Science.gov

Sample records for patterns water quality

  1. Determining regional water quality patterns and their ecological relationships

    NASA Astrophysics Data System (ADS)

    McDaniel, Tim W.; Hunsaker, Carolyn T.; Beauchamp, John J.

    1987-08-01

    A multivariate statistical method for analyzing spatial patterns of water quality in Georgia and Kansas was tested using data in the US Environmental Protection Agency's STORET data system. Water quality data for Georgia and Kansas were organized by watersheds. We evaluated three questions: (a) can distinctive regional water quality patterns be detected and predicted using only a few water quality variables, (b) are regional water quality patterns correlated with terrestrial biotic regions, and (c) are regional water quality patterns correlated with fish distributions? Using existing data, this method can distinguish regions with water quality very different from the average conditions (as in Georgia), but it does not discriminate well between regions that do not have diverse water quality conditions (as in Kansas). Data that are spatially and temporally adequate for representing large regions and for multivariate statistical analysis are available for only a few common water quality parameters. Regional climate, lithology, and biotic regimes all have the potential to affect water quality, and terrestrial biotic regions and fish distributions do compare with regional water quality patterns, especially in a state like Georgia, where watershed characteristics are diverse. Thus, identifiable relationships between watershed characteristics and water quality should allow the development of an integrated landaquatic classification system that would be a valuable tool for resource management. Because geographical distributions of species may be limited by Zoogeographic and environmental factors, the recognition of patterns in fish distributions that correlate with regional water quality patterns could influence management strategies and aid regional assessments.

  2. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods.

  3. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods. PMID:26592651

  4. National patterns in wetland water quality from the 2001 NWCA

    EPA Science Inventory

    Water quality (WQ) is central to understanding ecological condition of lakes, streams, and coastal waters but less often assessed in wetlands. The utility of national-scale wetland WQ data was examined in the 2011 National Wetland Condition Assessment, which covered 48 USA state...

  5. [Relationships between landscape pattern and water quality at western reservoir area in Shenzhen City].

    PubMed

    Yue, Jun; Wang, Yang-lin; Li, Gui-cai; Wu, Jian-sheng; Xie, Miao-miao

    2008-01-01

    In this paper, the relationships between landscape pattern and water quality at western reservoir area in Shenzhen City were studied with grey connection method, and the influences of source' and 'sink' landscape patterns on non-point pollution were probed. The results showed that the dominance, adjacency, and fragmentation of 'source' and 'sink' landscapes could markedly influence the water quality. From 2000 to 2001, due to the changes of the 'source' and 'sink' landscape patterns in research areas, the output of pollutants increased and the reduction of pollution decreased, resulting in the deterioration of water quality of three reservoirs. According to the spatial distribution of 'source' and 'sink' landscapes, it was found that the distribution of 'sink' landscapes at the middle-lower reaches of the watersheds had close relationships with the changes of reservoir water quality, suggesting that 'sink' landscape pattern was of significance in the management of non-point pollution.

  6. [Preliminary study on linking land use & landscape pattern and water quality in the Jiulong River watershed].

    PubMed

    Huang, Jin-Liang; Li, Qing-Sheng; Hong, Hua-Sheng; Lin, Jie; Qu, Meng-Chao

    2011-01-01

    Geospatial analysis and statistical analysis were integrated to link land use & landscape pattern and water quality in 2002 and 2007 at the entire watershed and buffer zone scale in the Jiulong River Watershed. Results show that the relationships between land use & landscape pattern and water quality in 2002 and 2007 were basically consistent, namely: (1) Percentage of built-up area was positively correlated with BOD5, NO3(-)-N, NH4(+)-N and permanganate index, and negatively correlated with DO; percentage of woodland area was positively correlated with NO3(-)-N, NH4(+)-N and permanganate index; percentage of cropland area was negatively correlated with NO3(-)-N, NH4(+)-N and permanganate index. (2) SHDI was positively correlated with permanganate index, TP, NH4(+)-N, and negatively correlated with DO at the entire watershed and buffer scale; LPI was negatively correlated with BOD5, permanganate index, TP and NH4(+)-N, and positively correlated with DO at the entire watershed and buffer zone scale; PD was positively correlated with BOD5, TP and NH4(+)-N; Most of the landscape pattern metrics was not the good predictors for water quality in study watershed. (3) Water quality parameters in buffer zone area have more significant correlations with percentage of land use type areas and landscape pattern metrics, because most water quality parameters in the buffer zone can be better explained with greater adjusted coefficient of determination (Adjusted R2). (4) Compared to landscape pattern metrics, percentage of land use type area can predict water quality better because most water quality parameters have more stable correlations.

  7. A practitioner's guide for exploring water quality patterns using principal components analysis and Procrustes.

    PubMed

    Sergeant, C J; Starkey, E N; Bartz, K K; Wilson, M H; Mueter, F J

    2016-04-01

    To design sustainable water quality monitoring programs, practitioners must choose meaningful variables, justify the temporal and spatial extent of measurements, and demonstrate that program objectives are successfully achieved after implementation. Consequently, data must be analyzed across several variables and often from multiple sites and seasons. Multivariate techniques such as ordination are common throughout the water quality literature, but methods vary widely and could benefit from greater standardization. We have found little clear guidance and open source code for efficiently conducting ordination to explore water quality patterns. Practitioners unfamiliar with techniques such as principal components analysis (PCA) are faced with a steep learning curve to summarize expansive data sets in periodic reports and manuscripts. Here, we present a seven-step framework for conducting PCA and associated tests. The last step is dedicated to conducting Procrustes analysis, a valuable but rarely used test within the water quality field that describes the degree of concordance between separate multivariate data matrices and provides residual values for similar points across each matrix. We illustrate the utility of these tools using three increasingly complex water quality case studies in US parklands. The case studies demonstrate how PCA and Procrustes analysis answer common applied monitoring questions such as (1) do data from separate monitoring locations describe similar water quality regimes, and (2) what time periods exhibit the greatest water quality regime variability? We provide data sets and annotated R code for recreating case study results and as a base for crafting new code for similar monitoring applications.

  8. A practitioner's guide for exploring water quality patterns using principal components analysis and Procrustes.

    PubMed

    Sergeant, C J; Starkey, E N; Bartz, K K; Wilson, M H; Mueter, F J

    2016-04-01

    To design sustainable water quality monitoring programs, practitioners must choose meaningful variables, justify the temporal and spatial extent of measurements, and demonstrate that program objectives are successfully achieved after implementation. Consequently, data must be analyzed across several variables and often from multiple sites and seasons. Multivariate techniques such as ordination are common throughout the water quality literature, but methods vary widely and could benefit from greater standardization. We have found little clear guidance and open source code for efficiently conducting ordination to explore water quality patterns. Practitioners unfamiliar with techniques such as principal components analysis (PCA) are faced with a steep learning curve to summarize expansive data sets in periodic reports and manuscripts. Here, we present a seven-step framework for conducting PCA and associated tests. The last step is dedicated to conducting Procrustes analysis, a valuable but rarely used test within the water quality field that describes the degree of concordance between separate multivariate data matrices and provides residual values for similar points across each matrix. We illustrate the utility of these tools using three increasingly complex water quality case studies in US parklands. The case studies demonstrate how PCA and Procrustes analysis answer common applied monitoring questions such as (1) do data from separate monitoring locations describe similar water quality regimes, and (2) what time periods exhibit the greatest water quality regime variability? We provide data sets and annotated R code for recreating case study results and as a base for crafting new code for similar monitoring applications. PMID:27021692

  9. Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model

    PubMed Central

    Xu, Shiguo; Wang, Tianxiang; Hu, Suduan

    2015-01-01

    Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results. PMID:25689998

  10. Spatial patterns of surface water quality in the Cértima River basin, central Portugal.

    PubMed

    Ferreira, Raquel Vasconcelos; Cerqueira, Mário Azevedo; de Melo, Maria Teresa Condesso; de Figueiredo, Daniela Rebelo; Keizer, Jan Jacob

    2010-01-01

    The Cértima River is the principal source of water flowing into the Pateira de Fermentelos, which is one of the largest natural lakes of the Iberian Peninsula and has elevated conservation value. This study aims at a more comprehensive understanding of the spatial pattern in water quality and, thus, pollution problems in and especially upstream of the Pateira, including a comparison with a prior study in 2003. To this end, surface water samples were collected, in May 2007, at 29 sites covering the basin's four main types of water bodies, and analysed for electrical conductivity, dissolved oxygen, biochemical oxygen demand, total suspended solids, various nitrogen species, orthophosphate and chlorophyll a. The results confirmed the existence of marked pollution along the middle section of the Cértima's main course, which can be attributed to wastewater discharges of urban and animal husbandry origin in particular. This represents an important eutrophication risk to the Pateira. Current legislation and water management does not appear to tackle this risk in an entirely satisfactory manner, since the spatial patterns as well as actual values of key physic-chemical parameters do not appear to have changed markedly between 2003 and 2007. Amongst the various parameters, biochemical oxygen demand stands out for frequently exceeding the legal water quality standards. The type of water body proved helpful to explain part of the variation in some of the parameters. This includes clear differences in electrical conductivity between the right- and left-bank tributaries, illustrating well the heterogeneous and complex character of the Cértima basin.

  11. Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa

    PubMed Central

    Houk, Peter; Musburger, Craig; Wiles, Phil

    2010-01-01

    Background Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. Methodology/Principal Findings This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Conclusions/Significance Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management. PMID:21085715

  12. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  13. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  14. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. PMID:25249478

  15. Discovering temporal patterns in water quality time series, focusing on floods with the LDA method

    NASA Astrophysics Data System (ADS)

    Hélène Aubert, Alice; Tavenard, Romain; Emonet, Rémi; Malinowski, Simon; Guyet, Thomas; Quiniou, René; Odobez, Jean-Marc; Gascuel-Odoux, Chantal

    2013-04-01

    Studying floods has been a major issue in hydrological research for years. It is often done in terms of water quantity but it is also of interest in terms of water quality. Stream chemistry is a mix of solutes. They originate from various sources in the catchment, reach the stream by various flow pathways and are transformed by biogeochemical reactions at different locations. Therefore, we hypothesized that reaction of the stream chemistry to a rainfall event is not unique but varies according to the season (1), and the global meteorological conditions of the year (2). Identifying a typology of temporal chemical patterns of reaction to a rainfall event is a way to better understand catchment processes at the flood time scale. To answer this issue, we applied a probabilistic model (Latent Dirichlet Allocation or LDA (3)) mining recurrent sequential patterns to a dataset of floods. The dataset is 12 years long and daily recorded. It gathers a broad range of parameters from which we selected rainfall, discharge, water table depth, temperature as well as nitrate, dissolved organic carbon, sulphate and chloride concentrations. It comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. A set of 472 floods was automatically extracted (4). From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture

  16. Seasonal Variation of Water Quality and Phytoplankton Response Patterns in Daya Bay, China

    PubMed Central

    Sun, Cui-Ci; Wang, You-Shao; Wu, Mei-Lin; Dong, Jun-De; Wang, Yu-Tu; Sun, Fu-Lin; Zhang, Yan-Ying

    2011-01-01

    Data collected from 12 stations in Daya Bay in different seasons in 2002 revealed the relation between water quality and phytoplankton response patterns. The results showed that Daya Bay could be divided into wet and dry seasons by multivariate statistical analysis. Principal component analysis indicated that temperature, chlorophyll a and nutrients were important components during the wet season (summer and autumn). The salinity and dissolved oxygen were the main environmental factors in the dry season (winter and spring). According to non-metric multidimensional scaling, there was a shift from the large diatoms in the dry season to the smaller line-chain taxa in the wet season with the condition of a high dissolved inorganic nitrogen and nitrogen to phosphorous concentration ratio. Nutrient changes can thus alter the phytoplankton community composition and biomass, especially near the aquaculture farm areas. There was no evidence of an effect of thermal water from the nearby nuclear power plants on the observed changes in phytoplankton community and biomass in 2002. PMID:21845168

  17. Seasonal variation of water quality and phytoplankton response patterns in Daya Bay, China.

    PubMed

    Sun, Cui-Ci; Wang, You-Shao; Wu, Mei-Lin; Dong, Jun-De; Wang, Yu-Tu; Sun, Fu-Lin; Zhang, Yan-Ying

    2011-07-01

    Data collected from 12 stations in Daya Bay in different seasons in 2002 revealed the relation between water quality and phytoplankton response patterns. The results showed that Daya Bay could be divided into wet and dry seasons by multivariate statistical analysis. Principal component analysis indicated that temperature, chlorophyll a and nutrients were important components during the wet season (summer and autumn). The salinity and dissolved oxygen were the main environmental factors in the dry season (winter and spring). According to non-metric multidimensional scaling, there was a shift from the large diatoms in the dry season to the smaller line-chain taxa in the wet season with the condition of a high dissolved inorganic nitrogen and nitrogen to phosphorous concentration ratio. Nutrient changes can thus alter the phytoplankton community composition and biomass, especially near the aquaculture farm areas. There was no evidence of an effect of thermal water from the nearby nuclear power plants on the observed changes in phytoplankton community and biomass in 2002.

  18. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  19. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  20. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons.

    PubMed

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-01-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  1. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    PubMed Central

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-01-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment. PMID:27147104

  2. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  3. Land use pattern and their impact on water quality in Bolgoda Lake basin- Sri Lanka

    NASA Astrophysics Data System (ADS)

    Piyadasa, Ranjana; Chandreasekara, Kanchana

    2010-05-01

    Water quality monitoring of a river can be used to define the existing conditions, detect trends and sources of pollution. The water quality of the Bolgoda river was studied by sampling the river water at eight locations along its course within Colombo district, Sri Lanka. Bolgoda basin has been mostly encroached grasslands and agricultural lands have been converted into commercial purposes due to urbanization. The Bolgoda river and lake receive water from rainfall. Water which falls within the catchment area accumulates in the Bolgoda basin and flows from the North Lake through the South Lake and finally into the Indian Ocean at Northern and Southern outfalls of the river. This water plays a role to reduce the pollution level and salinity level in the water body in the basin. Saline water intrusion in the river was studied to identify the variation of the salinity in the river during the 2008 August to 2009 January. The study revealed that the salinity and pH variation depends on the water flow direction in the basin and rainfall. Salinity intrusion and depletion of vegetation cover are the badly effect existence of endemic and rare species. It also affects the development of riverside community.

  4. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments.

    PubMed

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging

  5. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments

    PubMed Central

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging

  6. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    PubMed

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  7. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  8. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  9. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  10. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    PubMed

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.

  11. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    PubMed

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself. PMID:26691074

  12. Water-quality variability in San Francisco Bay: general patterns of change during 1997

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Baylosis, J.I.

    1999-01-01

    The 1997 Annual Report is the fifth Annual Report from the Regional Monitoring Program for Trace Substances (RMP) and contains a comprehensive description of RMP results from the 1997 monitoring year. As in previous years, the report includes results from the Base Program (water, sediment, and bivalve monitoring) and results from Pilot and Special Studies completed in 1997, in addition to an update on the RMP Five-Year Review implementation. It also includes papers contributed by RMP investigators and other scientists. These articles address related monitoring activities, and help to provide additional insight into contaminant patterns and the impacts of those contaminants on the San Francisco Estuary. The 1997 monitoring year proved to be an unusual one, with record-setting precipitation in December and January followed by unusually dry weather in February and March. These weather patterns had a visible effect on RMP results, frequently creating sharp contrasts in results between the first two sampling cruises of the year, and higher than normal contaminant concentrations at many RMP sampling sites in February. These results, and results from the other aspects of the RMP, are summarized below.

  13. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management.

    PubMed

    Li, Xuan; Huang, Tinglin; Ma, Weixing; Sun, Xin; Zhang, Haihan

    2015-07-15

    The seasonal variation of hydrological conditions caused by shifting rainfall patterns observed in recent years has significant effects on water quality. High-volume inflows following heavy rainfall events that significantly disturb stratification lead to increased dissolved oxygen (DO) at the bottom of the reservoir, inhibiting the release of nutrients from sediments and causing a rapid reduction of algal biomass in the reservoir. However, the duration and extent of these effects depend not only on the frequency and intensity of heavy rainfall events but also on the period of thermal stratification in the reservoir. The effects of heavy rainfall events on water quality during three typical stratification periods of the reservoir were systematically investigated using extensive field data. The continuous heavy rainfall that occurred in September 2011 (stratification began to diminish) completely mixed the reservoir and produced a high concentration of DO along with a low phytoplankton concentration throughout the reservoir until stratification occurred the following year. Conversely, several days were required for anoxic conditions (in the hypolimnion) and cyanobacterial blooms to reappear after the storm runoff that occurred during the stable period of stratification (August 2012). In addition, the heavy rainfall that occurred in May 2013 accelerated the formation of an anoxic zone at the bottom of the reservoir and promoted cyanobacterial blooms due to the high nutrient input and the increased water temperature after the storm runoff ended. Water-lifting aerators (WLAs) were employed in the Shibianyu Reservoir to inhibit algal growth and to control the release of nutrients. Based on our field observations and theoretical analyses, optimized management strategies are recommended to improve water quality in the reservoir under different rainfall patterns at a reduced cost. PMID:25828409

  14. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management.

    PubMed

    Li, Xuan; Huang, Tinglin; Ma, Weixing; Sun, Xin; Zhang, Haihan

    2015-07-15

    The seasonal variation of hydrological conditions caused by shifting rainfall patterns observed in recent years has significant effects on water quality. High-volume inflows following heavy rainfall events that significantly disturb stratification lead to increased dissolved oxygen (DO) at the bottom of the reservoir, inhibiting the release of nutrients from sediments and causing a rapid reduction of algal biomass in the reservoir. However, the duration and extent of these effects depend not only on the frequency and intensity of heavy rainfall events but also on the period of thermal stratification in the reservoir. The effects of heavy rainfall events on water quality during three typical stratification periods of the reservoir were systematically investigated using extensive field data. The continuous heavy rainfall that occurred in September 2011 (stratification began to diminish) completely mixed the reservoir and produced a high concentration of DO along with a low phytoplankton concentration throughout the reservoir until stratification occurred the following year. Conversely, several days were required for anoxic conditions (in the hypolimnion) and cyanobacterial blooms to reappear after the storm runoff that occurred during the stable period of stratification (August 2012). In addition, the heavy rainfall that occurred in May 2013 accelerated the formation of an anoxic zone at the bottom of the reservoir and promoted cyanobacterial blooms due to the high nutrient input and the increased water temperature after the storm runoff ended. Water-lifting aerators (WLAs) were employed in the Shibianyu Reservoir to inhibit algal growth and to control the release of nutrients. Based on our field observations and theoretical analyses, optimized management strategies are recommended to improve water quality in the reservoir under different rainfall patterns at a reduced cost.

  15. Quantifying Variability in Four US Streams Using a Long-Term Data Set: Patterns in Water Quality Endpoints

    NASA Astrophysics Data System (ADS)

    McLaughlin, Douglas B.; Flinders, Camille A.

    2016-02-01

    Temporal and spatial patterns of variability in aquatic ecosystems can be complex and difficult to quantify or predict. However, understanding this variability is critical to making a wide range of water quality assessment and management decisions effectively. Here we report on the nature and magnitude of spatial and temporal variation observed in conductivity, total phosphorus, and total nitrogen during a 15-year study of four US stream systems receiving pulp and paper mill effluent discharges. Sampling locations included mainstem sites upstream and downstream of effluent discharge, as well as tributary sites. In all four stream systems, variability in conductivity as measured by the coefficient of variation was typically in the range of 10-50 %, and was as low or lower than the variability in nutrient endpoints. The effect of effluent discharge was relatively minor overall, except in some site-specific instances. Some relatively large differences between tributary and mainstem variability were also observed. Flow variation tended to have a more consistent and larger effect on conductivity variation compared to the nutrient endpoints. After removing flow effects, significant relatively complex trends over time were observed at several sites. Changes in variability during the study also were observed. This paper highlights the importance of long-term studies to accurately characterize water quality variability used in water quality management decision-making.

  16. Coupling hydro-chemical models and water quality datasets: signatures of mixing patterns and non-stationary travel time distributions

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Botter, G.; Rinaldo, A.

    2013-12-01

    Water quality data in rivers represent an integrated measure of catchment transport processes, and their importance can hardly be overestimated. Recently, coupled hydrologic and geochemical models have provided new insight on catchment function and the dominant transport processes. The signals of hidden processes are thus being increasingly understood like e.g. those related to the presence of residual storages that are poorly visible in the hydrological response but strongly affect water quality dynamics. The increased availability of hydrochemical data, jointly with the related improved measurement accuracy, requires parallel improvements in the theoretical tools used to interpret such data. The newly available datasets, for instance, challenge simplistic modeling of long-term transport features, putting the focus on transient dynamics and fluctuations taking place at multiple time-scales, from single storm events to inter-annual timescales. The general formulation of transport by travel time distributions, being intrinsically robust owing to its integrated nature, is suitable to the above scopes in that it may account for spatial and temporal heterogeneity, say of chemical sources, flow fields and hydrologic forcings. Large-scale specification mixing processes is unavoidable, however, jointly with behavioral shifts occurring during floods and droughts. Here, we provide an assessment of recent theoretical results that involve the use of environmental tracers to identify emergent mixing patterns at catchment scale, and the related impacts on travel time distributions. Emphasis is placed on the improved process understanding achieved by coupling hydro-chemical models with highly resolved water quality datasets.

