Sample records for patterns water quality

  1. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  2. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    PubMed

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Tsukamoto fuzzy implementation to identify the pond water quality of koi

    NASA Astrophysics Data System (ADS)

    Qur'ania, A.; Verananda, D. I.

    2017-01-01

    The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.

  4. Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI

    EPA Science Inventory

    Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...

  5. DESCRIPTIVE WATER QUALITY FOR THE ATCHAFALAYA BASIN, LOUISIANA

    EPA Science Inventory

    This report describes water quality in the Atchafalaya Basin in terms of geographical areas, seasonal patterns, and its relationships to water regimes and compares water quality in the Basin to water quality in other Louisiana and southeastern lakes. Emphasis in this report is gi...

  6. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  7. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    PubMed

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  8. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  9. Environmetric data interpretation to assess the water quality of Maritsa River catchment.

    PubMed

    Papazova, Petia; Simeonova, Pavlina

    2013-01-01

    Maritsa River is one of the largest rivers flowing on Bulgarian territory. The quality of its waters is of substantial importance for irrigation, industrial, recreation and domestic use. Besides, part of the river is flowing on Turkish territory and the control and management of the Maritsa catchment is of mutual interst for the neighboring countires. Thus, performing interpretation and modeling of the river water quality is a major environmetric problem. Two multivariate statstical methods (Cluster analysis/CA/and Principal components analysis/PCA/) were applied for model assessment of the water quality of Maritsa River on Bulgarian territory. The study used long-term monitoring data from 21 sampling sites characterized by 8 surface water quality indicators. The application of CA to the indicators results in 3 significant clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again,three latent factors confirming, in principle, the clustering output. The latent factors were conditionally named "biologic", "anthropogenic" and "eutrophication" source. Their identification coinside correctly to the location of real pollution sources along the Maritsa River catchment. The linkage of the sampling sites along the river flow by CA identified four special patterns separated by specific tracers levels: biological and anthropogenic major impact for pattern 1, euthrophication major impact for pattern 2, background levels for pattern 3 and eutrophication and agricultural major impact for pattern 4. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level.

  10. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  11. Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model

    PubMed Central

    Xu, Shiguo; Wang, Tianxiang; Hu, Suduan

    2015-01-01

    Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results. PMID:25689998

  12. Dynamic assessment of water quality based on a variable fuzzy pattern recognition model.

    PubMed

    Xu, Shiguo; Wang, Tianxiang; Hu, Suduan

    2015-02-16

    Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results.

  13. A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.

    2017-01-01

    Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.

  14. Seasonality of selected surface water constituents in the Indian River Lagoon, Florida.

    PubMed

    Qian, Y; Migliaccio, K W; Wan, Y; Li, Y C; Chin, D

    2007-01-01

    Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p < 0.05). Seasonal and annual trends were determined by trend analysis (Seasonal Kendall or Tobit procedure) using the U.S. Geological Survey (USGS) Estimate TREND (ESTREND) program. Major water quality indicators (specific conductivity, turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.

  15. Spatial and temporal characterizations of water quality in Kuwait Bay.

    PubMed

    Al-Mutairi, N; Abahussain, A; El-Battay, A

    2014-06-15

    The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  17. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons.

    PubMed

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-05

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  18. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons

    PubMed Central

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-01-01

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment. PMID:27147104

  19. Quantitative evaluation of water quality in the coastal zone by remote sensing

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.

  20. Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems.

    PubMed

    Jácome, Gabriel; Valarezo, Carla; Yoo, Changkyoo

    2018-03-30

    Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.

  1. The water quality of the LOCAR Pang and Lambourn catchments

    NASA Astrophysics Data System (ADS)

    Neal, C.; Jarvie, H. P.; Wade, A. J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N.

    The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and "uniform pattern" characteristic of aquifer drainage with, superimposed, a series of "flashier" spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the "flashier" responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.

  2. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the benthic macroinvertebrate community pattern (ρ(w) = 0.437). The findings of this study provide valuable insights into the interactions of water quality parameters on biotic assemblages and to the extent that benthic macroinvertebrates and phytoplankton assemblages are suitable as indicators for monitoring and assessing peri-urban river health.

  3. Statistical Analysis of Regional Surface Water Quality in Southeastern Ontario.

    ERIC Educational Resources Information Center

    Bodo, Byron A.

