlanetto, S
2015-02-06
Quality by design (QbD) concepts, in accordance with International Conference on Harmonisation Pharmaceutical Development guideline Q8(R2), represent an innovative strategy for the development of analytical methods. In this paper QbD principles have been comprehensively applied in the set-up of a capillary electrophoresis method aimed to quantify enantiomeric impurities. The test compound was the chiral drug substance levosulpiride (S-SUL) and the developed method was intended to be used for routine analysis of the pharmaceutical product. The target of analytical QbD approach is to establish a design space (DS) of critical process parameters (CPPs) where the critical quality attributes (CQAs) of the method have been assured to fulfil the desired requirements with a selected probability. QbD can improve the understanding of the enantioseparation process, including both the electrophoretic behavior of enantiomers and their separation, therefore enabling its control. The CQAs were represented by enantioresolution and analysis time. The scouting phase made it possible to select a separation system made by sulfated-β-cyclodextrin and a neutral cyclodextrin, operating in reverse polarity mode. The type of neutral cyclodextrin was included among other CPPs, both instrumental and related to background electrolyte composition, which were evaluated in a screening phase by an asymmetric screening matrix. Response surface methodology was carried out by a Doehlert design and allowed the contour plots to be drawn, highlighting significant interactions between some of the CPPs. DS was defined by applying Monte-Carlo simulations, and corresponded to the following intervals: sulfated-β-cyclodextrin concentration, 9-12 mM; methyl-β-cyclodextrin concentration, 29-38 mM; Britton-Robinson buffer pH, 3.24-3.50; voltage, 12-14 kV. Robustness of the method was examined by a Plackett-Burman matrix and the obtained results, together with system repeatability data, led to define a method control strategy. The method was validated and was finally applied to determine the enantiomeric purity of S-SUL in pharmaceutical dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Complexation of adamantyl compounds by beta-cyclodextrin and monoaminoderivatives.
Carrazana, Jorge; Jover, Aida; Meijide, Francisco; Soto, Victor H; Vazquez Tato, José
2005-05-19
Since the beta-cyclodextrin cavity is not a smooth cone but has constrictions in the neighborhoods of the H3 and H5 atoms, the hypothesis that bulky hydrophobic guests can form two isomeric inclusion complexes (one of them, c(p), is formed by the entrance of the guest by the primary side of the cavity, and the other one, c(s), results from the entrance by the secondary side) is checked. Thus, the inclusion processes of two 1-substituted adamantyl derivatives (rimantidine and adamantylmethanol) with beta-cyclodextrin and its two monoamino derivatives at positions 6 (6-NH2beta-CD) and 3 (3-NH2beta-CD) were studied. From rotating-frame Overhauser enhancement spectroscopy experiments, it was deduced that both guests form c(s) complexes with beta-CD and 6-NH2beta-CD but c(p) complexes with 3-NH2beta-CD. In all cases, the hydrophilic group attached to the adamantyl residue protrudes toward the bulk solvent outside the cyclodextrin cavity. The thermodynamic parameters (free energy, equilibrium constant, enthalpy, and entropy) associated with the inclusion phenomena were measured by isothermal titration calorimetry experiments. From these results, the difference in the free energy for the formation of the two complexes, c(s) and c(p), for the same host/guest system has been estimated as being 11.5 +/- 0.8 kJ mol(-1). This large difference explains why under normal experimental conditions only one of the two complexes (c(s)) is detected. It is also concluded that a hyperboloid of revolution can be a better schematic picture to represent the actual geometry of the cyclodextrin cavities than the usual smooth cone or trapezium.
Removal of emerging micropollutants from water using cyclodextrin.
Nagy, Zsuzsanna Magdolna; Molnár, Mónika; Fekete-Kertész, Ildikó; Molnár-Perl, Ibolya; Fenyvesi, Éva; Gruiz, Katalin
2014-07-01
Small scale laboratory experiment series were performed to study the suitability of a cyclodextrin-based sorbent (ß-cyclodextrin bead polymer, BCDP) for modelling the removal of micropollutants from drinking water and purified waste water using simulated inflow test solutions containing target analytes (ibuprofen, naproxen, ketoprofen, bisphenol-A, diclofenac, β-estradiol, ethinylestradiol, estriol, cholesterol at 2-6 μg/L level). This work was focused on the preliminary evaluation of BCDP as a sorbent in two different model systems (filtration and fluidization) applied for risk reduction of emerging micropollutants. For comparison different filter systems combined with various sorbents (commercial filter and activated carbon) were applied and evaluated in the filtration experiment series. The spiked test solution (inflow) and the treated outflows were characterized by an integrated methodology including chemical analytical methods gas chromatography-tandem mass spectrometry (GC-MS/MS) and various environmental toxicity tests to determine the efficiency and selectivity of the applied sorbents. Under experimental conditions the cyclodextrin-based filters used for purification of drinking water in most cases were able to absorb more than 90% of the bisphenol-A and of the estrogenic compounds. Both the analytical chemistry and toxicity results showed efficient elimination of these pollutants. Especially the toxicity of the filtrate decreased considerably. Laboratory experiment modelling post-purification of waste water was also performed applying fluidization technology by ß-cyclodextrin bead polymer. The BCDP removed efficiently from the spiked test solution most of the micropollutants, especially the bisphenol-A (94%) and the hormones (87-99%) The results confirmed that the BCDP-containing sorbents provide a good solution to water quality problems and they are able to decrease the load and risk posed by micropollutants to the water systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Khellouf, A; Benhenia, K; Fatami, S; Iguer-Ouada, M