  17. Quantifying Variability in Four US Streams Using a Long-Term Data Set: Patterns in Water Quality Endpoints.

    PubMed

    McLaughlin, Douglas B; Flinders, Camille A

    2016-02-01

    Temporal and spatial patterns of variability in aquatic ecosystems can be complex and difficult to quantify or predict. However, understanding this variability is critical to making a wide range of water quality assessment and management decisions effectively. Here we report on the nature and magnitude of spatial and temporal variation observed in conductivity, total phosphorus, and total nitrogen during a 15-year study of four U.S. stream systems receiving pulp and paper mill effluent discharges. Sampling locations included mainstem sites upstream and downstream of effluent discharge, as well as tributary sites. In all four stream systems, variability in conductivity as measured by the coefficient of variation was typically in the range of 10-50%, and was as low or lower than the variability in nutrient endpoints. The effect of effluent discharge was relatively minor overall, except in some site-specific instances. Some relatively large differences between tributary and mainstem variability were also observed. Flow variation tended to have a more consistent and larger effect on conductivity variation compared to the nutrient endpoints. After removing flow effects, significant relatively complex trends over time were observed at several sites. Changes in variability during the study also were observed. This paper highlights the importance of long-term studies to accurately characterize water quality variability used in water quality management decision-making.

  18. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas.

    PubMed

    Vanlandeghem, Matthew M; Meyer, Matthew D; Cox, Stephen B; Sharma, Bibek; Patiño, Reynaldo

    2012-12-15

    The Double Mountain Fork Brazos River (Texas, USA) consists of North (NF) and South Forks (SF). The NF receives urban runoff and twice-reclaimed wastewater effluent, whereas the SF flows through primarily rural areas. The objective of this study was to determine and compare associations between standard water quality variables and ichthyotoxicity at a landscape scale that included urban (NF) and rural (SF) sites. Five NF and three SF sites were sampled quarterly from March 2008 to March 2009 for specific conductance, salinity, hardness, pH, temperature, and turbidity; and a zebrafish (Danio rerio) embryo bioassay was used to determine ichthyotoxicity. Metal and nutrient concentrations at all sites were also measured in addition to standard water quality variables in spring 2009. Principal component analyses identified hardness, specific conductance, and salinity as the water variables that best differentiate the urban NF (higher levels) from rural SF habitat. Nutrient levels were also higher in the NF, but no landscape scale patterns in metal concentrations were observed. Ichthyotoxicity was generally higher in NF water especially in winter, and multiple regression analyses suggested a positive association between water hardness and ichthyotoxicity. To test for the potential influence of the toxic golden alga (Prymnesium parvum) on overall ichthyotoxicity, a cofactor known to enhance golden alga toxin activity was used in the bioassays. Golden alga ichthyotoxicity was detected in the NF but not the SF, suggesting golden alga may have contributed to overall ichthyotoxicity in the urban but not in the rural system. In conclusion, the physicochemistry of the urban-influenced NF water was conducive to the expression of ichthyotoxicity and also point to water hardness as a novel factor influencing golden alga ichthyotoxicity in surface waters.

  19. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Meyer, Matthew D.; Cox, Stephen B.; Sharma, Bibek; Patino, Reynaldo

    2012-01-01

    The Double Mountain Fork Brazos River (Texas, USA) consists of North (NF) and South Forks (SF). The NF receives urban runoff and twice-reclaimed wastewater effluent, whereas the SF flows through primarily rural areas. The objective of this study was to determine and compare associations between standard water quality variables and ichthyotoxicity at a landscape scale that included urban (NF) and rural (SF) sites. Five NF and three SF sites were sampled quarterly from March 2008 to March 2009 for specific conductance, salinity, hardness, pH, temperature, and turbidity; and a zebrafish (Danio rerio) embryo bioassay was used to determine ichthyotoxicity. Metal and nutrient concentrations at all sites were also measured in addition to standard water quality variables in spring 2009. Principal component analyses identified hardness, specific conductance, and salinity as the water variables that best differentiate the urban NF (higher levels) from rural SF habitat. Nutrient levels were also higher in the NF, but no landscape scale patterns in metal concentrations were observed. Ichthyotoxicity was generally higher in NF water especially in winter, and multiple regression analyses suggested a positive association between water hardness and ichthyotoxicity. To test for the potential influence of the toxic golden alga (Prymnesium parvum) on overall ichthyotoxicity, a cofactor known to enhance golden alga toxin activity was used in the bioassays. Golden alga ichthyotoxicity was detected in the NF but not the SF, suggesting golden alga may have contributed to overall ichthyotoxicity in the urban but not in the rural system. In conclusion, the physicochemistry of the urban-influenced NF water was conducive to the expression of ichthyotoxicity and also point to water hardness as a novel factor influencing golden alga ichthyotoxicity in surface waters.

  20. The influence of land-use patterns in the Ruvu river watershed on water quality in the river system

    NASA Astrophysics Data System (ADS)

    Ngoye, Elizabeth; Machiwa, John F.

    This work assessed the impacts of land-use patterns in the Ruvu river basin on water quality in the river system. Seasonal changes in water quality parameters were also investigated. Ten river water-sampling stations were selected and samples were collected and analysed according to standard analytical procedures. The results showed that physico-chemical parameters of river water ranged as follows: pH, from 6.95 ± 0.09 to 8.07 ± 0.23; temperature, from 14.0 ± 0.06 to 31.1 ± 0.4 °C; EC, from 39.8 ± 0.8 to 48,734 306 μs/cm; TDS, from 19.9 ± 0.4 to 24,367 ± 152.9 mg/l; turbidity, from 3.0 ± 0.6 to 840 ± 69.3 NTU and DO, from 6.8 ± 0.02 to 16.78 mg/l. The ranges for nutrient concentrations were NO 3-N, from 0.006 ± 0.0003 to 0.62 ± 0.3 mg/l; NH 4-N, from 0.34 ± 0.17 to 16.2 ± 0.5 mg/l; PO 4-P, from 0.009 ± 0.001 to 1.75 ± 0.2 mg/l and TP, from 0.02 ± 0.003 to 3.56 ± 0.38 mg/l. Generally, water samples from stations with forested catchments had high levels of DO and low levels of NH 4-N and NO 3-N compared to those from farmland, industrial, residential and market places. There were clear seasonal variations showing an increase in the concentrations of nutrients during rainy season. The results show impairment of the water quality of the river by anthropogenic activities in the catchment. Water pollution prevention strategies to ensure prevention of pollution and protection of water resources in the Ruvu river watershed are recommended.

  1. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    PubMed

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality.

  2. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    PubMed

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. PMID:26878633

  3. Water Quality: An Introduction

    ERIC Educational Resources Information Center

    Merritt, LaVere B.

    1977-01-01

    An overview of the various aspects of water quality, including a rationale for multidisciplinary cooperation in water quality management, a list of beneficial water uses, a discussion of the major types of water pollutants, and an explanation of the use of aquatic biota in testing for water quality. (CS)

  4. Flow pattern and related chemical quality of ground water in the "500-foot" sand in the Memphis area, Tennessee

    USGS Publications Warehouse

    Bell, Edwin Allen; Nyman, Dale J.

    1968-01-01

    water occurs in the northwestern part of the area. The variations in chemical quality of water en route through the '500-foot' sand are virtually proportional to increases or decreases of the major chemical constituents. The variations are chiefly attributed to the mixing or blending of water from different directions or sources of recharge as wells are pumped. As water levels are lowered by continuous pumping in the future, increasing rates of recharge from the outcrop areas and from shallow aquifers will probably cause little, if any, change in chemical quality of the water. Certainly, the effects on quality are not expected to be detrimental. Although future changes in chemical quality of water in the '500-foot' sand in the Memphis area will probably be neither intense nor extensive, some changes can be anticipated as a result of man's activities associated with the continued growth and development of the area. Increased pumping at existing pumping centers will deepen existing cones of depression and thereby increase gradients. These increases will not necessarily cause a change in chemical quality unless the increases in pumping are unevenly distributed. If a major well field were developed in the '500-foot' sand in the southwestern part of the Memphis area, little change in quality would result because water would be caused to move toward the well field from both the northwest and southeast. This movement would not affect the blending of updip and downdip water at other well fields If water were impounded in the Wolf River a few miles upstream from Memphis, the impoundment could furnish recharge, at least temporarily, to the '500-foot' sand. It is improbable that any detrimental effects on the chemical quality of the water supply of Memphis would result, because the water in the impoundment would probably be softer ,and less mineralized than the water in the '500-foot' sand in that area.

  5. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  6. Spatial and seasonal pattern of macrozoobenthic assemblages and the congruence in water quality bioassessment using different taxa in artificial Mingzhu Lake in Shanghai

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Jia, Xixi; Chen, Xihua; Zhang, Ying; Liu, Qigen

    2016-09-01

    The spatial and seasonal pattern of macrozoobenthic structure and its relationship with environmental factors were studied from July 2006 to April 2008 in Mingzhu Lake, Chongming Island, Shanghai at the Changjiang River mouth. The congruences in water quality bioassessment based on diversity and biotic indices and using different taxonomic categories were also explored to find the best assessment method of water quality for the lake. All major structural characteristics of macrozoobenthic community, including species composition, abundance, biomass and four biomass-based diversity indices (Shannon's diversity, Simpson's diversity, Pielou's evenness and Simpson's evenness index) fluctuated significantly in season but in space. The above four abundance-based diversity indices plus abundance-based Margalef's richness index did not display significant spatial variations; and significant seasonal differences were found in three indices only. Water temperature was the key environmental factor responsible for macrozoobenthic spatio-temporal distribution patterns. Water quality assessed by Shannon's index ( H a') and biological pollution index (BPI) rather than the other four biotic indices were consistent with those by trophic state index (TSI). Results from chironomids and oligochaetes did not always agree to those from the whole community when H a' or Hilsenhoff biotic index was applied to bioassessment. Therefore, combining multiple indices and avoiding a single taxonomic category to assess water quality are strongly recommended and in Mingzhu Lake using a mixture of H a' and BPI will ensure the most effective investigation of water quality. Our results also show that the main structural characteristics of macrozoobenthic communities in the small lake may display consistent spatial patterns.

  7. Assessing the relationship between water quality parameters and changes in landuse patterns in the Upper Manyame River, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kibena, J.; Nhapi, I.; Gumindoga, W.

    For the past 30 years, the increases in population pressure and external influences, such as economic growth, have accelerated the demand for land within the Upper Manyame River catchment in Zimbabwe which has caused substantial changes in landuse. The general objective of this research was to assess the impacts of landuse activities on the water quality of the Upper Manyame River which drains the rural and urbanised part of the catchment up to flow gauging station C21. Landcover data for the month of April in years of 1984, 1995, 2003 and 2011 were acquired from available Landsat TM and ETM images and were classified through the maximum likelihood digital image classification using the supervised classification approach. The status of water quality of the Upper Manyame River was also assessed through analyses of historical concentrations and pollution loads for TP, DO, COD, NH3-N, SS, Pb, NO3, BOD5, EC, PO4-P and TN at the Environmental Management Agency (EMA) gauging station CR21 sampling point for 1996, 2000/1 and 2008/9. Water quality of 15 monitoring sites comprising 25 water quality parameters were monitored monthly from January to June 2012. These locations were selected to reflect a wide array of landuse for both the dry and wet seasons. The results indicated that there was an increase in pollution load from 1995 to 2012; for TP from 130 kg/day to 376 kg/d, and for TN from 290 kg/day to 494 kg/d. This indicates high pollution levels which have severe impacts on downstream users and also severe sewage contamination. Significant deviations occurred in DO (0.1-6.8) mg/L, COD (11-569) mg/L, BOD5 (5-341) mg/L, PO4-P (0.01-4.45) mg/L, NH3-N (0.001-6.800) mg/L and EC (38-642) μS/cm. Hydrologic Response Unit and buffer analysis were used to determine the dominant landuse which contributes to a certain water quality. Results of digital image classification indicate that woodland/forest, grassland and bareland decreased between years 1984 to 2011 by 24.0%, 22.6% and

  8. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality.

    PubMed

    Rozemeijer, J C; van der Velde, Y; van Geer, F C; Bierkens, M F P; Broers, H P

    2010-12-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO(3) concentration patterns in shallow groundwater and to continuous NO(3) records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO(3) and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management.

  9. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  10. Nutrient water quality of the Wye catchment, UK: exploring patterns and fluxes using the Environment Agency data archives

    NASA Astrophysics Data System (ADS)

    Jarvie, H. P.; Neal, C.; Withers, P. J. A.; Robinson, A.; Salter, N.

    Water quality data, collected by the Environment Agency in England and Wales over 10 years (1991 - 2000) were used to examine the spatial distribution of nutrient pollution risk and for assessing broad-scale spatial and temporal variability in nutrient fluxes across the Wye catchment. Nutrient water quality across the upper and middle Wye catchment, and along the main River Wye, is generally very good. However, the main areas of concern lie in the small tributaries in the south and east of the catchment, which have lower dilution capacity and high agricultural and effluent inputs, and where mean Total Reactive Phosphorus (TRP) in some cases exceed 1 mg-P l-1. Indeed, mass load calculations have demonstrated that the lowland south and east portion of the catchment contributes more than 85% of the whole-catchment TRP and more than 78% of nitrate (NO3‾) loads. Ratios of NO3‾:Ca were used to fingerprint different water-types across the catchment, linked to weathering and agricultural activity. The Wye catchment has been subject to two major sets of perturbations during the study period: (i) climatic fluctuations, with a drought during 1995-6, followed by a subsequent drought-break in 1997/8, and extreme high river flows in the autumn/winter of 2000/2001, and (ii) introduction of tertiary P-treatment at major sewage treatment works in the catchment. The implications of these perturbations for the nutrient water quality of the Wye catchment are discussed. Recommendations are made for more targeted monitoring to directly assess diffuse source nutrient contributions.

  11. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Cordoba-Argentina).

    PubMed

    Alberto, W D; Del Pilar, D M; Valeria, A M; Fabiana, P S; Cecilia, H A; De Los Angeles, B M

    2001-08-01

    We report a comparative study using three different chemometric techniques to evaluate both spatial and temporal changes in Suquía River water quality, with a special emphasis on the improvement obtained using discriminant analysis for such evaluation. We have monitored 22 parameters at different stations from the upper, middle, and beginning of the lower river basin during at least two years including 232 different samples. We obtained a complex data matrix, which was treated using the pattern recognition techniques of cluster analysis (CA), factor analysis/principal components (FA/PCA). and discriminant analysis (DA). CA renders good results as a first exploratory method to evaluate both spatial and temporal differences, however it fails to show details of these differences. FA/PCA needs 13 parameters to point out 71% of both temporal and spatial changes, consequently data reduction from FA/PCA in this case is not as considerable as expected. However, FA/PCA allows to group the selected parameters according to common features as well as to evaluate the incidence of each group on the overall change in water quality, specially during the analysis of temporal changes. DA technique shows the best results for data reduction and pattern recognition during both temporal and spatial analysis. DA renders an important data reduction using 6 parameters to afford 87% right assignations during temporal analysis. Besides, it uses only 5 parameters to yield 75% right assignations during the spatial analysis of four different basin areas. DA allowed us to greatly reduce the dimensionality of the starting data matrix, pointing out to a few parameters that indicate the biggest changes in water quality as well as variation patterns associated with seasonal variations, urban run-off, and pollution sources, presenting a novel approach for water quality assessments.

  12. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water.

    PubMed

    Ghanati, F; Mohamadalikhani, S; Soleimani, M; Afzalzadeh, R; Hajnorouzi, A

    2015-09-01

    Water molecules can be affected by magnetic fields (MF) due to their bipolar characteristics. In the present study maize plants, from sowing to the end period of generative stage, were irrigated with magnetically treated water (MTW).Tap water was treated with MF by passing through a locally designed alternative magnetic field generating apparatus (110 mT). Irrigation with MTW increased the ear length and fresh weight, 100-grain fresh and dry weights, and water productivity (119.5%, 119.1%, 114.2%, 116.6% and 122.3%, respectively), compared with the control groups. Levels of photosynthetic pigments i.e. chlorophyll a and b, and the contents of anthocyanin and flavonoids of the leaves were increased compared to those of non-treated ones. Increase of the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in leaves of the treated plants efficiently scavenged active oxygen species and resulted in the maintenance of photosynthetic membranes and reduction of malondealdehyde. Total ferritin, sugar, iron and calcium contents of kernels of MTW-irrigated plants were respectively 122.9%, 167.4%, 235% and 185% of the control ones. From the results presented here it can be concluded that the influence of MF on living plant cells, at least in part, is mediated by water. The results also suggest that irrigation of maize plant with MTW can be applied as a useful method for improvement of quantity and quality of it.

  13. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    NASA Technical Reports Server (NTRS)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  14. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  15. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  16. Purified water quality study

    SciTech Connect

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  17. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  18. Process water usage and water quality in poultry processing equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The operation of poultry processing equipment was analyzed to determine the impact of water reduction strategies on process water quality. Mandates to reduce the consumption of process water in poultry processing facilities have created the need to critically examine water usage patterns and develop...

  19. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  20. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  1. Linking sewage pollution and water quality to spatial patterns of Porites lobata growth anomalies in Puako, Hawaii.

    PubMed

    Yoshioka, Reyn M; Kim, Catherine J S; Tracy, Allison M; Most, Rebecca; Harvell, C Drew

    2016-03-15

    Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health.

  2. International Business Research: Coauthorship Patterns and Quality

    ERIC Educational Resources Information Center

    Chan, Kam C; Fung, Hung-Gay; Leung, Wai K.

    2008-01-01

    The authors investigate published international business research in four international business journals over a 10-year period, 1995-2004: (a) patterns of coauthorship across regions, and (b) the relation between coauthorship patterns and the quality of international business (IB) articles. A cross-region coauthorship enhances the quality of an…

  3. Handbook for aquaculture water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  4. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed.

  5. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  6. Optical water quality in rivers

    NASA Astrophysics Data System (ADS)

    Julian, J. P.; Doyle, M. W.; Powers, S. M.; Stanley, E. H.; Riggsbee, J. A.

    2008-10-01

    Optical water quality (OWQ) governs the quantity and quality of light in aquatic ecosystems, and thus spatiotemporal changes in OWQ affect many biotic and abiotic processes. Despite the fundamental role of light in rivers, studies on riverine OWQ have been limited and mostly descriptive. Here we provide a comprehensive, quantitative analysis of the controls and spatiotemporal dynamics of riverine OWQ, focusing on the inherent optical properties (IOPs), which are those that are only affected by water constituents and not by changes in the solar radiation field. First, we briefly review the constituents attenuating light in rivers. Second, we develop a new method for partitioning (light) beam attenuation into its constituent fractions. This method distinguishes between absorption and scattering by dissolved and particulate constituents, and further isolates particulates into mineral and organic components. Third, we compare base flow IOPs between four rivers with vastly different physical characteristics to illustrate intersite variability. Fourth, we analyze the spatial and temporal patterns of IOPs for the four rivers. Fifth, we quantify a longitudinal water clarity budget for one of the rivers. Finally, available data are synthesized to identify general spatial trends robust across broad geographic areas. Temporal trends in IOPs were largely dictated by storm frequency, while spatial trends were largely dictated by channel network configuration. Generally, water clarity decreased with increasing discharge primarily owing to greater scattering by particulates and secondarily to greater absorption by chromophoric dissolved organic matter. Water clarity also generally decreased longitudinally along the river owing to increased particulate inputs from tributaries; however, for pear-shaped, dendritic basins, water clarity reached a minimum at ˜70% of the channel length and then increased. By illustrating the controls and spatiotemporal variability of riverine OWQ

  7. Patterns of water-quality variability in San Francisco Bay during the first six years of the regional monitoring program, 1993-1998

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Schraga, T.S.; Arnsberg, A.

    2000-01-01

    Monitoring Results presents data from the Status and Trends portion of the 1998 San Francisco Estuary Regional Monitoring Program for Trace Substances (RMP). A list of reports on Pilot and Special Studies, as well as other RMP related activities can be found at the end of this document. These reports provide perspective and insight on important contaminant issues identified by the RMP, and they describe results from projects that took advantage of RMP field operations. For a summary of the conditions of the Estuary see The Pulse . A print copy may also be ordered by contacting the San Francisco Estuary Institute (SFEI). In 1998, the San Francisco Regional Water Quality Control Board (Regional Board) and seventy-three federal, state, and local agencies and companies participated in the RMP as funders and service providers (Table 1.1). Participants also assist in directing the Program through input or participation on the Steering and Technical Review Committees. The RMP’s overall goal is to provide data and interpretation that helps to address certain information needs of the Regional Board. In general, these efforts fall under five major objectives which provide a framework for efforts to respond to more specific management questions. 1. Describe patterns and trends in contaminant concentration and distribution. 2. Describe general sources and loadings of contamination to the Estuary. 3. Measure contaminant effects on selected parts of the Estuary ecosystem. 4. Compare monitoring information to relevant water quality objectives and other guidelines. 5. Synthesize and distribute information from a range of sources to present a more complete picture of the sources, distribution, fates, and effects of contaminants in the Estuary ecosystem.

  8. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  9. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    PubMed

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA). PMID:26681324

  10. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    PubMed

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).

  11. Communicating water quality risk

    SciTech Connect

    Scherer, C.W. )

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience.

