Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms
Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah
2014-01-01
Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941
NASA Astrophysics Data System (ADS)
Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram
2017-03-01
A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.
NASA Astrophysics Data System (ADS)
Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang
2018-03-01
A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong
2017-04-01
Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.
Research on reform plan of civil engineering adult education graduation design
NASA Astrophysics Data System (ADS)
Su, Zhibin; Sun, Shengnan; Cui, Shicai
2017-12-01
As for civil engineering adult education graduation design, reform program is put forward combined with our school. The main points of reform include the following aspects. New pattern of graduation design which is consisted of basic training of engineering design, technical application and engineering innovation training is formed. Integration model of graduation design and employment is carried out. Multiple professional guidance graduation design pattern is put forward. Subject of graduation design is chosen based on the school actual circumstance. A “three stage” quality monitoring system is established. Performance evaluation pattern that concludes two oral examinations of the dissertation is strictly carried out.
NASA Astrophysics Data System (ADS)
Garvin, Kelley A.
Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.
Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans
2016-05-17
Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.
Zhao, Jian; Yang, Ping; Zhao, Yue
2017-06-01
Speckle pattern-based characteristics of digital image correlation (DIC) restrict its application in engineering fields and nonlaboratory environments, since serious decorrelation effect occurs due to localized sudden illumination variation. A simple and efficient speckle pattern adjusting and optimizing approach presented in this paper is aimed at providing a novel speckle pattern robust enough to resist local illumination variation. The new speckle pattern, called neighborhood binary speckle pattern, derived from original speckle pattern, is obtained by means of thresholding the pixels of a neighborhood at its central pixel value and considering the result as a binary number. The efficiency of the proposed speckle pattern is evaluated in six experimental scenarios. Experiment results indicate that the DIC measurements based on neighborhood binary speckle pattern are able to provide reliable and accurate results, even though local brightness and contrast of the deformed images have been seriously changed. It is expected that the new speckle pattern will have more potential value in engineering applications.
Surface engineering approaches to micropattern surfaces for cell-based assays.
Falconnet, Didier; Csucs, Gabor; Grandin, H Michelle; Textor, Marcus
2006-06-01
The ability to produce patterns of single or multiple cells through precise surface engineering of cell culture substrates has promoted the development of cellular bioassays that provide entirely new insights into the factors that control cell adhesion to material surfaces, cell proliferation, differentiation and molecular signaling pathways. The ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. Furthermore, cell patterning is an important tool for organizing cells on transducers for cell-based sensing and cell-based drug discovery concepts. From a material engineering standpoint, patterning approaches have greatly profited by combining microfabrication technologies, such as photolithography, with biochemical functionalization to present to the cells biological cues in spatially controlled regions where the background is rendered non-adhesive ("non-fouling") by suitable chemical modification. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional (flat) surfaces with the aim to provide an introductory overview and critical assessment of the many techniques described in the literature. In particular, the importance of non-fouling surface chemistries, the combination of hard and soft lithography with molecular assembly techniques as well as a number of less well known, but useful patterning approaches, including direct cell writing, are discussed.
SSME fault monitoring and diagnosis expert system
NASA Technical Reports Server (NTRS)
Ali, Moonis; Norman, Arnold M.; Gupta, U. K.
1989-01-01
An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.
Reverse and forward engineering of protein pattern formation.
Kretschmer, Simon; Harrington, Leon; Schwille, Petra
2018-05-26
Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems
NASA Technical Reports Server (NTRS)
Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun
2012-01-01
One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.
BPELPower—A BPEL execution engine for geospatial web services
NASA Astrophysics Data System (ADS)
Yu, Genong (Eugene); Zhao, Peisheng; Di, Liping; Chen, Aijun; Deng, Meixia; Bai, Yuqi
2012-10-01
The Business Process Execution Language (BPEL) has become a popular choice for orchestrating and executing workflows in the Web environment. As one special kind of scientific workflow, geospatial Web processing workflows are data-intensive, deal with complex structures in data and geographic features, and execute automatically with limited human intervention. To enable the proper execution and coordination of geospatial workflows, a specially enhanced BPEL execution engine is required. BPELPower was designed, developed, and implemented as a generic BPEL execution engine with enhancements for executing geospatial workflows. The enhancements are especially in its capabilities in handling Geography Markup Language (GML) and standard geospatial Web services, such as the Web Processing Service (WPS) and the Web Feature Service (WFS). BPELPower has been used in several demonstrations over the decade. Two scenarios were discussed in detail to demonstrate the capabilities of BPELPower. That study showed a standard-compliant, Web-based approach for properly supporting geospatial processing, with the only enhancement at the implementation level. Pattern-based evaluation and performance improvement of the engine are discussed: BPELPower directly supports 22 workflow control patterns and 17 workflow data patterns. In the future, the engine will be enhanced with high performance parallel processing and broad Web paradigms.
Using pattern based layout comparison for a quick analysis of design changes
NASA Astrophysics Data System (ADS)
Huang, Lucas; Yang, Legender; Kan, Huan; Zou, Elain; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang
2018-03-01
A design usually goes through several versions until achieving a most successful one. These changes between versions are not a complete substitution but a continual improvement, either fixing the known issues of its prior versions (engineering change order) or a more optimized design substitution of a portion of the design. On the manufacturing side, process engineers care more about the design pattern changes because any new pattern occurrence may be a killer of the yield. An effective and efficient way to narrow down the diagnosis scope appeals to the engineers. What is the best approach of comparing two layouts? A direct overlay of two layouts may not always work as even though most of the design instances will be kept in the layout from version to version, the actual placements may be different. An alternative way, pattern based layout comparison, comes to play. By expanding this application, it makes it possible to transfer the learning in one cycle to another and accelerate the process of failure analysis. This paper presents a solution to compare two layouts by using Calibre DRC and Pattern Matching. The key step in this flow is layout decomposition. In theory, with a fixed pattern size, a layout can always be decomposed into limited number of patterns by moving the pattern center around the layout, the number is limited but may be huge if the layout is not processed smartly! A mathematical answer is not what we are looking for but an engineering solution is more desired. Layouts must be decomposed into patterns with physical meaning in a smart way. When a layout is decomposed and patterns are classified, a pattern library with unique patterns inside is created for that layout. After individual pattern libraries for each layout are created, run pattern comparison utility provided by Calibre Pattern Matching to compare the pattern libraries, unique patterns will come out for each layout. This paper illustrates this flow in details and demonstrates the advantage of combining Calibre DRC and Calibre Pattern Matching.
NASA Technical Reports Server (NTRS)
Gupta, U. K.; Ali, M.
1989-01-01
The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.
Bialas, Andrzej
2011-01-01
Intelligent sensors experience security problems very similar to those inherent to other kinds of IT products or systems. The assurance for these products or systems creation methodologies, like Common Criteria (ISO/IEC 15408) can be used to improve the robustness of the sensor systems in high risk environments. The paper presents the background and results of the previous research on patterns-based security specifications and introduces a new ontological approach. The elaborated ontology and knowledge base were validated on the IT security development process dealing with the sensor example. The contribution of the paper concerns the application of the knowledge engineering methodology to the previously developed Common Criteria compliant and pattern-based method for intelligent sensor security development. The issue presented in the paper has a broader significance in terms that it can solve information security problems in many application domains. PMID:22164064
Bialas, Andrzej
2011-01-01
Intelligent sensors experience security problems very similar to those inherent to other kinds of IT products or systems. The assurance for these products or systems creation methodologies, like Common Criteria (ISO/IEC 15408) can be used to improve the robustness of the sensor systems in high risk environments. The paper presents the background and results of the previous research on patterns-based security specifications and introduces a new ontological approach. The elaborated ontology and knowledge base were validated on the IT security development process dealing with the sensor example. The contribution of the paper concerns the application of the knowledge engineering methodology to the previously developed Common Criteria compliant and pattern-based method for intelligent sensor security development. The issue presented in the paper has a broader significance in terms that it can solve information security problems in many application domains.
Variable aperture-based ptychographical iterative engine method.
Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-02-01
A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
[GNU Pattern: open source pattern hunter for biological sequences based on SPLASH algorithm].
Xu, Ying; Li, Yi-xue; Kong, Xiang-yin
2005-06-01
To construct a high performance open source software engine based on IBM SPLASH algorithm for later research on pattern discovery. Gpat, which is based on SPLASH algorithm, was developed by using open source software. GNU Pattern (Gpat) software was developped, which efficiently implemented the core part of SPLASH algorithm. Full source code of Gpat was also available for other researchers to modify the program under the GNU license. Gpat is a successful implementation of SPLASH algorithm and can be used as a basic framework for later research on pattern recognition in biological sequences.
Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues
Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak
2017-01-01
Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187
Hsu, Yi-Yu; Chen, Hung-Yu; Kao, Hung-Yu
2013-01-01
Background Determining the semantic relatedness of two biomedical terms is an important task for many text-mining applications in the biomedical field. Previous studies, such as those using ontology-based and corpus-based approaches, measured semantic relatedness by using information from the structure of biomedical literature, but these methods are limited by the small size of training resources. To increase the size of training datasets, the outputs of search engines have been used extensively to analyze the lexical patterns of biomedical terms. Methodology/Principal Findings In this work, we propose the Mutually Reinforcing Lexical Pattern Ranking (ReLPR) algorithm for learning and exploring the lexical patterns of synonym pairs in biomedical text. ReLPR employs lexical patterns and their pattern containers to assess the semantic relatedness of biomedical terms. By combining sentence structures and the linking activities between containers and lexical patterns, our algorithm can explore the correlation between two biomedical terms. Conclusions/Significance The average correlation coefficient of the ReLPR algorithm was 0.82 for various datasets. The results of the ReLPR algorithm were significantly superior to those of previous methods. PMID:24348899
NASA Astrophysics Data System (ADS)
Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.
2017-01-01
In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.
Variable aperture-based ptychographical iterative engine method
NASA Astrophysics Data System (ADS)
Sun, Aihui; Kong, Yan; Meng, Xin; He, Xiaoliang; Du, Ruijun; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-02-01
A variable aperture-based ptychographical iterative engine (vaPIE) is demonstrated both numerically and experimentally to reconstruct the sample phase and amplitude rapidly. By adjusting the size of a tiny aperture under the illumination of a parallel light beam to change the illumination on the sample step by step and recording the corresponding diffraction patterns sequentially, both the sample phase and amplitude can be faithfully reconstructed with a modified ptychographical iterative engine (PIE) algorithm. Since many fewer diffraction patterns are required than in common PIE and the shape, the size, and the position of the aperture need not to be known exactly, this proposed vaPIE method remarkably reduces the data acquisition time and makes PIE less dependent on the mechanical accuracy of the translation stage; therefore, the proposed technique can be potentially applied for various scientific researches.
Impact of materials engineering on edge placement error (Conference Presentation)
NASA Astrophysics Data System (ADS)
Freed, Regina; Mitra, Uday; Zhang, Ying
2017-04-01
Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.
NASA Astrophysics Data System (ADS)
Haghnevis, Moeed
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.
2012-01-01
The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.
Patterns of informal reasoning in the context of socioscientific decision making
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Zeidler, Dana L.
2005-01-01
The purpose of this study is to contribute to a theoretical knowledge base through research by examining factors salient to science education reform and practice in the context of socioscientific issues. The study explores how individuals negotiate and resolve genetic engineering dilemmas. A qualitative approach was used to examine patterns of informal reasoning and the role of morality in these processes. Thirty college students participated individually in two semistructured interviews designed to explore their informal reasoning in response to six genetic engineering scenarios. Students demonstrated evidence of rationalistic, emotive, and intuitive forms of informal reasoning. Rationalistic informal reasoning described reason-based considerations; emotive informal reasoning described care-based considerations; and intuitive reasoning described considerations based on immediate reactions to the context of a scenario. Participants frequently relied on combinations of these reasoning patterns as they worked to resolve individual socioscientific scenarios. Most of the participants appreciated at least some of the moral implications of their decisions, and these considerations were typically interwoven within an overall pattern of informal reasoning. These results highlight the need to ensure that science classrooms are environments in which intuition and emotion in addition to reason are valued. Implications and recommendations for future research are discussed.
Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C
2017-10-01
Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft
NASA Astrophysics Data System (ADS)
Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.
2010-07-01
This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.
Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung
2010-11-01
Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Helen; Lee, Robben; Lee, Tyzy; Xue, Teddy; Liu, Hermes; Wu, Hall; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang
2018-03-01
As technology advances, escalating layout design complexity and chip size make defect inspection becomes more challenging than ever before. The YE (Yield Enhancement) engineers are seeking for an efficient strategy to ensure accuracy without suffering running time. A smart way is to set different resolutions for different pattern structures, for examples, logic pattern areas have a higher scan resolution while the dummy areas have a lower resolution, SRAM area may have another different resolution. This can significantly reduce the scan processing time meanwhile the accuracy does not suffer. Due to the limitation of the inspection equipment, the layout must be processed in order to output the Care Area marker in line with the requirement of the equipment, for instance, the marker shapes must be rectangle and the number of the rectangle shapes should be as small as possible. The challenge is how to select the different Care Areas by pattern structures, merge the areas efficiently and then partition them into pieces of rectangle shapes. This paper presents a solution based on Calibre DRC and Pattern Matching. Calibre equation-based DRC is a powerful layout processing engine and Calibre Pattern Matching's automated visual capture capability enables designers to define these geometries as layout patterns and store them in libraries which can be re-used in multiple design layouts. Pattern Matching simplifies the description of very complex relationships between pattern shapes efficiently and accurately. Pattern matching's true power is on display when it is integrated with normal DRC deck. In this application of defects inspection, we first run Calibre DRC to get rule based Care Area then use Calibre Pattern Matching's automated pattern capture capability to capture Care Area shapes which need a higher scan resolution with a tune able pattern halo. In the pattern matching step, when the patterns are matched, a bounding box marker will be output to identify the high resolution area. The equation-based DRC and Pattern Matching effectively work together for different scan phases.
Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.
Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan
2017-02-17
Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.
NASA Astrophysics Data System (ADS)
Kidambi, Srivatsan
Over the past decades, the development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion has generated lots of interest. These films could lead to significant advances in the fields of tissue engineering, drug delivery and biosensors which have become increasingly germane areas of research in the field of chemical engineering. The ionic layer-by-layer (LbL) assembly technique called "Polyelectrolyte Multilayers (PEMs)", introduced by Decher in 1991, has emerged as a versatile and inexpensive method of constructing polymeric thin films, with nanometer-scale control of ionized species. PEMs have long been utilized in such applications as sensors, eletrochromics, and nanomechanical thin films but recently they have also been shown to be excellent candidates for biomaterial applications. In this thesis, we engineered these highly customizable PEM thin films to engineer in vitro cellular microenvironments to control cell adhesion and for drug delivery applications. PEM films were engineered to control the adhesion of primary hepatocytes and primary neurons without the aid of adhesive proteins/ligands. We capitalized upon the differential cell attachment and spreading of primary hepatocytes and neurons on poly(diallyldimethylammoniumchloride) (PDAC) and sulfonated polystyrene (SPS) surfaces to make patterned co-cultures of primary hepatocytes/fibroblasts and primary neurons/astrocytes on the PEM surfaces. In addition, we developed self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto PEMs. The created m-dPEG acid monolayer patterns on PEMs acted as resistive templates, and thus prevented further deposits of consecutive poly(anion)/poly(cation) pairs of charged particles and resulted in the formation of three-dimensional (3-D) patterned PEM films or selective particle depositions atop the original multilayer thin films. These new patterned and structured surfaces have potential applications in microelectronic devices and electro-optical and biochemical sensors. The PEG patterns developed are tunable at certain salt conditions and be removed from the PEM surface without affecting the PEM layers underneath the patterns. These removable surfaces provide an alternative method to form patterns of multiple particles, proteins and cells. This new approach provides an environmentally friendly and biocompatible route to designing versatile salt tunable surfaces. Finally, we illustrate the use of PEM films to engineer aptamer and siRNA based drug delivery systems.
Sub-30 nm patterning of molecular resists based on crosslinking through tip based oxidation
NASA Astrophysics Data System (ADS)
Lorenzoni, Matteo; Wagner, Daniel; Neuber, Christian; Schmidt, Hans-Werner; Perez-Murano, Francesc
2018-06-01
Oxidation Scanning Probe Lithography (o-SPL) is an established method employed for device patterning at the nanometer scale. It represents a feasible and inexpensive alternative to standard lithographic techniques such as electron beam lithography (EBL) and nanoimprint lithography (NIL). In this work we applied non-contact o-SPL to an engineered class of molecular resists in order to obtain crosslinking by electrochemical driven oxidation. By patterning and developing various resist formulas we were able to obtain a reliable negative tone resist behavior based on local oxidation. Under optimal conditions, directly written patterns can routinely reach sub-30 nm lateral resolution, while the final developed features result wider, approaching 50 nm width.
ARROWSMITH-P: A prototype expert system for software engineering management
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Ramsey, Connie Loggia
1985-01-01
Although the field of software engineering is relatively new, it can benefit from the use of expert systems. Two prototype expert systems were developed to aid in software engineering management. Given the values for certain metrics, these systems will provide interpretations which explain any abnormal patterns of these values during the development of a software project. The two systems, which solve the same problem, were built using different methods, rule-based deduction and frame-based abduction. A comparison was done to see which method was better suited to the needs of this field. It was found that both systems performed moderately well, but the rule-based deduction system using simple rules provided more complete solutions than did the frame-based abduction system.
Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi
2012-02-01
Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.
ERIC Educational Resources Information Center
Robinson-O'Brien, Ramona; Larson, Nicole; Neumark-Sztainer, Dianne; Stat, Peter Hannan M.; Story, Mary
2009-01-01
Objective: To examine characteristics of adolescents who value eating locally grown, organic, nongenetically engineered, and/or nonprocessed food and whether they are more likely than their peers to meet Healthy People 2010 dietary objectives. Design: Cross-sectional analysis using data from a population-based study in Minnesota (Project EAT:…
Patterns of Informal Reasoning in the Context of Socioscientific Decision-Making.
ERIC Educational Resources Information Center
Sadler, Troy D.; Zeidler, Dana L.
The purpose of this article is to contribute to a theoretical knowledge base through research by examining factors salient to science education reform and practice in the context of socioscientific issues. The study explores how individuals negotiate and resolve genetic engineering dilemmas. A mixed-methods approach was used to examine patterns of…
Patterns of Informal Reasoning in the Context of Socioscientific Decision Making
ERIC Educational Resources Information Center
Sadler, Troy D.; Zeidler, Dana L.
2005-01-01
The purpose of this study is to contribute to a theoretical knowledge base through research by examining factors salient to science education reform and practice in the context of socioscientific issues. The study explores how individuals negotiate and resolve genetic engineering dilemmas. A qualitative approach was used to examine patterns of…
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
NASA Astrophysics Data System (ADS)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
2004-04-15
H-1 Engine major components with callouts (chart 1): The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.
2004-04-15
H-1 engine major components with callouts (chart 1). The H-1 engine was used in a cluster of eight on the the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern: four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine had a thrust of 188,000 pounds for a combined thrust of over 1,500,000 pounds.
Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun
2017-09-26
Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.
A reusability and efficiency oriented software design method for mobile land inspection
NASA Astrophysics Data System (ADS)
Cai, Wenwen; He, Jun; Wang, Qing
2008-10-01
Aiming at the requirement from the real-time land inspection domain, a land inspection handset system was presented in this paper. In order to increase the reusability of the system, a design pattern based framework was presented. Encapsulation for command like actions by applying COMMAND pattern was proposed for the problem of complex UI interactions. Integrating several GPS-log parsing engines into a general parsing framework was archived by introducing STRATEGY pattern. A network transmission module based network middleware was constructed. For mitigating the high coupling of complex network communication programs, FACTORY pattern was applied to facilitate the decoupling. Moreover, in order to efficiently manipulate huge GIS datasets, a VISITOR pattern and Quad-tree based multi-scale representation method was presented. It had been proved practically that these design patterns reduced the coupling between the subsystems, and improved the expansibility.
Designing Worked Examples in Statics to Promote an Expert Stance: Working THRU vs. Working OUT
ERIC Educational Resources Information Center
Calfee, Robert; Stahovich, Thomas
2011-01-01
The purpose of this study was to examine the performance patterns of freshman engineering students as they completed a tutorial on freebody problems that employed a computer-based pen (CBP) to provide feedback and direct learning. A secondary analysis was conducted on detailed performance data for 16 participants from a freshman Engineering course…
GeNemo: a search engine for web-based functional genomic data.
Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng
2016-07-08
A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
1960-01-01
A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
1960-01-01
A Cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. The H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), had a thrust of 188,000 pound each for a combined thrust of over 1,500,000 pounds. Each H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
Willing, Ryan; Lapner, Michael; King, Graham J W; Johnson, James A
2014-11-01
Distal humeral hemiarthroplasty alters cartilage contact mechanics, which may predispose to osteoarthritis. Current prostheses do not replicate the native anatomy, and therefore contribute to these changes. We hypothesized that prostheses reverse-engineered from the native bone shape would provide similar contact patterns as the native articulation. Reverse-engineered hemiarthroplasty prostheses were manufactured for five cadaveric elbows based on CT images of the distal humerus. Passive flexion trials with constant muscle forces were performed with the native articulation intact while bone motions were recorded using a motion tracking system. Motion trials were then repeated after the distal humerus was replaced with a corresponding reverse-engineered prosthesis. Contact areas and patterns were reconstructed using computer models created from CT scan images combined with the motion tracker data. The total contact areas, as well as the contact area within smaller sub-regions of the ulna and radius, were analyzed for changes resulting from hemiarthroplasty using repeated-measures ANOVAs. Contact area at the ulna and radius decreased on average 42% (SD 19%, P=.008) and 41% (SD 42%, P=.096), respectively. Contact area decreases were not uniform throughout the different sub-regions, suggesting that contact patterns were also altered. Reverse-engineered prostheses did not reproduce the same contact pattern as the native joints, possibly because the thickness of the distal humerus cartilage layer was neglected when generating the prosthesis shapes or as a consequence of the increased stiffness of the metallic implants. Alternative design strategies and materials for hemiarthroplasty should be considered in future work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Towards Archetypes-Based Software Development
NASA Astrophysics Data System (ADS)
Piho, Gunnar; Roost, Mart; Perkins, David; Tepandi, Jaak
We present a framework for the archetypes based engineering of domains, requirements and software (Archetypes-Based Software Development, ABD). An archetype is defined as a primordial object that occurs consistently and universally in business domains and in business software systems. An archetype pattern is a collaboration of archetypes. Archetypes and archetype patterns are used to capture conceptual information into domain specific models that are utilized by ABD. The focus of ABD is on software factories - family-based development artefacts (domain specific languages, patterns, frameworks, tools, micro processes, and others) that can be used to build the family members. We demonstrate the usage of ABD for developing laboratory information management system (LIMS) software for the Clinical and Biomedical Proteomics Group, at the Leeds Institute of Molecular Medicine, University of Leeds.
4. "X15 TYPICAL MISSION." A photo of a map graphic ...
4. "X-15 TYPICAL MISSION." A photo of a map graphic showing a flight path from Wendover to Edwards, with an inset graphic showing the landing pattern turns. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Kim, Byoung Soo; Kim, Hyun Jin; An, Suyeong; Chi, Sangwon; Kim, Junseok; Lee, Jonghwi
2017-07-01
Recently, numerous attempts have been made to engineer micro- and nano-porous surface patterns or to develop convenient preparation methods for the practical applications of self-cleaning surfaces, water-repellent surfaces, novel textures, etc. Herein, we introduce a simple, cheap, and repeatable crystallization-based method to produce porous surface structures, on any surface of already fabricated polymeric materials. Contact of the solvent phase with cooled polymer surfaces enabled the limited dissolution of the surfaces and the subsequent extremely fast melt crystallization of the solvent. After removing the crystals, various micro- and nano-porous patterns were obtained, whose pore sizes ranged over three orders of magnitude. Pore depth was linearly dependent on the dissolution time. Crystal growth was mainly directed normal to the surfaces, but it was also controlled in-plane, resulting in cylindrical or lamellar structures. Superhydrophobic surfaces were successfully prepared on both polystyrene and polycarbonate. This process offers a novel surface engineering tool for a variety of polymer surfaces, whose topology can be conveniently controlled over a wide range by crystal engineering.
Creating system engineering products with executable models in a model-based engineering environment
NASA Astrophysics Data System (ADS)
Karban, Robert; Dekens, Frank G.; Herzig, Sebastian; Elaasar, Maged; Jankevičius, Nerijus
2016-08-01
Applying systems engineering across the life-cycle results in a number of products built from interdependent sources of information using different kinds of system level analysis. This paper focuses on leveraging the Executable System Engineering Method (ESEM) [1] [2], which automates requirements verification (e.g. power and mass budget margins and duration analysis of operational modes) using executable SysML [3] models. The particular value proposition is to integrate requirements, and executable behavior and performance models for certain types of system level analysis. The models are created with modeling patterns that involve structural, behavioral and parametric diagrams, and are managed by an open source Model Based Engineering Environment (named OpenMBEE [4]). This paper demonstrates how the ESEM is applied in conjunction with OpenMBEE to create key engineering products (e.g. operational concept document) for the Alignment and Phasing System (APS) within the Thirty Meter Telescope (TMT) project [5], which is under development by the TMT International Observatory (TIO) [5].
Sea level side loads in high-area-ratio rocket engines
NASA Technical Reports Server (NTRS)
Nave, L. H.; Coffey, G. A.
1973-01-01
An empirical separation and side load model to obtain applied aerodynamic loads has been developed based on data obtained from full-scale J-2S (265K-pound-thrust engine with an area ratio of 40:1) engine and model testing. Experimental data include visual observations of the separation patterns that show the dynamic nature of the separation phenomenon. Comparisons between measured and applied side loads are made. Correlations relating the separation location to the applied side loads and the methods used to determine the separation location are given.
1991-05-01
Bio/Molecular Science & Engineering High Resolution Patterning Program Manager Archaebacteria Research Program Manager ONT Receptor Based Biosensor...CMC) in discharging their responsibilities on matters of general scientific and technical interest to the United States in the United Kingdom , Europe
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping
2018-02-01
Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.
NASA Astrophysics Data System (ADS)
Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.
1984-08-01
This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.