During cryopreservation sperm cells suffer from two major deleterious impacts: oxidative stress and cold shock. To investigate in bovine species the benefit of cholesterol and vitamin E, both loaded in cyclodextrins, as a double protection against oxidative stress and cold shock. Semen was collected from nine mature bulls using an artificial vagina and each ejaculate was split into four equal aliquots. The control aliquot was diluted with Fraction A (Tris+citric acid+fructose+penicillin) without further supplementation; the treated samples were diluted in Fraction A supplemented with cholesterol-loaded cyclodextrins (CD-CHL), vitamin E-loaded cyclodextrins (CD-Vit E) or CD-CHL in association with CD-Vit E (CD-CHL-VitE). After incubation at 22°C for 15 min and addition of Fraction B (Fraction A+egg yolk+glycerol), all aliquots were frozen in 0.25 ml straws. Straws were then thawed individually at 37C for 30 seconds in a water bath and immediately analyzed for motility, using Computer Aided Semen Analysis (CASA), membrane integrity and oxidative stress status. The results showed that samples treated with CD-CHL and CD-Vit E were protected against the deleterious impact of freezing thawing process. However, the optimal protection was observed when the two complexes CD-CHL and CD-Vit E were simultaneously used. All analysed semen parameters including motility, membrane integrity and oxidative stress status were significantly improved in CD-CHL-Vit E compared to all other treatments. Cholesterol and vitamin E, both preloaded in cyclodextrins to increase their solubility, appeared as a powerful protection in cryopreserved bovine semen to fight simultaneously cold shock and oxidative stress.
NASA Astrophysics Data System (ADS)
de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria
2017-12-01
Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.
Woźniakiewicz, Michał; Gładysz, Marta; Nowak, Paweł M; Kędzior, Justyna; Kościelniak, Paweł
2017-05-15
The aim of this study was to develop the first CE-based method enabling separation of 20 structurally similar coumarin derivatives. To facilitate method optimization a series of three consequent Doehlert experimental designs with the response surface methodology was employed, using number of peaks and the adjusted time of analysis as the selected responses. Initially, three variables were examined: buffer pH, ionic strength and temperature (No. 1 Doehlert design). The optimal conditions provided only partial separation, on that account, several buffer additives were examined at the next step: organic cosolvents and cyclodextrin (No. 2 Doehlert design). The optimal cyclodextrin type was also selected experimentally. The most promising results were obtained for the buffers fortified with methanol, acetonitrile and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Since these additives may potentially affect acid-base equilibrium and ionization state of analytes, the third Doehlert design (No. 3) was used to reconcile concentration of these additives with optimal pH. Ultimately, the total separation of all 20 compounds was achieved using the borate buffer at basic pH 9.5 in the presence of 10mM cyclodextrin, 9% (v/v) acetonitrile and 36% (v/v) methanol. Identity of all compounds was confirmed using the in-lab build UV-VIS spectra library. The developed method succeeded in identification of coumarin derivatives in three real samples. It demonstrates a huge resolving power of CE assisted by addition of cyclodextrins and organic cosolvents. Our unique optimization approach, based on the three Doehlert designs, seems to be prospective for future applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, H.W.
The antibiotic ketomycin is formed from shikimic acid via chorismic acid and prephenic acid. Phenylalanine and 2',5'-dihydrophenylalanine derived from shikimic acid are not intermediates in the biosynthesis. Degradation of ketomycin derived from (1,6-/sup 14/C)shikimic acid showed that prephenic acid is converted into ketomycin with stereospecific discrimination between the two enantiotopic edges of the ring, the pro-S-R edge giving rise to the C-2', C-3' side of the cyclohexane ring of ketomycin. The resistance of pathogenic bacteria to the action of ..beta..-lactam antibiotics is mainly ascribed to their ability to produce ..beta..-lactamase to cleave the ..beta..-lactam ring. It is essential to understandmore » the molecular nature of ..beta..-lactamase-penicillin recognition for designing and formulating more effective ..beta..-lactam antibiotics. A biomimetic study of ..beta..-lactamase is therefore initiated. To meet the requirements of hydrophobic and serine protease characteristics of ..beta..-lactamase, ..cap alpha..-cyclodextrin is chosen as a biomimetic model for ..beta..-lactamase. The structural specificity and the chemical dynamics of ..cap alpha..-cyclodextrin-phenoxymethyl penicillin inclusion complex in solid state and in solution have been determined by IR and NMR spectroscopy. The spectral results strongly indicate that the phenyl portion of the phenoxymethyl penicillin forms a stable inclusion complex with the hydrophobic cavity of ..cap alpha..-cyclodextrin in solution as well as in the solid state. Kinetic studies followed by /sup 1/HNMR and HPLC analyses under alkaline condition have shown that the ..cap alpha..-cyclodextrin mimics the catalytic function of serine of ..beta..-lactamase in the stereospecific hydrolysis of the ..beta..-lactam ring of phenoxymethyl penicillin.« less
Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer.