  12. Visual pattern degradation based image quality assessment

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Li, Leida; Shi, Guangming; Lin, Weisi; Wan, Wenfei

    2015-08-01

    In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA) method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast. In this paper, we suggest that structure includes not only luminance contrast but also orientation information. Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selectivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern. Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively represent visual structure and the proposed IQA method performs better than the existing IQA metrics.

  13. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  14. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  15. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  16. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  17. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  18. Primer on Water Quality

    MedlinePlus

    ... streams and ground water. After decades of use, pesticides are now widespread in streams and ground water, ... and guidelines established to protect human health. Some pesticides have not been used for 20 to 30 ...

  19. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  20. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  1. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  2. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  3. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  4. Water Quality Monitoring Manual.

    ERIC Educational Resources Information Center

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  5. Water quality for cattle.

    PubMed

    Morgan, Sandra E

    2011-07-01

    Water is often considered the most important livestock nutrient. It can carry both nutrients and toxic materials and can be a source of poisoning, although death losses are not common. More likely are questions of low-level contaminants or nutrient interactions that affect productivity. This article characterizes the major contaminants of water, their expected effects, and means to evaluate their presence.

  6. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  7. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  8. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  9. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  10. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  11. Integrated water quality management for drinking water of good quality.

    PubMed

    Isaji, C

    2003-01-01

    The Nagoya Waterworks and Sewerage Bureau has developed original supporting tools for the systematic and cost-effective management of problem solving. An environmental information map and prediction of pollutant reaching are used for rapid and appropriate proper countermeasures against water quality accidents in the source area. In disinfection byproduct control a method for estimating trihalomethane (THM) contents was effective for the complement of their observations. Surrogate indicators such as turbidity and conductivity that could be measured continuously also could complement water quality items measured monthly. A processing tool of voluminous data was practical for rapid judgment of water quality. Systematic monitoring was established for stricter turbidity control for measures against Cryptosporidium and keeping residual chlorine stable in the service area.

  12. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  13. Agroecosystem Impacts on Water Quality

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.

    2010-12-01

    Agroecosystems can have large scale impacts on soil water and groundwater quality by mobilizing salts into underlying aquifers through enhanced recharge and increasing chemical loading to systems through fertilizer applications and irrigation water. Crop evapotranspiration is similar to desalinization in that root-water uptake excludes most salts, and soil-water salinity levels may build up when water drainage or percolation through the root zone is insufficient to flush accumulated salts. The objective of this study was to evaluate impacts of agroecosystems on soil water and groundwater quality using data from the US High Plains and California Central Valley. Natural ecosystems accumulated large reservoirs of salts in unsaturated soils in the southern High Plains and southern part of the Central Valley. Increased recharge under rainfed and irrigated agriculture mobilized these salt reservoirs into the underlying aquifer in the southern High Plains, increasing groundwater salinity, particularly chloride and sulfate. Deficit irrigation in the southern High Plains has created large salt bulges in the unsaturated zone because of insufficient irrigation to flush these salts into the underlying aquifer. Irrigation in both the High Plains and Central Valley regions has markedly increased groundwater nitrate levels, particularly in irrigated areas because of higher fertilizer applications. Agroecosystem impacts on water quality reflect a delicate balance between water and salt cycles and crop production should be managed to minimize negative environmental impacts.

  14. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  15. Statistical Analysis of Regional Surface Water Quality in Southeastern Ontario.

    ERIC Educational Resources Information Center

    Bodo, Byron A.

    1992-01-01

    Historical records from Ontario's Provincial Water Quality Monitoring Network for rivers and streams were analyzed to assess the feasibility of mapping regional water quality patterns in southeastern Ontario, spanning the Precambrian Shield and the St. Lawrence Lowlands. The study served as a model for much of Ontario. (54 references) (Author/MDH)

  16. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  17. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  18. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  19. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  20. Water quality by photographic analysis

    NASA Technical Reports Server (NTRS)

    Klooster, S. A.; Scherz, J. P.

    1974-01-01

    Positive correlation exists between reflectance of water and the water quality parameter of turbidity. This relationship holds for all times for a particular waste. At particular times other parameters such as suspended solids correlate to turbidity and can also be mapped. To analyze aerial photos properly to obtain water reflectance, a standard reflectance panel is needed somewhere in the frame. For this study color and color-infrared film are used and analyzed with a color microdensitometer which, with certain modifications, is also used to analyze reflectance of water samples. Noise in the analysis includes bottom effects, reflection from the air-water interface, and path luminance, but these can all be dealt with by proper techniques.

  1. Quality criteria for water, 1986

    SciTech Connect

    Not Available

    1986-05-01

    Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

  2. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  3. SWQM: Source Water Quality Modeling Software

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  4. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  5. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  6. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  7. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  8. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  9. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  10. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  11. Sleep patterns, diet quality and energy balance.

    PubMed

    Chaput, Jean-Philippe

    2014-07-01

    There is increasing evidence showing that sleep has an influence on eating behaviors. Short sleep duration, poor sleep quality, and later bedtimes are all associated with increased food intake, poor diet quality, and excess body weight. Insufficient sleep seems to facilitate the ingestion of calories when exposed to the modern obesogenic environment of readily accessible food. Lack of sleep has been shown to increase snacking, the number of meals consumed per day, and the preference for energy-rich foods. Proposed mechanisms by which insufficient sleep may increase caloric consumption include: (1) more time and opportunities for eating, (2) psychological distress, (3) greater sensitivity to food reward, (4) disinhibited eating, (5) more energy needed to sustain extended wakefulness, and (6) changes in appetite hormones. Globally, excess energy intake associated with not getting adequate sleep seems to be preferentially driven by hedonic rather than homeostatic factors. Moreover, the consumption of certain types of foods which impact the availability of tryptophan as well as the synthesis of serotonin and melatonin may aid in promoting sleep. In summary, multiple connections exist between sleep patterns, eating behavior and energy balance. Sleep should not be overlooked in obesity research and should be included as part of the lifestyle package that traditionally has focused on diet and physical activity.

  12. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  13. Water quality in Lake Lanier

    SciTech Connect

    Callaham, M.A. )

    1991-04-01

    Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreased at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.

  14. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey,...

  15. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  16. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  17. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  18. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  19. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  20. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing

  1. Water quality change detection: multivariate algorithms

    NASA Astrophysics Data System (ADS)

    Klise, Katherine A.; McKenna, Sean A.

    2006-05-01

    In light of growing concern over the safety and security of our nation's drinking water, increased attention has been focused on advanced monitoring of water distribution systems. The key to these advanced monitoring systems lies in the combination of real time data and robust statistical analysis. Currently available data streams from sensors provide near real time information on water quality. Combining these data streams with change detection algorithms, this project aims to develop automated monitoring techniques that will classify real time data and denote anomalous water types. Here, water quality data in 1 hour increments over 3000 hours at 4 locations are used to test multivariate algorithms to detect anomalous water quality events. The algorithms use all available water quality sensors to measure deviation from expected water quality. Simulated anomalous water quality events are added to the measured data to test three approaches to measure this deviation. These approaches include multivariate distance measures to 1) the previous observation, 2) the closest observation in multivariate space, and 3) the closest cluster of previous water quality observations. Clusters are established using kmeans classification. Each approach uses a moving window of previous water quality measurements to classify the current measurement as normal or anomalous. Receiver Operating Characteristic (ROC) curves test the ability of each approach to discriminate between normal and anomalous water quality using a variety of thresholds and simulated anomalous events. These analyses result in a better understanding of the deviation from normal water quality that is necessary to sound an alarm.

  2. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  3. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  4. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  5. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  6. METHODS FOR DETERMINING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    The goal of the clean water act of 1972 was to restore and maintain physical, chemical & biological quality of waters in the U.S. Although great progress has been made in cleaning up lakes, rivers and coastal waters many still do not meet water quality standards. Most beaches ha...

  7. Infrared optical sensors for water quality monitoring.

    PubMed

    Mizaikoff, B

    2003-01-01

    In-situ monitoring of water quality with particular emphasis on organic pollutants is a global priority topic in water analysis. Recent developments in optical sensor technology provide advanced analytical tools for continuous assessment of pollution levels in the liquid phase and in the gas phase. Infrared sensing schemes are among the most promising concepts due to inherent molecular specificity provided by absorption patterns of fundamental molecular vibrations of organic molecules. The advent of mid-infrared transparent optical fibers and waveguides, appropriate light source technology, such as quantum cascade lasers, and the potential for the development of highly integrated analytical devices based on microfabrication technology substantiates the trend towards spectroscopic sensing techniques. Chemical modification of the waveguide surface leads to enhanced analyte recognition based on tunable properties of enrichment or (bio)chemical recognition layers. Discussion of fundamental sensing technology is complemented by recent examples, highlighting the state-of-the-art in this dynamic research field.

  8. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  9. The quality of our nation's waters; nutrients and pesticides

    USGS Publications Warehouse

    ,

    1999-01-01

    This report is the first in a series of nontechnical publications, 'The quality of our nation's waters,' designed to describe major findings of the National Water-Quality Assessment Program regarding water-quality issues of regional and national concern. Sources, seasonal and geographic patterns of occurrence, and long-term trends are evaluated for nutrients and pesticides in streams and ground water and for pesticides in bed sediment and fish tissue from 20 major river basins and (or) aquifer systems across the conterminous United States. Implications of these national findings relative to water policies and strategies are presented. Issues discussed include relationships of nutrients and pesticides to natural features, land and chemical use, and resource-management practices; effects on human and aquatic health; considerations for development of water-quality standards; and approaches to modeling.

  10. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  11. Assessment of spatial-temporal patterns of surface and ground water qualities and factors influencing management strategy of groundwater system in an urban river corridor of Nepal.

    PubMed

    Kannel, Prakash Raj; Lee, Seockheon; Lee, Young-Soo

    2008-03-01

    This study examined the spatial-temporal variations and factors influencing the management of groundwater along a section of the Bagmati river corridor in the Kathmandu valley (Nepal). The results showed that rural areas were less polluted than urban areas. In urban areas, the biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 8.41 to 29.74 mg/L, 6.7 to 128.96 mg/L and 0.06 to 1.5 mg/L, respectively. In rural areas, the BOD, TN and TP concentrations ranged from 0.78 to 18.25 mg/L, 4.8 to 11.56 mg/L and 0.07 to 0.65 mg/L, respectively. The level of organics was higher in the pre-monsoon season, while the level of nutrients was higher in post-monsoon season. A comparison of the groundwater and surface water in the upstream rural areas revealed that the TP concentration was higher in the groundwater than in the surface water, which was attributed to the sorption of phosphorus on iron, aluminum or calcium compounds contained in the surface water, which depends upon the temperature, pH and dissolved oxygen. In urban areas, a few wells were found at groundwater levels lower than the corresponding surface water levels and were subjected to a high risk of pollution. Overall, these findings reinforce the notion that the management of surface and ground waters in an integrated approach is essential for attaining sustainable development of groundwater systems.

  12. Reading Water Quality Variables with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules; Minkman, Ellen

    2015-04-01

    Many relevant water quality variables can be measured cost-effectively with standard indicator strips. These are local measurements, although usually done within a larger water network. Only if these measurements can be made available in a central database, the entire network can benefit from the extra data point. This requires an analog data source to be converted to a digital data point. A tool that is equipped to do that and also communicate the value to a central system, is a smartphone. A water quality monitoring method is introduced that requires standard indicator strips attached to a reference card and an app with which a picture can be taken from this card. The color or other indication is automatically read with dedicated pattern recognition algorithms and, by using the gps-localization of the smartphone, is stored in the right location in the central database. The method is low-cost and very user-friendly, which makes it suitable for crowd sourcing.

  13. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  14. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4+-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  15. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    PubMed

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4+-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  16. Water quality assessment of the Rio Conchos, Chihuahua, Mexico

    SciTech Connect

    Gutierrez, M.; Borrego, P.

    1999-07-01

    A baseline study was conducted to evaluate the overall quality of the Rio Conchos (Chihuahua, Mexico) and to identify those chemical parameters that can best represent the water quality in different segments of the river. Chemical analyses included the measurement of 62 elements at more than 100 sampling stations along the river, in addition to conventional field analyses (e.g., pH, conductivity). Concentrations of these elements are reported and water quality indicators were identified. Based on the element concentration patterns, the segment of the river in which the water quality is most endangered corresponds to that receiving irrigation drain returns near the confluence of the Rio San Pedro. Self-cleaning and dilution processes account for the improvement in water quality observed as the Rio Conchos approaches the Rio Grande.

  17. Do waterbody classifications predict water quality?

    PubMed

    Barclay, Janet R; Tripp, Hannah; Bellucci, Christopher J; Warner, Glenn; Helton, Ashley M

    2016-12-01

    Many states classify waterbodies according to groups of designated uses, which suggests that classifications may be correlated with water quality. The primary assessments of water quality in the United States (the Biennial Integrated Water Quality Reports) do not consider classification, so the relationship between classification and water quality is untested. Additionally, water quality has been shown to be influenced by watershed land use; however, land use is not typically part of waterbody classification systems. To determine the relationships between waterbody classification, water quality, watershed land cover, and forest fragmentation, we analyzed existing water quality data for the State of Connecticut from the United States Geological Survey and the Connecticut Department of Energy and Environmental Protection and land cover data from the National Land Cover Dataset. Connecticut uses a unique classification system that includes separation of drinking water sources (Class AA) and waterbodies receiving waste water discharges (Class B). Using a comparison of multiple means, we found that Class B waters had higher levels of nitrogen, solids, chloride, sodium, dissolved copper, total iron, and dissolved manganese than Class AA waters. Watersheds upstream of Class B segments had less forest cover, more development and more impervious cover than watersheds upstream of Class AA segments. Class A sites had some similarities in water quality and land cover with Class AA sites and some with Class B sites. The subset of Class B waterbodies with "Class AA-like" water quality also had "Class AA-like" land cover. Based on this and a multiple linear regression analysis, we found that water quality is more closely related to watershed land cover and forest fragmentation than to waterbody classification. Our results suggest that watershed land cover likely is a better proxy for water quality than waterbody classification.

  18. Do waterbody classifications predict water quality?

    PubMed

    Barclay, Janet R; Tripp, Hannah; Bellucci, Christopher J; Warner, Glenn; Helton, Ashley M

    2016-12-01

    Many states classify waterbodies according to groups of designated uses, which suggests that classifications may be correlated with water quality. The primary assessments of water quality in the United States (the Biennial Integrated Water Quality Reports) do not consider classification, so the relationship between classification and water quality is untested. Additionally, water quality has been shown to be influenced by watershed land use; however, land use is not typically part of waterbody classification systems. To determine the relationships between waterbody classification, water quality, watershed land cover, and forest fragmentation, we analyzed existing water quality data for the State of Connecticut from the United States Geological Survey and the Connecticut Department of Energy and Environmental Protection and land cover data from the National Land Cover Dataset. Connecticut uses a unique classification system that includes separation of drinking water sources (Class AA) and waterbodies receiving waste water discharges (Class B). Using a comparison of multiple means, we found that Class B waters had higher levels of nitrogen, solids, chloride, sodium, dissolved copper, total iron, and dissolved manganese than Class AA waters. Watersheds upstream of Class B segments had less forest cover, more development and more impervious cover than watersheds upstream of Class AA segments. Class A sites had some similarities in water quality and land cover with Class AA sites and some with Class B sites. The subset of Class B waterbodies with "Class AA-like" water quality also had "Class AA-like" land cover. Based on this and a multiple linear regression analysis, we found that water quality is more closely related to watershed land cover and forest fragmentation than to waterbody classification. Our results suggest that watershed land cover likely is a better proxy for water quality than waterbody classification. PMID:27621038

  19. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  20. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  1. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  2. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  3. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  4. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  5. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  6. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  7. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  8. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  9. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  10. Assessment of domestic water quality: case study, Beirut, Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  11. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  12. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  13. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  14. Parents' perceptions of water safety and quality.

    PubMed

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  15. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  16. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  17. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  18. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  19. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  20. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  1. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  2. Three dimensional water quality modeling of a shallow subtropical estuary.

    PubMed

    Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong

    2012-12-01

    Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern.

  3. Influence of lake morphology on water quality.

    PubMed

    Moses, Sheela A; Janaki, Letha; Joseph, Sabu; Justus, J; Vimala, Sheeja Ramakrishnan

    2011-11-01

    Lakes are seriously affected due to urban pollution. The study of the morphological features of a lake system helps to identify its environmental status. The objective of the present study is to analyse the influence of morphometry on water quality in a lake (Akkulam-Veli Lake, Thiruvananthapuram, Kerala). The morphological features namely mean depth, surface area, volume, shoreline length, shoreline development and index of basin permanence have been evaluated. Correlation analysis has been conducted to determine the relationship between morphological features and water quality. Regression analysis has been conducted to find out the extent of influence of morphometric features on water quality. The study revealed that the lake is less affected by wind-induced wave action due to various reasons. The depth and volume have significant role in the water quality. The nitrogen fixation of blue green algae can be observed from the morphological features. The morphology has greater role in the water quality of a lake system. PMID:21387171

  4. Influence of lake morphology on water quality.

    PubMed

    Moses, Sheela A; Janaki, Letha; Joseph, Sabu; Justus, J; Vimala, Sheeja Ramakrishnan

    2011-11-01

    Lakes are seriously affected due to urban pollution. The study of the morphological features of a lake system helps to identify its environmental status. The objective of the present study is to analyse the influence of morphometry on water quality in a lake (Akkulam-Veli Lake, Thiruvananthapuram, Kerala). The morphological features namely mean depth, surface area, volume, shoreline length, shoreline development and index of basin permanence have been evaluated. Correlation analysis has been conducted to determine the relationship between morphological features and water quality. Regression analysis has been conducted to find out the extent of influence of morphometric features on water quality. The study revealed that the lake is less affected by wind-induced wave action due to various reasons. The depth and volume have significant role in the water quality. The nitrogen fixation of blue green algae can be observed from the morphological features. The morphology has greater role in the water quality of a lake system.

  5. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  6. Water quality monitoring in the Paul do Boquilobo Biosphere Reserve

    NASA Astrophysics Data System (ADS)

    Baptista, C.; Santos, L.

    2016-08-01

    The Paul do Boquilobo is an important wetland ecosystem classified by Unesco as a MAB Biosphere reserve also awarded Ramsar site status, representing one of the most important habitats for the resident nesting colony of Cattle Egret (Bulbucus ibis). Yet owing to its location, it suffers from human induced impacts which include industrial and domestic effluent discharges as well as agricultural land use which have negatively impacted water quality. The current study reports the results obtained from the introductory monitoring programme of surface water quality in the Nature Reserve to emphasize the detrimental impact of the anthropogenic activities in the water quality of such an important ecosystem. The study involved physicochemical and biotic variables, microbial parameters and biological indicators. Results after 3 years of monitoring bring to evidence a poor water quality further impaired by seasonal patterns. Statistical analysis of data attributed water quality variation to 3 main parameters - pH, dissolved oxygen and nitrates, indicating heavy contamination loads from both organic and agricultural sources. Seasonality plays a role in water flow and climatic conditions, where sampling sites presented variable water quality data, suggesting a depurative function of the wetland.

  7. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  8. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  9. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  10. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  11. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  12. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  13. Agriculture and water quality. Agriculture Information Bulletin

    SciTech Connect

    Crowder, B.M.; Ribaudo, M.O.; Young, C.E.

    1988-08-01

    Agriculture generates byproducts that may contribute to the contamination of the Nation's water supply. Any effective regulations to ban or restrict agricultural-chemical or land-use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface waterways in runoff; some leach through soil into ground water. Because surface-water systems and ground water systems are interrelated, farm-management practices need to focus on water quality in both systems. Modifying farm-management practices may raise production costs in some areas. Farmers can reduce runoff losses by reducing input use, implementing soil-conservation practices, and changing land use. Also at issue is who should pay for improving water quality.

  14. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  15. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  16. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  17. Correlation study among water quality parameters an approach to water quality management.

    PubMed

    Sinha, D K; Rastogi, G K; Kumar, R; Kumar, N

    2009-04-01

    To find out an approach to water quality management through correlation studies between various water quality parameters, the statistical regression analysis for six data points of underground drinking water of different hand pumps at J. P. Nagar was carried out. The comparison of estimated values with W.H.O drinking water standards revealed that water of the study area is polluted with reference to a number of physico-chemical parameters studied. Regression analysis suggests that conductivity of underground water is found to be significantly correlated with eight out of twelve water quality parameters studied. It may be suggested that the underground drinking water quality at J. P. Nagar can be checked very effectively by controlling the conductivity of water. The present study may be treated one step forward towards the water quality management.

  18. Surface water quality assessment by environmetric methods.

    PubMed

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  19. Water quality in Lis river, Portugal.

    PubMed

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2012-12-01

    In the past 30 years, the Lis river basin has been subjected to constant ecological disasters mainly due to piggery untreated wastewater discharges. The aim of this study was to evaluate the effect of existing domestic, agricultural, and industrial activities on the water quality, and to propose a watershed plan to protect and manage surface water resources within the Lis river basin. For this purpose, 16 monitoring stations have been strategically selected along the Lis river stretch and its main tributaries to evaluate the water quality in six different sampling periods (2003–2006). All samples were characterized in terms of organic material, nutrients, chlorophyll, and pathogenic bacteria. Generally, the Lis river presents poor water quality, according to environmental quality standards for surface water, principally in terms of dissolved oxygen, biochemical oxygen demand, total nitrogen, and fecal coliform, which can be associated mainly with the contamination source from pig-breeding farms. PMID:22286837

  20. Universal optimization of water quality management strategy

    NASA Astrophysics Data System (ADS)

    Unami, K.; Kawachi, T.