Using Covert Means to Establish Cybercraft Command and Control
2009-03-01
unknown entity. This mimics human trust patterns in many ways [15]. Take for example a human trying to find 10 a new auto mechanic or a new babysitter ...AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air
NASA Astrophysics Data System (ADS)
Wang, Ran; Huang, Shuai; Li, Jing; Chae, Junseok
2014-10-01
Thyroglobulin (Tg) is a sensitive indicator of persistent or recurrent differentiated thyroid cancer of follicular cell origin. Detection of Tg in human serum is challenging as bio-receptors, such as anti-Tg, used in immunoassay have relatively weak binding affinity. We engineer sensing surfaces using the competitive adsorption of proteins, termed the Vroman Effect. Coupled with Surface Plasmon Resonance, the "cross-responsive" interactions of Tg on the engineered surfaces produce uniquely distinguishable multiple signature patterns, which are discriminated using Linear Discriminant Analysis. Tg-spiked samples, down to 2 ng/ml Tg in undiluted human serum, are sensitively and selectively discriminated from the control (undiluted human serum).
A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control
NASA Technical Reports Server (NTRS)
Ng, Daniel
1999-01-01
The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.
Gurkan, Umut A; El Assal, Rami; Yildiz, Simin E; Sung, Yuree; Trachtenberg, Alexander J; Kuo, Winston P; Demirci, Utkan
2014-07-07
Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor.
2015-01-01
Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor. PMID:24495169
Intelligent web image retrieval system
NASA Astrophysics Data System (ADS)
Hong, Sungyong; Lee, Chungwoo; Nah, Yunmook
2001-07-01
Recently, the web sites such as e-business sites and shopping mall sites deal with lots of image information. To find a specific image from these image sources, we usually use web search engines or image database engines which rely on keyword only retrievals or color based retrievals with limited search capabilities. This paper presents an intelligent web image retrieval system. We propose the system architecture, the texture and color based image classification and indexing techniques, and representation schemes of user usage patterns. The query can be given by providing keywords, by selecting one or more sample texture patterns, by assigning color values within positional color blocks, or by combining some or all of these factors. The system keeps track of user's preferences by generating user query logs and automatically add more search information to subsequent user queries. To show the usefulness of the proposed system, some experimental results showing recall and precision are also explained.
1968-01-09
A cluster of eight H-1 engines were used to thrust the first stage of Saturn I (S-I stage) and Saturn IB (S-IB stage). The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis, while the remaining four engines were located outboard in a larger square pattern and each outer engine was gimbaled. Each H-1 engine, fueled with liquid oxygen (LOX) and kerosene (RP-1), initially had a thrust of 188,000 pounds each for a combined thrust of over 1,500,000 pounds. Later, the H-1 engine was upgraded to 205,000 pounds of thrust and a combined total thrust of 1,650,000 pounds for the Saturn IB program. This photo depicts a single modified H-1 engine. The H-1 engine was developed under the direction of Marshall Space Flight Center (MSFC).
Optical Strain and Crack-Detection Measurements on a Rotating Disk
NASA Technical Reports Server (NTRS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle; Fralick, Gustave
2013-01-01
The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011-2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.
Optical Strain and Crack-Detection Measurements on a Rotating Disk
NASA Technical Reports Server (NTRS)
Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle M.; Fralick, Gustave
2013-01-01
The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.
Early stage hot spot analysis through standard cell base random pattern generation
NASA Astrophysics Data System (ADS)
Jeon, Joong-Won; Song, Jaewan; Kim, Jeong-Lim; Park, Seongyul; Yang, Seung-Hune; Lee, Sooryong; Kang, Hokyu; Madkour, Kareem; ElManhawy, Wael; Lee, SeungJo; Kwan, Joe
2017-04-01
Due to limited availability of DRC clean patterns during the process and RET recipe development, OPC recipes are not tested with high pattern coverage. Various kinds of pattern can help OPC engineer to detect sensitive patterns to lithographic effects. Random pattern generation is needed to secure robust OPC recipe. However, simple random patterns without considering real product layout style can't cover patterning hotspot in production levels. It is not effective to use them for OPC optimization thus it is important to generate random patterns similar to real product patterns. This paper presents a strategy for generating random patterns based on design architecture information and preventing hotspot in early process development stage through a tool called Layout Schema Generator (LSG). Using LSG, we generate standard cell based on random patterns reflecting real design cell structure - fin pitch, gate pitch and cell height. The output standard cells from LSG are applied to an analysis methodology to assess their hotspot severity by assigning a score according to their optical image parameters - NILS, MEEF, %PV band and thus potential hotspots can be defined by determining their ranking. This flow is demonstrated on Samsung 7nm technology optimizing OPC recipe and early enough in the process avoiding using problematic patterns.
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Murugeson, Saravanan; Prakash, Balaji; Deepak
2015-10-01
Inspired by the wound healing property of certain trees, we report a novel microbes based additive process for producing three dimensional patterns, which has a potential of engineering applications in a variety of fields. Imposing a two dimensional pattern of microbes on a gel media and allowing them to grow in the third dimension is known from its use in biological studies. Instead, we have introduced an intermediate porous substrate between the gel media and the microbial growth, which enables three dimensional patterns in specific forms that can be lifted off and used in engineering applications. In order to demonstrate the applicability of this idea in a diverse set of areas, two applications are selected. In one, using this method of microbial growth, we have fabricated microlenses for enhanced light extraction in organic light emitting diodes, where densely packed microlenses of the diameters of hundreds of microns lead to luminance increase by a factor of 1.24X. In another entirely different type of application, braille text patterns are prepared on a normal office paper where the grown microbial colonies serve as braille tactile dots. Braille dot patterns thus prepared meet the standard specifications (size and spacing) for braille books.
ERIC Educational Resources Information Center
Rieh, Hae-young
1993-01-01
Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…
NASA Astrophysics Data System (ADS)
Huang, Zhao
2011-12-01
Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx-based materials.
Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit
NASA Astrophysics Data System (ADS)
Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.
2018-03-01
Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
NASA Astrophysics Data System (ADS)
Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling
2014-12-01
Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.
Effects of high combustion chamber pressure on rocket noise environment
NASA Technical Reports Server (NTRS)
Pao, S. P.
1972-01-01
The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.
NASA Technical Reports Server (NTRS)
Kim, Jonnathan H.
1995-01-01
Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).
STEM Integration in Middle School Life Science: Student Learning and Attitudes
NASA Astrophysics Data System (ADS)
Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario
2016-08-01
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.
Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.
Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H
2018-05-01
Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineered phages for electronics.
Cui, Yue
2016-11-15
Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.
A Design Pattern for Decentralised Decision Making
Valentini, Gabriele; Fernández-Oto, Cristian; Dorigo, Marco
2015-01-01
The engineering of large-scale decentralised systems requires sound methodologies to guarantee the attainment of the desired macroscopic system-level behaviour given the microscopic individual-level implementation. While a general-purpose methodology is currently out of reach, specific solutions can be given to broad classes of problems by means of well-conceived design patterns. We propose a design pattern for collective decision making grounded on experimental/theoretical studies of the nest-site selection behaviour observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive at consensus is fairly well-understood at the macroscopic level. We provide formal guidelines for the microscopic implementation of collective decisions to quantitatively match the macroscopic predictions. We discuss implementation strategies based on both homogeneous and heterogeneous multiagent systems, and we provide means to deal with spatial and topological factors that have a bearing on the micro-macro link. Finally, we exploit the design pattern in two case studies that showcase the viability of the approach. Besides engineering, such a design pattern can prove useful for a deeper understanding of decision making in natural systems thanks to the inclusion of individual heterogeneities and spatial factors, which are often disregarded in theoretical modelling. PMID:26496359
Phillippi, Julie A; Miller, Eric; Weiss, Lee; Huard, Johnny; Waggoner, Alan; Campbell, Phil
2008-01-01
In vivo, growth factors exist both as soluble and as solid-phase molecules, immobilized to cell surfaces and within the extracellular matrix. We used this rationale to develop more biologically relevant approaches to study stem cell behaviors. We engineered stem cell microenvironments using inkjet bioprinting technology to create spatially defined patterns of immobilized growth factors. Using this approach, we engineered cell fate toward the osteogenic lineage in register to printed patterns of bone morphogenetic protein (BMP) 2 contained within a population of primary muscle-derived stem cells (MDSCs) isolated from adult mice. This patterning approach was conducive to patterning the MDSCs into subpopulations of osteogenic or myogenic cells simultaneously on the same chip. When cells were cultured under myogenic conditions on BMP-2 patterns, cells on pattern differentiated toward the osteogenic lineage, whereas cells off pattern differentiated toward the myogenic lineage. Time-lapse microscopy was used to visualize the formation of multinucleated myotubes, and immunocytochemistry was used to demonstrate expression of myosin heavy chain (fast) in cells off BMP-2 pattern. This work provides proof-of-concept for engineering spatially controlled multilineage differentiation of stem cells using patterns of immobilized growth factors. This approach may be useful for understanding cell behaviors to immobilized biological patterns and could have potential applications for regenerative medicine.
Turbomachinery noise studies of the AiResearch QCGAT engine with inflow control
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Chrulski, D. D.
1981-01-01
The AiResearch Quiet Clean General Aviation Turbofan engine was tested on an outdoor test stand to compare the acoustic performance of two inflow control devices (ICD's) of similar design, and three inlet lips of different external shape. Only small performance differences were found. Far-field directivity patterns calculated by applicable existing analyses were compared with the measured tone and broadband patterns. For some of these comparisons, tests were made with an ICD to reduce rotor/inflow disturbance interaction noise, or with the acoustic suppression panels in the inlet or bypass duct covered with aluminum tape to determine hard wall acoustic performance. The comparisons showed that the analytical expressions used predict many directivity pattern features and trends, but can deviate in shape from the measured patterns under certain engine operating conditions. Some patterns showed lobes from modes attributable to rotor/engine strut interaction sources.
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Mehta, Sunita; Murugeson, Saravanan; Prakash, Balaji; Deepak
2015-01-01
Inspired by the wound healing property of certain trees, we report a novel microbes based additive process for producing three dimensional patterns, which has a potential of engineering applications in a variety of fields. Imposing a two dimensional pattern of microbes on a gel media and allowing them to grow in the third dimension is known from its use in biological studies. Instead, we have introduced an intermediate porous substrate between the gel media and the microbial growth, which enables three dimensional patterns in specific forms that can be lifted off and used in engineering applications. In order to demonstrate the applicability of this idea in a diverse set of areas, two applications are selected. In one, using this method of microbial growth, we have fabricated microlenses for enhanced light extraction in organic light emitting diodes, where densely packed microlenses of the diameters of hundreds of microns lead to luminance increase by a factor of 1.24X. In another entirely different type of application, braille text patterns are prepared on a normal office paper where the grown microbial colonies serve as braille tactile dots. Braille dot patterns thus prepared meet the standard specifications (size and spacing) for braille books. PMID:26486847
Knock detection system to improve petrol engine performance, using microphone sensor
NASA Astrophysics Data System (ADS)
Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra
2017-01-01
An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.
Shafeghat, Hossein; Jafari, Mehdi; Monavarian, Abbas; Shafayi, Maryam; Dehnavieh, Reza
2014-02-01
Labor laws and regulations have inevitable effects on employees' work motivation as well as the overall efficiency and productivity of the organization. This study was conducted to assess the effects of the "Countrywide Services Management Law" on the work motivation level of the employees of the Iranian Ministry of Health. This cross-sectional study was done in 2011 in the Iran's Ministry of Health. Data was collected by a 51-item Likert scale questionnaire, in five domains including: organizational structure, information technology, training patterns, salary and bonus system and re-engineering process. The reliability and validity of the questionnaire was evaluated (Cronbach's alpha= 0.96). Data analysis was conducted using descriptive and inferential statistics (t-test). Out of 192 samples examined, 55.2% of the respondents were female, 88 (45.8%) had BS degree and 116 (60.4%) had less than 10 years' experience. The mean scores in the domains of organizational structure, information technology, training patterns, salary and bonus system and re-engineering patterns were: 3.11, 3.51, 3.05, 3.21 and 3.14, respectively. Relationship between the items related to manpower in the "Countrywide Services Management Law", with employees' work motivation was significant (P < 0.0001). The training patterns did not show a significant relation (P < 0.26) with any of five domains. According to our results and the views of the employees of the Iranian Ministry of Health, "Countrywide Services Management Law" positively affected the personnel's work motivation regarding all the factors associated with motivation including: organizational structure, information technology, training patterns, salary and bonus system and re-engineering pattern. Finally, to enhance the workforce motivation and satisfaction level, application and implementation of the rules and regulations should be based on the organizational needs.
An Empirical Study on Students' Ability to Comprehend Design Patterns
ERIC Educational Resources Information Center
Chatzigeorgiou, Alexander; Tsantalis, Nikolaos; Deligiannis, Ignatios
2008-01-01
Design patterns have become a widely acknowledged software engineering practice and therefore have been incorporated in the curricula of most computer science departments. This paper presents an observational study on students' ability to understand and apply design patterns. Within the context of a postgraduate software engineering course,…
The social construction of copyright ethics and values.
Slaughter, Sheila; Rhoades, Gary
2010-06-01
This study is based on analysis of copyright policies and 26 interviews with science and engineering faculty at three research universities on the topic of copyright beliefs, values, and practices, with emphasis on copyright of instructional materials, courseware, tools, and texts. Given that research universities now emphasize increasing external revenue flows through marketing of intellectual property, we expected copyright to follow the path of patents and lead to institutional emphasis of policies and practices that enhanced universities' intellectual property portfolios, accompanied by an increase in copyrighting by professors. Although this pattern occurred with regard to institutions, professors offered a more varied pattern, with some fully participating in commercialization of copyright and embracing entrepreneurial values, while others resisted or subverted commercial activity in favor of traditional science and engineering values.
Metadata: Pure and Simple, or Is It?
ERIC Educational Resources Information Center
Chalmers, Marilyn
2002-01-01
Discusses issues concerning metadata in Web pages based on experiences in a vocational education center library in Queensland (Australia). Highlights include Dublin Core elements; search engines; controlled vocabulary; performance measurement to assess usage patterns and provide quality control over the vocabulary; and considerations given the…
Patterning and templating for nanoelectronics.
Galatsis, Kosmas; Wang, Kang L; Ozkan, Mihri; Ozkan, Cengiz S; Huang, Yu; Chang, Jane P; Monbouquette, Harold G; Chen, Yong; Nealey, Paul; Botros, Youssry
2010-02-09
The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.
C Language Integrated Production System, Ada Version
NASA Technical Reports Server (NTRS)
Culbert, Chris; Riley, Gary; Savely, Robert T.; Melebeck, Clovis J.; White, Wesley A.; Mcgregor, Terry L.; Ferguson, Melisa; Razavipour, Reza
1992-01-01
CLIPS/Ada provides capabilities of CLIPS v4.3 but uses Ada as source language for CLIPS executable code. Implements forward-chaining rule-based language. Program contains inference engine and language syntax providing framework for construction of expert-system program. Also includes features for debugging application program. Based on Rete algorithm which provides efficient method for performing repeated matching of patterns. Written in Ada.
ERIC Educational Resources Information Center
O'Mahony, Timothy K.; Vye, Nancy J.; Bransford, John D.; Sanders, Elizabeth A.; Stevens, Reed; Stephens, Richard D.; Richey, Michael C.; Lin, Kuen Y.; Soleiman, Moe K.
2012-01-01
We describe findings from a research partnership involving a global airline manufacturing company (The Boeing Company), and learning scientists and aeronautical engineers from the University of Washington. Our starting point for the partnership focused on an 8-hour introductory composites course that was designed for company employees. In phase…
Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization
Peng, Huan-Kai; Lee, Hao-Chih; Pan, Jia-Yu; Marculescu, Radu
2016-01-01
In this paper, we define a new problem related to social media, namely, the data-driven engineering of social dynamics. More precisely, given a set of observations from the past, we aim at finding the best short-term intervention that can lead to predefined long-term outcomes. Toward this end, we propose a general formulation that covers two useful engineering tasks as special cases, namely, pattern matching and profit maximization. By incorporating a deep learning model, we derive a solution using convex relaxation and quadratic-programming transformation. Moreover, we propose a data-driven evaluation method in place of the expensive field experiments. Using a Twitter dataset, we demonstrate the effectiveness of our dynamics engineering approach for both pattern matching and profit maximization, and study the multifaceted interplay among several important factors of dynamics engineering, such as solution validity, pattern-matching accuracy, and intervention cost. Finally, the method we propose is general enough to work with multi-dimensional time series, so it can potentially be used in many other applications. PMID:26771830
Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization.
Peng, Huan-Kai; Lee, Hao-Chih; Pan, Jia-Yu; Marculescu, Radu
2016-01-01
In this paper, we define a new problem related to social media, namely, the data-driven engineering of social dynamics. More precisely, given a set of observations from the past, we aim at finding the best short-term intervention that can lead to predefined long-term outcomes. Toward this end, we propose a general formulation that covers two useful engineering tasks as special cases, namely, pattern matching and profit maximization. By incorporating a deep learning model, we derive a solution using convex relaxation and quadratic-programming transformation. Moreover, we propose a data-driven evaluation method in place of the expensive field experiments. Using a Twitter dataset, we demonstrate the effectiveness of our dynamics engineering approach for both pattern matching and profit maximization, and study the multifaceted interplay among several important factors of dynamics engineering, such as solution validity, pattern-matching accuracy, and intervention cost. Finally, the method we propose is general enough to work with multi-dimensional time series, so it can potentially be used in many other applications.
Liu, Wanpeng; Zhou, Zhitao; Zhang, Shaoqing; Shi, Zhifeng; Tabarini, Justin; Lee, Woonsoo; Zhang, Yeshun; Gilbert Corder, S. N.; Li, Xinxin; Dong, Fei; Cheng, Liang; Liu, Mengkun; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
Precise patterning of biomaterials has widespread applications, including drug release, degradable implants, tissue engineering, and regenerative medicine. Patterning of protein‐based microstructures using UV‐photolithography has been demonstrated using protein as the resist material. The Achilles heel of existing protein‐based biophotoresists is the inevitable wide molecular weight distribution during the protein extraction/regeneration process, hindering their practical uses in the semiconductor industry where reliability and repeatability are paramount. A wafer‐scale high resolution patterning of bio‐microstructures using well‐defined silk fibroin light chain as the resist material is presented showing unprecedent performances. The lithographic and etching performance of silk fibroin light chain resists are evaluated systematically and the underlying mechanisms are thoroughly discussed. The micropatterned silk structures are tested as cellular substrates for the successful spatial guidance of fetal neural stems cells seeded on the patterned substrates. The enhanced patterning resolution, the improved etch resistance, and the inherent biocompatibility of such protein‐based photoresist provide new opportunities in fabricating large scale biocompatible functional microstructures. PMID:28932678
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Hurt, G. J., Jr.; Bergeron, H. P.; Patton, J. M., Jr.; Deal, P. L.; Champine, R. A.
1975-01-01
A moving-base simulator investigation of the problems of recovery and landing of a STOL aircraft after failure of an outboard engine during final approach was made. The approaches were made at 75 knots along a 6 deg glide slope. The engine was failed at low altitude and the option to go around was not allowed. The aircraft was simulated with each of three control systems, and it had four high-bypass-ratio fan-jet engines exhausting against large triple-slotted wing flaps to produce additional lift. A virtual-image out-the-window television display of a simulated STOL airport was operating during part of the investigation. Also, a simple heads-up flight director display superimposed on the airport landing scene was used by the pilots to make some of the recoveries following an engine failure. The results of the study indicated that the variation in visual cues and/or motion cues had little effect on the outcome of a recovery, but they did have some effect on the pilot's response and control patterns.
Osteochondral Interface Tissue Engineering Using Macroscopic Gradients of Bioactive Signals
Dormer, Nathan H.; Singh, Milind; Wang, Limin; Berkland, Cory J.; Detamore, Michael S.
2013-01-01
Continuous gradients exist at osteochondral interfaces, which may be engineered by applying spatially patterned gradients of biological cues. In the present study, a protein-loaded microsphere-based scaffold fabrication strategy was applied to achieve spatially and temporally controlled delivery of bioactive signals in three-dimensional (3D) tissue engineering scaffolds. Bone morphogenetic protein-2 and transforming growth factor-β1-loaded poly(d,llactic- co-glycolic acid) microspheres were utilized with a gradient scaffold fabrication technology to produce microsphere-based scaffolds containing opposing gradients of these signals. Constructs were then seeded with human bone marrow stromal cells (hBMSCs) or human umbilical cord mesenchymal stromal cells (hUCMSCs), and osteochondral tissue regeneration was assessed in gradient scaffolds and compared to multiple control groups. Following a 6-week cell culture, the gradient scaffolds produced regionalized extracellular matrix, and outperformed the blank control scaffolds in cell number, glycosaminoglycan production, collagen content, alkaline phosphatase activity, and in some instances, gene expression of major osteogenic and chondrogenic markers. These results suggest that engineered signal gradients may be beneficial for osteochondral tissue engineering. PMID:20379780
39. ENGINE LATHE, SANDER, AND LATHE WITH PATTERNS AND SHAFTS ...
39. ENGINE LATHE, SANDER, AND LATHE WITH PATTERNS AND SHAFTS ABOVE-LOOKING NORTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Line roughness improvements on self-aligned quadruple patterning by wafer stress engineering
NASA Astrophysics Data System (ADS)
Liu, Eric; Ko, Akiteru; Biolsi, Peter; Chae, Soo Doo; Hsieh, Chia-Yun; Kagaya, Munehito; Lee, Choongman; Moriya, Tsuyoshi; Tsujikawa, Shimpei; Suzuki, Yusuke; Okubo, Kazuya; Imai, Kiyotaka
2018-04-01
In integrated circuit and memory devices, size shrinkage has been the most effective method to reduce production cost and enable the steady increment of the number of transistors per unit area over the past few decades. In order to reduce the die size and feature size, it is necessary to minimize pattern formation in the advance node development. In the node of sub-10nm, extreme ultra violet lithography (EUV) and multi-patterning solutions based on 193nm immersionlithography are the two most common options to achieve the size requirement. In such small features of line and space pattern, line width roughness (LWR) and line edge roughness (LER) contribute significant amount of process variation that impacts both physical and electrical performances. In this paper, we focus on optimizing the line roughness performance by using wafer stress engineering on 30nm pitch line and space pattern. This pattern is generated by a self-aligned quadruple patterning (SAQP) technique for the potential application of fin formation. Our investigation starts by comparing film materials and stress levels in various processing steps and material selection on SAQP integration scheme. From the cross-matrix comparison, we are able to determine the best stack of film selection and stress combination in order to achieve the lowest line roughness performance while obtaining pattern validity after fin etch. This stack is also used to study the step-by-step line roughness performance from SAQP to fin etch. Finally, we will show a successful patterning of 30nm pitch line and space pattern SAQP scheme with 1nm line roughness performance.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
An Intelligent System for Document Retrieval in Distributed Office Environments.
ERIC Educational Resources Information Center
Mukhopadhyay, Uttam; And Others
1986-01-01
MINDS (Multiple Intelligent Node Document Servers) is a distributed system of knowledge-based query engines for efficiently retrieving multimedia documents in an office environment of distributed workstations. By learning document distribution patterns and user interests and preferences during system usage, it customizes document retrievals for…
Technologies for Protein Analysis and Tissue Engineering, with Applications in Cancer
NASA Astrophysics Data System (ADS)
Vermesh, Udi Benjamin
The first part of this thesis describes electrolyte transport through an array of 20 nm wide, 20 mum long SiO2 nanofluidic transistors. At sufficiently low ionic strength, the Debye screening length exceeds the channel width, and ion transport is limited by the negatively charged channel surfaces. At source-drain biases > 5 V, the current exhibits a sharp, nonlinear increase, with a 20 - 50-fold conductance enhancement. This behavior is attributed to a breakdown of the zero-slip condition. Implications for peptide sequencing as well as energy conversion devices are discussed. The next part describes a technology for the detection of the highly aggressive brain cancer glioblastoma multiforme (GBM). In this study, we used an antibody-based microarray to compare plasma samples from glioblastoma patients and healthy controls with respect to the plasma levels of 35 different proteins known to be generally associated with tumor growth, survival, invasion, migration, and immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two groups effectively, permitting accurate assignment of test samples into either GBM or healthy control groups with a sensitivity and specificity as high as 90 % and 94 %, respectively. Using the same 35-protein panel, we then analyzed plasma samples from GBM patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) and were able to effectively stratify patients based on treatment-responsiveness. Finally, single-cell resolution patterning of tissue engineered structures is demonstrated. The proper functioning of engineered constructs for tissue and organ transplantation requires positioning different cell types in anatomically precise arrangements that mimic their configurations in native tissues. Toward this end, we have developed a technique that involves two microfluidic-patterning steps run perpendicularly to each other using "anchor" and "bridge" DNA oligomers to create dense arrays of DNA grids which can then be converted into cell arrays. As a proof-of-concept, both a neuron-astrocyte construct and a pancreatic islet construct containing 2 distinct islet cell types were patterned separately as a dense array of cell grids. Once fixed in a hydrogel matrix, layers of patterned cells were then stacked to form 3-D tissue engineered constructs.
A novel methodology for building robust design rules by using design based metrology (DBM)
NASA Astrophysics Data System (ADS)
Lee, Myeongdong; Choi, Seiryung; Choi, Jinwoo; Kim, Jeahyun; Sung, Hyunju; Yeo, Hyunyoung; Shim, Myoungseob; Jin, Gyoyoung; Chung, Eunseung; Roh, Yonghan
2013-03-01
This paper addresses a methodology for building robust design rules by using design based metrology (DBM). Conventional method for building design rules has been using a simulation tool and a simple pattern spider mask. At the early stage of the device, the estimation of simulation tool is poor. And the evaluation of the simple pattern spider mask is rather subjective because it depends on the experiential judgment of an engineer. In this work, we designed a huge number of pattern situations including various 1D and 2D design structures. In order to overcome the difficulties of inspecting many types of patterns, we introduced Design Based Metrology (DBM) of Nano Geometry Research, Inc. And those mass patterns could be inspected at a fast speed with DBM. We also carried out quantitative analysis on PWQ silicon data to estimate process variability. Our methodology demonstrates high speed and accuracy for building design rules. All of test patterns were inspected within a few hours. Mass silicon data were handled with not personal decision but statistical processing. From the results, robust design rules are successfully verified and extracted. Finally we found out that our methodology is appropriate for building robust design rules.
FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar
2013-09-01
Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mechanical control of tissue and organ development
Mammoto, Tadanori; Ingber, Donald E.
2010-01-01
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning. PMID:20388652
Laser-based direct-write techniques for cell printing
Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B
2016-01-01
Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088
The Red and White Yeast Lab: An Introduction to Science as a Process.
ERIC Educational Resources Information Center
White, Brian T.
1999-01-01
Describes an experimental system based on an engineered strain of bakers' yeast that is designed to involve students in the process by which scientific knowledge is generated. Students are asked to determine why the yeast grow to form a reproducible pattern of red and white. (WRM)
A statistical nanomechanism of biomolecular patterning actuated by surface potential
NASA Astrophysics Data System (ADS)
Lin, Chih-Ting; Lin, Chih-Hao
2011-02-01
Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
Do we need more famous fluid dynamicists?
NASA Astrophysics Data System (ADS)
Reckinger, Shanon; Brinkman, Bethany; Fenner, Raenita; London, Mara
2015-11-01
One of the main reasons students do not join the STEM fields is that they lack interest in technical topics. But do people (young students, the general public, or even our own engineering students) know what an engineer is and/or does? In this talk, results from a recent study on the perceptions of different professions will be presented. The study was designed based off of ``draw-an-engineer'' and ``draw-a-scientist'' tests used on elementary schools kids. The idea is to have participants visualize professionals (engineers, lawyers, and medical doctors were chosen for this study), and determine if there are any patterns within different demographic groups. The demographics that were focused on include gender, race, age, college major, highest level of education, and profession. One of the main findings of this survey was that participants had the most difficult time visualizing an engineer compared to a lawyer or a medical doctor. Therefore, maybe we need more famous engineers (and fluid dynamicists)?
They fought the law and the law won.
Petsko, Gregory A
2007-01-01
The new science geo-engineering doesn't try to alter a few corn plants; it aims to tinker with the entire planet, based on the notion that ultimately we can actively manipulate the planet to have any climate pattern we want. But there is no way we can ever assess all of the likely consequences.
ERIC Educational Resources Information Center
Timmerman, Briana Crotwell; Feldon, David; Maher, Michelle; Strickland, Denise; Gilmore, Joanna
2013-01-01
The development of research skills and scientific reasoning underpins the mission of graduate education in science, technology, engineering and mathematics (STEM) fields, yet our understanding of this process is mainly drawn from self-report and faculty survey data. In this study, we empirically investigate the pattern of research skill…
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Design Patterns Application in the ERP Systems Improvements
NASA Astrophysics Data System (ADS)
Jovičić, Bojan; Vlajić, Siniša
Design patterns application have long been present in software engineering. The same is true for ERP systems in business software. Is it possible that ERP systems do not have a good maintenance score? We have found out that there is room for maintenance improvement and that it is possible to improve ERP systems using design patterns. We have conducted comparative analysis of ease of maintenance of the ERP systems. The results show that the average score for our questions is 64%, with most answers for ERP systems like SAP, Oracle EBS, Dynamics AX. We found that 59% of ERP system developer users are not familiar with design patterns. Based on this research, we have chosen Dynamics AX as the ERP system for examination of design patterns improvement possibilities. We used software metrics to measure improvement possibility. We found that we could increase the Conditional Complexity score 17-fold by introducing design patterns.
NASA Technical Reports Server (NTRS)
Rennak, Robert M; Messing, Wesley E; Morgan, James E
1946-01-01
The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)
Verification and Validation of KBS with Neural Network Components
NASA Technical Reports Server (NTRS)
Wen, Wu; Callahan, John
1996-01-01
Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.
Shafeghat, Hossein; Jafari, Mehdi; Monavarian, Abbas; Shafayi, Maryam; Dehnavieh, Reza
2014-01-01
Background: Labor laws and regulations have inevitable effects on employees’ work motivation as well as the overall efficiency and productivity of the organization. Objectives: This study was conducted to assess the effects of the “Countrywide Services Management Law” on the work motivation level of the employees of the Iranian Ministry of Health. Patients and Methods: This cross-sectional study was done in 2011 in the Iran's Ministry of Health. Data was collected by a 51-item Likert scale questionnaire, in five domains including: organizational structure, information technology, training patterns, salary and bonus system and re-engineering process. The reliability and validity of the questionnaire was evaluated (Cronbach's alpha= 0.96). Data analysis was conducted using descriptive and inferential statistics (t-test). Results: Out of 192 samples examined, 55.2% of the respondents were female, 88 (45.8%) had BS degree and 116 (60.4%) had less than 10 years’ experience. The mean scores in the domains of organizational structure, information technology, training patterns, salary and bonus system and re-engineering patterns were: 3.11, 3.51, 3.05, 3.21 and 3.14, respectively. Relationship between the items related to manpower in the “Countrywide Services Management Law”, with employees' work motivation was significant (P < 0.0001). The training patterns did not show a significant relation (P < 0.26) with any of five domains. Conclusions: According to our results and the views of the employees of the Iranian Ministry of Health, “Countrywide Services Management Law” positively affected the personnel's work motivation regarding all the factors associated with motivation including: organizational structure, information technology, training patterns, salary and bonus system and re-engineering pattern. Finally, to enhance the workforce motivation and satisfaction level, application and implementation of the rules and regulations should be based on the organizational needs. PMID:24719736
Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane
2015-03-01
The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Traffic engineering and regenerator placement in GMPLS networks with restoration
NASA Astrophysics Data System (ADS)
Yetginer, Emre; Karasan, Ezhan
2002-07-01
In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.
Andromeda: a peptide search engine integrated into the MaxQuant environment.
Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias
2011-04-01
A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.
Reliable and Affordable Control Systems Active Combustor Pattern Factor Control
NASA Technical Reports Server (NTRS)
McCarty, Bob; Tomondi, Chris; McGinley, Ray
2004-01-01
Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.
NASA Astrophysics Data System (ADS)
Spinicelli, P.; Dréau, A.; Rondin, L.; Silva, F.; Achard, J.; Xavier, S.; Bansropun, S.; Debuisschert, T.; Pezzagna, S.; Meijer, J.; Jacques, V.; Roch, J.-F.
2011-02-01
We report a versatile method for engineering arrays of nitrogen-vacancy (NV) color centers in diamond at the nanoscale. The defects were produced in parallel by ion implantation through 80 nm diameter apertures patterned using electron beam lithography in a polymethyl methacrylate (PMMA) layer deposited on a diamond surface. The implantation was performed with CN- molecules that increased the NV defect-formation yield. This method could enable the realization of a solid-state coupled-spin array and could be used for positioning an optically active NV center on a photonic microstructure.
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
Development of the platelet micro-orifice injector. [for liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
La Botz, R. J.
1984-01-01
For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.
Development of an intelligent diagnostic system for reusable rocket engine control
NASA Technical Reports Server (NTRS)
Anex, R. P.; Russell, J. R.; Guo, T.-H.
1991-01-01
A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.
National Patterns of R&D Resources, Funds & Manpower in the United States 1953-1977.
ERIC Educational Resources Information Center
Chirichiello, John R.; And Others
Presented is an overview of the national investment in research and development (R&D) in terms of expenditures and the utilization of R&D scientists and engineers. Four sectors of the economy are included: government, industry, universities and colleges, and other non-profit institutions. The data presented are based primarily on a series…
Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles.
Wu, Chueh-Yu; Owsley, Keegan; Di Carlo, Dino
2015-12-22
Microparticles with complex 3D shape and composition are produced using a novel fabrication method, optical transient liquid molding, in which a 2D light pattern exposes a photopolymer precursor stream shaped along the flow axis by software-aided inertial flow engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tully, D.; Jacobs, B.
2010-08-01
This study focused on a population of female engineering students, probing the influences of their secondary school experience on their choice to pursue an engineering course of study at university. The motivating question is: Do unique opportunities exist in an all-female secondary school mathematics classroom, which impact a young woman's self-perception of her mathematics ability as well as promote a positive path towards an engineering-based university major? Using both qualitative and quantitative data collection instruments, this study examined a sample of Australian engineering students enrolled at the University of Technology, Sydney (UTS). Demographic statistics show that 40% of UTS' female engineering student population attended a single-gender secondary school, indicating a potential influence of school type (single-gender) on engineering enrolment patterns. Female students were primarily motivated to pursue a post secondary engineering path because of a self-belief that they are good at mathematics. In contrast, male students were more influenced by positive male role models of family members who are practising engineers. In measures of self- perception of mathematical skill and ability, female students from single-gender schools outscored their male engineering counterparts. Additionally, female students seem to benefit from verbal encouragement, contextualisation, same gender problem-solving groups and same gender classroom dynamics.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
Lee, Yoon-Kyung; Ryu, Joo-Hyung; Choi, Jong-Kuk; Lee, Seok; Woo, Han-Jun
2015-08-15
Spatial and temporal changes around an area of conventional coastal engineering can be easily observed from field surveys because of the clear cause-and-effect observable in the before and after stages of the project. However, it is more difficult to determine environmental changes in the vicinity of tidal flats and coastal areas that are a considerable distance from the project. To identify any unexpected environmental impacts of the construction of Saemangeum Dyke in the area, we examined morphological changes identified by satellite-based observations through a field survey on Gomso Bay tidal flats (15km from Saemangeum Dyke), and changes in the suspended sediment distribution identified by satellite-based observations through a hydrodynamic analysis in the Saemangeum and Gomso coastal area. We argue that hydrodynamic changes due to conventional coastal engineering can affect the sedimentation pattern in the vicinity of tidal flats. We suggest that the environmental impact assessment conducted before a conventional coastal engineering project should include a larger area than is currently considered. Copyright © 2015 Elsevier Ltd. All rights reserved.
Computer Generated Diffraction Patterns Of Rough Surfaces
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1989-03-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been devised which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned surfaces is straightforward, and indeed the theoretically calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real surface profiles into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation.
Double patterning from design enablement to verification
NASA Astrophysics Data System (ADS)
Abercrombie, David; Lacour, Pat; El-Sewefy, Omar; Volkov, Alex; Levine, Evgueni; Arb, Kellen; Reid, Chris; Li, Qiao; Ghosh, Pradiptya
2011-11-01
Litho-etch-litho-etch (LELE) is the double patterning (DP) technology of choice for 20 nm contact, via, and lower metal layers. We discuss the unique design and process characteristics of LELE DP, the challenges they present, and various solutions. ∘ We examine DP design methodologies, current DP conflict feedback mechanisms, and how they can help designers identify and resolve conflicts. ∘ In place and route (P&R), the placement engine must now be aware of the assumptions made during IP cell design, and use placement directives provide by the library designer. We examine the new effects DP introduces in detail routing, discuss how multiple choices of LELE and the cut allowances can lead to different solutions, and describe new capabilities required by detail routers and P&R engines. ∘ We discuss why LELE DP cuts and overlaps are critical to optical process correction (OPC), and how a hybrid mechanism of rule and model-based overlap generation can provide a fast and effective solution. ∘ With two litho-etch steps, mask misalignment and image rounding are now verification considerations. We present enhancements to the OPCVerify engine that check for pinching and bridging in the presence of DP overlay errors and acute angles.
NASA Astrophysics Data System (ADS)
Hu, Chongqing; Li, Aihua; Zhao, Xingyang
2011-02-01
This paper proposes a multivariate statistical analysis approach to processing the instantaneous engine speed signal for the purpose of locating multiple misfire events in internal combustion engines. The state of each cylinder is described with a characteristic vector extracted from the instantaneous engine speed signal following a three-step procedure. These characteristic vectors are considered as the values of various procedure parameters of an engine cycle. Therefore, determination of occurrence of misfire events and identification of misfiring cylinders can be accomplished by a principal component analysis (PCA) based pattern recognition methodology. The proposed algorithm can be implemented easily in practice because the threshold can be defined adaptively without the information of operating conditions. Besides, the effect of torsional vibration on the engine speed waveform is interpreted as the presence of super powerful cylinder, which is also isolated by the algorithm. The misfiring cylinder and the super powerful cylinder are often adjacent in the firing sequence, thus missing detections and false alarms can be avoided effectively by checking the relationship between the cylinders.
Visualization of flows in a motored rotary combustion engine using holographic interferometry
NASA Technical Reports Server (NTRS)
Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.
1986-01-01
The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.
Incident-response monitoring technologies for aircraft cabin air quality
NASA Astrophysics Data System (ADS)
Magoha, Paul W.
Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained from BAS tests by optical particle counter (OPC) revealed lognormal distributions with the mean (range) of geometric mass mean diameter (GMMD) = 0.41 (0.39, 0.45) microm and geometric standard deviation (GSD), sigma g = 1.92 (1.87, 1.98). FESEM/EDS and NAA techniques found a wide range of elements on filters, and further investigations of used filters are recommended using these techniques. The protocols for air and filter sampling and GC/MS analysis used in this study will increase the options available for detecting jet engine oil on cabin air filters. Such criteria could support policy development for compliance with cabin air quality standards during incidents.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Spatial regulation of controlled bioactive factor delivery for bone tissue engineering
Samorezov, Julia E.; Alsberg, Eben
2015-01-01
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719
Gold, Matthew G.; Fowler, Douglas M.; Means, Christopher K.; Pawson, Catherine T.; Stephany, Jason J.; Langeberg, Lorene K.; Fields, Stanley; Scott, John D.
2013-01-01
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces. PMID:23625929
Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.
Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas
2015-07-01
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.
Engineering of routes to heparin and related polysaccharides.
Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2012-01-01
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
[Stressor and stress reduction strategies for computer software engineers].
Asakura, Takashi
2002-07-01
First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.
University of Maryland MRSEC - Research: Seed 1
. University of Maryland Materials Research Science and Engineering Center Home About Us Leadership & Biochemistry Wolfgang Losert, Physics, IPST, IREAP Ben Shapiro, Bio-Engineering, Aerospace Engineering Edo Waks, Electrical & Computer Engineering, IREAP, JQI Creating specific functional patterns
Microstructured block copolymer surfaces for control of microbe capture and aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.
2014-01-01
The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less
LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns
NASA Astrophysics Data System (ADS)
Netzel, P.; Stepinski, T.
2012-12-01
The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu
Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2012-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312
Module-based complexity formation: periodic patterning in feathers and hairs.
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2013-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.
Light-Guided Surface Engineering for Biomedical Applications
Jayagopal, Ashwath; Stone, Gregory P.; Haselton, Frederick R.
2010-01-01
Free radical species generated through fluorescence photobleaching have been reported to effectively couple a water-soluble species to surfaces containing electron-rich sites (1). In this report, we expand upon this strategy to control the patterned attachment of antibodies and peptides to surfaces for biosensing and tissue engineering applications. In the first application, we compare hydrophobic attachment and photobleaching methods to immobilize FITC-labeled anti-M13K07 bacteriophage antibodies to the SiO2 layer of a differential capacitive biosensor and to the polyester filament of a feedback-controlled filament array. On both surfaces, antibody attachment and function were superior to the previously employed hydrophobic attachment. Furthermore, a laser scanning confocal microscope could be used for automated, software-guided photoattachment chemistry. In a second application, the cell-adhesion peptide RGDS was site-specifically photocoupled to glass coated with fluorescein-conjugated poly(ethylene glycol). RGDS attachment and bioactivity were characterized by a fibroblast adhesion assay. Cell adhesion was limited to sites of RGDS photocoupling. These examples illustrate that fluorophore-based photopatterning can be achieved by both solution-phase fluorophores or surface-adhered fluorophores. The coupling preserves the bioactivity of the patterned species, is amenable to a variety of surfaces, and is readily accessible to laboratories with fluorescence imaging equipment. The flexibility offered by visible light patterning will likely have many useful applications in bioscreening and tissue engineering where the controlled placement of biomolecules and cells is critical, and should be considered as an alternative to chemical coupling methods. PMID:18314938
Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning
NASA Astrophysics Data System (ADS)
Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios
2017-12-01
We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.
Real-time determination of fringe pattern frequencies: An application to pressure measurement
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham
2007-05-01
Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
ERIC Educational Resources Information Center
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-01-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are…
NLL-Assisted Multilayer Graphene Patterning
2018-01-01
The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics. PMID:29503971
NLL-Assisted Multilayer Graphene Patterning.
Kovalska, Evgeniya; Pavlov, Ihor; Deminskyi, Petro; Baldycheva, Anna; Ilday, F Ömer; Kocabas, Coskun
2018-02-28
The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm 2 /15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.
Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture. PMID:23750055
ERIC Educational Resources Information Center
Allendoerfer, Cheryl; Wilson, Denise; Kim, Mee Joo; Burpee, Elizabeth
2014-01-01
In this paper, we identify beliefs about teaching and patterns of instruction valued and emphasized by science, technology, engineering, and mathematics faculty in higher education in the USA. Drawing on the notion that effective teaching is student-centered rather than teacher-centered and must include a balance of knowledge-, learner-,…
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szadkowski, Zbigniew
2015-07-01
The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundarymore » of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)« less
Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L
2015-02-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.
Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.
2015-01-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738
Punctuated evolution and robustness in morphogenesis
Grigoriev, D.; Reinitz, J.; Vakulenko, S.; Weber, A.
2014-01-01
This paper presents an analytic approach to the pattern stability and evolution problem in morphogenesis. The approach used here is based on the ideas from the gene and neural network theory. We assume that gene networks contain a number of small groups of genes (called hubs) controlling morphogenesis process. Hub genes represent an important element of gene network architecture and their existence is empirically confirmed. We show that hubs can stabilize morphogenetic pattern and accelerate the morphogenesis. The hub activity exhibits an abrupt change depending on the mutation frequency. When the mutation frequency is small, these hubs suppress all mutations and gene product concentrations do not change, thus, the pattern is stable. When the environmental pressure increases and the population needs new genotypes, the genetic drift and other effects increase the mutation frequency. For the frequencies that are larger than a critical amount the hubs turn off; and as a result, many mutations can affect phenotype. This effect can serve as an engine for evolution. We show that this engine is very effective: the evolution acceleration is an exponential function of gene redundancy. Finally, we show that the Eldredge-Gould concept of punctuated evolution results from the network architecture, which provides fast evolution, control of evolvability, and pattern robustness. To describe analytically the effect of exponential acceleration, we use mathematical methods developed recently for hard combinatorial problems, in particular, for so-called k-SAT problem, and numerical simulations. PMID:24996115
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that the AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer specifies a carpel- and stamen-specific pattern of expression in its native host species but not in heterologous species, such as tobacco which restricts its application in the engin...
Gendered Perceptions of Typical Engineers across Specialties for Engineering Majors
ERIC Educational Resources Information Center
Kelley, Margaret S.; Bryan, Kimberley K.
2018-01-01
Young women do not choose to be engineers nearly as often as young men, and they tend to cluster in particular specialties when they do. We examine these patterns and the role of gender schemas as applied to perceptions of typical engineers in understanding the choices that women make in terms of engineering specialties. We use Part 1 of two waves…
Classification of crystal structure using a convolutional neural network
Park, Woon Bae; Chung, Jiyong; Sohn, Keemin; Pyo, Myoungho
2017-01-01
A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds. PMID:28875035
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Classification of crystal structure using a convolutional neural network.
Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun
2017-07-01
A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.
RFP Patterns and Techniques for Successful Agile Contracting
2016-11-01
2016-SR-025 SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY [Distribution Statement A] This material has been approved for public...release and unlimited distribution. Please see Copyright notice for non-U.S. Government use and distribution. Copyright 2016 Carnegie Mellon University...This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
Suggestions for Documenting SOA-Based Systems
2010-09-01
Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and...understandability and fo even across an enterprise. Technical reference models (see F (e.g., Oracle database managemen general in nature, and they typica...architectural pattern. CMU/SEI-2010- T Key Aspects of the Architecture unicate something that is important to the stakeholders intaining the system
Mission-Based Scenario Research: Experimental Design and Analysis
2011-08-10
with Army Reserach Lab; DCS Corporation, Alexandria, Va and Warren, Mi 14. ABSTRACT In this paper , we discuss a neuroimaging experiment that...Development and Engineering Center Warren, MI Kelvin S. Oie, PhD Army Research Laboratory Aberdeen Proving Ground, MD ABSTRACT In this paper , we...experiment, this paper will emphasize analyses that employ a pattern classification analysis approach. These classification examples aim to identify
Heavy hydrocarbon main injector technology program
NASA Technical Reports Server (NTRS)
Arbit, H. A.; Tuegel, L. M.; Dodd, F. E.
1991-01-01
The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics.
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Woike, Mark R.
2013-01-01
The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed and investigated in the controlled experiment. A range of known shifts are induced on the patterns; reference and data images are acquired before and after the induced shift, respectively, and the images are processed using the cross-correlation algorithms in order to determine the particle displacements. The effectiveness of each pattern at resolving the known shift is evaluated and discussed in order to choose the most suitable pattern to be implemented onto a rotating disk in the Rotordynamics Lab. Although testing on the rotating disk has not yet been performed, the driving principles behind the development of the present optical technique are based upon critical aspects of the future experiment, such as the amount of expected radial growth, disk analysis, and experimental design and are therefore addressed in the paper.
New Method for Knowledge Management Focused on Communication Pattern in Product Development
NASA Astrophysics Data System (ADS)
Noguchi, Takashi; Shiba, Hajime
In the field of manufacturing, the importance of utilizing knowledge and know-how has been growing. To meet this background, there is a need for new methods to efficiently accumulate and extract effective knowledge and know-how. To facilitate the extraction of knowledge and know-how needed by engineers, we first defined business process information which includes schedule/progress information, document data, information about communication among parties concerned, and information which corresponds to these three types of information. Based on our definitions, we proposed an IT system (FlexPIM: Flexible and collaborative Process Information Management) to register and accumulate business process information with the least effort. In order to efficiently extract effective information from huge volumes of accumulated business process information, focusing attention on “actions” and communication patterns, we propose a new extraction method using communication patterns. And the validity of this method has been verified for some communication patterns.
LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.
Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin
2014-12-01
The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
1961-05-16
On October 27, 1961, the Marshall Space Flight Center (MSFC) and the Nation marked a high point in the 3-year-old Saturn development program when the first Saturn vehicle flew a flawless 215-mile ballistic trajectory from Cape Canaveral, Florida. SA-1 is pictured here, five months before launch, in the MSFC test stand on May 16, 1961. Developed and tested at MSFC under the direction of Dr. Wernher von Braun, SA-1 incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks, as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle.
ERIC Educational Resources Information Center
Lee, Chen Kang; Sidhu, Manjit Singh
2015-01-01
Engineering educators have been increasingly taking the learning style theories into serious consideration as part of their efforts to enhance the teaching and learning in engineering. This paper presents a research study to investigate the learning style preference of the mechanical engineering students in Universiti Tenaga Nasional (UNITEN),…
Liao, Wenta; Draper, William M
2013-02-21
The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.
Compact opto-electronic engine for high-speed compressive sensing
NASA Astrophysics Data System (ADS)
Tidman, James; Weston, Tyler; Hewitt, Donna; Herman, Matthew A.; McMackin, Lenore
2013-09-01
The measurement efficiency of Compressive Sensing (CS) enables the computational construction of images from far fewer measurements than what is usually considered necessary by the Nyquist- Shannon sampling theorem. There is now a vast literature around CS mathematics and applications since the development of its theoretical principles about a decade ago. Applications include quantum information to optical microscopy to seismic and hyper-spectral imaging. In the application of shortwave infrared imaging, InView has developed cameras based on the CS single-pixel camera architecture. This architecture is comprised of an objective lens to image the scene onto a Texas Instruments DLP® Micromirror Device (DMD), which by using its individually controllable mirrors, modulates the image with a selected basis set. The intensity of the modulated image is then recorded by a single detector. While the design of a CS camera is straightforward conceptually, its commercial implementation requires significant development effort in optics, electronics, hardware and software, particularly if high efficiency and high-speed operation are required. In this paper, we describe the development of a high-speed CS engine as implemented in a lab-ready workstation. In this engine, configurable measurement patterns are loaded into the DMD at speeds up to 31.5 kHz. The engine supports custom reconstruction algorithms that can be quickly implemented. Our work includes optical path design, Field programmable Gate Arrays for DMD pattern generation, and circuit boards for front end data acquisition, ADC and system control, all packaged in a compact workstation.
Atlas Career Path Guidebook: Patterns and Common Practices in Systems Engineers’ Development
2018-01-16
Overview of Atlas Proficiency Model .............................................................................. 68 5.1.2. Math /Science/General... Math /Science/General Engineering ................................ 72 Figure 42. Distribution for individuals with highest proficiency self...assessment in Math /Science/General Engineering ..................................................................................... 73 Figure 43
Construction of integrated case environments.
Losavio, Francisca; Matteo, Alfredo; Pérez, María
2003-01-01
The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476
Generation of Viable Cell and Biomaterial Patterns by Laser Transfer
NASA Astrophysics Data System (ADS)
Ringeisen, Bradley
2001-03-01
In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.
Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser
NASA Astrophysics Data System (ADS)
Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.
2017-10-01
Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Engineering paradigms and anthropogenic global change
NASA Astrophysics Data System (ADS)
Bohle, Martin
2016-04-01
This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative, the paradigm of 'ecomodernism' implies to accentuate some of the current development paths of societies with the goal to 'decouple' anthropogenic and natural fluxes of matter and energy. Applying the paradigm 'geoengineering', engineering works shall 'modulate' natural fluxes of matter to counter the effect of anthropogenic fluxes of matter instead to alter the development paths of societies. Thus, anthropogenic global change is a composite process in which engineering intercedes the 'noosphere' and in the 'bio-geosphere'. Paradigms 'how to engineering earth systems' reflect different concepts ('shared subjective insights') how to combine knowledge with use, function and purpose. Currently, four paradigms are distinguishable how to engineer anthropogenic global change. They convene recipes human activity and bio-geosphere should intersect.
Scanning electron microscope automatic defect classification of process induced defects
NASA Astrophysics Data System (ADS)
Wolfe, Scott; McGarvey, Steve
2017-03-01
With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the utilization of a Hitachi RS4000 Defect Review SEM to perform Automatic Defect Classification with the objective of the total automated classification accuracy being greater than human based defect classification binning when the defects do not require multiple process step knowledge for accurate classification. The implementation of DRSEM ADC has the potential to improve the response time between defect detection and defect classification. Faster defect classification will allow for rapid response to yield anomalies that will ultimately reduce the wafer and/or the die yield.