Appell, Michael; Jackson, Michael A
2012-02-01
The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions was examined by batch rebinding assays. The results from the aqueous binding studies were fit to two parameter models to gain insight into the interaction of ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the heterogeneous Freundlich isotherm model. The polymer was less effective at binding ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists predominantly in the dianionic state. Batch rebinding assays in red wine indicate the polymer is able to remove significant levels of ochratoxin A from spiked solutions between 1-10 μg·L(-1). These results suggest cyclodextrin nanosponge materials are suitable to reduce levels of ochratoxin A from spiked aqueous solutions and red wine samples.
Giuffrida, A; Contino, A; Maccarrone, G; Messina, M; Cucinotta, V
2009-04-24
The enantioseparation of the enantiomeric pairs of 10 Dns derivatives of alpha-amino acids was successfully carried out by using for the first time the 3-amino derivative of the gamma-cyclodextrin. The effects of pH and selector concentration on the migration times and the resolutions of analytes were studied in detail. 3-Deoxy-3-amino-2(S),3(R)-gamma-cyclodextrin (GCD3AM) shows very good chiral recognition ability even at very low concentrations at all the three investigated values of pH, as shown by the very large values of selectivity and resolution towards several pairs of amino acids. The role played by the cavity, the substitution site and the protonation equilibria on the observed properties of chiral selectivity, on varying the specific amino acid involved, is discussed.
Wang, Bin; He, Jun; Bianchi, Victoria; Shamsi, Shahab A
2009-08-01
The enantiomers of five profen drugs were simultaneously separated by MEKC with the combined use of 2,3,6-tri-O-methyl-beta-cyclodextrin and chiral cationic ionic liquid, N-undecenoxy-carbonyl-L-leucinol bromide, which formed micelles in aqueous buffers. Enantioseparations of these profen drugs were optimized by varying the chain length and concentration of the IL surfactant using a standard recipe containing 35 mM 2,3,6-tri-O-methyl-beta-cyclodextrin, 5 mM sodium acetate at pH 5.0. The batch-to-batch reproducibility of N-undecenoxy-carbonyl-L-leucinol bromide was tested and found to have no significant impact in terms of enantiomeric resolution, efficiency, and migration time. Finally, this method was successfully applied for the quantitative determination of ibuprofen in pharmaceutical tablets.
Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel
2006-03-01
A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.
Spectral characteristics of tramadol in different solvents and β-cyclodextrin
NASA Astrophysics Data System (ADS)
Anton Smith, A.; Manavalan, R.; Kannan, K.; Rajendiran, N.
2009-10-01
Effect of solvents and β-cyclodextrin on the absorption and fluorescence spectra of tramadol drug has been investigated and compared with anisole. The solid inclusion complex of tramadol with β-CD is investigated by FT-IR, 1H NMR, scanning electron microscope (SEM), DSC and semiempirical methods. The thermodynamic parameter (Δ G) of inclusion process is determined. A solvent study shows (i) the spectral behaviour of both tramadol and anisole molecules is similar to each other and (ii) the cyclohexanol group in tramadol is not effectively conjugated with anisole group. However, in β-CD, due to space restriction of the CD cavity, a weak interaction is present between the above groups in tramadol. β-Cyclodextrin studies show that tramadol forms 1:2 inclusion complex with β-CD. A mechanism is proposed for the inclusion process.
Pluronic based β-cyclodextrin polyrotaxanes for treatment of Niemann-Pick Type C disease
NASA Astrophysics Data System (ADS)
Collins, Christopher J.; Loren, Bradley P.; Alam, Md Suhail; Mondjinou, Yawo; Skulsky, Joseph L.; Chaplain, Cheyenne R.; Haldar, Kasturi; Thompson, David H.
2017-04-01
Niemann-Pick Type C disease (NPC) is a rare metabolic disorder characterized by disruption of normal cholesterol trafficking within the cells of the body. There are no FDA approved treatments available for NPC patients. Recently, the cycloheptaglucoside 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has shown efficacy as a potential NPC therapeutic by extending lifetime in NPC mice, delaying neurodegeneration, and decreasing visceral and neurological cholesterol burden. Although promising, systemic HP-β-CD treatment is limited by a pharmacokinetic profile characterized by rapid loss through renal filtration. To address these shortcomings, we sought to design a family of HP-β-CD pro-drug delivery vehicles, known as polyrotaxanes (PR), capable of increasing the efficacy of a given injected dose by improving both pharmacokinetic profile and bioavailability of the HP-β-CD agent. PR can effectively diminish the cholesterol pool within the liver, spleen, and kidney at molar concentrations 10-to-100-fold lower than monomeric HP-β-CD. In addition to this proof-of-concept, use of PR scaffolds with differing physiochemical properties reveal structure-activity relationships in which PR characteristics, including hydrophobicity, threading efficiency and surface charge, were found to both decisively and subtly effect therapeutic efficacy. PR scaffolds exhibit absorption, pharmacokinetics, and biodistribution patterns that are significantly altered from monomeric HP-β-CD. In all, PR scaffolds hold great promise as potential treatments for visceral disease in NPC patients.
Pluronic based β-cyclodextrin polyrotaxanes for treatment of Niemann-Pick Type C disease.