    Although many optimization models for water quality problems have been developed, methodology for judging the necessity of applying them is scarcely worked out. The universal optimization scheme presented here is to determine a management strategy for controlling water quality in a generic body of water. Dynamics of a water quality index is represented by an ordinary differential equation, and a linear system model is deduced. The H∞ control theory, which summarizes system stabilization and error minimization, is applied to a generalized water quality control problem including the linear system model. A class of H∞ controllers is identified, and a temporal discretization scheme for a controller is proposed. Three application examples demonstrate the conception of universal optimization and the validity of its implementation using an H∞ controller.

  1. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  2. Drinking water microbiology--new directions toward water quality enhancement.

    PubMed

    Geldreich, E E

    1989-12-01

    Drinking water microbiology has emerged from decades of relative complacency to recognize there can be major concerns with potable water quality. Many of these issues are a result of an explosion of information on new waterborne agents, treatment problems with raw-source water qualities, biofilm development in some distribution systems and specialized requirements in water quality unique to hospitals and industries. Protozoan cyst survival after some disinfection practices involving surface water impoundments and virus occurrence in poorly protected groundwaters have provided reasons for expanding minimum treatment of surface waters and for requiring disinfection of all groundwaters unless there is a demonstrative data base to support exceptions in treatment requirements. Official monitoring of small water supplies must be increased on a monthly basis and a rapid alert established to inform water plant operators of unsatisfactory water qualities. As an option, application of operational tests to analyse water quality in terms of chlorine residual, turbidity, total coliforms and heterotrophic bacterial counts in small water plant operations should be encouraged. This would provide the operator at remote locations with the opportunity to utilize the information to make necessary treatment adjustments or corrections in water distribution deficiencies promptly and be a supplement to the official regional monitoring program. Application of drinking water alternative sources (bottled water and water from point-of-use treatment devices) should be viewed by the health authorities as only a temporary solution, not as a permanent fix for a public water supply known to present some established health risk to consumers. The public must also recognize that bottled water is not frequently monitored by health laboratories for acceptable quality and the use of home treatment devices places the responsibility of proper maintenance on the user. Microbial quality improvements in

  3. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  4. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  5. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  6. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  7. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  8. A water quality monitoring system for HAWC

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Tinoco, S.; Iriarte, A.

    2012-09-01

    HAWC (High Altitude Water Cherenkov), is a gamma ray (γ) large aperture observatory with high sensitivity that will be able to continuously monitor the sky for transient sources of photons with energies between 100 GeV and 100 TeV. HAWC is under construction in Sierra Negra, Puebla, Mexico, which is located at a high altitude of 4100m. HAWC will be an array of 300 Cherenkov detectors each one with 200,000 liters of highly pure water. The sensitivity of the instrument depends strongly on the water quality. We present the design and construction of the HAWC water quality monitoring system. We seek monitor the transparency in violet-blue range to achieve and maintain the required water transparency quality in each detector. The system is robust and user friendly. The measurements are reproducible. Also we present some results from the monitoring the water from the VAMOS detector tanks and of the filtering system.

  9. Water quality for the year 2000

    SciTech Connect

    Newman, A.

    1991-09-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings.

  10. Water shortages and implied water quality: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Genius, Margarita; Tsagarakis, Konstantinos P.

    2006-12-01

    This paper analyses the extent to which households in an urban area are willing to pay to ensure a fully reliable water supply when the latter induces changes in drinking water quality. The water supply system in the city of Heraklion, Greece, is characterized by periodic water rationing, which is more pronounced in the summer months. The generalized use of cisterns and even water tanks helps residents cope with quantity shortages but has a negative effect on the quality of the water reaching their taps. The results of our contingent valuation show that respondents not affected by shortages and already drinking tap water have a smaller willingness to pay, while positive perceptions on quality have a positive effect.

  11. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  12. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  13. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  14. Quality of surface waters in Wilton, Connecticut

    USGS Publications Warehouse

    Kulp, K.P.

    1982-01-01

    Water, bed material, and biological samples were collected and analyzed at 10 surface-water gaging sites on six streams in the town of Wilton, Connecticut over a 2-year period. The data indicate fair to excellent water quality. Fecal coliform bacteria, pH, alkalinity, iron, and manganese are the parameters that most often exceed recommended limits established by either the U. S. Environmental Protection Agency or the Connecticut Department of Environmental Protection. Data from sites on the Norwalk and East Branch Silvermine Rivers indicate little if any undesirable changes in water quality take place as they flow through the study area. (USGS)

  15. Modelling of Buckingham Canal water quality.

    PubMed

    Abbasi, S A; Khan, F I; Sentilvelan, K; Shabudeen, A

    2002-10-01

    The paper presents a case study of the modelling of the water quality of a canal situated in a petrochemical industrial complex, which receives wastewaters from Madras Refineries Limited (MRL), and Madras Fertilizers Limited (MFL). The canal well known Buckingham Canal which passes through Chennai (Madras), India has been modelled using the software QUAL2E-UNCAS. After testing and validation of the model, simulations have been carried out. The exercise enables forecasting the impacts of different seasons, base flows, and waste water inputs on the water quality of the Buckingham Canal. It also enables development of water management strategies.

  16. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  17. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  18. Dietary patterns and semen quality in young men

    PubMed Central

    Gaskins, Audrey J.; Colaci, Daniela S.; Mendiola, Jaime; Swan, Shanna H.; Chavarro, Jorge E.

    2012-01-01

    STUDY QUESTION Are different dietary patterns associated with semen parameters in young men? STUDY ANSWER The consumption of a Prudent dietary pattern was significantly associated with higher progressive sperm motility and unrelated to sperm concentration and morphology. The consumption of a Western dietary pattern was unrelated to conventional semen quality parameters. WHAT IS KNOWN ALREADY Over the past decades there has been evidence of a concomitant decline in sperm and diet quality. Yet whether diet composition influences semen quality remains largely unexplored. STUDY DESIGN, SIZE, DURATION The Rochester Young Men's Study (n= 188) was a cross-sectional study conducted between 2009 and 2010 at the University of Rochester. PARTICIPANTS, SETTING, METHODS Men aged 18–22 years were included in this analysis. Diet was assessed via food frequency questionnaire and dietary patterns were identified by factor analysis. Linear regression was used to analyze the relation between diet patterns and conventional semen quality parameters (sperm concentration, progressive motility and morphology) adjusting for abstinence time, multivitamin use, race, smoking status, BMI, recruitment period, moderate-to-intense exercise and total calorie intake. RESULTS Two dietary patterns were identified by factor analysis. The ‘Western’ pattern was characterized by high intake of red and processed meat, refined grains, pizza, snacks, high-energy drinks and sweets. The ‘Prudent’ pattern was characterized by high intake of fish, chicken, fruit, vegetables, legumes and whole grains. The Prudent pattern was positively associated with percent progressively motile sperm in multivariate models (P-trend = 0.04). Men in the highest quartile of the Prudent diet had 11.3% (95% CI 1.3, 21.3) higher % progressively motile sperm compared with men in the lowest quartile. The Prudent pattern was unrelated to sperm concentration and morphology. The Western pattern was not associated with any semen

  19. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  20. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  1. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  2. Towards Sustainable Water Quality In Estuarine Impoundments: The Current State.

    NASA Astrophysics Data System (ADS)

    Wright, J.; Worrall, F.

    Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. Detailed water quality surveys have been carried out on a total of 79 dates on the Tees, Tawe, Wansbeck and Blyth estuaries. Water quality parameters which have been determined are pH, Eh, dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, transparency, suspended solids, alkalinity, temperature, nutri- ents (nitrate+nitrite, ammonium and orthophosphate), and a large range of dissolved metals. Statistical analyses are used to demonstrate the major controls on water qual- ity in impoundments. A distinction is made between total tidal exclusion (freshwater) systems, in which water quality is primarily influenced by external/catchment factors, and partial tidal exclusion systems, in which water quality is processed internally. This internal processing is due to density stratification creating compartments of saline wa- ter in contact with oxygen demanding sediments and isolated from the atmosphere, which leads to conditions of low DO and changes in redox conditions which may lead to release of metals and phosphate from the sediment.

  3. Instruments for Water Quality Management

    ERIC Educational Resources Information Center

    United Nations and Water, 1977

    1977-01-01

    The old system of licensing within the different sectors of the society in Norway is in the process of being incorporated into a system of total natural resource planning and regulation. This article outlines comprehensive physical and economic water pollution management plans for the municipality, the county, and the state. (Author/MA)

  4. Water availability, quality, and use in Alaska

    USGS Publications Warehouse

    Balding, G.O.

    1976-01-01

    The Alaska Water Assessment, sponsored by the Water Resources Council, is a specific problem analysis for Alaska of the National Assessment of Water and Related Land Resources. The Alaska region has been divided into six hydrologic subregions and eighteen subareas. For each subarea, estimated mean annual runoff per square mile, suspended-sediment concentrations that can be expected during ' normal ' summer runoff, flood magnitudes and frequencies, and ground-water yields are illustrated on maps. Tables show water quality of both ground water and surface water from selected wells and streams. Water use according to the type of use is discussed, and estimates are given for the amounts used. Water-use categories include domestic, irrigation, livestock, seafood processing, oil and gas development, petrochemical processing, pulp mills, hydroelectric , coal processing, steam electric, mineral processing, sand and gravel mining, and fish-hatchery operations. (Woodard-USGS)

  5. Baseline water quality of Iowa's coal region

    USGS Publications Warehouse

    Slack, Larry J.

    1979-01-01

    To assist the Iowa Department of Environmental Quality in determining the effects that coal mining and attendant activities will have on the water quality of Iowa streams, the U.S. Geological Survey collected three sets of water-quality samples (representative of high, average, and low streamflow) in the White Breast, English,aand Cedar Creek basins in south-central Iowa. These samples were analyzed by the U.S. Geological Survey Central Laboratory at Denver, Colorado, and by the Iowa State Hygienic Laboratory (Iowa City and Des Moines). The report presents the data collected from May to November 1978 at 15 stations in the study area. (Woodard-USGS)

  6. Participatory Patterns in an International Air Quality Monitoring Initiative

    PubMed Central

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D. P.; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  7. Participatory Patterns in an International Air Quality Monitoring Initiative.

    PubMed

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

  8. Participatory Patterns in an International Air Quality Monitoring Initiative.

    PubMed

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  9. British Columbia water quality guidelines, criteria

    SciTech Connect

    1998-12-31

    This publication contains tables summarizing approved water quality guidelines for various contaminants that may be present in British Columbia water supplies. It begins with a section in question and answer format that explains certain aspects of the guidelines. Contaminants covered by the guidelines include particulate matter, nutrients and algae, aluminium, lead, mercury, nitrogen, dissolved oxygen, copper, chlorine, fluoride, hydrocarbons, pH, and silver.

  10. WQM: A Water Quality Management Simulation Game.

    ERIC Educational Resources Information Center

    Sharda, Ramesh; And Others

    1988-01-01

    Description of WQM, a simulation game designed to introduce students to the water quality management function, emphasizes the decision-making process involved in various facets of business. The simulation model is described, computer support is explained, and issues in water resource management are discussed. (13 references) (LRW)

  11. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  12. SAMPLING DESIGN FOR ASSESSING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Current U.S. EPA guidelines for monitoring recreatoinal water quality refer to the geometric mean density of indicator organisms, enterococci and E. coli in marine and fresh water, respectively, from at least five samples collected over a four-week period. In order to expand thi...

  13. Drinking water quality concerns and water vending machines

    SciTech Connect

    McSwane, D.Z. . School of Public and Environmental Affairs); Oleckno, W.A.; Eils, L.M.

    1994-06-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons.

  14. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized

  15. Organoleptic water quality: Health and economic impacts

    SciTech Connect

    Daniels, J.I.; Layton, D.W.; Nelson, M.A.; Olivieri, A.W.; Cooper, R.C.; Danielson, R.E.; Bruvold, W.H.; Scofield, R.; Hsieh, D.P.H.; Schaub, S.A.

    1987-02-01

    Organoleptic properties of drinking water (i.e., characteristics perceptible to the senses) can affect the acceptance of water by the public. In this paper we present a risk-analysis methodology, along with supporting data, that can be used for assessing the relationship between the level of either (1) turbidity, color, and odor; or (2) total dissolved solids (TDS); or (3) metabolites of algae and associated bacteria in drinking water, and the fraction of an exposed population that could reject the water. We explain how this methodology can be used by public health authorities in developing nations as a rational approach for adopting pragmatic water-quality guidelines for these organoleptic constituents, and for accurately correlating concentrations of these organoleptic constituents with the need to commit manpower and resources to improve water quality in rural areas, small communities, and large cities.

  16. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  17. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  18. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  19. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  20. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%.

  1. Rare Event Detection Algorithm Of Water Quality

    NASA Astrophysics Data System (ADS)

    Ungs, M. J.

    2011-12-01

    A novel method is presented describing the development and implementation of an on-line water quality event detection algorithm. An algorithm was developed to distinguish between normal variation in water quality parameters and changes in these parameters triggered by the presence of contaminant spikes. Emphasis is placed on simultaneously limiting the number of false alarms (which are called false positives) that occur and the number of misses (called false negatives). The problem of excessive false alarms is common to existing change detection algorithms. EPA's standard measure of evaluation for event detection algorithms is to have a false alarm rate of less than 0.5 percent and a false positive rate less than 2 percent (EPA 817-R-07-002). A detailed description of the algorithm's development is presented. The algorithm is tested using historical water quality data collected by a public water supply agency at multiple locations and using spiking contaminants developed by the USEPA, Water Security Division. The water quality parameters of specific conductivity, chlorine residual, total organic carbon, pH, and oxidation reduction potential are considered. Abnormal data sets are generated by superimposing water quality changes on the historical or baseline data. Eddies-ET has defined reaction expressions which specify how the peak or spike concentration of a particular contaminant affects each water quality parameter. Nine default contaminants (Eddies-ET) were previously derived from pipe-loop tests performed at EPA's National Homeland Security Research Center (NHSRC) Test and Evaluation (T&E) Facility. A contaminant strength value of approximately 1.5 is considered to be a significant threat. The proposed algorithm has been able to achieve a combined false alarm rate of less than 0.03 percent for both false positives and for false negatives using contaminant spikes of strength 2 or more.

  2. Time-averaging water quality assessment

    SciTech Connect

    Reddy, L.S.; Ormsbee, L.E.; Wood, D.J.

    1995-07-01

    While reauthorization of the Safe Drinking Water Act is pending, many water utilities are preparing to monitor and regulate levels of distribution system constituents that affect water quality. Most frequently, utilities are concerned about average concentrations rather than about tracing a particular constituent`s path. Mathematical and computer models, which provide a quick estimate of average concentrations, could play an important role in this effort. Most water quality models deal primarily with isolated events, such as tracing a particular constituent through a distribution system. This article proposes a simple, time-averaging model that obtains average, maximum, and minimum constituent concentrations and ages throughout the network. It also computes percentage flow contribution and percentage constituent concentration. The model is illustrated using two water distribution systems, and results are compared with those obtained using a dynamic water quality model. Both models predict average water quality parameters with no significant deviations; the time-averaging approach is a simple and efficient alternative to the dynamic model.

  3. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  4. Water quality assessment in Ecuador

    SciTech Connect

    Chudy, J.P.; Arniella, E.; Gil, E.

    1993-02-01

    The El Tor cholera pandemic arrived in Ecuador in March 1991, and through the course of the year caused 46,320 cases, of which 692 resulted in death. Most of the cases were confined to cities along Ecuador's coast. The Water and Sanitation for Health Project (WASH), which was asked to participate in the review of this request, suggested that a more comprehensive approach should be taken to cholera control and prevention. The approach was accepted, and a multidisciplinary team consisting of a sanitary engineer, a hygiene education specialist, and an institutional specialist was scheduled to carry out the assessment in late 1992 following the national elections.

  5. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  6. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  7. Lagrangian water quality dynamics in the San Luis Drain, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dahlgren, R. A.; Stringfellow, W. T.; Henson, S. S.; Borglin, S. E.; Kendall, C.

    2007-12-01

    Integration of temporal changes in biological and water quality constituents during downstream transport is critical to understanding aquatic ecosystem and biogeochemical dynamics of rivers, estuaries, and the near- coastal waters into which rivers flow. Changes in chemical, physical, and biological water quality constituents during downstream transport can be evaluated by following a specific parcel of water, known as a Lagrangian study. The objective of this study was to differentiate changes in water quality constituents occurring within a parcel of water as it travels downstream to the changes observed at a fixed sampling location. We sampled a parcel of agricultural drainage water as it traveled downstream for 84 h in a concrete-lined channel (San Luis Drain in San Joaquin Valley) with no additional water inputs or outputs. The Lagrangian sampling occurred in August 2006 and June 2007. Data from the Lagrangian study was compared to data collected at a fixed point using an automatic pump sampler and water quality sonde. Fluorescence (a measure of algal pigments), dissolved oxygen, temperature, pH, and conductivity were measured every 30 minutes, as well as collecting grab samples every 2 h for nutrient and suspended sediment analyses. Sinusoidal diel (24 h) patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. Algal pigments, nutrients, suspended solids, and turbidity did not exhibit sinusoidal diel patterns, generally observed at a fixed sampling location. The diel patterns observed indicated changes that would occur during downstream transport. Algal pigments showed a rapid day time increase during the first 24 to 48 h followed by a plateau or decrease for the remainder of the study. Algal growth was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, in spite of non-detectable phosphate concentrations (<5 ppb) and nearly complete consumption of soluble silica during the 2007

  8. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  9. Private drinking water quality in rural Wisconsin.

    PubMed

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  10. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs.

  11. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. PMID:25602661

  12. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  13. Observations on a Montana water quality proposal.

    SciTech Connect

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  14. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  15. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  16. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  17. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  18. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  19. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  20. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development.

  1. Water-quality monitoring of Sweetwater Reservoir

    USGS Publications Warehouse

    Majewski, Michael

    2001-01-01

    Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.

  2. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  3. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  4. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  5. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  6. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  7. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  8. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  9. Quality assurance and quality control for drinking water laboratories

    SciTech Connect

    Winter, J.A.; Budde, W.L. ); Novielli, F. )

    1993-09-01

    Soon after the US Environmental Protection Agency (USEPA) was formed in 1972, agency administrators realized that in order to make appropriate decisions for environmental regulation, they must be assured that data being generated by the agency and the 50 states were valid and legally defensible. Thus in 1979, USEPA established a mandatory quality assurance (QA) program for all data generated by or for the agency. QA responsibilities were assigned to the Office of Research and Development. QA guidance in water chemistry and microbiology was assigned to the Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, and QA guidance in water radiochemistry became the responsibility of the EMSL in Las Vegas, Nevada.

  10. Impacts of aquatic macrophytes configuration modes on water quality.

    PubMed

    Liu, Jiakai; Liu, Jinglan; Zhang, Rong; Zou, Yuqi; Wang, Huihui; Zhang, Zhenming

    2014-01-01

    Constructed wetland technology is regarded as an important ecological restoration technology and used widely in sewage disposal. In order to give them a wider scope of application and to improve their performance in water restoration, the current experiment was designed. Four aquatic macrophytes (dwarf cattail (TM), yellow-flowered iris (WI), water shallot (ST) and watermifoil (MS)) were picked and planted in artificial floating islands (AFIs) in different configurations (TM + WI, ST + MS and TM + WI + MS) and two patterns, radiation pattern (RP) and annular pattern (AP), for a 60-day experiment. Then, water quality and growth were monitored every 10 days. The results indicate that the different configurations performed diversely on waste water purification. First, a composite plant configuration removed more pollutant than a single one with the same total increment of biomass. Second, the plant configuration of MS + ST was most effective in total nitrogen (TN), total phosphorus (TP) or PO4(3-) removal, and TM + IW + MS was good at chemical oxygen demand (COD) and NO3(-) removal. However, different patterns comprised from the same species had a certain effect on absorption of pollutants. Generally speaking, plant configurations with a RP were better than an AP in purification. Accordingly, these provided the methods for the pollution wetland restoration.

  11. Impacts of aquatic macrophytes configuration modes on water quality.

    PubMed

    Liu, Jiakai; Liu, Jinglan; Zhang, Rong; Zou, Yuqi; Wang, Huihui; Zhang, Zhenming

    2014-01-01

    Constructed wetland technology is regarded as an important ecological restoration technology and used widely in sewage disposal. In order to give them a wider scope of application and to improve their performance in water restoration, the current experiment was designed. Four aquatic macrophytes (dwarf cattail (TM), yellow-flowered iris (WI), water shallot (ST) and watermifoil (MS)) were picked and planted in artificial floating islands (AFIs) in different configurations (TM + WI, ST + MS and TM + WI + MS) and two patterns, radiation pattern (RP) and annular pattern (AP), for a 60-day experiment. Then, water quality and growth were monitored every 10 days. The results indicate that the different configurations performed diversely on waste water purification. First, a composite plant configuration removed more pollutant than a single one with the same total increment of biomass. Second, the plant configuration of MS + ST was most effective in total nitrogen (TN), total phosphorus (TP) or PO4(3-) removal, and TM + IW + MS was good at chemical oxygen demand (COD) and NO3(-) removal. However, different patterns comprised from the same species had a certain effect on absorption of pollutants. Generally speaking, plant configurations with a RP were better than an AP in purification. Accordingly, these provided the methods for the pollution wetland restoration. PMID:24473292

  12. Drinking water consumption patterns in Sweden.

    PubMed

    Westrell, Therese; Andersson, Yvonne; Stenström, Thor Axel

    2006-12-01

    Estimates on drinking water consumption are necessary in risk assessments on microbial hazards in drinking water. Large differences in consumption habits between countries have been reported. In order to establish estimates for the Swedish population, water consumption data from a waterborne outbreak investigation (157 people), a small water consumption study (75 people) and a large study on health and environmental factors (10,957 people) were analysed. A lognormal distribution for the daily direct/cold water intake in litres with mu = - 0.299 and sigma = 0.570 was fitted to the quantitative data, representing the general population. The average daily consumption of tap water as plain drinking water and as heated tap water, e.g. in coffee and tea, was 0.86 +/- 0.48 l and 0.94 +/- 0.69 l, respectively. Women consumed more cold tap water than did men, while men appeared to have a higher consumption of heated tap water. Cold tap water intake was highest in the oldest age group, (> or =70 years). The consumption of bottled water was very low (mean 0.06 l/d) when compared to other countries.