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-13
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
Optical absorption in planar graphene superlattice: The role of structural parameters
NASA Astrophysics Data System (ADS)
Azadi, L.; Shojaei, S.
2018-04-01
We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.
Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts
NASA Astrophysics Data System (ADS)
Serpooshan, Vahid; Mahmoudi, Morteza
2015-02-01
Cell-based therapies are a recently established path for treating a wide range of human disease. Tissue engineering of contractile heart muscle for replacement therapy is among the most exciting and important of these efforts. However, current in vitro techniques of cultivating functional mature cardiac grafts have only been moderately successful due to the poor capability of traditional two-dimensional cell culture systems to recapitulate necessary in vivo conditions. In this issue, Kiefer et al [1] introduce a laser-patterned nanostructured substrate (Al/Al2O3 nanowires) for efficient maintenance of oriented human cardiomyocytes, with great potential to open new roads to mass-production of contractile myocardial grafts for cardiovascular tissue engineering.
Erythropoietin and engineered innate repair activators.
Brines, Michael; Cerami, Anthony
2013-01-01
Erythropoietin (EPO) is a pleiotropic type I cytokine that has been identified as a major endogenous tissue protective molecule. In response to injury, EPO and a distinct receptor are expressed with a characteristic temporal and spatial expression pattern. Together, these serve to limit injury and to initiate repair. Administration of EPO in the setting of injury has been shown to be beneficial in a multitude of preclinical models. However, translation into the clinic has been hampered by EPO's adverse effects, including promotion of thrombosis. Recently, engineered molecules based on EPO's structure-activity relationships have been developed that are devoid of hematopoietic effects. These compounds are promising candidates for treatment of a wide variety of acute and chronic diseases.
Online Knowledge-Based Model for Big Data Topic Extraction.
Khan, Muhammad Taimoor; Durrani, Mehr; Khalid, Shehzad; Aziz, Furqan
2016-01-01
Lifelong machine learning (LML) models learn with experience maintaining a knowledge-base, without user intervention. Unlike traditional single-domain models they can easily scale up to explore big data. The existing LML models have high data dependency, consume more resources, and do not support streaming data. This paper proposes online LML model (OAMC) to support streaming data with reduced data dependency. With engineering the knowledge-base and introducing new knowledge features the learning pattern of the model is improved for data arriving in pieces. OAMC improves accuracy as topic coherence by 7% for streaming data while reducing the processing cost to half.
NASA Astrophysics Data System (ADS)
Nahmias, Yaakov Koby
Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.
ERIC Educational Resources Information Center
Dahm, Kevin; Newell, James; Newell, Heidi; Harvey, Roberta
2009-01-01
This paper discusses efforts to develop metacognition in teams of engineering students by: first, exploring personal learning patterns, and second, ongoing biweekly journaling exercises. Thirty-three junior and senior engineering students (30 chemical engineer, one each from mechanical, civil and electrical) working on semester-long projects in…
2016-08-01
Sanders, Chase A. Nessler, William W. Copenhaver, Michael G. List, and Timothy J. Janczewski Turbomachinery Branch Turbine Engine Division AUGUST...Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// ROBERT D. HANCOCK Principal Scientist Turbine ...ORGANIZATION Turbomachinery Branch Turbine Engine Division Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Final Environmental Assessment for Munitions Storage Area at Langley Air Force Base, Virginia
2004-08-01
Existing Conditions LAND USE Land uses on Langley AFB are grouped by function in distinct geographic areas. For example, aircraft operations and...1998a) is used to coordinate natural resource management. Langley’s Urban Forest Inventory Review and Management Plan (Davey Resource Group 1997...following data to develop noise contours: aircraft types, runway utilization patterns, engine power settings, airspeeds, altitude profiles , flight track
Wang, Degao; Tian, Fulin; Yang, Meng; Liu, Chenlin; Li, Yi-Fan
2009-05-01
Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.
Biomimetically Engineered Demi-Bacteria Potentiate Vaccination against Cancer.
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo; Wei, Wei; Ma, Guanghui
2017-10-01
Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi-bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross-presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB-based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism-sourced materials thus presents new opportunities for potent cancer therapy.
Biomimetically Engineered Demi‐Bacteria Potentiate Vaccination against Cancer
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo
2017-01-01
Abstract Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi‐bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross‐presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB‐based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism‐sourced materials thus presents new opportunities for potent cancer therapy. PMID:29051851
Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection.
Ozana, Nisan; Bauer, Reuven; Ashkenazy, Koby; Sasson, Nissim; Schwarz, Ariel; Shemer, Amir; Zalevsky, Zeev
2018-05-03
In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.
From the foundation act to the corporate culture of a BME teaching institute.
Augustyniak, Ewa; Augustyniak, Piotr
2010-01-01
This paper describes the concept and application of the organizational culture of a BME teaching institute, based on the specificity of biomedical engineering. Selected values and behavioral patterns typical for this profession were endorsed to reinforce the mutual cooperation and understanding of students, university staff and employers as partners in the educational process. Besides of building a professional pride and reputation of the teaching institute, the corporate culture is proved to be useful in imposing of the attitudes required in future career of the biomedical engineer as a partner of a medic in his efforts aimed at the wellness and safety of the patient. Five years since the foundation of the Multidisciplinary School of engineering In Biomedicine we still do not have a quantitative measure of the educational outcome quality, nevertheless the presented idea may be very useful and worth sharing with all BME educators.
NASA Technical Reports Server (NTRS)
Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry
1989-01-01
This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.
Porphyrin-based Photocatalytic Nanolithography
Bearinger, Jane P.; Stone, Gary; Dugan, Lawrence C.; El Dasher, Bassem; Stockton, Cheryl; Conway, James W.; Kuenzler, Tobias; Hubbell, Jeffrey A.
2009-01-01
Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background. PMID:19406753
Three-dimensionally patterned energy absorptive material and method of fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, Eric; Frank, James M.; Kuntz, Joshua
A three-dimensionally patterned energy absorptive material and fabrication method having multiple layers of patterned filaments extrusion-formed from a curable pre-cursor material and stacked and cured in a three-dimensionally patterned architecture so that the energy absorptive material produced thereby has an engineered bulk property associated with the three-dimensionally patterned architecture.
Gelatin-based laser direct-write technique for the precise spatial patterning of cells.
Schiele, Nathan R; Chrisey, Douglas B; Corr, David T
2011-03-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
NASA Astrophysics Data System (ADS)
Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.
1984-08-01
This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to acoustic signals. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays. Appendix 1 also contains citations of the scientific literature on which was based the answers to each question. There are nineteen questions and answers, and more than two hundred citations contained in the list of references given in Appendix 2. This is one of two related works, the other of which reviewed the literature in the areas of auditory attention, recognition memory, and auditory perception of patterns, pitch, and loudness.
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Band structure engineering of 2D materials using patterned dielectric superlattices.
Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R
2018-05-07
The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.
Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia
2015-08-01
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Design pattern mining using distributed learning automata and DNA sequence alignment.
Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina
2014-01-01
Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns.
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm.
Bruynseels, Koen; Santoni de Sio, Filippo; van den Hoven, Jeroen
2018-01-01
Personalized medicine uses fine grained information on individual persons, to pinpoint deviations from the normal. 'Digital Twins' in engineering provide a conceptual framework to analyze these emerging data-driven health care practices, as well as their conceptual and ethical implications for therapy, preventative care and human enhancement. Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are paired with digital models that dynamically reflects the status of those artifacts. When applied to persons, Digital Twins are an emerging technology that builds on in silico representations of an individual that dynamically reflect molecular status, physiological status and life style over time. We use Digital Twins as the hypothesis that one would be in the possession of very detailed bio-physical and lifestyle information of a person over time. This perspective redefines the concept of 'normality' or 'health,' as a set of patterns that are regular for a particular individual , against the backdrop of patterns observed in the population. This perspective also will impact what is considered therapy and what is enhancement, as can be illustrated with the cases of the 'asymptomatic ill' and life extension via anti-aging medicine. These changes are the consequence of how meaning is derived, in case measurement data is available. Moral distinctions namely may be based on patterns found in these data and the meanings that are grafted on these patterns. Ethical and societal implications of Digital Twins are explored. Digital Twins imply a data-driven approach to health care. This approach has the potential to deliver significant societal benefits, and can function as a social equalizer, by allowing for effective equalizing enhancement interventions. It can as well though be a driver for inequality, given the fact that a Digital Twin might not be an accessible technology for everyone, and given the fact that patterns identified across a population of Digital Twins can lead to segmentation and discrimination. This duality calls for governance as this emerging technology matures, including measures that ensure transparency of data usage and derived benefits, and data privacy.
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm
Bruynseels, Koen; Santoni de Sio, Filippo; van den Hoven, Jeroen
2018-01-01
Personalized medicine uses fine grained information on individual persons, to pinpoint deviations from the normal. ‘Digital Twins’ in engineering provide a conceptual framework to analyze these emerging data-driven health care practices, as well as their conceptual and ethical implications for therapy, preventative care and human enhancement. Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are paired with digital models that dynamically reflects the status of those artifacts. When applied to persons, Digital Twins are an emerging technology that builds on in silico representations of an individual that dynamically reflect molecular status, physiological status and life style over time. We use Digital Twins as the hypothesis that one would be in the possession of very detailed bio-physical and lifestyle information of a person over time. This perspective redefines the concept of ‘normality’ or ‘health,’ as a set of patterns that are regular for a particular individual, against the backdrop of patterns observed in the population. This perspective also will impact what is considered therapy and what is enhancement, as can be illustrated with the cases of the ‘asymptomatic ill’ and life extension via anti-aging medicine. These changes are the consequence of how meaning is derived, in case measurement data is available. Moral distinctions namely may be based on patterns found in these data and the meanings that are grafted on these patterns. Ethical and societal implications of Digital Twins are explored. Digital Twins imply a data-driven approach to health care. This approach has the potential to deliver significant societal benefits, and can function as a social equalizer, by allowing for effective equalizing enhancement interventions. It can as well though be a driver for inequality, given the fact that a Digital Twin might not be an accessible technology for everyone, and given the fact that patterns identified across a population of Digital Twins can lead to segmentation and discrimination. This duality calls for governance as this emerging technology matures, including measures that ensure transparency of data usage and derived benefits, and data privacy. PMID:29487613
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
Evaluation of Fuel Character Effects on J79 Engine Combustion System
1979-06-01
A. Overall Engine Description The J79 engine is a lightweight, high-thrust, axial - flow turbojet engine with variable afterburner thrust. This engine...thimbles are arranged to provide flow patterns for flame stabilization in the primary zone and mixing and turbine inlet temperature profile control at...measured with stainard )SZ orifices- Fuel flow races uere measured with calibrated turbine flotaMcers corrected for the density aan viscosity of each
Engineered peptide-based nanobiomaterials for electrochemical cell chip.
Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo
2016-01-01
Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.
Creating Educational Opportunities for Engineers with Communication Technologies.
ERIC Educational Resources Information Center
Baldwin, Lionel V.
The large number and known career patterns of engineers make them an important target population for the use of videotechnology in programs of continuing professional education. Currently, universities use videobased instruction with engineering students on and off campus. A variety of signal delivery systems are used to link job sites to…
Science & Engineering Indicators 2016. National Science Board
ERIC Educational Resources Information Center
National Science Foundation, 2016
2016-01-01
"Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…
Engineering Manpower and Education: Foundation for Future Competitiveness.
ERIC Educational Resources Information Center
Business-Higher Education Forum, Washington, DC.
Important issues, approaches, and options pertaining to supply and utilization of engineering manpower in the United States are outlined. An overview is presented of ongoing engineering manpower surveys, projections, and patterns, with particular emphasis on activities and trends of the past 2 years. Attention is also directed to manpower…
Future Directions for Engineering Education: System Response to a Changing World.
ERIC Educational Resources Information Center
Massachusetts Inst. of Tech., Cambridge. Center for Policy Alternatives.
This report consolidates information on the engineering population - numbers, employment patterns, educational levels, personality, technical obsolescence - and probes the implications of current social and employment trends. Included are: data and analyses of the engineering education system seen in the context of the changing world; the…
ERIC Educational Resources Information Center
Dixon, James; Kuldell, Natalie
2012-01-01
Genetic engineering is taught in biology--but as a scientific tool and not as a means to explore engineering design. Yet, given the clever behaviors and patterns that can be found when examining living systems, biology classes seem well positioned to teach foundational engineering design principles (Kuldell 2007). This article examines a new,…
Patterning vascular networks in vivo for tissue engineering applications.
Chaturvedi, Ritika R; Stevens, Kelly R; Solorzano, Ricardo D; Schwartz, Robert E; Eyckmans, Jeroen; Baranski, Jan D; Stapleton, Sarah Chase; Bhatia, Sangeeta N; Chen, Christopher S
2015-05-01
The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined "cords," which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.
The Isothermal Dendritic Growth Experiment
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Koss, M. B.; Malarik, D. C.
1998-01-01
The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.
1962-11-16
The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet. and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. During the SA-3 flight, the upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. The water was released at an altitude of 65 miles, where within only 5 seconds, it expanded into a massive ice cloud 4.6 miles in diameter. Release of this vast quantity of water in a near-space environment marked the first purely scientific large-scale experiment.
1963-03-28
The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.
1963-03-28
The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch.
Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Matthew A; McCormick, Robert L; Baumgardner, Marc E.
Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durabilitymore » issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.« less
Santer, Roger D
2017-03-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed.
2017-01-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed. PMID:28306721
ERIC Educational Resources Information Center
Ponomariov, Branco; Kingsley, Gordon; Boardman, Craig
2011-01-01
This paper compares over a 12-year period (1) patterns of contracting between a state transportation agency and its prime contractors providing engineering design services with (2) patterns between these prime contractors and their subcontractors. We find evidence of different contracting patterns at each level that emerge over time and coexist in…
2011-03-01
functions of the vignette editor include visualizing the state of the UAS team, creating T&E scenarios, monitoring the UAS team performance, and...These behaviors are then executed by the robot sequentially (Figure 2). A state machine mission editor allows mission builders to use behaviors from the...include control, robotics, distributed applications, multimedia applications, databases, design patterns, and software engineering. Mr. Lenzi is the
Faust: Flexible Acquistion and Understanding System for Text
2013-07-01
second version is still underway and it will continue in development as part of the DARPA DEFT program; it is written in Java and Clojure with MySQL and...SUTime, a Java library that recognizes and normalizes temporal expressions using deterministic patterns [101]. UIUC made another such framework... Java -based, large-scale inference engine called Tuffy. It leverages the full power of a relational optimizer in an RDBMS to perform the grounding of MLN
Computer-Aided Sensor Development Focused on Security Issues.
Bialas, Andrzej
2016-05-26
The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.
Computer-Aided Sensor Development Focused on Security Issues
Bialas, Andrzej
2016-01-01
The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research. PMID:27240360
A novel algorithm for validating peptide identification from a shotgun proteomics search engine.
Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J
2013-03-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.
Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices
NASA Technical Reports Server (NTRS)
Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.
2003-01-01
While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.
NASA Technical Reports Server (NTRS)
Lindsey, J. F.
1976-01-01
The isolation between the upper S-band quad antenna and the S-band payload antenna on the shuttle orbiter is calculated using a combination of plane surface and curved surface theories along with worst case values. A minimum value of 60 db isolation is predicted based on recent antenna pattern data, antenna locations on the orbiter, curvature effects, dielectric covering effects and edge effects of the payload bay. The calculated value of 60 db is significantly greater than the baseline value of 40 db. Use of the new value will result in the design of smaller, lighter weight and less expensive filters for S-band transponder and the S-band payload interrogator.
Photo-patterning of porous hydrogels for tissue engineering.
Bryant, Stephanie J; Cuy, Janet L; Hauch, Kip D; Ratner, Buddy D
2007-07-01
Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.
Online Knowledge-Based Model for Big Data Topic Extraction
Khan, Muhammad Taimoor; Durrani, Mehr; Khalid, Shehzad; Aziz, Furqan
2016-01-01
Lifelong machine learning (LML) models learn with experience maintaining a knowledge-base, without user intervention. Unlike traditional single-domain models they can easily scale up to explore big data. The existing LML models have high data dependency, consume more resources, and do not support streaming data. This paper proposes online LML model (OAMC) to support streaming data with reduced data dependency. With engineering the knowledge-base and introducing new knowledge features the learning pattern of the model is improved for data arriving in pieces. OAMC improves accuracy as topic coherence by 7% for streaming data while reducing the processing cost to half. PMID:27195004
Discovering English with the Sketch Engine
ERIC Educational Resources Information Center
Thomas, James
2014-01-01
"Discovering English with the Sketch Engine" is the title of a new book (Thomas, 2014) which introduces the use of corpora in language study, teaching, writing and translating. It focuses on using the Sketch Engine to identify patterns of normal usage in many aspects of English ranging from morphology to discourse and pragmatics. This…
Localized conductive patterning via focused electron beam reduction of graphene oxide
NASA Astrophysics Data System (ADS)
Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.
2015-03-01
We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.
A thesaurus for a neural population code
Ganmor, Elad; Segev, Ronen; Schneidman, Elad
2015-01-01
Information is carried in the brain by the joint spiking patterns of large groups of noisy, unreliable neurons. This noise limits the capacity of the neural code and determines how information can be transmitted and read-out. To accurately decode, the brain must overcome this noise and identify which patterns are semantically similar. We use models of network encoding noise to learn a thesaurus for populations of neurons in the vertebrate retina responding to artificial and natural videos, measuring the similarity between population responses to visual stimuli based on the information they carry. This thesaurus reveals that the code is organized in clusters of synonymous activity patterns that are similar in meaning but may differ considerably in their structure. This organization is highly reminiscent of the design of engineered codes. We suggest that the brain may use this structure and show how it allows accurate decoding of novel stimuli from novel spiking patterns. DOI: http://dx.doi.org/10.7554/eLife.06134.001 PMID:26347983
Real-time particulate mass measurement based on laser scattering
NASA Astrophysics Data System (ADS)
Rentz, Julia H.; Mansur, David; Vaillancourt, Robert; Schundler, Elizabeth; Evans, Thomas
2005-11-01
OPTRA has developed a new approach to the determination of particulate size distribution from a measured, composite, laser angular scatter pattern. Drawing from the field of infrared spectroscopy, OPTRA has employed a multicomponent analysis technique which uniquely recognizes patterns associated with each particle size "bin" over a broad range of sizes. The technique is particularly appropriate for overlapping patterns where large signals are potentially obscuring weak ones. OPTRA has also investigated a method for accurately training the algorithms without the use of representative particles for any given application. This streamlined calibration applies a one-time measured "instrument function" to theoretical Mie patterns to create the training data for the algorithms. OPTRA has demonstrated this algorithmic technique on a compact, rugged, laser scatter sensor head we developed for gas turbine engine emissions measurements. The sensor contains a miniature violet solid state laser and an array of silicon photodiodes, both of which are commercial off the shelf. The algorithmic technique can also be used with any commercially available laser scatter system.
Chang, Wei-Yi; Huang, Wenbin; Bagal, Abhijeet; Chang, Chih-Hao; Tian, Jian; Han, Pengdi; Jiang, Xiaoning
2013-01-01
Effect of nano-patterned composite electrode and backswitching poling technique on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 was studied in this paper. Composite electrode consists of Mn nano-patterns with pitch size of 200 nm, and a blanket layer of Ti/Au was fabricated using a nanolithography based lift-off process, heat treatment, and metal film sputtering. Composite electrode and backswitching poling resulted in 27% increase of d33 and 25% increase of dielectric constant, and we believe that this is attributed to regularly defined nano-domains and irreversible rhombohedral to monoclinic phase transition in crystal. The results indicate that nano-patterned composite electrode and backswitching poling has a great potential in domain engineering of relaxor single crystals for advanced devices. PMID:24170960
Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy
NASA Astrophysics Data System (ADS)
Zhu, Na; Chang, Houchen; Franson, Andrew; Liu, Tao; Zhang, Xufeng; Johnston-Halperin, E.; Wu, Mingzhong; Tang, Hong X.
2017-06-01
We demonstrate patterned growth of epitaxial yttrium iron garnet (YIG) thin films using lithographically defined templates on gadolinium gallium garnet substrates. The fabricated YIG nanostructures yield the desired crystallographic orientation, excellent surface morphology, and narrow ferromagnetic resonance (FMR) linewidth (˜4 Oe). Shape-induced magnetic anisotropy is clearly observed in a patterned array of nanobars engineered to exhibit the larger coercivity (40 Oe) compared with that of continuous films. Both hysteresis loop and angle-dependent FMR spectra measurements indicate that the easy axis aligns along the longitudinal direction of the nanobars, with an effective anisotropy field of 195 Oe. Our work overcomes difficulties in patterning YIG thin films and provides an effective means to control their magnetic properties and magnetic bias conditions.
Silk protein nanowires patterned using electron beam lithography.
Pal, Ramendra K; Yadavalli, Vamsi K
2018-08-17
Nanofabrication approaches to pattern proteins at the nanoscale are useful in applications ranging from organic bioelectronics to cellular engineering. Specifically, functional materials based on natural polymers offer sustainable and environment-friendly substitutes to synthetic polymers. Silk proteins (fibroin and sericin) have emerged as an important class of biomaterials for next generation applications owing to excellent optical and mechanical properties, inherent biocompatibility, and biodegradability. However, the ability to precisely control their spatial positioning at the nanoscale via high throughput tools continues to remain a challenge. In this study electron beam lithography (EBL) is used to provide nanoscale patterning using methacrylate conjugated silk proteins that are photoreactive 'photoresists' materials. Very low energy electron beam radiation can be used to pattern silk proteins at the nanoscale and over large areas, whereby such nanostructure fabrication can be performed without specialized EBL tools. Significantly, using conducting polymers in conjunction with these silk proteins, the formation of protein nanowires down to 100 nm is shown. These wires can be easily degraded using enzymatic degradation. Thus, proteins can be precisely and scalably patterned and doped with conducting polymers and enzymes to form degradable, organic bioelectronic devices.
Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.
Kang, Hongki; Lee, Gu-Haeng; Jung, Hyunjun; Lee, Jee Woong; Nam, Yoonkey
2018-02-27
Localized heat generation by the thermo-plasmonic effect of metal nanoparticles has great potential in biomedical engineering research. Precise patterning of the nanoparticles using inkjet printing can enable the application of the thermo-plasmonic effect in a well-controlled way (shape and intensity). However, a universally applicable inkjet printing process that allows good control in patterning and assembly of nanoparticles with good biocompatibility is missing. Here we developed inkjet-printing-based biofunctional thermo-plasmonic interfaces that can modulate biological activities. We found that inkjet printing of plasmonic nanoparticles on a polyelectrolyte layer-by-layer substrate coating enables high-quality, biocompatible thermo-plasmonic interfaces across various substrates (rigid/flexible, hydrophobic/hydrophilic) by induced contact line pinning and electrostatically assisted nanoparticle assembly. We experimentally confirmed that the generated heat from the inkjet-printed thermo-plasmonic patterns can be applied in micrometer resolution over a large area. Lastly, we demonstrated that the patterned thermo-plasmonic effect from the inkjet-printed gold nanorods can selectively modulate neuronal network activities. This inkjet printing process therefore can be a universal method for biofunctional thermo-plasmonic interfaces in various bioengineering applications.
Embedded expert system for space shuttle main engine maintenance
NASA Technical Reports Server (NTRS)
Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.
1987-01-01
The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).
Utilization of a radiology-centric search engine.
Sharpe, Richard E; Sharpe, Megan; Siegel, Eliot; Siddiqui, Khan
2010-04-01
Internet-based search engines have become a significant component of medical practice. Physicians increasingly rely on information available from search engines as a means to improve patient care, provide better education, and enhance research. Specialized search engines have emerged to more efficiently meet the needs of physicians. Details about the ways in which radiologists utilize search engines have not been documented. The authors categorized every 25th search query in a radiology-centric vertical search engine by radiologic subspecialty, imaging modality, geographic location of access, time of day, use of abbreviations, misspellings, and search language. Musculoskeletal and neurologic imagings were the most frequently searched subspecialties. The least frequently searched were breast imaging, pediatric imaging, and nuclear medicine. Magnetic resonance imaging and computed tomography were the most frequently searched modalities. A majority of searches were initiated in North America, but all continents were represented. Searches occurred 24 h/day in converted local times, with a majority occurring during the normal business day. Misspellings and abbreviations were common. Almost all searches were performed in English. Search engine utilization trends are likely to mirror trends in diagnostic imaging in the region from which searches originate. Internet searching appears to function as a real-time clinical decision-making tool, a research tool, and an educational resource. A more thorough understanding of search utilization patterns can be obtained by analyzing phrases as actually entered as well as the geographic location and time of origination. This knowledge may contribute to the development of more efficient and personalized search engines.
Engineered cell-cell communication via DNA messaging
2012-01-01
Background Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically “regulate transcription.” Results We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis. Conclusions We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia. PMID:22958599
NASA Technical Reports Server (NTRS)
Streeter, Barry G.
1986-01-01
A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.
Introducing the VRT gas turbine combustor
NASA Technical Reports Server (NTRS)
Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee
1990-01-01
An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.
Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak
2013-01-08
Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.
Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics
NASA Astrophysics Data System (ADS)
Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.
1998-03-01
Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.
Principles of engineering design
Penny, R. K.
1970-01-01
The paper sets out procedures used in engineering design by listing the various steps in a sequential pattern. This pattern is not universally applicable and the variants on it depend on the type of problem involved and the information available. Of critical importance is the way in which models—physical or mathematical—can be constructed and depending on these, three design methods are described. These types are illustrated by reference to a number of medical aids which have been designed. ImagesFig. 3 PMID:5476130
Hetrick, Robert Eugene; Hilbert, Harold Sean; Parsons, Michael Howard; Stockhausen, William Francis
1997-10-07
A fuel injection system used in the intake air passageway of an internal combustion engine has a strategy for reducing cold start hydrocarbon emissions. The fuel injector has an actuator which allows the fuel spray pattern to be varied from one which is widely dispersed and atomized to one which is only weakly dispersed. A strategy for varying the spray pattern during the engine warm-up period after cold start is disclosed. The strategy increases evaporation within the passageway so that cold start overfuelling and attendant hydrocarbon emissions are reduced.