Collins, Christopher J; Loren, Bradley P; Alam, Md Suhail; Mondjinou, Yawo; Skulsky, Joseph L; Chaplain, Cheyenne R; Haldar, Kasturi; Thompson, David H
2017-04-28
Niemann-Pick Type C disease (NPC) is a rare metabolic disorder characterized by disruption of normal cholesterol trafficking within the cells of the body. There are no FDA approved treatments available for NPC patients. Recently, the cycloheptaglucoside 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) has shown efficacy as a potential NPC therapeutic by extending lifetime in NPC mice, delaying neurodegeneration, and decreasing visceral and neurological cholesterol burden. Although promising, systemic HP-β-CD treatment is limited by a pharmacokinetic profile characterized by rapid loss through renal filtration. To address these shortcomings, we sought to design a family of HP-β-CD pro-drug delivery vehicles, known as polyrotaxanes (PR), capable of increasing the efficacy of a given injected dose by improving both pharmacokinetic profile and bioavailability of the HP-β-CD agent. PR can effectively diminish the cholesterol pool within the liver, spleen, and kidney at molar concentrations 10-to-100-fold lower than monomeric HP-β-CD. In addition to this proof-of-concept, use of PR scaffolds with differing physiochemical properties reveal structure-activity relationships in which PR characteristics, including hydrophobicity, threading efficiency and surface charge, were found to both decisively and subtly effect therapeutic efficacy. PR scaffolds exhibit absorption, pharmacokinetics, and biodistribution patterns that are significantly altered from monomeric HP-β-CD. In all, PR scaffolds hold great promise as potential treatments for visceral disease in NPC patients.
Robust, self-assembled, biocompatible films
Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.
2014-06-24
The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing
2018-04-01
The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.
Genetic changes in mammalian cells transformed by helium ions
NASA Astrophysics Data System (ADS)
Durante, M.; Grossi, G.; Yang, T. C.; Roots, R.
Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9-10 keV/μm). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells.
Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Singh, Deobrat; Sonvane, Yogesh; Gajjar, P. N.
2018-03-01
In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are - 3.24, - 2.53 and - 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.
NASA Astrophysics Data System (ADS)
Kilian, L.; Stahl, U.; Kossev, I.; Sokolowski, M.; Fink, R.; Umbach, E.
2008-07-01
The structural order of 1,4,9,10-naphthalene-tetracarboxylicacid-dianhydride (NTCDA) monolayers on Ag(1 1 1) has been investigated by spot profile analysis low energy electron diffraction (SPA-LEED). For increasing coverage, we find a sequence of three highly ordered structures: a commensurate structure (α), a uniaxially incommensurate structure (α 2), and an incommensurate structure (β) with coverages of 0.9 ML, 0.95 ML, and 1 (saturated) monolayer (ML), respectively. In the high coverage regime, the structures coexist and a coverage increase causes a change of their relative fractions. The α and β structures were known before [U. Stahl, D. Gador, A. Soukopp, R. Fink, E. Umbach, Surf. Sci. 414 (1998) 423], but the β structure was proposed as commensurate, since its very small misfit with respect to a commensurate structure could not be resolved. This misfit leads to a periodic modulation, causing additional Moiré satellites in the diffraction pattern. This finding demonstrates the importance of high resolution methods for the geometry determination of large organic adsorbates.
Rapid Retort Processing of Eggs
2006-12-04
cyclodextrin, xanthan gum , ι-carrageenan, λ-carrageenan, κ-carrageenan, guar gum , locust bean gum , xanthan gum and starch. To improve the flavor of the...Cyclodextrin and κ-carrageenan were not effective in preventing synerisis. Guar gum and locust bean gum , and λ-carrageenan resulted in products with a slimy...Laboratory batches were prepared by hydrating the xanthan gum and pregelatinized starch in water which contained the salt and citric acid. The powdered
Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents
Yang, Xiaoguang; Swanson, Basil I.
2001-11-13
An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.
NASA Astrophysics Data System (ADS)
Khan, Naima A.; Johnson, Michael D.; Carroll, Kenneth C.
2018-03-01
Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.
NASA Astrophysics Data System (ADS)
Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath
2018-03-01
The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.
Ramezani, Vahid; Vatanara, Alireza; Seyedabadi, Mohammad; Nabi Meibodi, Mohsen; Fanaei, Hamed
2017-07-01
Dry powder formulations are extensively used to improve the stability of antibodies. Spray drying is one of important methods for protein drying. This study investigated the effects of trehalose, hydroxypropyl beta cyclodextrin (HPBCD) and beta cyclodextrin (BCD) on the stability and particle properties of spray-dried IgG. D-optimal design was employed for both experimental design and analysis and optimization of the variables. The size and aerodynamic behavior of particles were determined using laser light scattering and glass twin impinger, respectively. In addition, stability, ratio of beta sheets and morphology of antibody were analyzed using size exclusion chromatography, IR spectroscopy and electron microscopy, respectively. Particle properties and antibody stability were significantly improved in the presence of HPBCD. In addition, particle aerodynamic behavior, in terms of fine-particle fraction (FPF), enhanced up to 52.23%. Furthermore, antibody was better preserved not only during spray drying, but also during long-term storage. In contrast, application of BCD resulted in the formation of larger particles. Although trehalose caused inappropriate aerodynamic property, it efficiently decreased antibody aggregation. HPBCD is an efficient excipient for the development of inhalable protein formulations. In this regard, optimal particle property and antibody stability was obtained with proper combination of cyclodextrins and simple sugars, such as trehalose.
NASA Astrophysics Data System (ADS)
Suliman, FakhrEldin O.; Elbashir, Abdalla A.
2012-07-01
Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.