  13. Groundwater quality and water quality index at Bhandara District.

    PubMed

    Rajankar, Prashant N; Tambekar, Dilip H; Wate, Satish R

    2011-08-01

    The present investigation reports the results of a monitoring study focusing on groundwater quality of Bhandara District of central India. Since, remediation of groundwater is very difficult, knowledge of the existing nature, magnitude, and sources of the various pollution loads is a prerequisite to assessing groundwater quality. The water quality index (WQI) value as a function of various physicochemical and bacteriological parameters was determined for groundwater obtained from a total of 21 locations. The WQI during pre-monsoon season varied from 68 to 83, while for post-monsoon, it was between 56 and 76. Significantly (P < 0.01) lower WQI for the post-monsoon season was observed, indicating deterioration of the groundwater overall in corresponding season. The study revealed that groundwater from only 19% locations was fit for domestic use, thus indicating the need of proper treatment before use.

  14. Water quality issues and energy assessments

    SciTech Connect

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  15. Water Quality Considerations and Related Dishwashing Problems.

    ERIC Educational Resources Information Center

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  16. ASSESSING WATER QUALITY: AN ENERGETICS PERPECTIVE

    EPA Science Inventory

    Integrated measures of food web dynamics could serve as important supplemental indicators of water quality that are well related with ecological integrity and environmental well-being. When the concern is a well-characterized pollutant (posing an established risk to human health...

  17. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  18. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  19. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  20. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    EPA Science Inventory

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  1. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from ten countries presented papers at the Fifth International Symposium on Fish Physiology, Toxicology, and Water Quality, which was held on the campus of the city University of Hong Kong on November 10-13, 1998. These Proceedings include 23 papers presented in sessi...

  2. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment.

  3. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. PMID:26346804

  4. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  5. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  6. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  7. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  8. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  9. [Numerical evaluation of soil quality under different conservation tillage patterns].

    PubMed

    Wu, Yu-Hong; Tian, Xiao-Hong; Chi, Wen-Bo; Nan, Xiong-Xiong; Yan, Xiao-Li; Zhu, Rui-Xiang; Tong, Yan-An

    2010-06-01

    A 9-year field experiment was conducted on the Guanzhong Plain of Shaanxi Province to study the effects of subsoiling, rotary tillage, straw return, no-till seeding, and traditional tillage on the soil physical and chemical properties and the grain yield in a winter wheat-summer maize rotation system, and a comprehensive evaluation was made on the soil quality under these tillage patterns by the method of principal components analysis (PCA). Comparing with traditional tillage, all the conservation tillage patterns improved soil fertility quality and soil physical properties. Under conservative tillage, the activities of soil urease and alkaline phosphatase increased significantly, soil quality index increased by 19.8%-44.0%, and the grain yield of winter wheat and summer maize (expect that under no till seeding with straw covering) increased by 13%-28% and 3%-12%, respectively. Subsoiling every other year, straw-chopping combined with rotary tillage, and straw-mulching combined with subsoiling not only increased crop yield, but also improved soil quality. Based on the economic and ecological benefits, the practices of subsoiling and straw return should be promoted.

  10. [Numerical evaluation of soil quality under different conservation tillage patterns].

    PubMed

    Wu, Yu-Hong; Tian, Xiao-Hong; Chi, Wen-Bo; Nan, Xiong-Xiong; Yan, Xiao-Li; Zhu, Rui-Xiang; Tong, Yan-An

    2010-06-01

    A 9-year field experiment was conducted on the Guanzhong Plain of Shaanxi Province to study the effects of subsoiling, rotary tillage, straw return, no-till seeding, and traditional tillage on the soil physical and chemical properties and the grain yield in a winter wheat-summer maize rotation system, and a comprehensive evaluation was made on the soil quality under these tillage patterns by the method of principal components analysis (PCA). Comparing with traditional tillage, all the conservation tillage patterns improved soil fertility quality and soil physical properties. Under conservative tillage, the activities of soil urease and alkaline phosphatase increased significantly, soil quality index increased by 19.8%-44.0%, and the grain yield of winter wheat and summer maize (expect that under no till seeding with straw covering) increased by 13%-28% and 3%-12%, respectively. Subsoiling every other year, straw-chopping combined with rotary tillage, and straw-mulching combined with subsoiling not only increased crop yield, but also improved soil quality. Based on the economic and ecological benefits, the practices of subsoiling and straw return should be promoted. PMID:20873622

  11. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  12. The psychology of drinking water quality: An exploratory study

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Williams, Katrina D.

    1993-12-01

    Perceptions of drinking water quality were measured for residents at four locations in Western Australia. The total dissolved solid levels for the locations varied. Four scales of drinking water satisfaction were measured: acceptability of water quality; water quality risk judgment; perception of neighborhood water quality; and attitudes toward fluoride as an additive. Responses to each of these scales did not appear to be highly related to total dissolved solids. The relationship between attitudes toward water quality and a variety of psychological, attitudinal, experiential, and demographic variables was investigated. It was found that responses to the acceptability of water quality and water quality risk judgment scales related to perceived credibility of societal institutions and feelings of control over water quality and environmental problems. For the remaining two scales few significant correlations were found. The results support those who advocate localized information and involvement campaigns on drinking water quality issues.

  13. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  14. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  15. Linking biological and physicochemical water quality.

    PubMed

    Bernatowicz, Waldemar; Weiss, Annett; Matschullat, Jörg

    2009-12-01

    To define water quality, the European Water Framework Directive (WFD) demands complex assessments through physicochemical, biological, and hydromorphological controls of water bodies. Since the biological assessment became the central focus with hydrochemistry playing a supporting role, an evaluation of the interrelationships within this approach deems necessary. This work identified and tested these relationships to help improve the quality and efficiency of related efforts. Data from the 384 km(2) Weisseritz catchment (eastern Erzgebirge, Saxony, Germany and northern Bohemia, Czech Republic) were used as a representative example for central European streams in mountainous areas. The data cover the time frame 1992 to 2003. To implement WFD demands, the analysis was based on accepted German methods and classifications, WFD quality standards, and novel German methods for the biological status assessment. Selected chemical parameters were compared with different versions of the German Saprobic Index, based on macroinvertebrate indicator taxa. Relevant dependencies applicable for integrated stream assessment were statistically tested. Correlation analysis showed significant relationships. The highest scores were found for nutrients (NO(2)(-), N(inorg), and total N), salinity (Cl(-), SO(4)(2-), conductivity), and microelements (K(+), Na(+), Ca(2+), Mg(2+)). The Saprobic Index used in the Integrated Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macro-invertebrates program seems to be the most sensitive indicator to correlate with chemical parameters.

  16. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  17. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  18. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  19. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  20. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  1. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  2. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  3. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  4. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  5. Water resources data, Virginia, water year 2004 volume 2. Ground-water-level and ground-water-quality records

    USGS Publications Warehouse

    White, Roger K.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2005-01-01

    Water-resources data for the 2004 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 346 observation wells and water quality at 40 wells. Locations of these wells are shown on figures 4 through 9. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  6. Water quality improvement plan for Greater Vancouver

    SciTech Connect

    Foellmi, S.N. . Environmental Div.); Neden, D.G. ); Dawson, R.N. )

    1993-10-01

    The Greater Vancouver Regional District commissioned an 18-month planning and predesign study to define the components in a comprehensive water and predesign study to define the components in a comprehensive water quality improvement plan for its 2,500-ML/d (660-mgd) system. The study included three primary tasks: (1) predesign of disinfection and corrosion control facilities, (2) a 12-month pilot testing program using parallel pilot plants at the Seymour and Capilano water supply reservoirs, and (3) planning for future filtration plants. The results of the study identified chlorine, ammonia, sulfur dioxide, soda ash, and carbon dioxide in a two-stage treatment approach as the recommended disinfection and corrosion control scheme for the low-pH, low-alkalinity water supplies. The pilot-plant studies confirmed that direct filtration using deep-bed monomedium filters operating at a loading rate of 22.5 m/h provided excellent treatment performance and productivity over a wide range of raw-water quality. Ozonation was studied extensively and found not to be beneficial in the overall treatment performance. The phased improvement plan for the disinfection, corrosion control, and filtration facilities has an estimated capital cost of about Can$459 million.

  7. Headwater Influences on Downstream Water Quality

    PubMed Central

    Oakes, Robert M.

    2007-01-01

    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108

  8. [Microbial indicators and fresh water quality assessment].

    PubMed

    Briancesco, Rossella

    2005-01-01

    Traditionally, the microbiological quality of waters has been measured by the analysis of indicator microorganisms. The article reviews the sanitary significance of traditional indicators of faecal contamination (total coliforms, faecal coliforms and faecal streptococci) and points out their limits. For some characteristics Escherichia coli may be considered a more useful indicator then faecal coliforms and recently it has been included in all recent laws regarding fresh, marine and drinking water. A clearer taxonomic definition of faecal streptococci evidenced the difficulty into defining a specific standard methodology of enumeration and suggested the more suitable role of enterococci as indicator microorganisms. Several current laws require the detection of enterococci. The resistance of Clostridium perfringens spores may mean that they would serve as a useful indicator of the sanitary quality of sea sediments.

  9. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  10. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  11. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  12. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  13. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  14. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  15. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  16. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  17. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  18. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially...

  19. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  20. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  1. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  2. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  3. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  4. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  5. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  6. Water quality in Illinois, 1990-1991. Biennial report

    SciTech Connect

    Northrop, C.

    1993-01-01

    The report is a summary of the 305(b) Illinois Water Quality Report. It highlights the 1990 - 1991 water quality conditions of Illinois rivers, streams, inland lakes, Lake Michigan, and groundwater. The report also outlines current water quality issues and the IEPA's water pollution control programs.

  7. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  8. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  9. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  10. Potable water quality in rural Georgetown County.

    PubMed

    Sandhu, S S; Nelson, P; Warren, W J

    1975-10-01

    Drinking water supplies of 161 rural communities, in Georgetown County, South Carolina, were randomly selected for sample collection. The analysis showed that most of the waters were slightly acidic. Low, but acceptable concentrations of chloride, copper, fluoride, sodium, cadmium, nitrate and phosphate were found. A few water samples showed higher then recommended levels of arsenic, mercury, zinc and lead. Although only 2% of the samples exceeded the mandatory limit of 0.05 ppm for arsenic, 72% exceeded the recommended level of 0.01 ppm. The mandatory limit for manganese was exceeded in 37% of the waters while 88% exceeded the limit for iron. The high iron content was generally responsible for the high turbidity found in 45% of the samples. The well depth and the consumer income had some bearing on water quality. Statistical evidence suggested that septic tank seepage was partially responsible for nitrate, phosphate, iron and arsenic contamination of shallow water supplies. Lead concentrations appear to vary according to the plumbing used and the pH of the waters. PMID:107

  11. Urban areas impact on surface water quality during rainfall events

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Soares, D.; Ferreira, A. J. D.; Costa, M. L.; Steenhuis, T. S.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    Increasing population and welfare puts water management under stress, especially in what concerns water quality. Surface water properties are strongly linked with hydrological processes and are affected by stream flow variability. Changes in some chemical substances concentrations can be ascribed to different water sources. Runoff generated in urban areas is considered the main responsible for water quality degradation inside catchments. This poster presents the methodology and first results of a study that is being developed to assess the impact of urbanization on surface water quality, during rainfall events. It focuses on the Ribeira dos Covões catchment (620 ha) located in central Portugal. Due to its proximity to the Coimbra city in central region, the urban areas sprawled during the last decades. In 2008, urban areas represented 32% of the area. Recently a highway was constructed crossing the catchment and a technological industrial park is being build-up in the headwaters. Several water samples were collected at four different locations: the catchment outlet and in three sub-catchments with distinct urbanization patterns - Espírito Santo that represents a highly urbanized area (45%) located over sandstone, Porto do Bordalo with 30% of urbanized area located over limestone, and IParque, mainly forest and just downstream the disturbed technological industrial park construction area. The samples were collected at different times during rainfall events to monitor the variability along the hydrograph. Six monitoring campaigns were performed: two in April 2011, at the end of the winter period, and the others between October and November 2011, after the dry summer. The number of samples collected per monitoring campaign is variable according with rainfall pattern. Parameters such as pH, conductivity, turbidity and total suspended sediments were immediately analyzed. The samples were then preserved, after filtered (0.45µm), and later analyzed for dissolved

  12. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  13. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  14. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  15. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  16. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  17. Quality assessment of Romanian bottled mineral water and tap water.

    PubMed

    M Carstea, Elfrida; Levei, Erika A; Hoaghia, Maria-Alexandra; Savastru, Roxana

    2016-09-01

    This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses. PMID:27526046

  18. Dynamics in urban water quality: monitoring the Amsterdam city area

    NASA Astrophysics Data System (ADS)

    van der Vlugt, Corné; Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris; Ouboter, Maarten; Stuurman, Roelof; Broers, Hans Peter

    2014-05-01

    Urban water quality is influenced by a large number of heterogeneous sources. We aimed to identify solute pathways from different sources in the urban area of Amsterdam, The Netherlands. The city is situated in the Dutch delta, and largely below mean sea level. The water system of the centre of the city is connected to the large fresh water lake Ijsselmeer, but suburbs are mainly located within reclaimed lake and polder areas where water is pumped out in order to maintain the water levels, which are generally 1 tot 4 m. below sea level. Sources of water include: urban storm runoff, inlet water from the Ijsselmeer and surrounding areas, groundwater seepage and possibly also leaking sewage systems. The temporal dynamics and spatial patterns related to these flow routes and sources were largely unknown to date. Water quality is measured at those pumping stations systematically each month. We analysed the pumping discharge data and the concentration data to calculate daily water balances and annual load estimates for HCO3,Ca, Cl, Na, SO4, Ptot, Ntot ,NH4, NH3 and NO3. Chloride appears to be a good tracer to identify inlet water and bicarbonate and DIC were effective to estimate the groundwater contribution to the surface water outflow to the regional system. We were able to improve the solute balances by calibrating the measured temporal patterns of chloride and DIC using known concentrations from the individual sources. Subsequently the water balances where used to identify periods where one of the sources was dominant and by doing so we improved our understanding of the dynamics of N, P and S fluxes and the relations with dry and wet meteorological conditions. It appeared that N and P were largely related to groundwater outflow , whereas S was mainly related to dry periods and shallow flow routes influenced by sewage, urban storm runoff and shallow groundwater flow . The results are used to optimize urban water management which benefits from the improved insight in

  19. Use of Cooperative K-12 Water Quality Data by Scientists

    NASA Astrophysics Data System (ADS)

    Conklin, M. H.; Clemons, J.; Bales, R. C.

    2001-05-01

    Cooperative data collected by volunteers who are not paid professionals has been successfully used in weather observations, groundwater levels, and water quality. However, the notion of involving K-12 students directly in research, specifically concerning water quality data, has left many research scientists wondering "what about quality assurance and control (QA/QC)?" Global Learning and Observations to Benefit the Environment (GLOBE) is a worldwide network of K-12 students, teachers, and scientists working together to study and understand the global environment. Students and teachers from over 8,000 schools in more than 80 countries are working with research scientists to learn more about our planet. GLOBE students make environmental observations (hydrology, meteorology, soils, and other measurements) at or near their schools and report their data through the Internet (www.globe.gov). GLOBE and other parallel K-12 volunteer measurement programs have developed multi-year records of stream water quality at locations where career scientists do not or only infrequently sample. Since 1995, over 600 GLOBE schools throughout the U.S. have gathered and reported surface water quality data for alkalinity, electrical conductivity, dissolved oxygen, pH, and temperature. A comparative analysis of GLOBE and USGS water quality data, and the protocols used to make these measurements, was done to assess: i) how measurement protocols compare qualitatively, ii) how the variability in data compare, and iii) what spatial and/or temporal patterns are apparent in the data. When compared to equivalent USGS protocols, it becomes apparent that some of the GLOBE hydrology protocols can be improved. However there are limits to the quality of K-12 data imposed by the levels of scientific training of participants and sophistication of instrumentation. The higher spatial and statistical variability of GLOBE data compared to USGS data makes it unsuited for use as a stand-alone method for

  20. Statewide water-quality network for Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James

    2001-01-01

    A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the

  1. Data Auditor: Analyzing Data Quality Using Pattern Tableaux

    NASA Astrophysics Data System (ADS)

    Srivastava, Divesh

    Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.

  2. Drinking water consumption patterns of residents in a Canadian community.

    PubMed

    Jones, A Q; Dewey, C E; Doré, K; Majowicz, S E; McEwen, S A; Waltner-Toews, D

    2006-03-01

    A cross-sectional survey using computer-assisted telephone interviewing was performed to assess the drinking water consumption patterns in a Canadian community, and to examine the associations between these patterns and various demographic characteristics. The median amount of water consumed daily was four 250 ml servings (1.01), although responses were highly variable (0 to 8.01). Bottled water consumption was common, and represented the primary source of drinking water for approximately 27% of respondents. Approximately 49% of households used water treatment devices to treat their tap water. The observed associations between some demographic characteristics and drinking water consumption patterns indicated potential differences in risk of exposure to waterborne hazards in the population. Our results lend support to the federal review of the bottled water regulations currently in progress in Canada. Additionally, they may lend support to a provincial/territorial government review of bottled water regulations, and both federal and provincial/territorial level reviews of the water treatment device industry. Further investigation of the use of alternative water sources and the perceptions of drinking water in Canada is also needed to better understand, and subsequently address, concerns among Canadians.

  3. Canadian water quality guidelines. Appendix 22: Interim marine and estuarine water quality guidelines for general variables

    SciTech Connect

    1996-12-31

    This document has been prepared in response to the need for marine water quality guidelines for general water quality variables. It presents interim guidelines, summaries of existing guidelines if any, the rationale for the guidelines, and variable-specific background information, and notes gaps in data, for the following variables: Debris, including floating or submerged litter, and settleable matter; dissolved oxygen; pH; salinity; temperature; and suspended solids and turbidity. For the purpose of this document, the marine environment includes shorelines, estuaries up to the freshwater limit, and nearshore and offshore waters.

  4. Relations between large scale oscillation patterns and rising water temperatures at Lake Neusiedl

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Soja, Gerhard

    2013-04-01

    Lake Neusiedl (Neusiedler See, Fertitó) is a very shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary. The low ratio of water depth to water volume accounts for dynamic, air temperature-dependent developments of water temperature with the potential of unusually warm waters that are a pillar of the touristic attractiveness of the lake. Likewise these conditions are a risk factor for water quality deterioration. In the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU, data records of water temperature at 5 monitoring stations of Lake Neusiedl (eHYD) and the nearby air temperature monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG) were used to investigate the period 1976-2009. Additionally the influences of 7 teleconnection patterns, i.e. the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. The increase of temperature during the observation period was more pronounced for water than for air. Water temperatures increased significantly (p

  5. Water quality problems in Nogales, Sonora.

    PubMed Central

    Sanchez, R A

    1995-01-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system. PMID:7621811

  6. Water quality problems in Nogales, Sonora.

    PubMed

    Sanchez, R A

    1995-02-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system.

  7. Patterns, structures and regulations of domestic water cycle systems in China

    NASA Astrophysics Data System (ADS)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system

  8. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  9. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  10. Changes in the water quality conditions of Kuwait's marine waters: Long term impacts of nutrient enrichment.

    PubMed

    Devlin, M J; Massoud, M S; Hamid, S A; Al-Zaidan, A; Al-Sarawi, H; Al-Enezi, M; Al-Ghofran, L; Smith, A J; Barry, J; Stentiford, G D; Morris, S; da Silva, E T; Lyons, B P

    2015-11-30

    This work analyses a 30 year water quality data set collated from chemical analyses of Kuwait's marine waters. Spatial patterns across six sites in Kuwait Bay and seven sites located in the Arabian Gulf are explored and discussed in terms of the changing influences associated with point and diffuse sources. Statistical modelling demonstrated significant increases for dissolved nutrients over the time period. Kuwait marine waters have been subject to inputs from urban development, untreated sewage discharges and decreasing river flow from the Shatt al-Arab River. Chlorophyll biomass showed a small but significant reduction; the high sewage content of the coastal waters from sewage discharges likely favouring the presence of smaller phytoplankton taxa. This detailed assessment of temporal data of the impacts of sewage inputs into Kuwait's coastal waters establishes an important baseline permitting future assessments to be made as sewage is upgraded, and the river continues to be extracted upstream.