NASA Astrophysics Data System (ADS)
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
Anomalous refraction of light through slanted-nanoaperture arrays on metal surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Myungji; Jung, Yun Suk; Xi, Yonggang
2015-09-07
We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmissionmore » and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics.« less
Microstencils to generate defined, multi-species patterns of bacteria
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.; ...
2015-11-12
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.
2015-01-01
Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842
Microstencils to generate defined, multi-species patterns of bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
Developing a multimodal biometric authentication system using soft computing methods.
Malcangi, Mario
2015-01-01
Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.
Sensenig, Richard; Sapir, Yulia; MacDonald, Cristin; Cohen, Smadar; Polyak, Boris
2012-09-01
Magnetic-based systems utilizing superparamagnetic nanoparticles and a magnetic field gradient to exert a force on these particles have been used in a wide range of biomedical applications. This review is focused on drug targeting applications that require penetration of a cellular barrier as well as strategies to improve the efficacy of targeting in these biomedical applications. Another focus of this review is regenerative applications utilizing tissue engineered scaffolds prepared with the aid of magnetic particles, the use of remote actuation for release of bioactive molecules and magneto-mechanical cell stimulation, cell seeding and cell patterning.
NASA Astrophysics Data System (ADS)
Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff
2017-03-01
We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.
2017-03-01
It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that
Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering
Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.
2010-01-01
Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909
Semantic similarity measures in the biomedical domain by leveraging a web search engine.
Hsieh, Sheau-Ling; Chang, Wen-Yung; Chen, Chi-Huang; Weng, Yung-Ching
2013-07-01
Various researches in web related semantic similarity measures have been deployed. However, measuring semantic similarity between two terms remains a challenging task. The traditional ontology-based methodologies have a limitation that both concepts must be resided in the same ontology tree(s). Unfortunately, in practice, the assumption is not always applicable. On the other hand, if the corpus is sufficiently adequate, the corpus-based methodologies can overcome the limitation. Now, the web is a continuous and enormous growth corpus. Therefore, a method of estimating semantic similarity is proposed via exploiting the page counts of two biomedical concepts returned by Google AJAX web search engine. The features are extracted as the co-occurrence patterns of two given terms P and Q, by querying P, Q, as well as P AND Q, and the web search hit counts of the defined lexico-syntactic patterns. These similarity scores of different patterns are evaluated, by adapting support vector machines for classification, to leverage the robustness of semantic similarity measures. Experimental results validating against two datasets: dataset 1 provided by A. Hliaoutakis; dataset 2 provided by T. Pedersen, are presented and discussed. In dataset 1, the proposed approach achieves the best correlation coefficient (0.802) under SNOMED-CT. In dataset 2, the proposed method obtains the best correlation coefficient (SNOMED-CT: 0.705; MeSH: 0.723) with physician scores comparing with measures of other methods. However, the correlation coefficients (SNOMED-CT: 0.496; MeSH: 0.539) with coder scores received opposite outcomes. In conclusion, the semantic similarity findings of the proposed method are close to those of physicians' ratings. Furthermore, the study provides a cornerstone investigation for extracting fully relevant information from digitizing, free-text medical records in the National Taiwan University Hospital database.
ERIC Educational Resources Information Center
Welch, Karla Conn; Hieb, Jeffrey; Graham, James
2015-01-01
Coursework that instills patterns of rigorous logical thought has long been a hallmark of the engineering curriculum. However, today's engineering students are expected to exhibit a wider range of thinking capabilities both to satisfy ABET requirements and to prepare the students to become successful practitioners. This paper presents the initial…
Science and Engineering Personnel: A National Overview. Surveys of Science Resources Series.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
This is the third in a biennial series of reports designed to furnish a comprehensive overview of the status of United States scientific and technological efforts as they relate to the employment and other characteristics of science and engineering (S/E) personnel. Chapter I discusses the utilization patterns of scientists and engineers, examining…
Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang
2015-04-29
The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the mechanical properties and bioactivities of the scaffolds, might have great potential in vascular tissue engineering application.
Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells
Schiele, Nathan R.; Chrisey, Douglas B.
2011-01-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381
Engineering fluidic delays in paper-based devices using laser direct-writing.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2015-10-21
We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.
Hormone Purification by Isoelectric Focusing
NASA Technical Reports Server (NTRS)
Bier, M.
1985-01-01
Various ground-based research approaches are being applied to a more definitive evaluation of the natures and degrees of electroosmosis effects on the separation capabilities of the Isoelectric Focusing (IEF) process. A primary instrumental system for this work involves rotationally stabilized, horizontal electrophoretic columns specially adapted for the IEF process. Representative adaptations include segmentation, baffles/screens, and surface coatings. Comparative performance and development testing are pursued against the type of column or cell established as an engineering model. Previously developed computer simulation capabilities are used to predict low-gravity behavior patterns and performance for IEF apparatus geometries of direct project interest. Three existing mathematical models plus potential new routines for particular aspects of simulating instrument fluid patterns with varied wall electroosmosis influences are being exercised.
NASA Astrophysics Data System (ADS)
Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael
2014-11-01
Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.
Topographical Control of Ocular Cell Types for Tissue Engineering
McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.
2014-01-01
Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-01-01
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386
Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom
2016-06-14
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Heher, Philipp; Maleiner, Babette; Prüller, Johanna; Teuschl, Andreas Herbert; Kollmitzer, Josef; Monforte, Xavier; Wolbank, Susanne; Redl, Heinz; Rünzler, Dominik; Fuchs, Christiane
2015-09-01
The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Event identification by acoustic signature recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dress, W.B.; Kercel, S.W.
1995-07-01
Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and futuremore » applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.« less
Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
Schmieden, Dominik T; Basalo Vázquez, Samantha J; Sangüesa, Héctor; van der Does, Marit; Idema, Timon; Meyer, Anne S
2018-05-18
Biofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized, reproducible, and patterned biofilm-inspired materials could be a boon for biofilm research and allow for completely new engineering applications. Here, we present such a method, combining 3D printing with genetic engineering. We prototyped a low-cost 3D printer that prints bioink, a suspension of bacteria in a solution of alginate that solidifies on a calcium-containing substrate. We 3D-printed Escherichia coli in different shapes and in discrete layers, after which the cells survived in the printing matrix for at least 1 week. When printed bacteria were induced to form curli fibers, the major proteinaceous extracellular component of E. coli biofilms, they remained adherent to the printing substrate and stably spatially patterned even after treatment with a matrix-dissolving agent, indicating that a biofilm-mimicking structure had formed. This work is the first demonstration of patterned, biofilm-inspired living materials that are produced by genetic control over curli formation in combination with spatial control by 3D printing. These materials could be used as living, functional materials in applications such as water filtration, metal ion sequestration, or civil engineering, and potentially as standardizable models for certain curli-containing biofilms.
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Pattern formation in Dictyostelium discoideum aggregates in confined microenvironments
NASA Astrophysics Data System (ADS)
Hallou, Adrien; Hersen, Pascal; di Meglio, Jean-Marc; Kabla, Alexandre
Dictyostelium Discoideum (Dd) is often viewed as a model system to study the complex collective cell behaviours which shape an embryo. Under starvation, Dd cells form multicellular aggregates which soon elongate, starting to display an anterior-posterior axis by differentiating into two distinct cell populations; prestalk (front) and prespore (rear) cells zones. Different models, either based on positional information or on differentiation followed up by cell sorting, have been proposed to explain the origin and the regulation of this spatial pattern.To decipher between the proposed hypotheses, we have developed am experimental platform where aggregates, made of genetically engineered Dd cells to express fluorescent reporters of cell differentiation in either prestalk or prespore cells, are allowed to develop in 20 to 400 μm wide hydrogel channels. Such a setup allows us to both mimic Dd confined natural soil environment and to follow the patterning dynamics using time-lapse microscopy. Tracking cell lineage commitments and positions in space and time, we demonstrate that Dd cells differentiate first into prestalk and prespore cells prior to sorting into an organized spatial pattern on the basis of collective motions based on differential motility and adhesion mechanisms. A. Hallou would like to thank the University of Cambridge for the Award of an ``Oliver Gatty Studentship in Biophysical and Colloid Science''.
Patterning methods for polymers in cell and tissue engineering.
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2012-06-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.
Improve Data Mining and Knowledge Discovery Through the Use of MatLab
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.
Improve Data Mining and Knowledge Discovery through the use of MatLab
NASA Technical Reports Server (NTRS)
Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert
2011-01-01
Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet
1994-01-01
This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.
Mapping the landscape of climate engineering
Oldham, P.; Szerszynski, B.; Stilgoe, J.; Brown, C.; Eacott, B.; Yuille, A.
2014-01-01
In the absence of a governance framework for climate engineering technologies such as solar radiation management (SRM), the practices of scientific research and intellectual property acquisition can de facto shape the development of the field. It is therefore important to make visible emerging patterns of research and patenting, which we suggest can effectively be done using bibliometric methods. We explore the challenges in defining the boundary of climate engineering, and set out the research strategy taken in this study. A dataset of 825 scientific publications on climate engineering between 1971 and 2013 was identified, including 193 on SRM; these are analysed in terms of trends, institutions, authors and funders. For our patent dataset, we identified 143 first filings directly or indirectly related to climate engineering technologies—of which 28 were related to SRM technologies—linked to 910 family members. We analyse the main patterns discerned in patent trends, applicants and inventors. We compare our own findings with those of an earlier bibliometric study of climate engineering, and show how our method is consistent with the need for transparency and repeatability, and the need to adjust the method as the field develops. We conclude that bibliometric monitoring techniques can play an important role in the anticipatory governance of climate engineering. PMID:25404683
A smart way to identify and extract repeated patterns of a layout
NASA Astrophysics Data System (ADS)
Wei, Fang; Gu, Tingting; Chu, Zhihao; Zhang, Chenming; Chen, Han; Zhu, Jun; Hu, Xinyi; Du, Chunshan; Wan, Qijian; Liu, Zhengfang
2018-03-01
As integrated circuits (IC) technology moves forward, manufacturing process is facing more and more challenges. Optical proximity correction (OPC) has been playing an important role in the whole manufacturing process. In the deep sub-micron technology, OPC engineers not only need to guarantee the layout designs to be manufacturable but also take a more precise control of the critical patterns to ensure a high performance circuit. One of the tasks that would like to be performed is the consistency checking as the identical patterns under identical context should have identical OPC results in theory, like SRAM regions. Consistency checking is essentially a technique of repeated patterns identification, extraction and derived patterns (i.e. OPC results) comparison. The layout passing to the OPC team may not have enough design hierarchical information either because the original designs may have undergone several layout processing steps or some other unknown reasons. This paper presents a generic way to identify and extract repeated layout structures in SRAM regions purely based on layout pattern analysis through Calibre Pattern Matching and Calibre equation-based DRC (eqDRC). Without Pattern Matching and eqDRC, it will take lots of effort to manually get it done by trial and error, it is almost impossible to automate the pattern analysis process. Combining Pattern Matching and eqDRC opens a new way to implement this flow. The repeated patterns must have some fundamental features for measurement of pitches in the horizontal and vertical direction separately by Calibre eqDRC and meanwhile can be a helper to generate some anchor points which will be the starting points for Pattern Matching to capture patterns. The informative statistical report from the pattern search tells the match counts individually for each patterns captured. Experiment shows that this is a smart way of identifying and extracting repeated structures effectively. The OPC results are the derived layers on these repeated structures, by running pattern search using design layers as pattern layers and OPC results as marker layers, it is an easy job to compare the consistency.
Spatial Control of Bacteria Using Screen Printing
Moon, Soonhee; Fritz, Ian L.; Singer, Zakary S.
2016-01-01
Abstract Synthetic biology has led to advances in both our understanding and engineering of genetic circuits that affect spatial and temporal behaviors in living cells. A growing array of native and synthetic circuits such as oscillators, pattern generators, and cell–cell communication systems has been studied, which exhibit spatiotemporal properties. To better understand the design principles of these genetic circuits, there is a need for versatile and precise methods for patterning cell populations in various configurations. In this study, we develop a screen printing methodology to pattern bacteria on agar, glass, and paper surfaces. Initially, we tested three biocompatible resuspension media with appropriate rheological properties for screen printing. Using microscopy, we characterized the resolution and bleed of bacteria screen prints on agar and glass surfaces, obtaining resolutions as low as 188 μm. Next, we engineered bacterial strains producing visible chromoproteins analogous to the cyan, magenta, and yellow subtractive color system for the creation of multicolored bacteria images. Using this system, we printed distinct populations in overlapping or interlocking designs on both paper and agar substrates. These proof-of-principle experiments demonstrated how the screen printing method could be used to study microbial community interactions and pattern formation of biofilms at submillimeter length scales. Overall, our approach allows for rapid and precise prototyping of patterned bacteria species that will be useful in the understanding and engineering of spatiotemporal behaviors in microbial communities. PMID:29577061
ERIC Educational Resources Information Center
Kelly, Madeline
2015-01-01
This study takes a multidimensional approach to citation analysis, examining citations in multiple subfields of engineering, from both scholarly journals and doctoral dissertations. The three major goals of the study are to determine whether there are differences between citations drawn from dissertations and those drawn from journal articles; to…
ERIC Educational Resources Information Center
Gambino, Christine; Gryn, Thomas
2011-01-01
This brief will discuss patterns of science and engineering educational attainment within the foreign-born population living in the United States, using data from the 2010 American Community Survey (ACS). The analysis is restricted to the population aged 25 and older, and the results are presented on science and engineering degree attainment by…
ERIC Educational Resources Information Center
Eckel, Edward J.
2009-01-01
Can one glimpse the development of emerging scholars in the work of engineering graduate students? To answer this question, the author studied the citation patterns in 96 Master's theses and 24 Ph.D. dissertations completed at Western Michigan University's College of Engineering and Applied Sciences between 2002 and 2006. The hypothesis of this…
Resonator coiling in thermoacoustic engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.R.; Swift, G.W.
1995-11-01
Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.
A study experiment of auto idle application in the excavator engine performance
NASA Astrophysics Data System (ADS)
Purwanto, Wawan; Maksum, Hasan; Putra, Dwi Sudarno; Azmi, Meri; Wahyudi, Retno
2016-03-01
The purpose of this study was to analyze the effect of applying auto idle to excavator engine performance, such as machine unitization and fuel consumption in Excavator. Steps to be done are to modify the system JA 44 and 67 in Vehicle Electronic Control Unit (V-ECU). The modifications will be obtained from the pattern of the engine speed. If the excavator attachment is not operated, the engine speed will return to the idle speed automatically. From the experiment results the auto idle reduces fuel consumption in excavator engine.
A study experiment of auto idle application in the excavator engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Wawan, E-mail: wawan5527@gmail.com; Maksum, Hasan; Putra, Dwi Sudarno, E-mail: dwisudarnoputra@ft.unp.ac.id
2016-03-29
The purpose of this study was to analyze the effect of applying auto idle to excavator engine performance, such as machine unitization and fuel consumption in Excavator. Steps to be done are to modify the system JA 44 and 67 in Vehicle Electronic Control Unit (V-ECU). The modifications will be obtained from the pattern of the engine speed. If the excavator attachment is not operated, the engine speed will return to the idle speed automatically. From the experiment results the auto idle reduces fuel consumption in excavator engine.
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
2013-02-01
2 : REBUILDING THE TOWER OF BABEL – BETTER COMMUNICATION WITH STANDARDS – MATTHEW HAUSE ...................... 99 UNCLASSIFIED UNCLASSIFIED...Communications with Standards Matthew Hause, Object Management Group 9:30 A Proposed Pattern of Enterprise Architecture Dr Clive Boughton 10:00...complete a project at lower cost inevitably results in longer schedules or reduced capability/lower quality. As the standard saying goes today, “faster
2012-11-01
2 : REBUILDING THE TOWER OF BABEL – BETTER COMMUNICATION WITH STANDARDS – MATTHEW HAUSE ...................... 99 UNCLASSIFIED UNCLASSIFIED...Communications with Standards Matthew Hause, Object Management Group 9:30 A Proposed Pattern of Enterprise Architecture Dr Clive Boughton 10:00...complete a project at lower cost inevitably results in longer schedules or reduced capability/lower quality. As the standard saying goes today, “faster
Interactive design of generic chemical patterns.
Schomburg, Karen T; Wetzer, Lars; Rarey, Matthias
2013-07-01
Every medicinal chemist has to create chemical patterns occasionally for querying databases, applying filters or describing functional groups. However, the representations of chemical patterns have been so far limited to languages with highly complex syntax, handicapping the application of patterns. Graphic pattern editors similar to chemical editors can facilitate the work with patterns. In this article, we review the interfaces of frequently used web search engines for chemical patterns. We take a look at pattern editing concepts of standalone chemical editors and finally present a completely new, unpublished graphical approach to pattern design, the SMARTSeditor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Information extraction for enhanced access to disease outbreak reports.
Grishman, Ralph; Huttunen, Silja; Yangarber, Roman
2002-08-01
Document search is generally based on individual terms in the document. However, for collections within limited domains it is possible to provide more powerful access tools. This paper describes a system designed for collections of reports of infectious disease outbreaks. The system, Proteus-BIO, automatically creates a table of outbreaks, with each table entry linked to the document describing that outbreak; this makes it possible to use database operations such as selection and sorting to find relevant documents. Proteus-BIO consists of a Web crawler which gathers relevant documents; an information extraction engine which converts the individual outbreak events to a tabular database; and a database browser which provides access to the events and, through them, to the documents. The information extraction engine uses sets of patterns and word classes to extract the information about each event. Preparing these patterns and word classes has been a time-consuming manual operation in the past, but automated discovery tools now make this task significantly easier. A small study comparing the effectiveness of the tabular index with conventional Web search tools demonstrated that users can find substantially more documents in a given time period with Proteus-BIO.
B-1 AFT Nacelle Flow Visualization Study
NASA Technical Reports Server (NTRS)
Celniker, Robert
1975-01-01
A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.
Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment
Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina
2014-01-01
Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670
Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters
NASA Astrophysics Data System (ADS)
Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.
2016-04-01
Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1997-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Cooperativity to increase Turing pattern space for synthetic biology.
Diambra, Luis; Senthivel, Vivek Raj; Menendez, Diego Barcena; Isalan, Mark
2015-02-20
It is hard to bridge the gap between mathematical formulations and biological implementations of Turing patterns, yet this is necessary for both understanding and engineering these networks with synthetic biology approaches. Here, we model a reaction-diffusion system with two morphogens in a monostable regime, inspired by components that we recently described in a synthetic biology study in mammalian cells.1 The model employs a single promoter to express both the activator and inhibitor genes and produces Turing patterns over large regions of parameter space, using biologically interpretable Hill function reactions. We applied a stability analysis and identified rules for choosing biologically tunable parameter relationships to increase the likelihood of successful patterning. We show how to control Turing pattern sizes and time evolution by manipulating the values for production and degradation relationships. More importantly, our analysis predicts that steep dose-response functions arising from cooperativity are mandatory for Turing patterns. Greater steepness increases parameter space and even reduces the requirement for differential diffusion between activator and inhibitor. These results demonstrate some of the limitations of linear scenarios for reaction-diffusion systems and will help to guide projects to engineer synthetic Turing patterns.
NASA Astrophysics Data System (ADS)
Lutich, Andrey
2017-07-01
This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.
Carbon Nanotube Devices Engineered by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Prisbrey, Landon
This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their sensitivity to electric fields with very small detection volumes. In this work we demonstrate these devices as single-molecule sensors to detect individual N-(3-Dimethylaminopropyl)- N'-ethylcarbodiimide (EDC) molecules in an aqueous environment. An exciting application of these sensors is to study individual macromolecules participating in biological reactions, or undergoing conformational change. However, it is unknown whether the associated electrostatic signals exceed detection limits. We report calculations which reveal that enzymatic processes, such as substrate binding and internal protein dynamics, are detectable at the single-molecule level using existing atomic-sized transistors. Finally, we demonstrate the use of AFM-based engineering to control the function of nanoelectronic devices without creating a point defect in the sidewall of the nanotube. With a biased AFM probe we write charge patterns on a silicon dioxide surface in close proximity to a carbon nanotube device. The written charge induces image charges in the nearby electronics, and can modulate the Fermi level in a nanotube by +/-1 eV. We use this technique to induce a spatially controlled doping charge pattern in the conduction channel, and thereby reconfigure a field-effect transistor into a pn junction. Other simple charge patterns could be used to create other devices. The doping charge persists for days and can be erased and rewritten, offering a new tool for prototyping nanodevices and optimizing electrostatic doping profiles.
Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector
NASA Astrophysics Data System (ADS)
Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.
2016-04-01
A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.
Tilt engineering of exchange coupling at G-type SrMnO3/(La,Sr)MnO3 interfaces
NASA Astrophysics Data System (ADS)
Li, F.; Song, C.; Wang, Y. Y.; Cui, B.; Mao, H. J.; Peng, J. J.; Li, S. N.; Wang, G. Y.; Pan, F.
2015-11-01
With the recent realization of hybrid improper ferroelectricity and room-temperature multiferroic by tilt engineering, “functional” octahedral tilting has become a novel concept in multifunctional perovskite oxides, showing great potential for property manipulation and device design. However, the control of magnetism by octahedral tilting has remained a challenging issue. Here a qualitative and quantitative tilt engineering of exchange coupling, one of the magnetic properties, is demonstrated at compensated G-type antiferromagnetic/ferromagnetic (SrMnO3/La2/3Sr1/3MnO3) interfaces. According to interfacial Hamiltonian, exchange bias (EB) in this system originates from an in-plane antiphase rotation (a-) in G-type antiferromagnetic layer. Based on first-principles calculation, tilt patterns in SrMnO3 are artificially designed in experiment with different epitaxial strain and a much stronger EB is attained in the tensile heterostructure than the compressive counterpart. By controlling the magnitude of octahedral tilting, the manipulation of exchange coupling is even performed in a quantitative manner, as expected in the theoretical estimation. This work realized the combination of tilt engineering and exchange coupling, which might be significant for the development of multifunctional materials and antiferromagnetic spintronics.
Women's Reasons for Leaving the Engineering Field.
Fouad, Nadya A; Chang, Wen-Hsin; Wan, Min; Singh, Romila
2017-01-01
Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. Specifically, we analyze the reasons for departure given by national sample of 1,464 women engineers who left the profession after having worked in the engineering field. We applied a person-environment fit theoretical lens, in particular, the Theory of Work Adjustment (TWA) (Dawis and Lofquist, 1984) to understand and categorize the reasons for leaving the engineering field. According to the TWA, occupations have different "reinforcer patterns," reflected in six occupational values, and a mismatch between the reinforcers provided by the work environment and individuals' needs may trigger departure from the environment. Given the paucity of literature in this area, we posed research questions to explore the reinforcer pattern of values implicated in women's decisions to leave the engineering field. We used qualitative analyses to understand, categorize, and code the 1,863 statements that offered a glimpse into the myriad reasons that women offered in describing their decisions to leave the engineering profession. Our results revealed the top three sets of reasons underlying women's decision to leave the jobs and engineering field were related to: first, poor and/or inequitable compensation, poor working conditions, inflexible and demanding work environment that made work-family balance difficult; second, unmet achievement needs that reflected a dissatisfaction with effective utilization of their math and science skills, and third, unmet needs with regard to lack of recognition at work and adequate opportunities for advancement. Implications of these results for future research as well as the design of effective intervention programs aimed at women engineers' retention and engagement in engineering are discussed.
NASA Astrophysics Data System (ADS)
Doursat, René
Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.
Patterning Methods for Polymers in Cell and Tissue Engineering
Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang
2017-01-01
Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment. PMID:22258887
A strip chart recorder pattern recognition tool kit for Shuttle operations
NASA Technical Reports Server (NTRS)
Hammen, David G.; Moebes, Travis A.; Shelton, Robert O.; Savely, Robert T.
1993-01-01
During Space Shuttle operations, Mission Control personnel monitor numerous mission-critical systems such as electrical power; guidance, navigation, and control; and propulsion by means of paper strip chart recorders. For example, electrical power controllers monitor strip chart recorder pen traces to identify onboard electrical equipment activations and deactivations. Recent developments in pattern recognition technologies coupled with new capabilities that distribute real-time Shuttle telemetry data to engineering workstations make it possible to develop computer applications that perform some of the low-level monitoring now performed by controllers. The number of opportunities for such applications suggests a need to build a pattern recognition tool kit to reduce software development effort through software reuse. We are building pattern recognition applications while keeping such a tool kit in mind. We demonstrated the initial prototype application, which identifies electrical equipment activations, during three recent Shuttle flights. This prototype was developed to test the viability of the basic system architecture, to evaluate the performance of several pattern recognition techniques including those based on cross-correlation, neural networks, and statistical methods, to understand the interplay between an advanced automation application and human controllers to enhance utility, and to identify capabilities needed in a more general-purpose tool kit.
Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel.
Iwami, K; Noda, T; Ishida, K; Morishima, K; Nakamura, M; Umeda, N
2010-03-01
This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +/- 15 microm by employing a nozzle of diameter 100 microm, and that of aspirated groove was 355 +/- 10 microm using a 500 microm-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.
Virus-based surface patterning of biological molecules, probes, and inorganic materials.
Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn
2014-10-01
An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Sensenig, Richard; Sapir, Yulia; MacDonald, Cristin; Cohen, Smadar; Polyak, Boris
2013-01-01
Magnetic-based systems utilizing superparamagnetic nanoparticles and a magnetic field gradient to exert a force on these particles have been used in a wide range of biomedical applications. This review is focused on drug targeting applications that require penetration of a cellular barrier as well as strategies to improve the efficacy of targeting in these biomedical applications. Another focus of this review is regenerative applications utilizing tissue engineered scaffolds prepared with the aid of magnetic particles, the use of remote actuation for release of bioactive molecules and magneto–mechanical cell stimulation, cell seeding and cell patterning. PMID:22994959
Knowledge-Based Environmental Context Modeling
NASA Astrophysics Data System (ADS)
Pukite, P. R.; Challou, D. J.
2017-12-01
As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient use of our renewable natural resources. [1] C2M2L (Component, Context, and Manufacturing Model Library) Final Report, https://doi.org/10.13140/RG.2.1.4956.3604
Fabrication of 3D surface structures using grayscale lithography
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.