Kralova, Jarmila; Synytsya, Alla; Pouckova, Pavla; Koc, Michal; Dvorak, Michal; Kral, Vladimir
2006-01-01
In the present study we investigated the photosensitizing properties of two novel mono- and bis-cyclodextrin tetrakis (pentafluorophenyl) porphyrin derivatives in several tumor cell lines and in BALB/c mice bearing subcutaneously transplanted syngeneic mouse mammary carcinoma 4T1. Both studied sensitizers were localized mainly in lysosomes and were found to induce cell death by triggering apoptosis in human leukemic cells HL-60. In 4T1 and other cell lines both apoptotic and necrotic modes of cell death occurred depending on drug and light doses. Mono-cyclodextrin porphyrin derivative P(beta-CD)1 exhibited stronger in vitro phototoxic effect than bis-cyclodextrin derivative P(beta-CD)2. However, in vivo P(beta-CD)2 displayed faster tumor uptake with maximal accumulation 6 h after application, leading to complete and prolonged elimination of subcutaneous tumors within 3 days after irradiation (100 J cm(-2)). In contrast, P(beta-CD)1 uptake was slower (48 h) and the reduction of tumor mass was only transient, reaching the maximum at the 12 h interval when a favorable tumor-to-skin ratio appeared. Thus, P(beta-CD)2 represents a new photosensitizing drug displaying fast and selective tumor uptake, strong antitumor activity and fast elimination from the body.
Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S
2013-05-01
Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Diab, Roudayna; Jordheim, Lars P; Degobert, Ghania; Peyrottes, Suzanne; Périgaud, Christian; Dumontet, Charles; Fessi, Hatem
2009-01-01
Bis(tbutyl-S-acyl-2-thioethyl)-cytidine monophosophate is a new cytotoxic mononucleotide prodrug which have been developed to reverse the cellular resistance to nucleoside analogues. Unfortunately, its in vivo utilisation was hampered by its poor water solubility, raising the need of a molecular vector capable to mask its physicochemical characteristics although without affecting its cytotoxic activity. Hydroxypropyl-beta-cyclodextrin was used to prepare the prodrug inclusion complexes, allowing it to be solubilized in water and hence to be used for in vitro and in vivo experiments. A molar ratio of the cyclodextrin: prodrug of 3 was sufficient to obtain complete solubilization of the prodrug. The inclusion complex was characterized by differential scanning calorimetry, which revealed the disappearance of the melting peak of the prodrug suggesting the formation of inclusion complex. Proton Nuclear Magnetic Resonance spectroscopy provided a definitive proof of the inclusion complex formation, which was evidenced by the large chemical shift displacements observed for protons located in the interior of the hydrophobic cyclodextrin cavity. The complex retained its cytotoxic activity as shown by in vitro cell survival assays on murine leukemia cells. These results provided a basis for potential therapeutic applications of co-formulation of this new nucleotide analogue with hydroxypropyl-beta-CD in cancer therapy.
Development of Orodispersible Tablets of Candesartan Cilexetil-β-cyclodextrin Complex
Sravya, Maddukuri; Deveswaran, Rajamanickam; Bharath, Srinivasan; Basavaraj, Basappa Veerbadraiah; Madhavan, Varadharajan
2013-01-01
The aim of this study was to investigate the use of inclusion complexation technique employing β-cyclodextrin in improving the dissolution profile of candesartan cilexetil, a BCS class-II drug, and to formulate the inclusion complex into orodispersible tablets. The inclusion complexes were formed by physical mixing, kneading, coevaporation, and lyophilisation methods. Inclusion complexes were characterized by FTIR, DSC, XRD, NMR, and mass spectral studies. Inclusion complexes prepared using kneading, and lyophilisation techniques in the molar ratio 1 : 5 with β-cyclodextrin were used for formulating orodispersible tablets by direct compression with different superdisintegrants like croscarmellose sodium, crospovidone, sodium starch glycolate, and low substituted hydroxypropyl cellulose in varying concentrations. The directly compressible powder was evaluated for precompression parameters, and the prepared orodispersible tablets were evaluated for postcompression parameters. Drug-excipient compatibility studies showed no interaction, and characterization proved the formation of inclusion complex. In vitro disintegration time was found to be within 3 minutes, and all the formulations showed complete drug release of 100% within 20 minutes. The optimized formulation was found to be stable after 6 months and showed no significant change in drug content. This work proved β-cyclodextrins to be effective solubilizing agent in improving the solubility of poorly water soluble drugs. PMID:26555987
Muraoka, Atsushi; Tokumura, Tadakazu; Machida, Yoshiharu
2008-01-01
The use of competing agents is considered a powerful tool for the development of a drug-delivery system with drug/cyclodextrin inclusion complexes. However, there are very few studies examining this issue. To explain this phenomenon, it was thought that a competing agent with a sufficiently high stability constant had not yet been reported. In this study, cinnarizine (CN), which has a high stability constant with beta-cyclodextrin (beta-CD) and unique solubility characteristics, was selected, and its ability as a competing agent was examined in a membrane permeability study. The permeability study showed that the permeation rates of the drugs flurbiprofen, progesterone, and spironolactone decreased with their stability constants with the addition of beta-CD. In one of the drugs, progesterone (Pro), the decrease was restored by the addition of CN. The amount of CN added was a 1:1 molar ratio to the amount of Pro. However, no similar action was induced with the addition of DL-phenylalanine (Phe) in the permeation study at the 1:5 (Pro:Phe) molar ratio. These finding indicate that CN acts as a competing agent, and its action is much stronger than that of Phe.