  11. Changes in the water quality conditions of Kuwait's marine waters: Long term impacts of nutrient enrichment.

    PubMed

    Devlin, M J; Massoud, M S; Hamid, S A; Al-Zaidan, A; Al-Sarawi, H; Al-Enezi, M; Al-Ghofran, L; Smith, A J; Barry, J; Stentiford, G D; Morris, S; da Silva, E T; Lyons, B P

    2015-11-30

    This work analyses a 30 year water quality data set collated from chemical analyses of Kuwait's marine waters. Spatial patterns across six sites in Kuwait Bay and seven sites located in the Arabian Gulf are explored and discussed in terms of the changing influences associated with point and diffuse sources. Statistical modelling demonstrated significant increases for dissolved nutrients over the time period. Kuwait marine waters have been subject to inputs from urban development, untreated sewage discharges and decreasing river flow from the Shatt al-Arab River. Chlorophyll biomass showed a small but significant reduction; the high sewage content of the coastal waters from sewage discharges likely favouring the presence of smaller phytoplankton taxa. This detailed assessment of temporal data of the impacts of sewage inputs into Kuwait's coastal waters establishes an important baseline permitting future assessments to be made as sewage is upgraded, and the river continues to be extracted upstream. PMID:26490407

  12. Water Resources Data, New Jersey, Water Year 2000. Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Mattes, G.L.; Burns, H.L.; Thomas, A.M.; Gray, B.J.; Doyle, H.A.

    2001-01-01

    Water-resources data for the 2000 water year for New Jersey are presented in three volumes, and consist of records of stage, discharage, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 2000 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 125 continuing-record surface-water stations, 62 miscellaneous surface-water sites, 73 ground-water sites, and records of daily statistics of temperature and other physical measurements from 45 continuous-recording stations. Locations of water-quality stations are shown in figures 18-20. Locations of miscellaneous water-quality sites are shown in figures 11 and 42-49. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  13. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  14. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  16. MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS

    EPA Science Inventory

    EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...

  17. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  18. Barriers to adopting satellite remote sensing for water quality management

    EPA Science Inventory

    Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...

  19. Cellular-enabled water quality measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kerkez, B.

    2013-12-01

    While the past decade has seen significant improvements in our ability to measure nutrients and other water quality parameters, the use of these sensors has yet to gain traction due to their costprohibitive nature and deployment expertise required on the part of researchers. Furthermore, an extra burden is incurred when real-time data access becomes an experimental requirement. We present an open-source hardware design to facilitate the real-time, low-cost, and robust measurements of water quality across large urbanized areas. Our hardware platform interfaces an embedded, vastly configurable, high-precision, ultra-low power measurement system, with a low-power cellular module. Each sensor station is configured with an IP address, permitting reliable streaming of sensor data to off-site locations as measurements are made. We discuss the role of high-quality hardware components during extreme event scenarios, and present preliminary performance metrics that validate the ability of the platform to provide streaming access to sensor measurements.

  20. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  1. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  2. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India.

    PubMed

    Pati, Sangeeta; Dash, Mihir K; Mukherjee, C K; Dash, B; Pokhrel, S

    2014-10-01

    The present study was intended to develop a Water Quality Index (WQI) for the coastal water of Visakhapatnam, India from multiple measured water quality parameters using different multivariate statistical techniques. Cluster analysis was used to classify the data set into three major groups based on similar water quality characteristics. Discriminant analysis was used to generate a discriminant function for developing a WQI. Discriminant analysis gave the best result for analyzing the seasonal variation of water quality. It helped in data reduction and found the most discriminant parameters responsible for seasonal variation of water quality. Coastal water was classified into good, average, and poor quality considering WQI and the nutrient load. The predictive capacity of WQI was proved with random samples taken from coastal areas. High concentration of ammonia in surface water during winter was attributed to nitrogen fixation by the phytoplankton bloom which resulted due to East India Coastal Current. This study brings out the fact that water quality in the coastal region not only depends on the discharge from different pollution sources but also on the presence of different current patterns. It also illustrates the usefulness of WQI for analyzing the complex nutrient data for assessing the coastal water and identifying different pollution sources, considering reasons for seasonal variation of water quality.

  3. Quantitative evaluation of water quality in the coastal zone by remote sensing

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.

  4. Water quality monitoring in membrane filtration systems.

    PubMed

    Abogrean, Elhadi M; Boerlage, Siobhan F E; Kennedy, Maria D; El-Azizi, Ibrahim M; Galjaard, Gilbert; Schippers, Jan S

    2003-03-01

    We report on an experimental study of UF membrane fouling by colloidal particles. Deposition colloidal particles during membrane filtration causes a decline in permeate flux. Membrane flux is monitored on a laboratory scale, crossflow employing UF membranes. The existing modified fouling index (MFI) uses a microfilter membrane as a quick test of feed water quality. The MFI is based on cake filtration, and thus, a model can be developed for flux decline predication. However, this MFI is not sensitive to the presence of smaller particles. Therefore, more recently MFI using ultrafiltration membranes (MFI-UF) was developed. This research investigates various critical aspects of the MFI-UF test for use as a water quality indicator; stability of the MFI-UF over time, linearity of the index with particulate concentration, and reproducibility (1) of the test (reusability of a UF module) and (2) module manufacture. Pressure dependence of the MFI-UF was also examined. The aforementioned criteria were examined using a polyacrylonitrile module with 13,000 molecular weight cutoff for low fouling (tap and process water). The MFI-UF was stable over time and directly related to colloidal concentration. The MFI-UF test was reproducible for one module with repeated testing; reproducible module manufacture was found for 80% of the test modules.

  5. Water Resources Data, New Jersey, Water Year 2002--Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Hoppe, H.L.; Heckathorn, H.A.; Gray, B.J.; Riskin, M.L.

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  6. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  7. Bacteriological Assessment of Spoon River Water Quality

    PubMed Central

    Lin, Shundar; Evans, Ralph L.; Beuscher, Davis B.

    1974-01-01

    Data from a study of five stations on the Spoon River, Ill., during June 1971 through May 1973 were analyzed for compliance with Illinois Pollution Control Board's water quality standards of a geometric mean limitation of 200 fecal coliforms per 100 ml. This bacterial limit was achieved about 20% of the time during June 1971 through May 1972, and was never achieved during June 1972 through May 1973. Ratios of fecal coliform to total coliform are presented. By using fecal coliform-to-fecal streptococcus ratios to sort out fecal pollution origins, it was evident that a concern must be expressed not only for municipal wastewater effluents to the receiving stream, but also for nonpoint sources of pollution in assessing the bacterial quality of a stream. PMID:4604145

  8. Trends in Water Quality of New Jersey Streams, Water Years 1986-95

    USGS Publications Warehouse

    Hickman, R. Edward; Barringer, Thomas H.

    1999-01-01

    Trend tests were conducted on values of 24 water-quality characteristics measured at 83 surface-water-quality stations on streams in New Jersey during water years 1986-95. Characteristics tested include physical properties and concentrations of nutrients, bacteria, and major dissolved constituents. Seasonal Kendall uncensored tests and tobit regression were used to determine whether unadjusted values of water quality or flow-adjusted values of water quality increased or decreased during this period. Results of tests on instantaneous streamflow measured at the time of water-quality measurements indicate that streamflow decreased during the period of study; 20 of the 81 stations tested showed decreasing values of instantaneous streamflow. No station showed increasing values of instantaneous streamflow. Because the locations of stations with decreasing streamflow are widespread, it is likely that these trends are due to changes in weather patterns rather than to changes in the amount of water withdrawals. Results of tests on nutrients are consistent with the expected effects of upgrades to sewage-treatment plants, which occurred in the State of New Jersey during the period of study. For all nutrients tested other than total nitrate plus nitrite, more stations showed decreasing unadjusted and flow-adjusted values than showed increasing unadjusted and flow-adjusted values. Results for eight major dissolved constituents--specific conductance, total hardness, and dissolved concentrations of solids, sodium, potassium, calcium, magnesium, and chloride--of the nine tested showed more stations with increasing values than stations with decreasing values. Only dissolved sulfate did not show more increases than decreases.

  9. A workbook for preparing a district quality- assurance plan for water-quality activities

    USGS Publications Warehouse

    Schertz, Terry L.; Childress, Carolyn J.O.; Kelly, Valerie J.; Boucher, Michelle S.; Pederson, Gary L.

    1998-01-01

    APPEARS TO BE A REPORT ON HOW TO WRITE REPORTS --THE 'ABSTRACT' THAT FOLLOWS IS JUST THE GENERIC ABSTRACT TO BE USED FOR WATER USE REPORTS: In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan has been created for use by the [State name] District in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the [State name] District for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the District quality-assurance plans for surface-water and ground-water activities and to supplement the [State name] District quality-assurance plan.

  10. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  11. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  12. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  13. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  14. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  15. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  16. A Water Quality Monitoring Programme for Schools and Communities

    ERIC Educational Resources Information Center

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the context of…

  17. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  18. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  19. Monitoring of recharge water quality under woodland

    NASA Astrophysics Data System (ADS)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  20. Progress at Fresh Kills improving water quality

    SciTech Connect

    Londres, E.J.

    1991-06-01

    This paper reports that in December 1987, the federal district court in Nevada issued a consent order forcing New York City (NYC) to improve its handling of solid waste and reduce the discharge of solid waste into the surrounding waterway. Implementation of the consent order by NYC resulted in many improvements in the transport of solid waste from the Marine Transfer Station (MTS) to Fresh Kills Landfill. The end result was a marked reduction in solid waste discharge and an improvement in water quality along the New Jersey shore areas.

  1. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  2. Quality-Assurance Plan for Water-Quality Activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Wagner, Richard J.; Kimbrough, Robert A.; Turney, Gary L.

    2007-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), this quality-assurance plan has been created for use by the USGS Washington Water Science Center (WAWSC) in conducting water-quality activities. The plan documents the standards, policies, and procedures used by the personnel of the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the WAWSC's quality-assurance plans for surface-water and ground-water activities and to supplement the WAWSC quality-assurance plan.

  3. Water quality management library. 2. edition

    SciTech Connect

    Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.

    1998-12-31

    A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.

  4. Evaluation of military field-water quality

    SciTech Connect

    Selleck, R.E.; Ungun, Z.; Chesler, G.; Diyamandoglu, V.; Marinas, B. . Sanitary Engineering and Environmental Health Research Lab.); Daniels, J.I. )

    1990-05-01

    A comparison is made between the performances of the 600-gph Reverse Osmosis Water Purification Unit (ROWPU) operated in the bypass mode and the Mobile Water Purification Unit (MWPU, frequently referred to as an ERDLATOR because the equipment was developed at the Engineer Research and Development Laboratory at Fort Belvoir, VA.) Generally, the performance of the MWPU is significantly better than the pretreatment units of the ROWPU in terms of removing both turbidity and pathogenic organisms. It is recommended that the practice of bypassing the reverse osmosis (RO) components of the ROWPU be avoided unless it can be demonstrated clearly that the cartridge filters will remove the cysts of infectious organisms effectively and reliably. If the ROWPU must be operated in the bypass mode, it is recommended that the dose of disinfectant used be made equal to that currently employed in the field for untreated raw water. The analytical methods used to determine total dissolved solids (TDS) and residual free chlorine with the new Water-Quality Monitor (WQM) are also reviewed briefly. The limitations of the methods used to calibrate the TDS and free-chlorine probes of the new WQM are discussed. 98 refs., 19 figs., 16 tabs.

  5. ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)

    EPA Science Inventory

    The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...

  6. Quality of Surface Water in Missouri, Water Year 2008

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  7. Drinking water consumption patterns in Canadian communities (2001-2007).

    PubMed

    Roche, S M; Jones, A Q; Majowicz, S E; McEwen, S A; Pintar, K D M

    2012-03-01

    A pooled analysis of seven cross-sectional studies from Newfoundland and Labrador, Waterloo and Hamilton Regions, Ontario and Vancouver, East Kootenay and Northern Interior Regions, British Columbia (2001 to 2007) was performed to investigate the drinking water consumption patterns of Canadians and to identify factors associated with the volume of tap water consumed. The mean volume of tap water consumed was 1.2 L/day, with a large range (0.03 to 9.0 L/day). In-home water treatment and interactions between age and gender and age and bottled water use were significantly associated with the volume of tap water consumed in multivariable analyses. Approximately 25% (2,221/8,916) of participants were classified as bottled water users, meaning that 75% or more of their total daily drinking water intake was bottled. Approximately 48.6% (4,307/8,799) of participants used an in-home treatment method to treat their tap water for drinking purposes. This study provides a broader geographic perspective and more current estimates of Canadian water consumption patterns than previous studies. The identified factors associated with daily water consumption could be beneficial for risk assessors to identify individuals who may be at greater risk of waterborne illness.

  8. Water Quality Monitoring of Inland Waters using Meris data

    NASA Astrophysics Data System (ADS)

    Potes, M.; Costa, M. J.; Salgado, R.; Le Moigne, P.

    2012-04-01

    The successful launch of ENVISAT in March 2002 has given a great opportunity to understand the optical changes of water surfaces, including inland waters such as lakes and reservoirs, through the use of the Medium Resolution Imaging Spectrometer (MERIS). The potential of this instrument to describe variations of optically active substances has been examined in the Alqueva reservoir, located in the south of Portugal, where satellite spectral radiances are corrected for the atmospheric effects to obtain the surface spectral reflectance. In order to validate this spectral reflectance, several field campaigns were carried out, with a portable spectroradiometer, during the satellite overpass. The retrieved lake surface spectral reflectance was combined with limnological laboratory data and with the resulting algorithms, spatial maps of biological quantities and turbidity were obtained, allowing for the monitoring of these water quality indicators. In the framework of the recent THAUMEX 2011 field campaign performed in Thau lagoon (southeast of France) in-water radiation, surface irradiation and reflectance measurements were taken with a portable spectrometer in order to test the methodology described above. At the same time, water samples were collected for laboratory analysis. The two cases present different results related to the geographic position, water composition, environment, resources exploration, etc. Acknowledgements This work is financed through FCT grant SFRH/BD/45577/2008 and through FEDER (Programa Operacional Factores de Competitividade - COMPETE) and National funding through FCT - Fundação para a Ciência e a Tecnologia in the framework of projects FCOMP-01-0124-FEDER-007122 (PTDC / CTE-ATM / 65307 / 2006) and FCOMP-01-0124-FEDER-009303 (PTDC/CTE-ATM/102142/2008). Image data has been provided by ESA in the frame of ENVISAT projects AOPT-2423 and AOPT-2357. We thank AERONET investigators for their effort in establishing and maintaining Évora AERONET

  9. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  10. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  11. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  12. Quality requirements for irrigation with sewage water

    SciTech Connect

    Bouwer, H.; Idelovitch, E. )

    1987-11-01

    Irrigation is an excellent use for sewage effluent because it is mostly water with nutrients. For small flows, the effluent can be used on special, well-supervised sewage farms, where forage, fiber, or seed crops are grown that can be irrigated with standard primary or secondary effluent. Large-scale use of the effluent requires special treatment so that it meets the public health, agronomic, and aesthetic requirements for unrestricted use. Crops in the unrestricted-use category include those that are consumed raw or brought raw into the kitchen. Most state or government standards deal only with public health aspects, and prescribe the treatment processes or the quality parameters that the effluent must meet before it can be used to irrigate a certain category of crops. However, agronomic aspects related to crops and soils must also be taken into account. Quality parameters to be considered include bacteria, viruses, and other pathogens; total salt content and sodium adsorption ratio of the water; nitrogen; phosphorus; chloride and chlorine; bicarbonate; heavy metals, boron, and other trace elements; pH; and synthetic organics. 23 refs., 9 tabs.

  13. Increased Mercury Bioaccumulation Follows Water Quality Improvement

    SciTech Connect

    Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

    1999-09-15

    Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

  14. Climate change, water quality, and water-related diseases in the Mekong Delta Basin: a systematic review.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh

    2015-04-01

    Mekong Delta Basin (MDB) is vulnerable to extreme climate and hydrological events. The objectives of this review are to understand of water related health effects exacerbated by climate change and the gaps of knowledge on the relationships between climate conditions, water quality, and water-related diseases in the MDB. The findings indicate that a few studies with qualitative emphases on the relationships between climate and water quality have been conducted in MDB, and they are insufficient to describe the pattern of climate-disease relationship. The diseases caused by chemical contaminants in relation to changes of climate conditions are neglected in MDB. We suggest further studies to examine the influence of short-term variation of climate conditions on water quality and water-related diseases for the purpose of public health and medical prevention, and due to the trans-boundary nature of MDB, developing partnership in data sharing and research collaboration among MDBs countries should be prioritized.

  15. Effects of Urban Development on Water Quality in the Piedmont of North Carolina: Association of Landscape Variables With Water Quality

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Cuffney, T. F.

    2005-12-01

    An assessment of effects of urban development on water quality in the Piedmont of North Carolina is part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Thirty sites along a gradient of undeveloped to fully urbanized basins were selected using geographic information analysis to control variability in natural factors that influence water quality. Data collected include nutrient, pesticide, ion, and dissolved-oxygen concentrations, temperature, pH, specific conductance, streamflow, stage, habitat characteristics, and algal, benthic invertebrate, and fish communities. Sampling for water chemistry ranged from two samples (at 20 sites) to six samples (at 10 sites) per year from October 2002 to September 2003. Geomorphic and biological data were collected once in each basin. An index that integrates information on human influences, including land cover, population, and socioeconomic characteristics was used to define the urban gradient and to select sites. Relations among landscape, streamflow, temperature, and water-chemistry variables were analyzed to define urban effects on water quality. Distinct patterns of association occurred between landscape variables and water quality. An increase in urban index is associated with increases in pH (r=0.60), specific conductance (0.72), sulfate (0.68), a multiple-constituent chemical index (0.91), and a pesticide index (0.76). Landscape characteristics correlated with water quality in a similar manner. Increasing basin population density is associated with higher pH (0.55, 1990; 0.56, 2000), specific conductance (0.71, 1990), chloride (0.66, 1990), sulfate (0.72), and pesticides (0.71, 1990; 0.68, 2000). This pattern also is reflected in household density (pH (0.60), chemical index (0.87), and pesticide index (0.68)); in the total percentage of developed land in the basin (specific conductance (0.85), chloride (0.77), sulfate (0.81), total nitrogen (0.50), chemical index (0.84), and pesticide

  16. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  17. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  18. Chemometric characterization of river water quality.

    PubMed

    Kumari, Menka; Tripathi, Smriti; Pathak, Vinita; Tripathi, B D

    2013-04-01

    Various industrial facilities in the city of Varanasi discharge their effluent mixed with municipal sewage into the River Ganges at different discharge points. In this study, chemometric tools such as cluster analysis and box-whisker plots were applied to interpret data obtained during examination of River Ganges water quality. Specifically, we investigated the temperature (T), pH, total alkalinity, total acidity, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), nitrate nitrogen (N), phosphate (PO 4(2-) ), copper (Cu), cadmium (Cd), chromium (Cr), nickel (Ni), iron (Fe), lead (Pb), and zinc (Zn) in water samples collected from six sampling stations. Hierarchical agglomerative cluster analysis was conducted using Ward's method. Proximity distance between EC and Cr was the smallest revealing a relationship between these parameters, which was confirmed by Pearson's correlation. Based on proximity distances, EC, Cr, Ni, Fe, N, COD, temperature, BOD, and total acidity comprised one group; Zn, Pb, Cd, total alkalinity, Cu, and phosphate (PO 4(2-) ) were in another group; and DO and pH formed a separate group. These groups were confirmed by Pearson's correlation (r) values that indicated significant and positive correlation between variables in the same group. Box-whisker plots revealed that as we go downstream, the pollutant concentration increases and maximum at the downstream station Raj Ghat and minimum at the upstream station Samane Ghat. Seasonal variations in water quality parameters signified that total alkalinity, total acidity, DO, BOD, COD, N, phosphate (PO 4(2-) ), Cu, Cd, Cr, Ni, Fe, Pb, and Zn were the highest in summer (March-June) and the lowest during monsoon season (July-October). Temperature was the highest in summer and the lowest in winter (November-February). DO was the highest in winter and the lowest in summer season. pH was observed to be the highest in monsoon and the lowest in

  19. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  20. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... CFR Part 410 Incorporation by reference, Water audit, Water pollution control, Water reservoirs, Water... COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware Estuary and Extend These Criteria...

  1. Water quality of Rhode Island streams

    USGS Publications Warehouse

    Briggs, J.C.; Feiffer, J.S.

    1986-01-01

    Water quality data collected from November 1979 through September 1983 at five stream stations within Rhode Island and one in Massachusetts show that concentrations of the common constituents were low. Mean water hardness at all sites was in the ' soft ' category. Sodium concentrations were less than 20 mg/L at two sites and less than 35 mg/L at the other sites. Mean nitrogen values for the two Blackstone River sites were in the range that could cause undesirable growths of aquatic plants. Mean phosphorus values exceeded the recommended limits for protection of aquatic life at four sites. Trace-element concentrations in the water were generally low. Those trace elements which were found in concentrations near or exceeding any standard or criterion include cadmium, chromium, lead, iron, and manganese. High concentrations of several trace elements were found in the bottom materials at several sites. The bottom materials also contained pesticides and organic chemicals including aldrin, chlordane, DDD, DDE, DDT, dieldren, endosulfan , endrin, heptachlor, Mirex, and PCB. Results of trend analysis of total phosphorus, total nitrogen, and specific conductance show a downward trend in phosphorus at two sites; an upward trend in nitrogen at one site; and one downward trend and one upward trend in specific conductance. (USGS)

  2. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  3. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-04-27

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas.