2014-03-01
The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang
2013-12-07
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies
Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.
2013-01-01
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509
NASA Astrophysics Data System (ADS)
Ravi, M. U.; Reddy, C. P.; Ravindranath, K.
2013-04-01
In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
NASA Astrophysics Data System (ADS)
Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung
2016-02-01
Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.
Kaji, Hirokazu; Sekine, Soichiro; Hashimoto, Masahiko; Kawashima, Takeaki; Nishizawa, Matsuhiko
2007-01-01
We report a method for producing patterned cell adhesion inside silicone tubing. A platinum needle microelectrode was inserted through the wall of the tubing and an oxidizing agent electrochemically generated at the inserted electrode. This agent caused local detachment of the anti-biofouling heparin layer from the inner surface of the tubing. The cell-adhesive protein fibronectin selectively adsorbed onto the newly exposed surface, making it possible to initiate a localized cell culture. The electrode could be readily set in place without breaking the tubular structure and, importantly, almost no culture solution leaked from the electrode insertion site after the electrode was removed. Ionic adsorption of poly-L-lysine at the tubular region retaining a heparin coating was used to switch the heparin surface from cell-repellent to cell-adhesive, thereby facilitating the adhesion of a second cell type. The combination of the electrode-based technique with electrostatic deposition enabled the formation of patterned co-cultures within the semi-closed tubular structure. The controlled co-cultures inside the elastic tubing should be of value for cell-cell interaction studies following application of chemical or mechanical stimuli and for tissue engineering-based bioreactors.
Finite Element Method (FEM), Mechanobiology and Biomimetic Scaffolds in Bone Tissue Engineering
Boccaccio, A.; Ballini, A.; Pappalettere, C.; Tullo, D.; Cantore, S.; Desiate, A.
2011-01-01
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014. Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance. In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated. PMID:21278921
Sengers, B G; Van Donkelaar, C C; Oomens, C W J; Baaijens, F P T
2004-12-01
Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix's intrinsic molecular organization.
A Novel Coupling Pattern in Computational Science and Engineering Software
Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...
A Novel Coupling Pattern in Computational Science and Engineering Software
Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...
Japanese Educational Patterns in Science and Engineering
ERIC Educational Resources Information Center
Birnbaum, Henry
1973-01-01
Describes the Japanese educational system, and outlines some of the obstacles faced by students in progressing through successive levels from elementary school to university. Emphasizes undergraduate education, especially in science and engineering. The organization of the Japanese school system is schematically presented in a diagram. (JR)
Measurement of thermal deformation of an engine piston using a conical mirror and ESPI
NASA Astrophysics Data System (ADS)
Albertazzi, Armando, Jr.; Melao, Iza; Devece, Eugenio
1998-07-01
An experimental technique is developed to measure the radial displacement component of cylindrical surfaces using a conical mirror for normal illumination and observation. Single illumination ESPI is used to obtain fringe patterns related to the radial displacement field. Some data processing strategies are presented and discussed to properly extract the measurement data. Data reduction algorithms are developed to quantify and compensate the rigid body displacements: translations and rotations. The displacement component responsible for shape distortion (deformation) can be separated from the total displacement field. The thermal radial deformation of an aluminum engine piston with a steel sash is measured by this technique. A temperature change of about 2 degrees Celsius was applied to the engine piston by means of an electrical wire wrapped up in the first engine piston grove. The fringe patterns are processed and the results are presented as polar graphics and 3D representation. The main advantages and limitations of the developed technique are discussed.
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
Raykin, Leon; MacLean, Heather L; Roorda, Matthew J
2012-06-05
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.
Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.
Xue, Dai; Wang, Yancheng; Zhang, Jiaxin; Mei, Deqing; Wang, Yue; Chen, Shaochen
2018-06-13
To fully actualize artificial, cell-laden biological models in tissue engineering, such as 3D organoids and organs-on-a-chip systems, cells need to be patterned such that they can precisely mimic natural microenvironments in vitro. Despite increasing interest in this area, patterning cells at multiscale (∼10 μm to 10 mm) remains a significant challenge in bioengineering. Here, we report a projection-based 3D printing system that achieves rapid and high-resolution fabrication of hydrogel scaffolds featuring intricate channels for multiscale cell patterning. Using this system, we were able to use biocompatible poly(ethylene glycol)diacrylate in fabricating a variety of scaffold architectures, ranging from regular geometries such as serpentine, spiral, and fractal-like to more irregular/intricate geometries, such as biomimetic arborescent and capillary networks. A red food dye solution was able to freely fill all channels in the scaffolds, from the trunk (>1100 μm in width) to the small branch (∼17 μm in width) without an external pump. The dimensions of the printed scaffolds remained stable over 3 days while being immersed in Dulbecco's phosphate-buffered saline at 37 °C, and a penetration analysis revealed that these scaffolds are suitable for metabolic and nutrient transport. Cell patterning experiments showed that red fluorescent protein-transfected A549 human nonsmall lung cancer cells adhered well in the scaffolds' channels, and showed further attachment and penetration during cell culture proliferation.
Synchronous behaviour in network model based on human cortico-cortical connections.
Protachevicz, Paulo Ricardo; Borges, Rafael Ribaski; Reis, Adriane da Silva; Borges, Fernando da Silva; Iarosz, Kelly Cristina; Caldas, Ibere Luiz; Lameu, Ewandson Luiz; Macau, Elbert Einstein Nehrer; Viana, Ricardo Luiz; Sokolov, Igor M; Ferrari, Fabiano A S; Kurths, Jürgen; Batista, Antonio Marcos
2018-06-22
We consider a network topology according to the cortico-cortical connec- tion network of the human brain, where each cortical area is composed of a random network of adaptive exponential integrate-and-fire neurons. Depending on the parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the coefficient of variation of the neuronal inter-spike interval. In our neuronal network, we verify the existence of spike and burst synchronisation in different cortical areas. Our simulations show that the network arrangement, i.e., its rich-club organisation, plays an important role in the transition of the areas from desynchronous to synchronous behaviours. © 2018 Institute of Physics and Engineering in Medicine.
Foundations for Streaming Model Transformations by Complex Event Processing.
Dávid, István; Ráth, István; Varró, Dániel
2018-01-01
Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.
Quesada-Martínez, M; Fernández-Breis, J T; Stevens, R; Mikroyannidi, E
2015-01-01
This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point.Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns. We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT. The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies. The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.
Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T
2010-06-01
Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2
Moon, Jong-Sik; Kim, Won-Geun; Shin, Dong-Myeong; Lee, So-Young; Kim, Chuntae; Lee, Yujin; Han, Jiye; Kim, Kyujung
2017-01-01
A bioinspired M-13 bacteriophage-based photonic nose was developed for differential cell recognition. The M-13 bacteriophage-based photonic nose exhibits characteristic color patterns when phage bundle nanostructures, which were genetically modified to selectively capture vapor phase molecules, are structurally deformed. We characterized the color patterns of the phage bundle nanostructure in response to cell proliferation via several biomarkers differentially produced by cells, including hydrazine, o-xylene, ethylbenzene, ethanol and toluene. A specific color enables the successful identification of different types of molecular and cellular species. Our sensing technique utilized the versatile M-13 bacteriophage as a building block for fabricating bioinspired photonic crystals, which enables ease of fabrication and tunable selectivity through genetic engineering. Our simple and versatile bioinspired photonic nose could have possible applications in sensors for human health and national security, food discrimination, environmental monitoring, and portable and wearable sensors. PMID:28572902
NASA Technical Reports Server (NTRS)
Zaman, Afroz; Bauch, Matthew; Raible, Daniel
2011-01-01
Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.
Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.
Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E
2012-10-01
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Copyright © 2012 Wiley Periodicals, Inc.
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Diesel asthma. Reactive airways disease following overexposure to locomotive exhaust.
Wade, J F; Newman, L S
1993-02-01
While some of the gaseous and particulate components of diesel exhaust can cause pulmonary irritation and bronchial hyperreactivity, diesel exhaust exposure has not been shown to cause asthma. Three railroad workers developed asthma following excessive exposure to locomotive emissions while riding immediately behind the lead engines of caboose-less trains. Asthma diagnosis was based on symptoms, pulmonary function tests, and measurement of airways hyperreactivity to methacholine or exercise. One individual's peak expiratory flow rates fell in a work-related pattern when riding immediately behind the lead diesel engine. None had a previous history of asthma or other respiratory disease and none were current smokers. All three developed persistent asthma. In two cases, physiologic abnormalities suggesting reversible restriction were observed. This is the first report implicating diesel exhaust as a cause of reactive airways disease.
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Julian, Maurice
1999-12-01
Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific research. A necessary future step in bettering the engineering solutions implemented to contain natural hazards or to harness water and sediment resources is that of fine-scale analysis of source-to-sink sediment transfer processes, of sediment budgets, of time-scales of storage in stream channels, and, finally, of high-magnitude hydrometeorological forcing events in this area. The way all these aspects have been modulated by engineering practices and socioeconomic development should also be an important part of such an analysis.
Analytical concepts for health management systems of liquid rocket engines
NASA Technical Reports Server (NTRS)
Williams, Richard; Tulpule, Sharayu; Hawman, Michael
1990-01-01
Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.
Judicious use of custom development in an open source component architecture
NASA Astrophysics Data System (ADS)
Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.
2014-12-01
Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.
Cho, Yongrae; Kim, Minsung
2014-01-01
The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary patterns of technological convergence provide some implications for engineering and technology foresight research, as well as for corporate strategy and technology policy.
Recognition of Arabic Sign Language Alphabet Using Polynomial Classifiers
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Al-Rousan, M.
2005-12-01
Building an accurate automatic sign language recognition system is of great importance in facilitating efficient communication with deaf people. In this paper, we propose the use of polynomial classifiers as a classification engine for the recognition of Arabic sign language (ArSL) alphabet. Polynomial classifiers have several advantages over other classifiers in that they do not require iterative training, and that they are highly computationally scalable with the number of classes. Based on polynomial classifiers, we have built an ArSL system and measured its performance using real ArSL data collected from deaf people. We show that the proposed system provides superior recognition results when compared with previously published results using ANFIS-based classification on the same dataset and feature extraction methodology. The comparison is shown in terms of the number of misclassified test patterns. The reduction in the rate of misclassified patterns was very significant. In particular, we have achieved a 36% reduction of misclassifications on the training data and 57% on the test data.
Hulse, Nathan C; Long, Jie; Tao, Cui
2013-01-01
Infobuttons have been established to be an effective resource for addressing information needs at the point of care, as evidenced by recent research and their inclusion in government-based electronic health record incentive programs in the United States. Yet their utility has been limited to wide success for only a specific set of domains (lab data, medication orders, and problem lists) and only for discrete, singular concepts that are already documented in the electronic medical record. In this manuscript, we present an effort to broaden their utility by connecting a semantic web-based phenotyping engine with an infobutton framework in order to identify and address broader issues in patient data, derived from multiple data sources. We have tested these patterns by defining and testing semantic definitions of pre-diabetes and metabolic syndrome. We intend to carry forward relevant information to the infobutton framework to present timely, relevant education resources to patients and providers.
Introducing the VRT gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, J.O.; Mostafa, A.A.; Nguyen, H.L.
An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer modelmore » predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartsaklis, Christos; Hernandez, Oscar R
Interrogating the structure of a program for patterns of interest is attractive to the broader spectrum of software engineering. The very approach by which a pattern is constructed remains a concern for the source code mining community. This paper presents a pattern programming model, for the C and Fortran programming languages, using a compiler directives approach. We discuss our specification, called HERCULES/PL, throughout a number of examples and show how different patterns can be constructed, plus some preliminary results.
Huang, Samuel; Li, Julie Yi-Shuan; Chien, Shu; Zhang, Kang; Chen, Shaochen
2013-01-01
ADSCs are a great cell source for tissue engineering and regenerative medicine. However, the development of methods to appropriately manipulate these cells in vitro remains a challenge. Here the proliferation and differentiation of ADSCs on microfabricated surfaces with varying geometries were investigated. To create the patterned substrates, a maskless biofabrication method was developed based on dynamic optical projection stereolithography. Proliferation and early differentiation of ADSCs were compared across three distinct multicellular patterns, namely stripes (ST), symmetric fork (SF), and asymmetric fork (AF). The ST pattern was designed for uniaxial cell alignment while the SF and AF pattern were designed with altered cell directionality to different extents. The SF and AF patterns generated similar levels of regional peak stress, which were both significantly higher than those within the ST pattern. No significant difference in ADSC proliferation was observed among the three patterns. In comparison to the ST pattern, higher peak stress levels of the SF and AF patterns were associated with up-regulation of the chondrogenic and osteogenic markers SOX9 and RUNX2. Interestingly, uniaxial cell alignment in the ST pattern seemed to increase the expression of SM22α and smooth muscle α-actin, suggesting an early smooth muscle lineage progression. These results indicate that geometric cues that promote uniaxial alignment might be more potent for myogenesis than those with increased peak stress. Overall, the use of these patterned geometric cues for modulating cell alignment and form-induced stress can serve as a powerful and versatile technique towards controlling differentiation in ADSCs. PMID:24060419
Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.
2014-01-01
Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395
Milestones in Software Engineering and Knowledge Engineering History: A Comparative Review
del Águila, Isabel M.; Palma, José; Túnez, Samuel
2014-01-01
We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one. PMID:24624046
Milestones in software engineering and knowledge engineering history: a comparative review.
del Águila, Isabel M; Palma, José; Túnez, Samuel
2014-01-01
We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.
NASA Astrophysics Data System (ADS)
Phillips, Canek Moises Luna
Research explanations for the disparity across both race and gender in engineering education has typically relied on a deficit model, whereby women and people of color lack the requisite knowledge or psychological characteristics that Whites and men have to become engineers in sufficient numbers. Instead of using a deficit model approach to explain gender and race disparity, in the three studies conducted for this dissertation, I approach gender and race disparity as the result of processes of segregation linked to the historic and on-going perpetuation of systemic sources of oppression in the United States. In the first study, I investigate the relationship between the odds ratios of women and men enrolled in first year US engineering programs and institutional characteristics. To do this, I employ linear regression to study data from the American Society of Engineering Education (ASEE) and the National Center for Education Statistics (NCES) to quantify relationships between odds ratios and institutional characteristics. Results of the linear regression models showed significant relationships between the cost of universities and university selectivity and the odds ratios of women choosing engineering. I theorize how the results could be related to the operation of occupational segregation in engineering, particularly how class-based markers have been historically used by women to overcome gender-based segregation in engineering. In the second study, I examine longitudinal patterns of race, gender, and intersectional combinations of race and gender in enrollments of students in first year engineering programs across the United States (US). Using enrollment data from the American Society of Engineering Education and California Post-Secondary Education Commission, I construct measures of segregation to study how trends in the disparity of students by race could be related to increases in public school segregation nationally over the past 25 years. I found that as public school segregation levels increased nationally, underrepresentation of Black and Hispanics and overrepresentation of White and Asian students has moved further toward the extremes in first year engineering programs compared to these groups’ shares of high school enrollment. I conclude that the study of public school segregation and its effect on racial disparity needs greater attention, as well as that the investigation I conducted serves as a beginning towards pushing back on deficit model explanations of race and gender disparity in engineering. In the third study, I return to the investigation of odds ratios and institutional characteristics, constructing odds ratios using ASEE and NCES data based on the odds of enrollment in first year engineering programs between Asian, Black, and Hispanic students compared to White students. I again quantify the relationships between odds ratios and institutional characteristics using linear regression models and discuss results using theory based in the perspective of occupational segregation. In this case, results were inconclusive leading me to conclude that other variables that I did not consider, such as the segregation levels of schools that students come from before enrollment, should be considered as I develop my own future study into the topic.
A novel method for accurate patterning and positioning of biological cells
NASA Astrophysics Data System (ADS)
Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana
2007-05-01
The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.
Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs
NASA Astrophysics Data System (ADS)
Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally
2018-01-01
In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.
Microscale diffusion measurements and simulation of a scaffold with a permeable strut.
Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan
2013-10-10
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Engineering Design Handbook. Joining of Advanced Composites
1979-03-01
4.50 " Traversing Mechanisms.. .. . .. .. .. . .. .. .. .. .. .. . .. . .. . .. .. . $ 4.50 Wheeled Amphibians...o < ., ~ tO .... ., ;> < 0 DENOTES 1-IN. SCARF b. DENOTES 1-1/2-IN. SCARF CLOSED SYMBOL DENOTES RUNOUT 2.0 ~-----------L...PATTERN 0 DENOTES 2-IN. LAP, 0/45/-45/0 PATTERN b. DENOTES 2-IN. LAP, 45/0/0/-45 PATTERN CLOSED SYMBOL DENOTES RUNOUT b.----•:. • 0
ERIC Educational Resources Information Center
Wang, Xueli
2016-01-01
This research focuses on course-taking patterns of beginning community college students enrolled in one or more non-remedial science, technology, engineering, and mathematics (STEM) courses during their first year of college, and how these patterns are mapped against upward transfer in STEM fields of study. Drawing upon postsecondary transcript…
Deiner, Michael S; Lietman, Thomas M; McLeod, Stephen D; Chodosh, James; Porco, Travis C
2016-09-01
Internet-based search engine and social media data may provide a novel complementary source for better understanding the epidemiologic factors of infectious eye diseases, which could better inform eye health care and disease prevention. To assess whether data from internet-based social media and search engines are associated with objective clinic-based diagnoses of conjunctivitis. Data from encounters of 4143 patients diagnosed with conjunctivitis from June 3, 2012, to April 26, 2014, at the University of California San Francisco (UCSF) Medical Center, were analyzed using Spearman rank correlation of each weekly observation to compare demographics and seasonality of nonallergic conjunctivitis with allergic conjunctivitis. Data for patient encounters with diagnoses for glaucoma and influenza were also obtained for the same period and compared with conjunctivitis. Temporal patterns of Twitter and Google web search data, geolocated to the United States and associated with these clinical diagnoses, were compared with the clinical encounters. The a priori hypothesis was that weekly internet-based searches and social media posts about conjunctivitis may reflect the true weekly clinical occurrence of conjunctivitis. Weekly total clinical diagnoses at UCSF of nonallergic conjunctivitis, allergic conjunctivitis, glaucoma, and influenza were compared using Spearman rank correlation with equivalent weekly data on Tweets related to disease or disease-related keyword searches obtained from Google Trends. Seasonality of clinical diagnoses of nonallergic conjunctivitis among the 4143 patients (2364 females [57.1%] and 1776 males [42.9%]) with 5816 conjunctivitis encounters at UCSF correlated strongly with results of Google searches in the United States for the term pink eye (ρ, 0.68 [95% CI, 0.52 to 0.78]; P < .001) and correlated moderately with Twitter results about pink eye (ρ, 0.38 [95% CI, 0.16 to 0.56]; P < .001) and with clinical diagnosis of influenza (ρ, 0.33 [95% CI, 0.12 to 0.49]; P < .001), but did not significantly correlate with seasonality of clinical diagnoses of allergic conjunctivitis diagnosis at UCSF (ρ, 0.21 [95% CI, -0.02 to 0.42]; P = .06) or with results of Google searches in the United States for the term eye allergy (ρ, 0.13 [95% CI, -0.06 to 0.32]; P = .19). Seasonality of clinical diagnoses of allergic conjunctivitis at UCSF correlated strongly with results of Google searches in the United States for the term eye allergy (ρ, 0.44 [95% CI, 0.24 to 0.60]; P < .001) and eye drops (ρ, 0.47 [95% CI, 0.27 to 0.62]; P < .001). Internet-based search engine and social media data may reflect the occurrence of clinically diagnosed conjunctivitis, suggesting that these data sources can be leveraged to better understand the epidemiologic factors of conjunctivitis.
Wang, Zhuochen; Zhe, Jiang
2011-04-07
Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.
The Long-Term Growth Prospects for Planetary and Space Colonies
NASA Astrophysics Data System (ADS)
Ashworth, S.
In order to live and function, multicellular creatures such as human beings need land area with gravity, an atmosphere and plentiful liquid water. The resources of the Solar System offer opportunities for extraterrestrial colonisation at locations where these basic services may be found or engineered. Two different patterns of activity are possible: planetary versus space colonisation, and these are compared. It is concluded that space colonisation, based on asteroidal resources, offers a prospect of growth greater than that of planetary settlement by three orders of magnitude, as well as a better springboard to growth on an interstellar scale. The space-based rather than planet-based mode of technological life is therefore likely to predominate in the long-term future of successful industrial species.
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Braun, M. Jack
1994-01-01
The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.
Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise
2018-02-28
Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Using virtual environment for autonomous vehicle algorithm validation
NASA Astrophysics Data System (ADS)
Levinskis, Aleksandrs
2018-04-01
This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.
TermGenie – a web-application for pattern-based ontology class generation
Dietze, Heiko; Berardini, Tanya Z.; Foulger, Rebecca E.; ...
2014-01-01
Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 newmore » classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. Lastly, TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.« less
TermGenie – a web-application for pattern-based ontology class generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietze, Heiko; Berardini, Tanya Z.; Foulger, Rebecca E.
Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 newmore » classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. Lastly, TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.« less
TermGenie - a web-application for pattern-based ontology class generation.
Dietze, Heiko; Berardini, Tanya Z; Foulger, Rebecca E; Hill, David P; Lomax, Jane; Osumi-Sutherland, David; Roncaglia, Paola; Mungall, Christopher J
2014-01-01
Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 new classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.
Unraveling metamaterial properties in zigzag-base folded sheets.
Eidini, Maryam; Paulino, Glaucio H
2015-09-01
Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.
Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance
Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio
2010-01-01
Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness). PMID:20532247
CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com
Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less
Urban infrastructure and longitudinal stream profiles
NASA Astrophysics Data System (ADS)
Lindner, G. A.; Miller, A. J.
2009-12-01
Urban streams usually are highly engineered or modified by human activity and are conventionally thought of as being geometrically, and thus hydraulically, simple. The work presented here, a contribution to NSF CNH Project 0709659, is designed to capture the influence of urban infrastructure on the character of longitudinal profiles and flow hydraulics along streams in the Baltimore metropolitan area. Detailed topographic data sets are derived from LiDAR supplemented by total-station surveys of the channel bed and low-flow water surface. These in turn are used to drive 2D depth-averaged hydraulic models comparing flow conditions over a range of urban development patterns and stormwater management regimes. Results from stream surveys of 1-2 km length indicate that channels in older, highly urbanized areas typically have straight planforms and strongly stepped profiles characterized by a series of deep, stagnant pools with short intervening riffles or runs. This pattern is associated with frequent interruption of the channel profile by bridges, culverts, road embankments and other artificial structures. In one survey reach of the Dead Run watershed, 50 percent of cumulative channel length has zero gradient at low flow, and 50 percent of cumulative head loss is accounted for by only 4 percent of channel length. In the suburban Red Run watershed recent development has occurred under strict stormwater management regulations with minimal encroachment on the riparian zone. Although their average gradients are similar, the Red Run survey reach is steeper than the Dead Run reach over most its length but has a smaller fraction of total head loss caused by local slope breaks. Modeling results indicate that these differences in stream morphology are associated with differences in velocity, flow pattern, and residence time at base flow; the stepped nature of the profile in the older urban area becomes less pronounced at intermediate to high flows, but the controlling influence of infrastructure may become dominant again during large floods. Because flashy urban streams have lower and more persistent low flows as well as more extreme flood flows, these hydraulic patterns may have implications for both biogeochemical cycling at base flow and transport and deposition of sediment and other constituents during flood periods. Continuing research will develop a typology of urban streams in terms of the influence of engineering practices on flow patterns and material transport.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1993-01-01
The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
Relational Reasoning in Science, Medicine, and Engineering
ERIC Educational Resources Information Center
Dumas, Denis
2017-01-01
This review brings together the literature that pertains to the role of relational reasoning, or the ability to discern meaningful patterns within any stream of information, in the mental work of scientists, medical doctors, and engineers. Existing studies that measure four forms of relational reasoning--analogy, anomaly, antinomy, and…
Scientists, Engineers, and Physicians From Abroad, Trends Through Fiscal Year 1970.
ERIC Educational Resources Information Center
Gannon, Joseph; Stewart, Christine C.
A report on the influx of scientists, engineers, and physicians from abroad is presented to assess recent trends in terms of numbers, occupations, and national backgrounds. Both immigrant and nonimmigrant components are included. Descriptions are made in connection with migration patterns, aliens adjusted to immigrant status, demographic…
Efficient full-chip SRAF placement using machine learning for best accuracy and improved consistency
NASA Astrophysics Data System (ADS)
Wang, Shibing; Baron, Stanislas; Kachwala, Nishrin; Kallingal, Chidam; Sun, Dezheng; Shu, Vincent; Fong, Weichun; Li, Zero; Elsaid, Ahmad; Gao, Jin-Wei; Su, Jing; Ser, Jung-Hoon; Zhang, Quan; Chen, Been-Der; Howell, Rafael; Hsu, Stephen; Luo, Larry; Zou, Yi; Zhang, Gary; Lu, Yen-Wen; Cao, Yu
2018-03-01
Various computational approaches from rule-based to model-based methods exist to place Sub-Resolution Assist Features (SRAF) in order to increase process window for lithography. Each method has its advantages and drawbacks, and typically requires the user to make a trade-off between time of development, accuracy, consistency and cycle time. Rule-based methods, used since the 90 nm node, require long development time and struggle to achieve good process window performance for complex patterns. Heuristically driven, their development is often iterative and involves significant engineering time from multiple disciplines (Litho, OPC and DTCO). Model-based approaches have been widely adopted since the 20 nm node. While the development of model-driven placement methods is relatively straightforward, they often become computationally expensive when high accuracy is required. Furthermore these methods tend to yield less consistent SRAFs due to the nature of the approach: they rely on a model which is sensitive to the pattern placement on the native simulation grid, and can be impacted by such related grid dependency effects. Those undesirable effects tend to become stronger when more iterations or complexity are needed in the algorithm to achieve required accuracy. ASML Brion has developed a new SRAF placement technique on the Tachyon platform that is assisted by machine learning and significantly improves the accuracy of full chip SRAF placement while keeping consistency and runtime under control. A Deep Convolutional Neural Network (DCNN) is trained using the target wafer layout and corresponding Continuous Transmission Mask (CTM) images. These CTM images have been fully optimized using the Tachyon inverse mask optimization engine. The neural network generated SRAF guidance map is then used to place SRAF on full-chip. This is different from our existing full-chip MB-SRAF approach which utilizes a SRAF guidance map (SGM) of mask sensitivity to improve the contrast of optical image at the target pattern edges. In this paper, we demonstrate that machine learning assisted SRAF placement can achieve a superior process window compared to the SGM model-based SRAF method, while keeping the full-chip runtime affordable, and maintain consistency of SRAF placement . We describe the current status of this machine learning assisted SRAF technique and demonstrate its application to full chip mask synthesis and discuss how it can extend the computational lithography roadmap.