Ceschel, GianCarlo; Bergamante, Valentina; Maffei, Paola; Lombardi Borgia, Simone; Calabrese, Valeria; Biserni, Stefano; Ronchi, Celestino
2005-01-01
The permeation ability of a compound is due principally to its concentration in the vehicle and to its aptitude to cross the stratum corneum of the skin. In this work ex-vivo permeation studies on newly developed formulations containing dehydroepiandrosterone (DHEA) were carried out to investigate vehicles that increase drug permeation through the skin. To enhance the solubility of DHEA, its complex form with alpha-cyclodextrin was used. In addition, the two forms (pure drug and complex form) were introduced in hydrophilic (water), lipophilic (paraffin oil), and microemulsion vehicles to evaluate the synergic effect of cyclodextrins and microemulsion vehicles on solubility and permeation. From the results, DHEA solubility is notably conditioned by the type of the vehicle used: the highest solubilities (both for pure and complex drug forms) were obtained with microemulsion, followed by paraffin oil and water. Moreover, in all the studied vehicles, the c-DHEA was more soluble than DHEA. Permeation profile fluxes showed very interesting differences. That reflect the varying drug forms (pure drug and complex form), vehicles used, and drug concentrations in the vehicles. The major flux was obtained in complex of DHEA with alpha-cyclodextrins in the microemulsion vehicle. Therefore, this type of vehicle and drug form would be very useful in the development of a topical formulation containing DHEA.
Surfactant Dysfunction in ARDS and Bronchiolitis is Repaired with Cyclodextrins.
Al-Saiedy, Mustafa; Gunasekara, Lasantha; Green, Francis; Pratt, Ryan; Chiu, Andrea; Yang, Ailian; Dennis, John; Pieron, Cora; Bjornson, Candice; Winston, Brent; Amrein, Matthias
2018-03-01
Acute respiratory distress syndrome (ARDS) is caused by many factors including inhalation of toxicants, acute barotrauma, acid aspiration, and burns. Surfactant function is impaired in ARDS and acute airway injury resulting in high surface tension with alveolar and small airway collapse, edema, hypoxemia, and death. In this study, we explore the mechanisms whereby surfactant becomes dysfunctional in ARDS and bronchiolitis and its repair with a cyclodextrin drug that sequesters cholesterol. We used in vitro model systems, a mouse model of ARDS, and samples from patients with acute bronchiolitis. Surface tension was measured by captive bubble surfactometry. Patient samples showed severe surfactant inhibition even in the absence of elevated cholesterol levels. Surfactant was also impaired in ARDS mice where the cholesterol to phospholipid ratio (W/W%) was increased. Methyl-β-cyclodextrin (MβCD) restored surfactant function to normal in both human and animal samples. Model studies showed that the inhibition of surfactant was due to both elevated cholesterol and an interaction between cholesterol and oxidized phospholipids. MβCD was also shown to have anti-inflammatory effects. Inhaled cyclodextrins have potential for the treatment of ARDS. They could be delivered in a portable device carried in combat and used following exposure to toxic gases and fumes or shock secondary to hemorrhage and burns.
Sandbaumhüter, Friederike A; Theurillat, Regula; Thormann, Wolfgang
2017-08-01
The racemic N-methyl-d-aspartate receptor antagonist ketamine is used in anesthesia, analgesia and the treatment of depressive disorders. It is known that interactions of hydroxylated norketamine metabolites and 5,6-dehydronorketamine (DHNK) with the α 7 -nicotinic acetylcholine receptor and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor are responsible for the antidepressive effects. Ketamine and its first metabolite norketamine are not active on these receptors. As stereoselectivity plays a role in ketamine metabolism, a cationic capillary electrophoresis based method capable of resolving and analyzing the stereoisomers of four hydroxylated norketamine metabolites, norketamine and DHNK was developed. The assay is based on liquid/liquid extraction of the analytes from the biological matrix, electrokinetic sample injection across a buffer plug and analysis of the stereoisomers in a phosphate background electrolyte (BGE) at pH 3 comprising a mixture of sulfated β-cyclodextrin (5 mg/mL) and highly sulfated γ-cyclodextrin (0.1%). The method was used to analyze samples of an in vitro study in which ketamine was incubated with equine liver microsomes and in plasma samples of dogs and horses that were collected after an i.v. bolus injection of racemic ketamine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Araújo, Éverton José Ferreira de; Silva, Oskar Almeida; Rezende-Júnior, Luís Mário; Sousa, Ian Jhemes Oliveira; Araújo, Danielle Yasmin Moura Lopes de; Carvalho, Rusbene Bruno Fonseca de; Pereira, Sean Telles; Gutierrez, Stanley Juan Chavez; Ferreira, Paulo Michel Pinheiro; Lima, Francisco das Chagas Alves
2017-08-01
This study performed a physicochemical characterization of the inclusion complex generated between Riparin A and β-cyclodextrin (Rip A/β-CD) and compared the cytotoxic potential of the incorporated Rip A upon Artemia salina larvae. Samples were analyzed by phase solubility diagram, dissolution profile, differential scanning calorimetry, X-ray diffraction, infrared spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy and artemicidal action. Riparin A/β-cyclodextrin complexes presented increased water solubility, AL type solubility diagram and Kst constant of 373 L/mol. Thermal analysis demonstrated reduction of the melt peak of complexed Rip A at 116.2 °C. Infrared spectroscopy confirmed generation of inclusion complexes, 1H NMR pointed out the interaction with H-3 of β-CD cavities, alterations in the crystalline natures of Rip A when incorporated within β-CD were observed and inclusion complexes presented higher cytotoxic on A. salina nauplii, with CL50 value of 117.2 (84.9-161.8) μg/mL. So, Rip A was incorporated into β-CDs with high efficiency and water solubility of Rip A was improved. Such solubility was corroborated by cytotoxic evaluation and these outcomes support the improvement of biological properties for complexes between Riparin A/β-cyclodextrin.