  4. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  5. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement V.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Presented are abstracts and indexes to selected materials related to wastewater treatment and water quality education and instruction. In addition, some materials related to pesticides, hazardous wastes, and public participation are included. Also included are procedures to illustrate how instructors and curriculum developers in the water quality…

  6. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  7. Methods for comparing water-quality conditions among National Water-Quality Assessment Study Units, 1992-1995

    USGS Publications Warehouse

    Gilliom, Robert J.; Mueller, David K.; Nowell, Lisa H.

    1998-01-01

    The National Water-Quality Assessment is based on intensive investigations of stream and ground-water quality in selected major hydrologic basins (study units) of the United States. One objective of the national assessment is to comparatively evaluate water-quality conditions within and among the different study units. Methods were developed to compare the water-quality conditions of 20 study units that were studied during 1992-1995. Two approaches were taken: (1) water-quality conditions for each study unit were ranked in relation to the findings for all study units, and (2) water-quality conditions for each study unit were compared to established criteria for the protection of human health and aquatic life. Separate rankings were developed for several major characteristics of water quality by using selected combinations of measured values for individual constituents or properties. The water-quality characteristics that were evaluated for streams were nutrients and pesticides in water, organochlorine pesticides and polychlorinated biphenyls in bed sediment and tissue, semivolatile organic compounds and trace elements in bed sediment, fish community degradation, and stream habitat degradation. The water-quality characteristics that were evaluated for ground water were nitrate, pesticides, volatile organic compounds, dissolved solids, and radon. The water-quality rankings are relative strictly to the distribution of conditions measured at sampling sites included in developing the method. Sites in the first 20 National Water-Quality Assessment study units include a broad range of environmental settings, but are not a statistically representative sample of the Nation. > To supplement the relative rankings, established water-quality criteria were used to indicate where particular constituents may have adverse effects, and thus merit further investigation. Established water-quality criteria, which provide consistent benchmarks for national comparisons of individual

  8. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  9. Water quality and water contamination in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.

  10. Quality of rivers of the United States, 1975 water year; based on the National Stream Quality Accounting Network (NASQAN)

    USGS Publications Warehouse

    Briggs, John C.; Ficke, John F.

    1977-01-01

    The National Stream Quality Accounting Network (NASQAN) was established by the U.S. Geological Survey to provide a nationally uniform basis for continuously assessing the quality of U.S. rivers. Stations generally are at the downstream end of hydrologic accounting units in order to measure the quantity and quality of water flowing from the units. Data are available on a large number of water-quality constituents measured at 345 stations during the 1975 water year. Temperature data (usually continuous or daily measurements) from NASQAN stations were fitted to a first order harmonic equation and the parameters for the harmonic function are reported for each station. Considering chemical and biological characteristics of U.S. streams as described by NASQAN data, water quality is best (by many standards) in the Northeast, Southeast, and Northwest. Many of these waters show the effects of pollution and carry moderate or high levels of major nutrients. High counts of indicator bacteria also show signs of local pollution. In the Northeast, some heavy metals are at moderate levels, but not above most water-quality criteria. Rivers of most of the Mid-Continent and Southwest reflect the arid or semi-arid climate, erodible soils, and agricultural activities. A special analysis was made to study the patterns of dissolved solids, major nutrients, phytoplankton, and zinc in the Mississippi River above Memphis, Tennessee. (Kosco-USGS)

  11. GROUND WATER QUALITY SURROUNDING LAKE TEXOMA DURING DROUGHT CONDITIONS

    EPA Science Inventory

    Water quality data from 55 producing monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. The main water quality parameter measured was nitrate, an...

  12. Effects of urban stormwater-management strategies on stream-water quantity and quality

    USGS Publications Warehouse

    Loperfido, J.V.; Hogan, Dianna M.

    2012-01-01

    Urbanization results in elevated stormwater runoff, greater and more intense streamflow, and increased delivery of pollutants to local streams and downstream aquatic systems such as the Chesapeake Bay. Stormwater Best Management Practices (BMPs) are used to mitigate these effects of urban land use by retaining large volumes of stormwater runoff (water quantity) and removing pollutants in the runoff (water quality). Current USGS research aims to understand how the spatial pattern and connectivity of stormwater BMPs affect water quantity and water quality in urban areas.

  13. Landsat Thematic Mapper monitoring of turbid inland water quality

    SciTech Connect

    Lathrop, R.G., JR. )

    1992-04-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions. 17 refs.

  14. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  15. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  16. Water Resources Data, Georgia, 2001, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2001

    USGS Publications Warehouse

    McCallum, Brian E.; Kerestes, John F.; Hickey, Andrew C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  17. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  18. A national-scale analysis of the impacts of drought on water quality in UK rivers

    NASA Astrophysics Data System (ADS)

    Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.

    2015-12-01

    Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are

  19. Hydrogeology and water quality of the Leetown area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  20. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  1. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  2. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  3. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  4. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  5. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality...

  6. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  7. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  8. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  9. Applications of spectroscopy to remote determination of water quality

    NASA Technical Reports Server (NTRS)

    Goldberg, M. C.; Weiner, E. R.

    1972-01-01

    The use of remote laser Raman and molecular spectroscopic techniques to measure water quality is examined. Measurements cover biological, chemical, and physical properties of the water. Experimental results show chemical properties are harder to obtain remotely than biological or physical properties and that molecular spectroscopy seems to be the best method for obtaining water quality data.

  10. The Water Quality Portal: a single point of access for water quality data

    NASA Astrophysics Data System (ADS)

    Kreft, J.

    2015-12-01

    The Water Quality Portal (WQP) is a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) overseen by the National Water Quality Monitoring Council (NWQMC). It was launched in April of 2012 as a single point of access for discrete water quality samples stored in the USGS NWIS and EPA STORET systems. Since launch thousands of users have visited the Water Quality Portal to download billions of results that are pertinent to their interests. Numerous tools have also been developed that use WQP web services as a source of data for further analysis. Since the launch of the Portal, the WQP development team at the USGS Center for Integrated Data Analytics has worked with USGS and EPA stakeholders as well as the wider user community to add significant new features to the WQP. WQP users can now directly plot sites of interest on a web map based on any of the 164 WQP query parameters, and then download data of interest directly from that map. In addition, the WQP has expanded beyond just serving out NWIS and STORET data, and provides data from the US Department of Agriculture's Agricultural Research Service STEWARDS system, the USGS BioData system and is working with others to bring in additional data. Finally, the WQP is linked to another NWQMC-supported project, the National Environmental Methods Index (NEMI), so WQP users can easily find the method behind the data that they are using. Future work is focused on incorporating additional biological data from the USGS BioData system, broadening the scope of discrete water quality sample types from STORET, and developing approaches to make the data in the WQP more visible and usable. The WQP team is also exploring ways to further integrate with other systems, such as those operated the U.S. Department of Agriculture Forest Service and other federal agencies to facilitate the overarching goal of improving access to water quality data for all users.

  11. Water quality mapping using Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Wong, C. J.; Mustapha-Rosli, M. R.; Mohd Saleh, N.

    2009-05-01

    Environmental monitoring through the method of traditional ship sampling is time consuming and requires a high survey cost. The objective of this study is to evaluate the feasibility of Landsat TM imagery for total suspended solids (TSS) mapping using a newly developed algorithm over Penang Island. The study area is the seawater region around Penang Island, Malaysia. Water samples were collected during a 3-hour period simultaneously with the satellite image acquisition and later analyzed in the laboratory above the study area. The samples locations were determined using a handheld GPS. The satellite image was geometrically corrected using the second order polynomial transformation. The satellite image also was atmospheric corrected by using ATCOR2 image processing software. The digital numbers for each band corresponding to the sea-truth locations were extracted and then converted into reflectance values for calibration of the water quality algorithm. The proposed algorithm is based on the reflectance model that is a function of the inherent optical properties of water, which can be related to its constituent's concentrations. The generated algorithm was developed for three visible wavelenghts, red, green and blue for this study. Results indicate that the proposed developed algorithm was superior based on the correlation coefficient (R) and root-mean-square deviation (RMS) values. Finally the proposed algorithm was used for TSS mapping at Penang Island, Malaysia. The generated TSS map was colour-coded for visual interpretation and image smoothing was performed on the map to remove random noise. This preliminary study has produced a promising result. This study indicates that the empirical algorithm is suitable for TSS mapping around Penang Island by using satellite Landsat TM data.

  12. 76 FR 295 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive... (``Commission'') proposes to amend its Water Quality Regulations (``WQR''), Water Code and Comprehensive Plan by adding a new Article 7 to the WQR providing for the conservation and development of water resources...

  13. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  14. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  15. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  16. Deconstructing the hydrologic response: pattern and dynamics of water age

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Savenije, Hubert; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    The water storage and release dynamics at the catchment scale are still incompletely understood. This is in particular true when considering actual particle transport rather than only the hydraulic response. The use of environmental tracers is frequently instructive for getting insights into these transport process patterns. However, the potential of tracers is frequently underexploited. Although known since the early days of tracer hydrology that the composition of water in the runoff, i.e. the water age distribution can be highly variable as a function of flow volumes, it is often treated as being time- and thus flow-invariant. Here we use long term (< 20 years) precipitation, flow and tracer (chloride) data of three contrasting upland catchments in the Scottish Highlands to inform integrated conceptual models. Using the models as virtual laboratories, water and tracer fluxes were tracked through the system in order to get a better understanding of the patterns and temporal, wetness induced dynamics in the composition of stream water and its age distributions. Tracking fluxes through the system showed that the various components of a model, representing individual flow processes, such as preferential or groundwater flow, can be characterized by fundamentally different water age distributions. As a consequence, the wetness dependent dynamics and connectivity patterns of these distinct pools of water are responsible for potentially fast and substantial switches in water age distributions. Further, modeled flux water age distributions were found to be highly sensitive to variable catchment wetness conditions and exhibited considerable hysteresis effects, depending on the catchment wetness history. While the water age during wetting-up conditions is controlled by fast processes (e.g. preferential flow), it is controlled by slow processes (e.g. groundwater flow) under drying-up conditions. This non-linearity is caused by the fact that water age distributions are not

  17. Water quality in south-central Texas, 1996-98

    USGS Publications Warehouse

    Bush, Peter W.; Ardis, Ann F.; Fahlquist, Lynne; Ging, Patricia B.; Hornig, C. Evan; Lanning-Rush, Jennifer

    2000-01-01

    This report summarizes major findings about water quality in south-central Texas that emerged from an assessment conducted between 1996 and 1998 by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Water quality is discussed in terms of local and regional issues and compared to conditions found in all 36 NAWQA study areas, called Study Units, assessed to date. Findings also are explained in the context of selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. The NAWQA Program was not intended to assess the quality of the Nation’s drinking water, such as by monitoring water from household taps. Rather, the assessments focus on the quality of the resource itself, thereby complementing many ongoing Federal, State, and local drinking-water monitoring programs. The comparisons made in this report to drinking-water standards and guidelines are only in the context of the available untreated resource. Finally, this report includes information about the status of aquatic communities and the condition of instream habitats as elements of a complete water-quality assessment. Many topics covered in this report reflect the concerns of officials of State and Federal agencies, water-resource managers, and members of stakeholder groups who provided advice and input during the assessment. Residents who wish to know more about water quality in the areas where they live will find this report informative as well.

  18. Identification of sources and mechanisms of salt-water pollution ground-water quality

    SciTech Connect

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes.

  19. Source Water Flow Pathways In Forested, Mountain, Headwater Streams: A Link Between Sediment Movement Patterns And Stream Water Chemistry.

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Liu, F.

    2015-12-01

    Three years of continuous and discrete sediment and water quality data, from four forested, mountain, headwater catchments in the Sierra Nevada, is used to identify water sources, determine the importance of sub-surface flow pathways, detect any changes in source waters due to seasonal variation or drought, and link flow pathways with observed patterns of in-channel sediment movement within the study watersheds. Patterns in stream chemistry and turbidity point to infiltration as the dominant flow pathway within these catchments. Data support a flow pathway conceptual model in which precipitation water infiltrates into the shallow or deeper subsurface, increasing the hydraulic head of the water table and pushing pre-event water into the stream ahead of event water. Study catchments contain perennial streams and are characterized by a Mediterranean climate with a distinct wet and dry season. Sites are located in the rain-snow transition zone with snow making up 40 to 60 percent of average annual precipitation. Barring human disturbances such as logging/grazing (compaction) or fire (hydrophobicity), catchment soils have high infiltration capacities. Springs and seeps maintain baseflow during the summer low-flow season, and shifting chemical signals within the streams indicate the increased importance of sub-surface water sources during drought years. End-member mixing analysis was conducted to identify possible water end members. Turbidity hysteresis patterns described by previous studies show in-channel sources are dominant for discharge events year round, and there is no difference in fine sediment delivery to streams with or without a soil protecting layer of snow on the land surface. The dominance of sub-surface water sources and evidence for infiltration flow fits with turbidity data, as little material is reaching the stream due to erosive overland flow. An understanding of flow pathways provides a foundation for sustainable land use management in forested

  20. Southwest Principal Aquifers Regional Ground-Water Quality Assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, S.A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  1. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  2. [Influence of water source switching on water quality in drinking water distribution system].

    PubMed

    Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da

    2007-10-01

    This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.

  3. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  4. Confinement and water quality-induced stress in largemouth bass

    SciTech Connect

    Carmichael, G.J.; Tomasso, J.R.; Simco, B.A.; Davis, K.B.

    1984-11-01

    Plasma values of corticosteroids, glucose, chloride, and osmolality were determined in largemouth bass Micropterus salmoides under various environmental conditions. No differences were observed in quiescent fish due to sex, size, time of day, or the types of holding facilities tested (tanks, raceways, ponds). Differences were observed in plasma glucose, chloride, and osmolality values among fish acclimated to 10, 16, and 23 C. Abrupt temperature changes caused elevations in plasma corticosteroid and glucose concentrations and reduced plasma chloride and osmolality. Confinement in a net, for up to 48 hours, caused elevated glucose and corticosteroids and reduced chloride and osmolality values. After 48 hours of confinement, fish required up to 14 days to recover normal plasma characters. Generally, short-term exposure to poor water quality (high concentrations of CO/sub 2/ and NH/sub 3/, and low concentrations of dissolved oxygen) altered plasma corticosteroids and glucose but had little effect on plasma chloride or osmolality. Net confinement plus poor water quality caused additional stress. Plasma glucose and corticosteroid values were good indicators of stress during application of acute stressors whereas chloride and osmolality were useful indicators of long-term stress and patterns of recovery after stressors were removed.

  5. Water quality of Tampa Bay, Florida, June 1972-May 1976

    USGS Publications Warehouse

    Goetz, Carole L.; Goodwin, Carl R.

    1980-01-01

    A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)

  6. Coral Skeletal Records of Water Quality Change in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Prouty, N.; Hughen, K.; Norris, R. D.

    2007-12-01

    Corals are thought to incorporate metals into their aragonitic skeletons in direct proportion to those found in the surrounding seawater. As they can live for hundreds of years, they are unique recorders of water quality over anthropogenic time scales. We utilized cores from the massive coral Montastrea faveolata from four locations across the Mesoamerican Barrier Reef, the second largest barrier reef on the planet. The sites were chosen to span an inferred gradient of runoff, from the high runoff Sapodilla Cayes and Cayos Cochinos to Utila and Turneffe Atoll, the farthest from major runoff effects. Surface samples of corals at all sites confirm that Turneffe is the least runoff-affected site. Annual samples of coral skeletal material were separated and cleaned using a multi-step leaching procedure to remove surface and interstitial contamination. 18 metals were then measured using an inductively coupled plasma mass spectrometer and normalized to calcium. Ba/Ca, a proxy for sedimentation, shows similar patterns for annual samples from the Sapodilla Cayes and Cayos Cochinos. At both sites, background Ba/Ca increases between ~1950-1970, indicating an overall increase in the amount of sediment reaching the reefs. Also, large spikes in the record may record massive runoff events from storms tracking overland, such as Hurricane Fifi in 1974. 100-150 year long records of Ba/Ca and other metals from these four sites will be compared to investigate changes in water quality over time and location on the reef.

  7. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    USGS Publications Warehouse

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  8. Environmetric data interpretation to assess the water quality of Maritsa River catchment.

    PubMed

    Papazova, Petia; Simeonova, Pavlina

    2013-01-01

    Maritsa River is one of the largest rivers flowing on Bulgarian territory. The quality of its waters is of substantial importance for irrigation, industrial, recreation and domestic use. Besides, part of the river is flowing on Turkish territory and the control and management of the Maritsa catchment is of mutual interst for the neighboring countires. Thus, performing interpretation and modeling of the river water quality is a major environmetric problem. Two multivariate statstical methods (Cluster analysis/CA/and Principal components analysis/PCA/) were applied for model assessment of the water quality of Maritsa River on Bulgarian territory. The study used long-term monitoring data from 21 sampling sites characterized by 8 surface water quality indicators. The application of CA to the indicators results in 3 significant clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again,three latent factors confirming, in principle, the clustering output. The latent factors were conditionally named "biologic", "anthropogenic" and "eutrophication" source. Their identification coinside correctly to the location of real pollution sources along the Maritsa River catchment. The linkage of the sampling sites along the river flow by CA identified four special patterns separated by specific tracers levels: biological and anthropogenic major impact for pattern 1, euthrophication major impact for pattern 2, background levels for pattern 3 and eutrophication and agricultural major impact for pattern 4. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level. PMID:23485248

  9. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%. PMID:26065891

  10. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%.

  11. Computer-Based Recognition of Perceptual Patterns in Chord Quality Dictation Exercises.

    ERIC Educational Resources Information Center

    Hofstetter, Fred T.

    1980-01-01

    This experiment measured the achievement of 18 college freshmen music majors in the Graded Units for Interactive Dictation Operations (GUIDO) chord quality program and determined the pattern of student responses to chord quality dictation exercises. (Author/KC)

  12. Role and design of water quality monitoring on forested watersheds

    SciTech Connect

    Chen, Y.D.; Rasmussen, T.C.

    1993-01-01

    The role of water quality monitoring is important for resolving issues related to the selection of Best Management Practices for silvicultural nonpoint source pollution control. Water quality monitoring provides direct information related to the suitability of various management options and to the simulation of water quality processes. In addition to the traditional physical and chemical parameters, the monitoring should focus on other environmental and biological indicators of ecosystem structure and function. A framework for designing water quality monitoring systems is presented that includes the special conditions exhibited by forested watersheds.

  13. Recreational stream assessment using Malaysia water quality index

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hanisah; Kutty, Ahmad Abas

    2013-11-01

    River water quality assessment is crucial in order to quantify and monitor spatial and temporally. Malaysia is producing WQI and NWQS indices to evaluate river water quality. However, the study on recreational river water quality is still scarce. A study was conducted to determine selected recreational river water quality area and to determine impact of recreation on recreational stream. Three recreational streams namely Sungai Benus, Sungai Cemperuh and Sungai Luruh in Janda Baik, Pahang were selected. Five sampling stations were chosen from each river with a 200-400 m interval. Six water quality parameters which are BOD5, COD, TSS, pH, ammoniacal-nitrogen and dissolved oxygen were measured. Sampling and analysis was conducted following standard method prepared by USEPA. These parameters were used to calculate the water quality subindex and finally an indicative WQI value using Malaysia water quality index formula. Results indicate that all recreational streams have excellent water quality with WQI values ranging from 89 to 94. Most of water quality parameter was homogenous between sampling sites and between streams. An one-way ANOVA test indicates that no significant difference was observed between each sub index values (p> 0.05, α=0.05). Only BOD and COD exhibit slightly variation between stations that would be due to organic domestic wastes done by visitors. The study demonstrated that visitors impact on recreational is minimum and recreation streams are applicable for direct contact recreational.

  14. Electrowetting Controls the Deposit Patterns of Evaporated Salt Water Nanodroplets.

    PubMed

    Zhang, Jun; Borg, Matthew K; Ritos, Konstantinos; Reese, Jason M

    2016-02-16

    So-called "coffee-ring" stains are the deposits remaining after complete evaporation of droplets containing nonvolatile solutes. In this paper we use molecular dynamics to simulate the evaporation of salt water nanodroplets in the presence of an applied electric field. We demonstrate, for the first time, that electrowetted nanodroplets can produce various deposit patterns, which vary substantially from the original ringlike deposit that occurs when there is no electric field. If a direct current (dc) electric field with strength greater than 0.03 V/Å is imposed parallel to the surface, after the water evaporates the salt crystals form a deposit on the substrate in a ribbon pattern along the field direction. However, when an alternating current (ac) electric field is applied the salt deposit patterns can be either ringlike or clump, depending on the strength and frequency of the applied ac field. We find that an ac field of high strength and low frequency facilitates the regulation of the deposit patterns: the threshold electric field strength for the transition from ringlike to clump is approximately 0.006 V/Å. These findings have potential application in fabricating nanostructures and surface coatings with desired patterns. PMID:26789075

  15. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  16. [Relationships between river water quality and land use type at watershed scale].