Automated Data Tagging in the HLA
NASA Astrophysics Data System (ADS)
Gaffney, N. I.; Miller, W. W.
2008-08-01
One of the more powerful and popular forms of data organization implemented in most popular information sharing web applications is data tagging. With a rich user base from which to gather and digest tags, many interesting and often unanticipated yet very useful associations are revealed. With regard to an existing information, the astronomical community has a rich pool of existing digitally stored and searchable data than any of the currently popular web community, such as You Tube or My Space, had when they started. In initial experiments with the search engine for the Hubble Legacy Archive, we have created a simple yet powerful scheme by which the information from a footprint service, the NED and SIMBAD catalog services, and the ADS abstracts and keywords can be used to initially tag data with standard keywords. By then ingesting this into a public ally available information search engine, such as Apache Lucene, one can create a simple and powerful data tag search engine and association system. By then augmenting this with user provided keys and usage pattern analysis, one can produce a powerful modern data mining system for any astronomical data warehouse.
NASA Astrophysics Data System (ADS)
Rotaru, Constantin
2017-06-01
In this paper are presented some results about the study of combustion chamber geometrical configurations that are found in aircraft gas turbine engines. The main focus of this paper consists in a study of a new configuration of the aircraft engine combustion chamber with an optimal distribution of gas velocity in front of the turbine. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio. The Arrhenius relationship, which describes the basic dependencies of the reaction rate on pressure, temperature and concentration has been used. and the CFD simulations were made with jet A fuel (which is presented in the Fluent software database) for an annular flame tube with 24 injectors. The temperature profile at the turbine inlet exhibits nonuniformity due to the number of fuel injectors used in the circumferential direction, the spatial nonuniformity in dilution air cooling and mixing characteristics as well as other secondary flow patterns and instabilities that are set up in the flame tube.
On the nature of biomaterials.
Williams, David F
2009-10-01
The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.
Potential Collaborative Research topics with Korea’s Agency for Defense Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R.; Todd, Michael D.
2012-08-23
This presentation provides a high level summary of current research activities at the Los Alamos National Laboratory (LANL)-University of California Jacobs School of Engineering (UCSD) Engineering Institute that will be presented at Korea's Agency for Defense Development (ADD). These research activities are at the basic engineering science level with different level of maturity ranging from initial concepts to field proof-of-concept demonstrations. We believe that all of these activities are appropriate for collaborative research activities with ADD subject to approval by each institution. All the activities summarized herein have the common theme that they are multi-disciplinary in nature and typically involvedmore » the integration of high-fidelity predictive modeling, advanced sensing technologies and new development in information technology. These activities include: Wireless Sensor Systems, Swarming Robot sensor systems, Advanced signal processing (compressed sensing) and pattern recognition, Model Verification and Validation, Optimal/robust sensor system design, Haptic systems for large-scale data processing, Cyber-physical security for robots, Multi-source energy harvesting, Reliability-based approaches to damage prognosis, SHMTools software development, and Cyber-physical systems advanced study institute.« less
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
1967-01-01
This cutaway illustration shows the Saturn V S-II (second) stage with callouts of major components. When the Saturn V first stage burns out and drops away, power for the Saturn was provided by the S-II (second) stage with five J-2 engines which produced a total of 1,150,000 pounds of thrust. Four outer engines are placed in a square pattern with gimbaling capability for control and guidance, with the fifth engine fixed rigidly in the center.
Behavioral pattern identification for structural health monitoring in complex systems
NASA Astrophysics Data System (ADS)
Gupta, Shalabh
Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special-purpose fatigue test apparatus, equipped with multiple sensing devices (e.g., ultrasonics and optical microscope) for damage analysis, has been used to experimentally validate the STSA method for early detection of anomalous behavior. The sensor information is integrated with a software module consisting of the STSA algorithm for real-time monitoring of fatigue damage. Experiments have been conducted under different loading conditions on specimens constructed from the ductile aluminium alloy 7075 - T6. The dissertation has also investigated the application of the STSA method for early detection of anomalies in other engineering disciplines. Two primary applications include combustion instability in a generic thermal pulse combustor model and whirling phenomenon in a typical misaligned shaft.
Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons.
Nguyen, H S; Gerace, D; Carusotto, I; Sanvitto, D; Galopin, E; Lemaître, A; Sagnes, I; Bloch, J; Amo, A
2015-01-23
We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics; in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and supersonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.
Digital speckle correlation for nondestructive testing of corrosion
NASA Astrophysics Data System (ADS)
Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.
1999-07-01
This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.
Prediction of sound radiation from different practical jet engine inlets
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Meyer, W. L.
1981-01-01
Computer codes, capable of producing accurate results for nondimensional wave numbers (based on duct radius) of up to 20, were developed and used to generate results for various other inlet configurations. Both reflection coefficients and radiation patterns were calculated by the integral solution procedure for the following five inlet configurations: the NASA Langley Bellmouth, the NASA Lewis JT-15D-1 ground test nacelle, and three hyperbolic inlets of 50, 70, and 90 degrees. Results obtained are compared with results from other experimental and theoretical studies.
Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.
2002-01-01
The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.
Gender and Achievement-Related Beliefs among Engineering Students
NASA Astrophysics Data System (ADS)
Heyman, Gail D.; Martyna, Bryn; Bhatia, Sangeeta
Achievement-related beliefs were examined among a group of 238 college students in engineering (38 female, 104 male) and nonengineering majors (57 female, 39 male) to understand why women enter engineering majors at a low rate and are more likely than men to leave such majors. The results indicated that (a) among the engineering majors, women were more likely than men to identify engineering aptitude as a fixed ability, a belief that was associated with a tendency to drop classes when faced with difficulty; (b) female engineering majors were more likely to perceive male and female engineering students as receiving different treatment than their male counterparts; and (c) female engineering majors tended to place more emphasis on extrinsic factors and less emphasis on intrinsic factors than female nonengineering majors, a pattern not seen among men. Implications for intervention programs are discussed.
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'
Ultrathin high-resolution flexographic printing using nanoporous stamps
Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H.; Gleason, Karen K.; Hart, A. John
2016-01-01
Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies. PMID:27957542
Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
Gao, Ran; Dong, Yongqi; Xu, Han; ...
2016-05-24
We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less
Simulation of vehicle acoustics in support of netted sensor research and development
NASA Astrophysics Data System (ADS)
Christou, Carol T.; Jacyna, Garry M.
2005-05-01
The MITRE Corporation has initiated a three-year internally-funded research program in netted sensors, the first-year effort focusing on vehicle detection for border monitoring. An important component is developing an understanding of the complex acoustic structure of vehicle noise to aid in netted sensor-based detection and classification. This presentation will discuss the design of a high-fidelity vehicle acoustic simulator to model the generation and transmission of acoustic energy from a moving vehicle to a collection of sensor nodes. Realistic spatially-dependent automobile sounds are generated from models of the engine cylinder firing rates, muffler and manifold resonances, and speed-dependent tire whine noise. Tire noise is the dominant noise source for vehicle speeds in excess of 30 miles per hour (MPH). As a result, we have developed detailed models that successfully predict the tire noise spectrum as a function of speed, road surface wave-number spectrum, tire geometry, and tire tread pattern. We have also included realistic descriptions of the spatial directivity patterns for the engine harmonics, muffler, and tire whine noise components. The acoustic waveforms are propagated to each sensor node using a simple phase-dispersive multi-path model. A brief description of the models and their corresponding outputs is provided.
Engineering electronic states of periodic and quasiperiodic chains by buckling
NASA Astrophysics Data System (ADS)
Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava
2017-07-01
The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.
The brain-sex theory of occupational choice: a counterexample.
Esgate, Anthony; Flynn, Maria
2005-02-01
The brain-sex theory of occupational choice suggests that males and females in male-typical careers show a male pattern of cognitive ability in terms of better spatial than verbal performance on cognitive tests with the reverse pattern for females and males in female-typical careers. These differences are thought to result from patterns of cerebral functional lateralisation. This study sought such occupationally related effects using synonym generation (verbal ability) and mental rotation (spatial ability) tasks used previously. It also used entrants to these careers as participants to examine whether patterns of cognitive abilities might predate explicit training and practice. Using a population of entrants to sex-differentiated university courses, a moderate occupational effect on the synonym generation task was found, along with a weak (p < .10) sex effect on the mental rotation task. Highest performance on the mental rotation task was by female students in fashion design, a female-dominated occupation which makes substantial visuospatial demands and attracts many students with literacy problems such as dyslexia. This group then appears to be a counterexample to the brain-sex theory. However, methodological issues surrounding previous studies are highlighted: the simple synonym task appears to show limited discrimination of the sexes, leading to questions concerning the legitimacy of inferences about lateralisation based on scores from that test. Moreover, the human figure-based mental rotation task appears to tap the wrong aspect of visuospatial skill, likely to be needed for male-typical courses such as engineering. Since the fashion-design career is also one that attracts disproportionately many male students whose sexual orientation is homosexual, data were examined for evidence of female-typical patterns of cognitive performance among that subgroup. This was not found. This study therefore provides no evidence for the claim that female-pattern cerebral functional lateralisation is likely in gay males.
Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.
Garreta, Elena; González, Federico; Montserrat, Núria
2018-01-01
Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto
2012-01-01
This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less
Fuller, C J; Narasimhan, Haripriya
2010-01-01
Since the nineteenth century, Tamil Brahmans have been very well represented in the educated professions, especially law and administration, medicine, engineering and nowadays, information technology. This is partly a continuation of the Brahmans' role as literate service people, owing to their traditions of education, learning and literacy, but the range of professions shows that any direct continuity is more apparent than real. Genealogical data are particularly used as evidence about changing patterns of employment, education and migration. Caste traditionalism was not a determining constraint, for Tamil Brahmans were predominant in medicine and engineering as well as law and administration in the colonial period, even though medicine is ritually polluting and engineering resembles low-status artisans' work. Crucially though, as modern, English-language, credential-based professions that are wellpaid and prestigious, law, medicine and engineering were and are all deemed eminently suitable for Tamil Brahmans, who typically regard their professional success as a sign of their caste superiority in the modern world. In reality, though, it is mainly a product of how their old social and cultural capital and their economic capital in land were transformed as they seized new educational and employment opportunities by flexibly deploying their traditional, inherited skills and advantages.
Performance tests and quality control of cathode ray tube displays.
Roehrig, H; Blume, H; Ji, T L; Browne, M
1990-08-01
Spatial resolution, noise, characteristic curve, and absolute luminance are the essential parameters that describe physical image quality of a display. This paper presents simple procedures for assessing the performance of a cathode ray tube (CRT) in terms of these parameters as well as easy set up techniques. The procedures can be used in the environment where the CRT is used. The procedures are based on a digital representation of the Society of Motion Pictures and Television Engineers pattern plus a few simple other digital patterns. Additionally, measurement techniques are discussed for estimating brightness uniformity, veiling glare, and distortion. Apart from the absolute luminance, all performance features can be assessed with an uncalibrated photodetector and the eyes of a human observer. The measurement techniques especially enable the user to perform comparisons of different display systems.
An evaluation of the 10:30 centerline marking pattern.
DOT National Transportation Integrated Search
1977-01-01
In response to Value Engineering Proposal #M-26, a study of the feasibility of adopting a 10 ft. mark 30 ft. gap centerline pattern for use on 2- and 4-lane rural roads was conducted. The study included a literature review, field studies of traffic s...
Protein-based materials, toward a new level of structural control.
van Hest, J C; Tirrell, D A
2001-10-07
Through billions of years of evolution nature has created and refined structural proteins for a wide variety of specific purposes. Amino acid sequences and their associated folding patterns combine to create elastic, rigid or tough materials. In many respects, nature's intricately designed products provide challenging examples for materials scientists, but translation of natural structural concepts into bio-inspired materials requires a level of control of macromolecular architecture far higher than that afforded by conventional polymerization processes. An increasingly important approach to this problem has been to use biological systems for production of materials. Through protein engineering, artificial genes can be developed that encode protein-based materials with desired features. Structural elements found in nature, such as beta-sheets and alpha-helices, can be combined with great flexibility, and can be outfitted with functional elements such as cell binding sites or enzymatic domains. The possibility of incorporating non-natural amino acids increases the versatility of protein engineering still further. It is expected that such methods will have large impact in the field of materials science, and especially in biomedical materials science, in the future.
Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.
Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L
2018-06-01
The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near-field sound radiation of fan tones from an installed turbofan aero-engine.
McAlpine, Alan; Gaffney, James; Kingan, Michael J
2015-09-01
The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition.
Implementing ISO/IEEE 11073: proposal of two different strategic approaches.
Martínez-Espronceda, M; Serrano, L; Martínez, I; Escayola, J; Led, S; Trigo, J; García, J
2008-01-01
This paper explains the challenges encountered during the ISO/IEEE 11073 standard implementation process. The complexity of the standard and the consequent heavy requirements, which have not encouraged software engineers to adopt the standard. The developing complexity evaluation drives us to propose two possible implementation strategies that cover almost all possible use cases and eases handling the standard by non-expert users. The first one is focused on medical devices (MD) and proposes a low-memory and low-processor usage technique. It is based on message patterns that allow simple functions to generate ISO/IEEE 11073 messages and to process them easily. In this way a framework for MDs can be obtained. Second one is focused on more powerful machines such as data loggers or gateways (aka. computer engines (CE)), which do not have the MDs' memory and processor usage constraints. For CEs a more intelligent and adaptative Plug&Play (P&P) solution is provided. It consists on a general platform that can access to any device supported by the standard. Combining both strategies will cut developing time for applications based on ISO/EEE 11073.
Foo, Jong Yong Abdiel
2009-01-01
The simplest and widely used assessment of academic research and researchers is the journal impact factor (JIF). However, the JIF may exhibit patterns that are skewed towards journals that publish high number of non-research items and short turnover research. Moreover, there are concerns as the JIF is often used as a comparison for journals from different disciplines. In this study, the JIF computation of eight top ranked journals from four different subject categories was analyzed. The analysis reveals that most of the published items (>65%) in the science disciplines were nonresearch items while fewer such items (<22%) were observed in engineering-based journals. The single regression analysis confirmed that there is correlation (R(2) > or = .99) in the number of published items or citations received over the two-year period used in the JIF calculation amongst the eight selected journals. A weighted factor computation is introduced to compensate for the smaller journals and journals that publish longer turnover research. It is hoped that the approach can provide a comprehensive assessment of the quality of a journal regardless of the disciplinary field.
Creating ligand-free silicon germanium alloy nanocrystal inks.
Erogbogbo, Folarin; Liu, Tianhang; Ramadurai, Nithin; Tuccarione, Phillip; Lai, Larry; Swihart, Mark T; Prasad, Paras N
2011-10-25
Particle size is widely used to tune the electronic, optical, and catalytic properties of semiconductor nanocrystals. This contrasts with bulk semiconductors, where properties are tuned based on composition, either through doping or through band gap engineering of alloys. Ideally, one would like to control both size and composition of semiconductor nanocrystals. Here, we demonstrate production of silicon-germanium alloy nanoparticles by laser pyrolysis of silane and germane. We have used FTIR, TEM, XRD, EDX, SEM, and TOF-SIMS to conclusively determine their structure and composition. Moreover, we show that upon extended sonication in selected solvents, these bare nanocrystals can be stably dispersed without ligands, thereby providing the possibility of using them as an ink to make patterned films, free of organic surfactants, for device fabrication. The engineering of these SiGe alloy inks is an important step toward the low-cost fabrication of group IV nanocrystal optoelectronic, thermoelectric, and photovoltaic devices.
Implementation of jump-diffusion algorithms for understanding FLIR scenes
NASA Astrophysics Data System (ADS)
Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.
1995-07-01
Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.
Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R
2017-09-15
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Image-Based Reverse Engineering and Visual Prototyping of Woven Cloth.
Schroder, Kai; Zinke, Arno; Klein, Reinhard
2015-02-01
Realistic visualization of cloth has many applications in computer graphics. An ongoing research problem is how to best represent and capture cloth models, specifically when considering computer aided design of cloth. Previous methods produce highly realistic images, however, they are either difficult to edit or require the measurement of large databases to capture all variations of a cloth sample. We propose a pipeline to reverse engineer cloth and estimate a parametrized cloth model from a single image. We introduce a geometric yarn model, integrating state-of-the-art textile research. We present an automatic analysis approach to estimate yarn paths, yarn widths, their variation and a weave pattern. Several examples demonstrate that we are able to model the appearance of the original cloth sample. Properties derived from the input image give a physically plausible basis that is fully editable using a few intuitive parameters.
Long term trending of engineering data for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Cox, Ross M.
1993-01-01
A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race
Ramesh, Shunmugiah V.; Sahu, Pranav P.; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R.
2017-01-01
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. PMID:28914771
ERIC Educational Resources Information Center
Lazzaro, Edward L.; Hosie, Thomas W.
1979-01-01
The principles of behavioral engineering were applied to create a program for delinquent youth to facilitate their adjustment into the regular pattern of the normal public school. Results indicated that the behavioral engineering method produced a significantly greater number of placements and significantly less recidivism. (Author)
Predesigned surface patterns and topological defects control the active matter.
NASA Astrophysics Data System (ADS)
Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg
Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).
Vision in laboratory rodents-Tools to measure it and implications for behavioral research.
Leinonen, Henri; Tanila, Heikki
2017-07-29
Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond. Copyright © 2017 Elsevier B.V. All rights reserved.
Women’s Reasons for Leaving the Engineering Field
Fouad, Nadya A.; Chang, Wen-Hsin; Wan, Min; Singh, Romila
2017-01-01
Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. Specifically, we analyze the reasons for departure given by national sample of 1,464 women engineers who left the profession after having worked in the engineering field. We applied a person-environment fit theoretical lens, in particular, the Theory of Work Adjustment (TWA) (Dawis and Lofquist, 1984) to understand and categorize the reasons for leaving the engineering field. According to the TWA, occupations have different “reinforcer patterns,” reflected in six occupational values, and a mismatch between the reinforcers provided by the work environment and individuals’ needs may trigger departure from the environment. Given the paucity of literature in this area, we posed research questions to explore the reinforcer pattern of values implicated in women’s decisions to leave the engineering field. We used qualitative analyses to understand, categorize, and code the 1,863 statements that offered a glimpse into the myriad reasons that women offered in describing their decisions to leave the engineering profession. Our results revealed the top three sets of reasons underlying women’s decision to leave the jobs and engineering field were related to: first, poor and/or inequitable compensation, poor working conditions, inflexible and demanding work environment that made work-family balance difficult; second, unmet achievement needs that reflected a dissatisfaction with effective utilization of their math and science skills, and third, unmet needs with regard to lack of recognition at work and adequate opportunities for advancement. Implications of these results for future research as well as the design of effective intervention programs aimed at women engineers’ retention and engagement in engineering are discussed. PMID:28713295
Complete characterization of the stability of cluster synchronization in complex dynamical networks.
Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi
2016-04-01
Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.
Reaction-diffusion controlled growth of complex structures
NASA Astrophysics Data System (ADS)
Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna
2013-03-01
Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support
Patterns of Change: Forces and Motion
ERIC Educational Resources Information Center
Phillips, Marianne; Jeffery, Tonya D.
2016-01-01
Patterns of Change: Forces and Motion is an integrated science lesson that uses the 5E lesson cycle to tie together science with language arts, mathematics, literature, technology, engineering and social studies in an engaging format applicable for young learners. This lesson has been uniquely designed for the purpose of providing elementary…
Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.
2014-01-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. PMID:24953242
Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F
2014-10-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. Copyright © 2014 Elsevier Inc. All rights reserved.
Structure, function, and engineering of enzymes in isoflavonoid biosynthesis.
Wang, Xiaoqiang
2011-03-01
Isoflavonoids are a large group of plant natural products and play important roles in plant defense. They also possess valuable health-promoting activities with significant health benefits for animals and humans. The isoflavonoids are identified primarily in leguminous plants and are synthesized through the central phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes. Structural studies of some key enzymes in the central phenylpropanoid pathway shed light on the early stages of the (iso)flavonoid biosynthetic process. Significant impact has also been made on structural studies of enzymes in the isoflavonoid branch pathways. Structures of isoflavonoid-specific NADPH-dependent reductases revealed how the (iso)flavonoid backbones are modified by reduction reactions and how enzymes specifically recognize isoflavonoids and catalyze stereo-specific reductions. Structural studies of isoflavonoid methyltransferases and glycosyltransferases revealed how isoflavonoids are further decorated with methyl group and sugars in different methylation and glycosylation patterns that determine their bioactivities and functions. In combination with mutagenesis and biochemical studies, the detailed structural information of these enzymes provides a basis for understanding the complex biosynthetic process, enzyme catalytic mechanisms, and substrate specificities. Structure-based homology modeling facilitates the functional characterization of these large groups of biosynthetic enzymes and their homologs. Structure-based enzyme engineering is becoming a new strategy for synthesis of bioactive isoflavonoids and also facilitates plant metabolic engineering towards improvement of quality and production of crop plants.
Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
Sundelacruz, Sarah; Kaplan, David L.
2009-01-01
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them towards targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how an osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro. PMID:19508851
Cavo, Marta; Scaglione, Silvia
2016-11-01
The really nontrivial goal of tissue engineering is combining all scaffold micro-architectural features, affecting both fluid-dynamical and mechanical performance, to obtain a fully functional implant. In this work we identified an optimal geometrical pattern for bone tissue engineering applications, best balancing several graft needs which correspond to competing design goals. In particular, we investigated the occurred changes in graft behavior by varying pore size (300μm, 600μm, 900μm), interpore distance (equal to pore size or 300μm fixed) and pores interconnection (absent, 45°-oriented, 90°-oriented). Mathematical considerations and Computational Fluid Dynamics (CFD) tools, here combined in a complete theoretical model, were carried out to this aim. Poly-lactic acid (PLA) based samples were realized by 3D printing, basing on the modeled architectures. A collagen (COL) coating was also realized on grafts surface and the interaction between PLA and COL, besides the protein contribution to graft bioactivity, was evaluated. Scaffolds were extensively characterized; human articular cells were used to test their biocompatibility and to evaluate the theoretical model predictions. Grafts fulfilled both the chemical and physical requirements. Finally, a good agreement was found between the theoretical model predictions and the experimental data, making these prototypes good candidates for bone graft replacements. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone
NASA Astrophysics Data System (ADS)
Khorram, Saeed; Ergil, Mustafa
2018-03-01
A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.
SSME HPOTP post-test diagnostic system enhancement project
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.
1995-01-01
An assessment of engine and component health is routinely made after each test or flight firing of a space shuttle main engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project is to further develop a computer program which automates the analysis of test data from the SSME high-pressure oxidizer turbopump (HPOTP) in order to detect and diagnose anomalies. This program fits into a larger system, the SSME Post-Test Diagnostic System (PTDS), which will eventually be extended to assess the health and status of most SSME components on the basis of test data analysis. The HPOTP module is an expert system, which uses 'rules-of-thumb' obtained from interviews with experts from NASA Marshall Space Flight Center (MSFC) to detect and diagnose anomalies. Analyses of the raw test data are first performed using pattern recognition techniques which result in features such as spikes, shifts, peaks, and drifts being detected and written to a database. The HPOTP module then looks for combination of these features which are indicative of known anomalies, using the rules gathered from the turbomachinery experts. Results of this analysis are then displayed via a graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.
The Effects of Low-Level Ethanol Blends in 4-Stroke Small Non-Road Engines
NASA Astrophysics Data System (ADS)
Reek, Chris
Small Non-Road Engines (SNRE's) abound in numbers and are used daily by consumers and businesses alike. Considering the atmosphere of change looming in the air regarding alternative fuels, this particular engine classification will also be affected by any change in standardization of fuels. This body of research attempts to address possible ways SNRE's can change their operational characteristics after being fueled by specific yet differing fuels. These characteristics will be contrasted against blends of ethanol with gasoline, from 0% ethanol to 20% ethanol, run on test engines to determine patterns, if any, of these characteristics. Topics include: materials compatibility, engine longevity/durability, engine performance, emissions characteristics, operational temperatures, engine oil characteristics, and inspection of engines. These parameters will be used to compare the effects of low-level blends of ethanol with gasoline has on these particular SNRE's.
NASA Astrophysics Data System (ADS)
Rasel, Sheikh Md
We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites containing 0, 5, 10, and 20 wt % of fillers. Morphological analyses carried out by digital optical microscope, scanning electron microscopy, x-ray computed tomography, and Fourier transform infrared spectroscopy, confirmed the presence and well dispersion of fillers in the composites. In addition, improvement of mechanical properties with increased filler content further emphasized the adhesion between matrix and reinforcement. PVA with 20 wt % wollastonite composite exhibited the highest tensile strength (11.99 MPa) and tensile module (198 MPa) as compared to pure PVA (3.92 MPa and 83 MPa, respectively). Moreover, the thermal tests demonstrated that there is no major deviation in the thermal stability due to the addition of wollastonite in PVA scaffolds. Almost similar trend was observed in PVA/wood flour nanocomposites where tensile strength improved by 228 % for 20 wt % of reinforcement. The PVA/wollastonite and PVA/wood flour fibrous nanocomposite which poses higher mechanical properties might be potentially suitable for many advanced applications such as filtration, tissue engineering, and food processing. We believe this study will contribute to further scientific understanding of the patterning mechanism of electrospun nanofibers and to allow for variety of design of specific patterned nanofibrous architectures with desired functional properties. Therefore, this improved scheme of electrospinning can have significant impact in a broad range of applications including tissue engineering scaffolds, filtrations, and nanoelectronics.