NASA Astrophysics Data System (ADS)
Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.
2016-05-01
A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.
2004-09-01
report increasing adsorption capacity depending on the specific clay type, in the order kaolinite < illite < montmorillonite (11). This finding suggests... kaolinite , illite, and montmorillonite . Finally, there is a wide varia- tion in adsorption constants among the different nitroaromatic compounds...common to micas, chlorites, pyrophyllite, talc, kaolinite , and gibbsite . As is now known, clays typically consist of layered crystalline structures
Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.
Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki
2012-10-15
Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koyama, Junko; Morita, Izumi; Fujiyoshi, Hirotaka; Kobayashi, Norihiro
2005-05-01
The simultaneous separation and determination of major anthraquinones (emodin, chrysophanol, rhein and their glucosides, aloe-emodin, sennoside A, and sennoside B) of Rhei Rhizoma were achieved by cyclodextrin modified capillary zone electrophoresis. The running electrolyte used in this method was 0.005 M alpha-cyclodextrin in 0.03 M borate buffer (pH 10.0) containing 20% acetonitrile, with an applied voltage of 20 kV.
Sorption of Ochratoxin A from Aqueous Solutions Using β-Cyclodextrin-Polyurethane Polymer
Appell, Michael; Jackson, Michael A.
2012-01-01
The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions was examined by batch rebinding assays. The results from the aqueous binding studies were fit to two parameter models to gain insight into the interaction of ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the heterogeneous Freundlich isotherm model. The polymer was less effective at binding ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists predominantly in the dianionic state. Batch rebinding assays in red wine indicate the polymer is able to remove significant levels of ochratoxin A from spiked solutions between 1–10 μg·L−1. These results suggest cyclodextrin nanosponge materials are suitable to reduce levels of ochratoxin A from spiked aqueous solutions and red wine samples. PMID:22474569
Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie
2015-01-01
Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly available. PMID:25974182
Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks.
Ramakrishnan, Saminathan; Subramaniam, Sivaraman; Stewart, A Francis; Grundmeier, Guido; Keller, Adrian
2016-11-16
DNA origami has become a widely used method for synthesizing well-defined nanostructures with promising applications in various areas of nanotechnology, biophysics, and medicine. Recently, the possibility to transfer the shape of single DNA origami nanostructures into different materials via molecular lithography approaches has received growing interest due to the great structural control provided by the DNA origami technique. Here, we use ordered monolayers of DNA origami nanostructures with internal cavities on mica surfaces as molecular lithography masks for the fabrication of regular protein patterns over large surface areas. Exposure of the masked sample surface to negatively charged proteins results in the directed adsorption of the proteins onto the exposed surface areas in the holes of the mask. By controlling the buffer and adsorption conditions, the protein coverage of the exposed areas can be varied from single proteins to densely packed monolayers. To demonstrate the versatility of this approach, regular nanopatterns of four different proteins are fabricated: the single-strand annealing proteins Redβ and Sak, the iron-storage protein ferritin, and the blood protein bovine serum albumin (BSA). We furthermore demonstrate the desorption of the DNA origami mask after directed protein adsorption, which may enable the fabrication of hierarchical patterns composed of different protein species. Because selectivity in adsorption is achieved by electrostatic interactions between the proteins and the exposed surface areas, this approach may enable also the large-scale patterning of other charged molecular species or even nanoparticles.
Solubility of (+/-)-ibuprofen and S (+)-ibuprofen in the presence of cosolvents and cyclodextrins.
Nerurkar, Jayanti; Beach, J W; Park, M O; Jun, H W
2005-01-01
Aqueous solubility is an important parameter for the development of liquid formulations and in the determination of bioavailability of oral dosage forms. Ibuprofen (IB), a nonsteroidal anti-inflammatory drug, is a chiral molecule and is currently used clinically as a racemate (racIB). However, the S form of ibuprofen or S(+)-ibuprofen (SIB) is the biologically active isomer and is primarily responsible for the antiinflammatory activity. Phase solubility studies were carried out to compare the saturation solubilities of racIB and SIB in the presence of common pharmaceutical solvents such as glycerol, sorbitol solution, propylene glycol (PG), and polyethylene glycol (PEG 300) over the range of 20% to 80% v/v in aqueous based systems. The solubilities of the two compounds were also compared in the presence of cyclodextrins such as beta cyclodextrin (CD), hydroxypropyl beta cyclodextrin (HPCD), and beta cyclodextrin sulfobutyl ether sodium salt (CDSB) over the range of 5% to 25% w/v. Solubility determinations were carried at 25 degrees C and 37 degrees C. Cosolvents exponentially increased the solubility of both SIB and racIB, especially in the presence of PG and PEG 300. Glycerol was not very effective in increasing the aqueous solubilities of both compounds, whereas sorbitol solution had a minimal effect on their solubility. PG and PEG 300 increased the solubility of SIB by 400-fold and 1500-fold, respectively, whereas the rise in solubility for racIB was 193-fold and 700-fold, respectively, at 25 degrees C for the highest concentration of the cosolvents used (80% v/v). Of the two compounds studied, higher equilibrium solubilities were observed for SIB as compared with racIB. The derivatized cyclodextrins increased the aqueous solubility of racIB and SIB in a concentration-dependent manner giving AL type of phase diagrams. The phase solubility diagrams indicated the formation of soluble inclusion complexes between the drugs and HPCD and CDSB, which was of 1:1 stoichiometry. The addition of underivatized CD reduced the solubility of racIB and SIB via the formation of an insoluble complex. The S form formed more stable complexes with HPCD and CDSB as compared with raclB. The solubilization process is discussed in terms of solvent polarity and differential solid-state structure of raclB and SIB. The thermodynamic parameters for the solubilization process are presented.