    PubMed

    Yang, Sha-Sha; Tang, Cui-Wen; Liu, Li-Juan; Li, Xiao-Yu; Ye, Yin

    2013-07-01

    Based on the remote sensing images of 54 water quality monitoring stations within the Suzi River watershed, the riparian buffer zones at 6 scales were constructed by ArcGIS, and the 8 landscape indices at landscape and class levels were calculated with FRAGSTATS software. A correlation analysis on the landscape indices and river water quality was made from the viewpoints of landscape space pattern and composition. In the watershed, the landscape pattern in different riparian buffer zones had different effects on the river water quality. When the distance of the buffer zones was less than 300 m, the main landscape types were dry land, construction land, and paddy filed, and their area ratio, patch number, patch density, maximum patch index, maximum shape index, and aggregation index were higher. In these buffer zones, farmlands had higher connectedness, and thus, had greater effects on the river water quality. When the distance of the buffer zones was more than 300 m, forest land had a larger area ratio and a higher connectedness, which would benefit the improvement of river water quality to some extent. In the watershed, farmland and construction land played a key role in affecting the river water quality.

  17. Patterns of Oversubscribed Water Services: Implications for Groundwater

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Vorosmarty, C. J.

    2009-12-01

    Water resources, even at continental and global scales, show signs of water scarcity and stress. Prior work has shown that non-sustainable water use could be a non-trivial component of total withdrawals, a conclusion drawn from documentary evidence but one fraught with high uncertainty. We assessed water supply using a geospatial framework, which enabled calculations to be made of the degree to which fresh water withdrawals exceed locally accessible supplies and those in river corridors. Sources of water to accommodate this oversubscription include interbasin transfers, desalination, and groundwater overdraught. Successfully delivering fresh water under such conditions can also create impairment of inland surface waterways, especially when these become source waters themselves. We find the fraction of global fresh water oversubscription in the range of 10-15% of total human water use, under this condition. While the aggregate percentage is relatively small, overdraft tends to be focused in a few regions of the world and hence very substantial at the local to regional scale. Syndromes include those well-known but now shown to be pandemic: saltwater intrusion, land subsidence, pollution, and economic losses. We present a global mapping that shows good correspondence with documentary evidence corroborating the simulated patterns. We also see evidence for active responses pursued in response to these water stresses. These include so-called “hard path” supply-oriented strategies like the construction of water infrastructure, but also more management-oriented such as those that reduce use through efficiency gains, integrated management, and wastewater reuse. We also see impetus for privatization of water supplies in response to this scarcity.

  18. Water quality in Iowa during 1986 and 1987

    SciTech Connect

    Not Available

    1988-04-01

    This report presents the results of the water-quality monitoring, assessment, and control programs conducted in Iowa during 1986 and 1987. It was prepared to satisfy Section 305(b) of the Clean Water Act (CWA) which requires biennial water-quality reporting by each state. Discussions in the report include the following topics: surface-water quality, public health and aquatic life concerns, ground-water quality, special state concerns, point-source control programs, lake pollution-control programs, nonpoint source control programs, state program costs, surface-water monitoring programs, intensive water surveys, and DNR recommendations to EPA. A new requirement of the CWA addresses impairment of water bodies due to toxic and conventional pollutants. The section is addressed in detail in the report.

  19. MODIS water quality algorithms for northwest Florida estuaries

    EPA Science Inventory

    Synoptic and frequent monitoring of water quality parameters from satellite is useful for determining the health of aquatic ecosystems and development of effective management strategies. Northwest Florida estuaries are classified as optically-complex, or waters influenced by chlo...

  20. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  1. A Geographically Variable Water Quality Index Used in Oregon.

    ERIC Educational Resources Information Center

    Dunnette, D. A.

    1979-01-01

    Discusses the procedure developed in Oregon to formulate a valid water quality index which accounts for the specific conditions in the water body of interest. Parameters selected include oxygen depletion, BOD, eutrophication, dissolved substances, health hazards, and physical characteristics. (CS)

  2. National Water-Quality Inventory. 1988 Report to Congress

    SciTech Connect

    Not Available

    1990-04-01

    This study is divided into four parts. Part one contains the introduction. Part two focuses on surface water quality (rivers and streams, lakes and reservoirs, the great lakes, estuaries and coastal waters, wetlands, public health/aquatic life concerns). Part three discusses ground-water quality (current ground-water use, ground-water protection programs). Lastly, part four describes water pollution control programs (point source control program, nonpoint source control program, surface water monitoring, costs and benefits of pollution control, and state recommendations).

  3. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity. PMID:27083909

  4. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  5. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  6. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health. PMID:15371202

  7. Water Quality in the Yukon River Basin

    USGS Publications Warehouse

    Brabets, Timothy P.; Hooper, Rick; Landa, Ed

    2001-01-01

    The Yukon River Basin, which encompasses 330,000 square miles in northwestern Canada and central Alaska (Fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is also fundamental to the ecosystems of the eastern Bering Sea and Chukchi Sea, providing most of the freshwater runoff, sediments, and dissolved solutes. Despite its remoteness and perceived invulnerability, the Yukon River Basin is changing. For example, records of air temperature during 1961-1990 indicate a warming trend of about 0.75 deg C per decade at latitudes where the Yukon River is located. Increases in temperature will have wide-ranging effects on permafrost distribution, glacial runoff and the movement of carbon and nutrients within and from the basin. In addition, Alaska has many natural resources such as timber, minerals, gas, and oil that may be developed in future years. As a consequence of these changes, several issues of scientific and cultural concern have come to the forefront. At present, water quality data for the Yukon River Basin are very limited. This fact sheet describes a program to provide the data that are needed to address these issues.

  8. Ambient aquatic life water quality criteria for hexachlorobenzene. Draft report

    SciTech Connect

    Not Available

    1988-08-31

    The Clean Water Act requires the EPA Administrator to publish water quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare that might be expected from the presence of pollutants in any body of water. Pursuant to that end, the document proposes water quality criteria for the protection of aquatic life. These criteria do not involve consideration of effects on human health.

  9. Guidelines for use of water-quality monitors

    USGS Publications Warehouse

    Gordon, A. Brice; Katzenbach, Max S.

    1983-01-01

    This manual contains methods and procedures used by the U.S. Geological Survey (USGS) for collecting specific conductance, dissolved oxygen, water temperature, and pH data for ground water, streams, lakes, reservoirs, and estuaries by means of permanently installed, continuously recording, water quality monitors. The topics discussed include the selection of monitoring sites, selection and installation of shelters and equipment, and standard methods of calibration, operation and maintenance of water-quality monitors.

  10. Identification of Surface Water Quality along the Coast of Sanya, South China Sea

    PubMed Central

    Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin

    2015-01-01

    Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay. PMID:25894980

  11. Identification of Surface Water Quality along the Coast of Sanya, South China Sea.

    PubMed

    Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin

    2015-01-01

    Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay. PMID:25894980

  12. Identification of Surface Water Quality along the Coast of Sanya, South China Sea.

    PubMed

    Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin

    2015-01-01

    Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay.

  13. New York harbor water quality survey, 1993. Executive summary. Final report

    SciTech Connect

    Brosnan, T.M.; O`Shea, M.L.

    1994-11-30

    The 84th Water Quality Survey of New York Harbor was performed by the New York City Department of Environmental Protection (DEP) in 1993. The purpose of this report is to describe recent patterns of summer (June through September) water quality, to determine compliance with New York State standards, to assess long-term trend, and to provide data for calibration of water quality and hydrodynamic mathematical models. Several special studies were also performed during 1993, including: analysis of metals and organic priority pollutants (including PCBs) in sewage; development of a site-specific copper criteria for New York Harbor; the impact of sewage abatement on water quality in the Hudson River; overview of polynuclear aromatic hydrocarbons (PAHs) in Jamaica Bay; additional hypoxia and nutrient monitoring for the Long Island Sound Study, and in the New York Bight; monitoring of the tributaries of the East River and Jamaica Bay; and daily suspended solids monitoring of the Hudson River.

  14. Population and climate pressures on global river water quality

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2015-04-01

    We present a global analysis of the combined effects of population growth and climate change on river water quality. In-stream Biological Oxygen Demand (BOD) concentration is calculated along global river networks using past, current and future information on gridded population and river discharge. Our model accounts for the accumulation (from populated areas), transport, dilution, and degradation of BOD to reveal the combined effects of population growth and climate change on river water quality. From 1950 to 2000, our analysis indicates that rivers that flow through regions with increasing population undergo a prominent deterioration of water quality, especially in developing countries with a lack of treatment plants. By 2050, population growth and climate change have varying effects on degradation of river water quality, with their combined effect amplified in region undergoing both population growth (more pollutant loading) and decrease in discharge (less dilution capacity). Keywords: Population growth, Climate change, River water quality, Space-time analysis, Water management

  15. The need for water quality criteria for frogs.

    PubMed Central

    Boyer, R; Grue, C E

    1995-01-01

    Amphibians are considered reliable indicators of environmental quality. In the western United States, a general decline of frog populations parallels an apparent worldwide decline. The factors thought to be contributing to declines in frog populations include habitat loss, introduction of exotic species, overexploitation, disease, climate change, and decreasing water quality. With respect to water quality, agroecosystems use 80-90% of the water resources in the western United States, frequently resulting in highly eutrophic conditions. Recent investigations suggest that these eutrophic conditions (elevated pH, water temperature, and un-ionized ammonia) may be associated with frog embryo mortality or malformations. However, water quality criteria for frogs and other amphibians do not currently exist. Here, we briefly review data that support the need to develop water quality parameters for frogs in agroecosystems and other habitats. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 5. PMID:7607135

  16. Quality-control design for surface-water sampling in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Mueller, David K.; Martin, Jeffrey D.; Lopes, Thomas J.

    1997-01-01

    The data-quality objectives of the National Water-Quality Assessment Program include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of chemical analyses of surface-water samples. The quality-control samples used to make these estimates include field blanks, field matrix spikes, and replicates. This report describes the design for collection of these quality-control samples in National Water-Quality Assessment Program studies and the data management needed to properly identify these samples in the U.S. Geological Survey's national data base.

  17. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  18. National water-quality inventory: 1990 report to Congress

    SciTech Connect

    Not Available

    1992-04-01

    The contents of this report includes the following: executive summary; (rivers and streams, lakes and reservoirs, the great lakes, estuaries and coastal waters, wetlands, public health/aquatic life concerns, ground-water quality, state and federal ground-water protection programs); point source control program; nonpoint source control program; surface water monitoring; costs and benefits of pollution control; and state recommendations.

  19. Modeling patterns of hot water use in households

    SciTech Connect

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  20. Modeling patterns of hot water use in households

    SciTech Connect

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E.

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  1. Effects Climate Change on Water Resources Availability and Vegetation Patterns

    NASA Astrophysics Data System (ADS)

    Manfreda, S.; Pizzolla, T.; Caylor, K. K.

    2012-12-01

    Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive and their mutual relationships with the hydrologic cycle. Ecohydrology faces this task with the aim to provide better understanding of implications of land use changes on terrestrial ecosystems and better comprehension of climatic changes effects on terrestrial ecosystems. The scope of the present research is to deepen our understanding on the mutual relationship between climate, vegetation and basin water budget within an ecohydrological framework. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale. Analyses have been carried out over the Basilicata Region (in Southern Italy) that is an ideal test area located in the core of the Biodiversity Hotspot area of the Mediterranean basin with a significant variety of climatic conditions ranging from humid to semi-arid and arid. The hydrological analysis have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This makes possible to quantitatively assess the effects on soil water balance of future climatic scenario and to identify the most vulnerable area of the region under study. Results describe the non-linear relationship between climatic forcing, vegetation patterns and water budget. It is interesting to underline that in the most vulnerable ecosystems small change in climatic conditions may produce significant transformation on vegetation patterns and water resources availability.

  2. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    PubMed Central

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source. PMID:21556204

  3. Bottled water: United States consumers and their perceptions of water quality.

    PubMed

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L

    2011-02-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source.

  4. Understanding long-term baseflow water quality trends using a synoptic survey of the ground water-surface water interface, central Wisconsin.

    PubMed

    Browne, Bryant A; Guldan, Nathan M

    2005-01-01

    The relationship between stream water quality and landscape activities is difficult to evaluate where the principal source of stream flow is ground water seepage because the average travel time from ground water recharge areas to stream discharge positions can be on the order of decades. We tested the idea that past and future baseflow water quality can be predicted based on a synoptic survey of ground water recharge age-dates (based on chlorofluorocarbon [CFC] measurements) and water quality measurements obtained at the ground water-surface water interface. In this study we (i) characterize the discharge-weighted age distribution and water quality of ground water seepage into the Little Plover River (LPR); (ii) use this information to backcast and forecast baseflow NO(3)(-) concentrations; and (iii) evaluate NO(3)(-) backcasts against historical baseflow data (1960 to 2000). The discharge-weighted apparent CFC age of ground water seepage into the LPR was 23.7 (+/-7) yr. Baseflow backcasts matched the four decade rise of baseflow NO(3)(-) from 2 to 8 mg L(-1). Baseflow forecasts included three scenarios. Scenario A projects the historical rise of NO(3)(-) in the LPR basin's ground water recharge through 2050. Scenario B projects a leveling off of NO(3)(-) in ground water recharge in the year 2000. Scenario C projects a leveling off in the year 1985. Under Scenario A, LPR baseflow NO(3)(-) will increase steadily from 8 to 19 mg L(-1) between 2000 and 2050. Under scenarios B and C baseflow NO(3)(-) will plateau at 13 mg L(-1) in 2030 and at 10 mg L(-1) in 2010, respectively. The approach developed in this study can be used to (i) reconstruct historical baseflow water quality patterns in the absence of long-term monitoring data and (ii) project the effects of potential management decision on future water quality.

  5. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  6. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement X.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement VIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials; related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and…

  8. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XVI.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  9. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources, Supplement XIV (1983).

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  12. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XV.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  13. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XI.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement XVIII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  15. Water Quality Instructional Resources Information System (IRIS). A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement XVII.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Compiled are abstracts and indexes to selected print and non-print materials related to wastewater treatment and water quality education and instruction, as well as materials related to pesticides, hazardous wastes, and public participation. Sources of abstracted/indexed materials include all levels of government, private concerns, and educational…

  16. Water quality problems associated with intermittent water supply.

    PubMed

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  17. Water quality status and trends in the United States

    USGS Publications Warehouse

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  18. ASSESSING WATER CLARITY AS A COMPONENT OF WATER QUALITY IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP) uses water clarity as a water quality indicator for integrated assessments. After the publication of the first National Coastal Condition Report, the national water clarity reference v...

  19. Water quality in three creeks in the backcountry of Grand Teton National Park, USA

    USGS Publications Warehouse

    Farag, A.M.; Goldstein, J.N.; Woodward, D.F.

    2001-01-01

    This study was conducted in Grand Teton National Park during the summers of 1996 and 1997 to investigate the water quality in two high human use areas: Garnet Canyon and lower Cascade Canyon. To evaluate the water quality in these creeks, fecal coliform, Giardia lamblia, coccidia, and microparticulates were measured in water samples. No evidence of fecal coliform, Giardia lamblia, or coccidia, was found in Garnet Creek. The water quality and general water chemistry of Garnet Creek was similar to the reference site. No Giardia lamblia or coccidia were found in Cascade Creek, but fecal coliforms were present. The isolated colonies of Escherichia coli from Cascade Creek matched the ribosome patterns of avian, deer, canine, elk, rodent, and human coliforms.

  20. Water-quality assessment of the Merced River, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1982-01-01

    The Merced River and its major tributaries have been subject of water-quality and water-quantity studies by local, State, and Federal agencies since before 1900. Data have been compiled and analyzed, and even though water-quality problems exist in the basin, the water generally is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Water-quality objectives for dissolved oxygen, pesticides, and pH were violated in some parts of the basin. The most likely cause of the dissolved-oxygen and pesticide violations is the return of agricultural irrigation water to the river in the lower 30 miles of the river. Violations of pH objectives occurred only in the upper drainage and were likely due to naturally occurring, poorly buffered water. Water quality is currently being monitored at three stations in the basin by California Department of Water Resources, at one station by the U.S. Geological Survey, and at several sites by the National Park Service. Modifications to the current water-quality monitoring program are proposed to gain further information on dissolved-oxygen fluctuations and pesticide concentrations in the lower river and to investigate nutrient input to Lake McClue. (USGS)

  1. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  2. The polarization patterns of skylight reflected off wave water surface.

    PubMed

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

    2013-12-30

    In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.

  3. Availability and quality of water from the Dakota aquifer, northwest Iowa

    USGS Publications Warehouse

    Burkart, M.R.

    1984-01-01

    The quality of water pumped from the aquifer may be altered by induced leakage from the underlying aquifers in Paleozoic age rocks if withdrawals reverse the pattern of natural flow from the Dakota into the Paleozoic aquifers. Evidence for such a reversal exists in the area around the city of LeMars.

  4. Evaluating Water Quality in the Lovros River (Greece), Using Biotic Indices based on Invertebrate Communities.

    ERIC Educational Resources Information Center

    Koussouris, Theodore; And Others

    1990-01-01

    Presented is a survey of a river including physiochemical measurements and river fauna observations. It is shown that the self-purification gradient of river water quality and the possible ecological disturbances due to pollutants entering the river create an unpredictable pattern of recovery. (CW)

  5. Water Quality: Water Education for Teachers. A 4-H School Enrichment Program.

    ERIC Educational Resources Information Center

    Powell, G. Morgan; Kling, Emily B.

    This looseleaf notebook is a teacher resource package that is designed for enrichment program use. It contains five units dealing with water quality: (1) The Water Cycle; (2) Our Water Supply; (3) Waste/Water Treatment; (4) Water Conservation; (5) Water Pollution. The units provide background information, experiments, stories, poems, plays, and…

  6. [Hygienic bases for management of bottled drinking water quality].

    PubMed

    Rakhmanin, D V; Mikhaĭlova, R I

    2011-01-01

    The paper analyzes the existing normative requirements, by controlling the packaged drinking waters versus tap water; substantiates additions into a list, the regulated levels of a number of indices for this type of products, including those for the waters designed for babies, and the narrowed list of indices for state control. To assure the high quality of finished products, it is shown to be important to perform a sanitary-and-epidemiological study of raw water for pouring and finished products in full conformity with normative documents and to use current water conditioning technologies by the level of major biogenic elements to have physiologically adequate waters of high quality.

  7. Development of Water Quality Modeling in the United States

    EPA Science Inventory

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  8. Upper Washita River Experimental Watersheds: Nutrient Water Quality Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality datasets were acquired by the USDA-ARS in three large research watersheds in Oklahoma: the Southern Great Plains Research Watershed (SGPRW), and the Little Washita River and Fort Cobb Reservoir Experimental Watersheds (LWREW and FCREW, respectively). Water quality data in the SGPRW we...

  9. Bacteriological Methods in Water Quality Control Programs. Instructor's Guide.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's manual presents material on basic bacteriological laboratory procedures as required by Federal Register Water Quality Guidelines. Course topics include: characteristics, occurrences, and significance of bacterial indicators of pollution; bacteriological water quality standards and criteria; collection and handling of samples;…

  10. Bacteriological Methods in Water Quality Control Programs. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on basic bacteriological laboratory procedures as required by Federal Register Water Quality Guidelines. Course topics include: characteristics, occurrences, and significance of bacterial indicators of pollution; bacteriological water quality standards and criteria; collection and handling of samples;…

  11. How Can Remote Sensing Be Used for Water Quality Monitoring?

    EPA Science Inventory

    “How can remote sensing address information needs and gaps in water quality and quantity management?” was a workshop convened during the biennial National Water Quality Monitoring Conference 2014, held in Cincinnati, OH. The focus of this workshop was to provide an o...

  12. Long-term Trends in St. Louis River Water Quality

    EPA Science Inventory

    Water quality impairments caused by sewage and industrial waste discharge into the St. Louis River have been a primary concern for clean-up efforts throughout the last century. Surveys dating back to 1928 reveal severely degraded water quality in much of the river below Fond du L...

  13. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  14. Techniques of trend analysis for monthly water quality data.

    USGS Publications Warehouse

    Hirsch, R.M.; Slack, J.R.; Smith, R.A.

    1982-01-01

    Some of the characteristics that complicate the analysis of water quality time series are non-normal distributions, seasonality, flow relatedness, missing values, values below the limit of detection, and serial correlation. Presented here are techniques that are suitable in the face of the complications listed above for the exploratory analysis of monthly water quality data for monotonic trends.-from Authors

  15. ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS

    EPA Science Inventory

    Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...

  16. Estimating water-quality benefits: an econometric analysis

    SciTech Connect

    Smith, V.K.; Desvousges, W.H.; McGivney, M.P.

    1983-10-01

    This paper presents a generalized demand model for recreation sites that permits an evaluation of the recreation benefits associated with changes in the water-quality designations assigned to specific sites. This approach to modeling recreation demand may have important implications for the implementation of the Environmental Protection Agency's (EPA's) proposed changes in water quality regulations. 35 references, 1 figure, 3 tables.

  17. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... management planning. (a) From funds reserved under § 35.2020(d) the Regional Administrator shall make grants to the States to carry out water quality management planning including but not limited to:...

  18. DEVELOPING WATER QUALITY CRITERIA FOR SUSPENDED AND BEDDED SEDIMENTS

    EPA Science Inventory

    The U.S. EPA’s Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) is a nationally-consistent process for developing ambient sediment quality criteria for surface waters. The SABS Framework accommodates natural variation among wa...

  19. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  20. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)