NASA Astrophysics Data System (ADS)
Weiser, Jennifer Rose
The creation of new devices and materials with desirable biomedical characteristics, such as biocompatibility and easily tunable physico-chemical parameters, has played a key role in the advancement of the biomedical industry. In recent years, the combination of classical engineering principles with polymer chemistry has led to a wide range of materials that influence the manner in which drugs are delivered, tissues are engineered, and surgery is performed. The work presented in this thesis is focused on the design, synthesis, and characterization of a poly(carbonate-ester) biomaterial based on lactic acid (LA) and a carbonate form of dihydroxyacetone (DHAC) as vehicles for controlled release. The goal of this work was to synthesize a variety of pLAx- co-DHACy copolymers and characterize their behavior to better understand their structure/function relationships. The results show that random copolymers based on dihydroxyacetone and lactic acid are easily and reliably producible, with unique characteristics. In vitro degradation studies showed that the poly(carbonate-ester)s had an unexpected degradation pattern, in that the carbonate bond was more labile to hydrolysis than that of the ester bond. The resulting degradation pattern made from these biomaterials did not appear to have an acidic interior environment, due to a lack of visible viscous core commonly seen with bulk degrading lactic acid based polymers. Due to the insolubility of the poly(carbonate-ester)s, exploration of copolymer degradation was determined by the development of a newly discovered technique to quantify dihydroxyacetone release from the matrix using the bicinchoninic acid assay. Finally, the release kinetics and mechanism from these poly(carbonate-ester)s was studied following the incorporation of two different model proteins, bovine serum albumin and lysozyme. Their release behaviors and activities were analyzed to explore the controlled release capabilities of these materials and to identify their potential for the effective release of proteins.
Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications.
Kannan, R M; Nance, E; Kannan, S; Tomalia, D A
2014-12-01
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine. © 2014 The Association for the Publication of the Journal of Internal Medicine.
NASA Technical Reports Server (NTRS)
Russell, Louis M.; Hippensteele, Steven A.
1991-01-01
Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.
Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.
Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916
Virtual odors to transmit emotions in virtual agents
NASA Astrophysics Data System (ADS)
Delgado-Mata, Carlos; Aylett, Ruth
2003-04-01
In this paper we describe an emotional-behvioral architecture. The emotional engine sits at a higher layer than the behavior system, and can alter behavior patterns, the engine is designed to simulate Emotionally-Intelligent Agents in a Virtual Environment, where each agent senses its own emotions, and other creature emotions through a virtual smell sensor; senses obstacles and other moving creatures in the environment and reacts to them. The architecture consists of an emotion engine, behavior synthesis system, a motor layer and a library of sensors.
Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1999-01-01
Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.
Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.
Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R
2016-04-01
Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.
A probabilistic approach to randomness in geometric configuration of scalable origami structures
NASA Astrophysics Data System (ADS)
Liu, Ke; Paulino, Glaucio; Gardoni, Paolo
2015-03-01
Origami, an ancient paper folding art, has inspired many solutions to modern engineering challenges. The demand for actual engineering applications motivates further investigation in this field. Although rooted from the historic art form, many applications of origami are based on newly designed origami patterns to match the specific requirenments of an engineering problem. The application of origami to structural design problems ranges from micro-structure of materials to large scale deployable shells. For instance, some origami-inspired designs have unique properties such as negative Poisson ratio and flat foldability. However, origami structures are typically constrained by strict mathematical geometric relationships, which in reality, can be easily violated, due to, for example, random imperfections introduced during manufacturing, or non-uniform deformations under working conditions (e.g. due to non-uniform thermal effects). Therefore, the effects of uncertainties in origami-like structures need to be studied in further detail in order to provide a practical guide for scalable origami-inspired engineering designs. Through reliability and probabilistic analysis, we investigate the effect of randomness in origami structures on their mechanical properties. Dislocations of vertices of an origami structure have different impacts on different mechanical properties, and different origami designs could have different sensitivities to imperfections. Thus we aim to provide a preliminary understanding of the structural behavior of some common scalable origami structures subject to randomness in their geometric configurations in order to help transition the technology toward practical applications of origami engineering.
Engineering support activities for the Apollo 17 Surface Electrical Properties Experiment.
NASA Technical Reports Server (NTRS)
Cubley, H. D.
1972-01-01
Description of the engineering support activities which were required to ensure fulfillment of objectives specified for the Apollo 17 SEP (Surface Electrical Properties) Experiment. Attention is given to procedural steps involving verification of hardware acceptability to the astronauts, computer simulation of the experiment hardware, field trials, receiver antenna pattern measurements, and the qualification test program.
Finding Patterns of Emergence in Science and Technology
2012-09-24
formal evaluation scheduled – Case Studies, Eight Examples: Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms, RNAi...emerging capabilities Case Studies, Eight Examples: • Tissue Engineering, Cold Fusion, RF Metamaterials, DNA Microarrays, Genetic Algorithms...Evidence Quality (i.e., the rubric ) and deliver comprehensible evidential support for nomination • Demonstrate proof-of-concept nomination for Chinese
ERIC Educational Resources Information Center
de Oliveira, Clara Amelia; Conte, Marcos Fernando; Riso, Bernardo Goncalves
This work presents a proposal for Teaching/Learning, on Object Oriented Programming for Entry Level Courses of Engineering and Computer Science, on University. The philosophy of Object Oriented Programming comes as a new pattern of solution for problems, where flexibility and reusability appears over the simple data structure and sequential…
Big Data Characterization of Learner Behaviour in a Highly Technical MOOC Engineering Course
ERIC Educational Resources Information Center
Douglas, Kerrie A.; Bermel, Peter; Alam, Md Monzurul; Madhavan, Krishna
2016-01-01
MOOCs attract a\tlarge\tnumber of learners with largely unknown diversity in terms of motivation,\tability, and goals. To understand more\tabout learners in highly technical engineering MOOCs,\tthis study investigates patterns of learners' (n = 337) behaviour and performance in the Nanophotonic Modelling MOOC, offered through nanoHUB-U. The authors…
ERIC Educational Resources Information Center
Gime´nez, Javier
2015-01-01
The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…
Engineering High Assurance Distributed Cyber Physical Systems
2015-01-15
decisions: number of interacting agents and co-dependent decisions made in real-time without causing interference . To engineer a high assurance DART...environment specification, architecture definition, domain-specific languages, design patterns, code - generation, analysis, test-generation, and simulation...include synchronization between the models and source code , debugging at the model level, expression of the design intent, and quality of service
Effect of steady flight loads on JT9D-7 performance deterioration
NASA Technical Reports Server (NTRS)
Jay, A.; Todd, E. S.
1978-01-01
Short term engine deterioration occurs in less than 250 flights on a new engine and in the first flights following engine repair; while long term deterioration involves primarily hot section distress and compression system losses which occur at a somewhat slower rate. The causes for short-term deterioration are associated with clearance changes which occur in the flight environment. Analytical techniques utilized to examine the effects of flight loads and engine operating conditions on performance deterioration are presented. The role of gyroscopic, gravitational, and aerodynamic loads are discussed along with the effect of variations in engine build clearances. These analytical results are compared to engine test data along with the correlation between analytically predicted and measured clearances and rub patterns. Conclusions are drawn and important issues are discussed.
Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.
Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang
2016-12-01
E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.
Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J
2013-08-21
In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.
Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong
2015-06-01
A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.
A hybrid multigroup neutron-pattern model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.; Haller, William J.; Seidel, Jonathan A.
2016-01-01
This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets.
ERIC Educational Resources Information Center
Cheng, Katherine C.
2017-01-01
Built upon Control Value Theory, this dissertation consists of two studies that examine university students' future-oriented motivation, socio-emotional regulation, and diurnal cortisol patterns in understanding students' well-being in the academic-context. Study 1 examined the roles that Learning-related Hopelessness and Future Time Perspective…
Active Surfaces and Interfaces of Soft Materials
NASA Astrophysics Data System (ADS)
Wang, Qiming
A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.
Cell patterning by laser-assisted bioprinting.
Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien
2014-01-01
The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.
Deiner, Michael S.; Lietman, Thomas M.; McLeod, Stephen D.; Chodosh, James; Porco, Travis C.
2016-01-01
IMPORTANCE Internet-based search engine and social media data may provide a novel complementary source for better understanding the epidemiologic factors of infectious eye diseases, which could better inform eye health care and disease prevention. OBJECTIVE To assess whether data from internet-based social media and search engines are associated with objective clinic-based diagnoses of conjunctivitis. DESIGN, SETTING, AND PARTICIPANTS Data from encounters of 4143 patients diagnosed with conjunctivitis from June 3, 2012, to April 26, 2014, at the University of California San Francisco (UCSF) Medical Center, were analyzed using Spearman rank correlation of each weekly observation to compare demographics and seasonality of nonallergic conjunctivitis with allergic conjunctivitis. Data for patient encounters with diagnoses for glaucoma and influenza were also obtained for the same period and compared with conjunctivitis. Temporal patterns of Twitter and Google web search data, geolocated to the United States and associated with these clinical diagnoses, were compared with the clinical encounters. The a priori hypothesis was that weekly internet-based searches and social media posts about conjunctivitis may reflect the true weekly clinical occurrence of conjunctivitis. MAIN OUTCOMES AND MEASURES Weekly total clinical diagnoses at UCSF of nonallergic conjunctivitis, allergic conjunctivitis, glaucoma, and influenza were compared using Spearman rank correlation with equivalent weekly data on Tweets related to disease or disease-related keyword searches obtained from Google Trends. RESULTS Seasonality of clinical diagnoses of nonallergic conjunctivitis among the 4143 patients (2364 females [57.1%] and 1776 males [42.9%]) with 5816 conjunctivitis encounters at UCSF correlated strongly with results of Google searches in the United States for the term pink eye (ρ, 0.68 [95%CI, 0.52 to 0.78]; P < .001) and correlated moderately with Twitter results about pink eye (ρ, 0.38 [95%CI, 0.16 to 0.56]; P < .001) and with clinical diagnosis of influenza (ρ, 0.33 [95%CI, 0.12 to 0.49]; P < .001), but did not significantly correlate with seasonality of clinical diagnoses of allergic conjunctivitis diagnosis at UCSF (ρ, 0.21 [95%CI, −0.02 to 0.42]; P = .06) or with results of Google searches in the United States for the term eye allergy (ρ, 0.13 [95%CI, −0.06 to 0.32]; P = .19). Seasonality of clinical diagnoses of allergic conjunctivitis at UCSF correlated strongly with results of Google searches in the United States for the term eye allergy (ρ, 0.44 [95%CI, 0.24 to 0.60]; P < .001) and eye drops (ρ, 0.47 [95%CI, 0.27 to 0.62]; P < .001). CONCLUSIONS AND RELEVANCE Internet-based search engine and social media data may reflect the occurrence of clinically diagnosed conjunctivitis, suggesting that these data sources can be leveraged to better understand the epidemiologic factors of conjunctivitis. PMID:27416554
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Li, Yubo; Wang, Pengtao; Hua, Fei; Zhan, Shijie; Wang, Xiaozhi; Luo, Jikui; Yang, Hangsheng
2018-03-01
Electronic properties of cubic boron nitride (c-BN) doped with group IIA elements were systematically investigated using the first principle calculation based on density functional theory. The electronic bandgap of c-BN was found to be narrowed when the impurity atom substituted either the B (IIA→B) or the N (IIA→N) atom. For IIA→B, a shallow accept level degenerated into valence band (VB); while for IIA→N, a shallow donor level degenerated conduction band (CB). In the cases of IIBe→N and IIMg→N, deep donor levels were also induced. Moreover, a zigzag bandgap narrowing pattern was found, which is in consistent with the variation pattern of dopants' radius of electron occupied outer s-orbital. From the view of formation energy, the substitution of B atom under N-rich conditions and the substitution of N atom under B-rich conditions were energetically favored. Our simulation results suggested that Mg and Ca are good candidates for p-type dopants, and Ca is the best candidate for n-type dopant.
Remodeling a tissue: subtraction adds insight.
Axelrod, Jeffrey D
2012-11-27
Sculpting a body plan requires both patterning of gene expression and translating that pattern into morphogenesis. Developmental biologists have made remarkable strides in understanding gene expression patterning, but despite a long history of fascination with the mechanics of morphogenesis, knowledge of how patterned gene expression drives the emergence of even simple shapes and forms has grown at a slower pace. The successful merging of approaches from cell biology, developmental biology, imaging, engineering, and mathematical and computational sciences is now accelerating progress toward a fuller and better integrated understanding of the forces shaping morphogenesis.
The design and implementation of EPL: An event pattern language for active databases
NASA Technical Reports Server (NTRS)
Giuffrida, G.; Zaniolo, C.
1994-01-01
The growing demand for intelligent information systems requires closer coupling of rule-based reasoning engines, such as CLIPS, with advanced data base management systems (DBMS). For instance, several commercial DBMS now support the notion of triggers that monitor events and transactions occurring in the database and fire induced actions, which perform a variety of critical functions, including safeguarding the integrity of data, monitoring access, and recording volatile information needed by administrators, analysts, and expert systems to perform assorted tasks; examples of these tasks include security enforcement, market studies, knowledge discovery, and link analysis. At UCLA, we designed and implemented the event pattern language (EPL) which is capable of detecting and acting upon complex patterns of events which are temporally related to each other. For instance, a plant manager should be notified when a certain pattern of overheating repeats itself over time in a chemical process; likewise, proper notification is required when a suspicious sequence of bank transactions is executed within a certain time limit. The EPL prototype is built in CLIPS to operate on top of Sybase, a commercial relational DBMS, where actions can be triggered by events such as simple database updates, insertions, and deletions. The rule-based syntax of EPL allows the sequences of goals in rules to be interpreted as sequences of temporal events; each goal can correspond to either (1) a simple event, or (2) a (possibly negated) event/condition predicate, or (3) a complex event defined as the disjunction and repetition of other events. Various extensions have been added to CLIPS in order to tailor the interface with Sybase and its open client/server architecture.
Defect-Induced Hedgehog Polarization States in Multiferroics
NASA Astrophysics Data System (ADS)
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing
2018-03-01
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Spatial Patterns of Carbonate Biomineralization in Biofilms
Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.
2015-01-01
Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112
Nanoscale chemical imaging by photoinduced force microscopy
Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung
2016-01-01
Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870
Defect-Induced Hedgehog Polarization States in Multiferroics.
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing
2018-03-30
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Temporal abstraction-based clinical phenotyping with Eureka!
Post, Andrew R; Kurc, Tahsin; Willard, Richie; Rathod, Himanshu; Mansour, Michel; Pai, Akshatha Kalsanka; Torian, William M; Agravat, Sanjay; Sturm, Suzanne; Saltz, Joel H
2013-01-01
Temporal abstraction, a method for specifying and detecting temporal patterns in clinical databases, is very expressive and performs well, but it is difficult for clinical investigators and data analysts to understand. Such patterns are critical in phenotyping patients using their medical records in research and quality improvement. We have previously developed the Analytic Information Warehouse (AIW), which computes such phenotypes using temporal abstraction but requires software engineers to use. We have extended the AIW's web user interface, Eureka! Clinical Analytics, to support specifying phenotypes using an alternative model that we developed with clinical stakeholders. The software converts phenotypes from this model to that of temporal abstraction prior to data processing. The model can represent all phenotypes in a quality improvement project and a growing set of phenotypes in a multi-site research study. Phenotyping that is accessible to investigators and IT personnel may enable its broader adoption.
Nanopatterned reconfigurable spin-textures for magnonics
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).
Joerg, Alexandre; Vignaux, Mael; Lumeau, Julien
2016-08-01
A new alternative and versatile method for the production of diffractive optical elements (DOEs) with up to four phase levels in AMTIR-1 (Ge33As12Se55) layers is demonstrated. The developed method proposes the use of the photosensitive properties of the layers and a specific in situ optical monitoring coupled with a reverse engineering algorithm to control the trigger points of the writing of the different diffractive patterns. Examples of various volume DOEs are presented.
2015-05-18
solar cell based on the PEDOT: PSS hole transport layer and PCBM electron transport layer...of a solar cell 10 X-‐ray diffraction patterns collected in...the UTEP facility on hybrid samples of CeO2/porous
Reflow dynamics of thin patterned viscous films
NASA Astrophysics Data System (ADS)
Leveder, T.; Landis, S.; Davoust, L.
2008-01-01
This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.
Vander Lugt correlation of DNA sequence data
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Hawk, James F.; Martin, James C.
1990-12-01
DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.
NASA Astrophysics Data System (ADS)
Xie, Xing Long; Xian Xue, Wei
2017-12-01
The aim of this study is to qualitatively and quantitatively explore an energy engineering model termed quaternity-dominating pattern emerging in North China’s countryside. This study finds methane produced in this model serves household activities such as cooking, inducing reduction of coal or biomass spending, which otherwise would provoke air pollution, water loss and land erosion, and ultimately leading to ecological environment betterment. Additionally, this project generates byproducts, biogas liquids and residuals, which can, as a category of fertilizer, can promote straightening of fertility preservation capacity and improvement in the chemical and physical quality of land as well as increasing crop output and quality. This study also finds this engineering could encourage social stability via efficiently allocating bucolic surplus labor during winter and successful running this engineering project would trigger an increase of scientific and technological qualifications for rural citizens. Moreover, cost-profit analysis indicates this pattern can allow one rural home to obtain access to a hygienic energy resource of biogas in the yearly volume of 375m3, generate annual net earnings of US3458.82 and make investment return in about 2.73 years. Especially for poverty-stricken areas, this energy engineering project enjoys high values and great significance, which can lift these impoverished areas from poverty both in economics and energy. The paper concludes with pointing out practical proposals on launching and operating this energy engineering project.
Micro to Nanoscale Engineering of Surface Precipitates Using Reconfigurable Contact Lines.
Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi
2018-02-06
Nanoscale engineering has traditionally adopted the chemical route of synthesis or optochemical techniques such as lithography requiring large process times, expensive equipment, and an inert environment. Directed self-assembly using evaporation of nanocolloidal droplet can be a potential low-cost alternative across various industries ranging from semiconductors to biomedical systems. It is relatively simple to scale and reorient the evaporation-driven internal flow field in an evaporating droplet which can direct dispersed matter into functional agglomerates. The resulting functional precipitates not only exhibit macroscopically discernible changes but also nanoscopic variations in the particulate assembly. Thus, the evaporating droplet forms an autonomous system for nanoscale engineering without the need for external resources. In this article, an indigenous technique of interfacial re-engineering, which is both simple and inexpensive to implement, is developed. Such re-engineering widens the horizon for surface patterning previously limited by the fixed nature of the droplet interface. It involves handprinting hydrophobic lines on a hydrophilic substrate to form a confinement of any selected geometry using a simple document stamp. Droplets cast into such confinements get modulated into a variety of shapes. The droplet shapes control the contact line behavior, evaporation dynamics, and complex internal flow pattern. By exploiting the dynamic interplay among these variables, we could control the deposit's macro- as well as nanoscale assembly not possible with simple circular droplets. We provide a detailed mechanism of the coupling at various length scales enabling a predictive capability in custom engineering, particularly useful in nanoscale applications such as photonic crystals.
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
[Development of expert diagnostic system for common respiratory diseases].
Xu, Wei-hua; Chen, You-ling; Yan, Zheng
2014-03-01
To develop an internet-based expert diagnostic system for common respiratory diseases. SaaS system was used to build architecture; pattern of forward reasoning was applied for inference engine design; ASP.NET with C# from the tool pack of Microsoft Visual Studio 2005 was used for website-interview medical expert system.The database of the system was constructed with Microsoft SQL Server 2005. The developed expert system contained large data memory and high efficient function of data interview and data analysis for diagnosis of various diseases.The users were able to perform this system to obtain diagnosis for common respiratory diseases via internet. The developed expert system may be used for internet-based diagnosis of various respiratory diseases,particularly in telemedicine setting.
NASA Astrophysics Data System (ADS)
Plotnikov, L. V.
2017-09-01
Comparison of experimental research results of gas dynamics and instantaneous local heat transfer in the intake pipes for piston internal combustion engines (ICE) without and with supercharging are presented in the article. Studies were conducted on full-scale experimental setups in terms of gas dynamic nonstationarity, which is characteristic of piston engines. It has been established that the turbocharger installation in a gas-air system of piston internal combustion engine leads to significant differences in the patterns of change in gas-dynamic and heat transfer characteristics of flows. These data can be used in a modernization of piston engines due to installation of a turbocharger or in a development of gas-air systems for piston ICE with supercharging.
Some effects of time usage patterns on the productivity of engineers
NASA Technical Reports Server (NTRS)
Jackson, Conrad N.
1992-01-01
The performance of the 1500+ engineers at MSFC is critical to the Center's mission. Worker's performance, however, is a variable affected by ability, motivation, role understanding, and other factors. Managing subordinates' performance is a great challenges to managers. Special challenges confront the managers of engineers because engineers often work with general goals, long deadlines, and considerable autonomy. The productivity of a team or branch is a function of the productivity of each of its members. While many managers have personal theories about how to run their work group, surprisingly little systematic scientific knowledge exerts about the effects of various factors on engineers' productivity. This study is intended to help lay the foundation for such a program of research.
Laser Engineered Graphene Paper for Mass Spectrometry Imaging
Qian, Kun; Zhou, Liang; Liu, Jian; Yang, Jie; Xu, Hongyi; Yu, Meihua; Nouwens, Amanda; Zou, Jin; Monteiro, Michael J.; Yu, Chengzhong
2013-01-01
A pulsed laser engineering approach is developed to prepare novel functional graphene paper with graphitic nanospheres homogeneously decorated on the surface and the superior performance of engineered paper is revealed in matrix-free mass spectrometry (MS) detection and imaging. We demonstrate that the stability of graphene paper under intense irradiation can be dramatically increased through a designed laser engineering process by forming densely packed graphitic nanospheres on the paper surface. Moreover, the surface hydrophobicity is enhanced and electric conductivity is improved. The engineered graphene paper can image the invisible micro-patterns of trace amount molecules and increases the detection limit towards diverse molecules by over two orders of magnitude compared to the pristine graphene paper and commercial products in MS analysis. PMID:23475267
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine
NASA Astrophysics Data System (ADS)
Zlinszky, András; Supan, Peter; Koma, Zsófia
2017-04-01
Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean but also inland lake situations for MODIS and MERIS satellite sensor data. In addition to being relatively robust and less sensitive to atmospheric influence, this algorithm is also very simple, being based on the height of the 680 nm peak above the linear interpolation of the two neighbouring bands. However, not all satellite datasets suitable for FLH are catalogued for GoogleEarth Engine. In the current testing phase, Landsat 7, Landsat 8 (30 m resolution), and Sentinel 2 (20 m) are being tested. Landsat 7 has suitable band configuration, but has a strip error due to a sensor problem. Landsat 8 and Sentinel 2 lack a single spectral optimal for FLH. Sentinel 3 would be an optimal data source and has shown good performace during small-scale initial tests, but is not distributed globally for GoogleEarth Engine. In addition to FLH data from these satellites, our system delivers cloud and ice masking, qualitative suspended sediment data (based on the band closest to 600 nm) and true colour images, all within an easy-to-use Google Maps background. This allows on-demand understanding and interpretation of water quality patterns and processes in near real time. While the system is still under development, we believe it could significantly contribute to lake water quality management and monitoring worldwide.
Making Temporal Search More Central in Spatial Data Infrastructures
NASA Astrophysics Data System (ADS)
Corti, P.; Lewis, B.
2017-10-01
A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.
Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices
Li, Yanfen
2016-01-01
Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366
Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
NASA Technical Reports Server (NTRS)
Schmidt, Conrad K.
2013-01-01
Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.
Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials
NASA Astrophysics Data System (ADS)
Ma, Teng
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ˜100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.
ERIC Educational Resources Information Center
Eddy, Sarah L.; Brownell, Sara E.
2016-01-01
This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…
A New Archive and Internet Search Engine May Change the Nature of On-Line Research.
ERIC Educational Resources Information Center
Selingo, Jeffrey
1998-01-01
In the process of trying to preserve Internet history by archiving it, a company has developed a powerful Internet search engine that provides information on Web site usage patterns, which can act as a relatively objective source of information about information sources and can link sources that a researcher might otherwise miss. However, issues…
Participatory Classification in a System for Assessing Multimodal Transportation Patterns
2015-02-17
Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes
2012-01-01
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
Cho, Yongrae; Kim, Minsung
2014-01-01
The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary patterns of technological convergence provide some implications for engineering and technology foresight research, as well as for corporate strategy and technology policy. PMID:24914959
The MPGD-based photon detectors for the upgrade of COMPASS RICH-1
NASA Astrophysics Data System (ADS)
Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.
2017-12-01
The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.
Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators
NASA Astrophysics Data System (ADS)
Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel
2017-12-01
The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.
Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls
NASA Technical Reports Server (NTRS)
Anastasiadis, Stergios
1991-01-01
Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.
NASA Technical Reports Server (NTRS)
Richey, Albert E.; Huang, Shyan-Cherng
1987-01-01
The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.
An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights
NASA Technical Reports Server (NTRS)
David, D.
1983-01-01
Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.
Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.
Sánchez-Pascuala, Alberto; Nikel, Pablo I; de Lorenzo, Víctor
2018-01-01
The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).
Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C
2012-09-04
Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.
MBSE-Driven Visualization of Requirements Allocation and Traceability
NASA Technical Reports Server (NTRS)
Jackson, Maddalena; Wilkerson, Marcus
2016-01-01
In a Model Based Systems Engineering (MBSE) infusion effort, there is a usually a concerted effort to define the information architecture, ontologies, and patterns that drive the construction and architecture of MBSE models, but less attention is given to the logical follow-on of that effort: how to practically leverage the resulting semantic richness of a well-formed populated model to enable systems engineers to work more effectively, as MBSE promises. While ontologies and patterns are absolutely necessary, an MBSE effort must also design and provide practical demonstration of value (through human-understandable representations of model data that address stakeholder concerns) or it will not succeed. This paper will discuss opportunities that exist for visualization in making the richness of a well-formed model accessible to stakeholders, specifically stakeholders who rely on the model for their day-to-day work. This paper will discuss the value added by MBSE-driven visualizations in the context of a small case study of interactive visualizations created and used on NASA's proposed Europa Mission. The case study visualizations were created for the purpose of understanding and exploring targeted aspects of requirements flow, allocation, and comparing the structure of that flow-down to a conceptual project decomposition. The work presented in this paper is an example of a product that leverages the richness and formalisms of our knowledge representation while also responding to the quality attributes SEs care about.