NASA Astrophysics Data System (ADS)
Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.
2002-04-01
We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.
Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G
2015-07-01
We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin
2006-11-01
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
Evolution of bioconvective patterns in variable gravity
NASA Technical Reports Server (NTRS)
Noever, David A.
1991-01-01
Measurements are reported of the evolution of bioconvective patterns in shallow, dense cultures of microorganisms subjected to varying gravity. Various statistical properties of this random, quasi-two-dimensional structure have been found: Aboav's law is obeyed, the average vertex angles follow predictions for regular polygons, and the area of a pattern varies linearly with its number of sides. As gravity varies between 1 g and 1.8 g, these statistical properties continue to hold despite a tripling of the number of polygons and a reduced average polygon dimension by a third. This work compares with experiments on soap foams, Langmuir monolayer foams, metal grains, and simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
Asman, Saliza; Mohamad, Sharifah; Muhamad Sarih, Norazilawati
2015-01-01
The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978
Zhai, XingChen; Zhang, Hua; Zhang, Min; Yang, Xin; Gu, Cheng; Zhou, GuoPeng; Zhao, HaiTian; Wang, ZhenYu; Dong, AiJun; Wang, Jing
2017-08-01
A rapid monitoring platform for sensitive voltammetric detection of thiamethoxam residues is reported in the present study. A β-cyclodextrin-reduced graphene oxide composite was used as a reinforcing material in electrochemical determination of thiamethoxam. Compared with bare glassy carbon electrodes, the reduction peak currents of thiamethoxam at reduced graphene oxide/glassy carbon electrode and β-cyclodextrin-reduced graphene oxide/glassy carbon electrode were increased by 70- and 124-fold, respectively. The experimental conditions influencing voltammetric determination of thiamethoxam, such as the amount of β-cyclodextrin-reduced graphene oxide, solution pH, temperature, and accumulation time, were optimized. The reduction mechanism and binding affinity of this material is also discussed. Under optimal conditions, the reduction peak currents increased linearly between 0.5 µM and 16 µM concentration of thiamethoxam. The limit of detection was 0.27 µM on the basis of a signal-to-noise ratio of 3. When the proposed method was applied to brown rice in a recovery test, the recoveries were between 92.20% and 113.75%. The results were in good concordance with the high-performance liquid chromatography method. The proposed method therefore provides a promising and effective platform for sensitive and rapid determination of thiamethoxam. Environ Toxicol Chem 2017;36:1991-1997. © 2017 SETAC. © 2017 SETAC.
Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji
2016-11-22
The intramolecular oxidation of ROCH 3 to ROCH 2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe III TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH 2 PyCH 2 O- linker (Py=pyridine-3,5-diyl). The O=Fe IV TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe IV TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe II TPPS (t 1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH 3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe IV TPPS from ROCH 3 yields HO-Fe III TPPS and ROCH 2 . . This was followed by radical coupling to afford Fe II TPPS and ROCH 2 OH. The hemiacetal (ROCH 2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paul, Bijan K; Ray, Debarati; Ganguly, Aniruddha; Guchhait, Nikhil
2013-12-01
The present contribution demonstrates the photophysics of a prospective cancer cell photosensitizer Harmane (HM) belonging to the family of β-carboline in mixed microheterogeneous environments of β-cyclodextrin (β-CD) and surfactants having varying surface charges using steady-state and time-resolved fluorescence spectroscopic techniques. The remarkable modulations in prototropic activities of the micelle-bound drug in the presence of β-CD evinces for disruption of the micellar structural integrity by β-CD. The results are meticulously discussed in relevance to the effect of a potential drug delivery vehicle (CD) on the membrane-mimetic micellar system. Further, application of an extrinsic fluorescence probe for monitoring such interactions is fraught by the possibilities of no less than three equilibria that can operate simultaneously viz., (i) surfactant-cyclodextrin, (ii) surfactant-fluorophore and (iii) cyclodextrin-fluorophore. This aspect highlights the enormous importance of the issue of suitability of the fluorescence probe to study such complicated systems and interaction phenomena. Also the varying interaction scenario of β-CD with the nature of the surfactant highlights the importance of precise knowledge of the strength and locus of drug binding in delineating such complex interactions. The results of the present investigation advocate for the potential applicability of the drug (HM) itself as a fluorescence reporter in study of such complex microheterogeneous interactions. Copyright © 2013 Elsevier Inc. All rights reserved.