    1992-01-01

    Historical records from Ontario's Provincial Water Quality Monitoring Network for rivers and streams were analyzed to assess the feasibility of mapping regional water quality patterns in southeastern Ontario, spanning the Precambrian Shield and the St. Lawrence Lowlands. The study served as a model for much of Ontario. (54 references) (Author/MDH)

  4. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  5. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  6. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    USGS Publications Warehouse

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  7. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  8. Variation in stream diatom communities in relation to water quality and catchment variables in a boreal, urbanized region.

    PubMed

    Teittinen, Anette; Taka, Maija; Ruth, Olli; Soininen, Janne

    2015-10-15

    Intensive anthropogenic land use such as urbanization alters the hydrological cycle, water chemistry and physical habitat characteristics, thus impairing stream physicochemical and biological quality. Diatoms are widely used to assess stream water quality as they integrate water chemistry temporally and reflect the joint influence of multiple stressors on stream biota. However, knowledge of the major community patterns of diatoms in urban streams remains limited especially in boreal regions. The aim of this study was to examine the effects of water chemistry and catchment characteristics on stream diatom communities, and to test the performance of the Index of Pollution Sensitivity (IPS) as a stream water quality indicator across an urban-to-rural gradient in southern Finland. Diatom community structure and species richness were related to local-scale variables such as water temperature, aluminium concentration, and electrical conductivity, which were in turn influenced by patterns in catchment land use and land cover. Diatoms reflected the intensity of human activities as more intensive land use increased the occurrence of pollution-tolerant species. The change in community structure along the land use intensity gradient was accompanied by a distinct decline in species richness. On the contrary, the IPS index failed to indicate differences in water quality along the urban-to-rural gradient as no consistent differences in the IPS values were found. Our results highlight the joint influence of multifaceted factors that underlie diatom patterns, and show that diatom biodiversity can be used as cost-effective metric indicating urban stream conditions. However, the IPS index turned out to be an unsuitable tool for assessing water quality among these streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multiple imputation for assessment of exposures to drinking water contaminants: evaluation with the Atrazine Monitoring Program.

    PubMed

    Jones, Rachael M; Stayner, Leslie T; Demirtas, Hakan

    2014-10-01

    Drinking water may contain pollutants that harm human health. The frequency of pollutant monitoring may occur quarterly, annually, or less frequently, depending upon the pollutant, the pollutant concentration, and community water system. However, birth and other health outcomes are associated with narrow time-windows of exposure. Infrequent monitoring impedes linkage between water quality and health outcomes for epidemiological analyses. To evaluate the performance of multiple imputation to fill in water quality values between measurements in community water systems (CWSs). The multiple imputation method was implemented in a simulated setting using data from the Atrazine Monitoring Program (AMP, 2006-2009 in five Midwestern states). Values were deleted from the AMP data to leave one measurement per month. Four patterns reflecting drinking water monitoring regulations were used to delete months of data in each CWS: three patterns were missing at random and one pattern was missing not at random. Synthetic health outcome data were created using a linear and a Poisson exposure-response relationship with five levels of hypothesized association, respectively. The multiple imputation method was evaluated by comparing the exposure-response relationships estimated based on multiply imputed data with the hypothesized association. The four patterns deleted 65-92% months of atrazine observations in AMP data. Even with these high rates of missing information, our procedure was able to recover most of the missing information when the synthetic health outcome was included for missing at random patterns and for missing not at random patterns with low-to-moderate exposure-response relationships. Multiple imputation appears to be an effective method for filling in water quality values between measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. National patterns in wetland water quality from the 2001 NWCA

    EPA Science Inventory

    Water quality (WQ) is central to understanding ecological condition of lakes, streams, and coastal waters but less often assessed in wetlands. The utility of national-scale wetland WQ data was examined in the 2011 National Wetland Condition Assessment, which covered 48 USA state...

  11. Data collection and development of a hydrodynamic and temperature model to evaluate causeway modifications at the mouth of the Yakima River

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.

    2012-12-01

    Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima and Columbia River confluence, which in turn will alter water temperature distributions, sediment transport pathways, and salmonid migration routes.

  12. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to central plains stream conditions

    USGS Publications Warehouse

    Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  13. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to Central Plains stream conditions.

    PubMed

    Griffith, Jerry A; Martinko, Edward A; Whistler, Jerry L; Price, Kevin P

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  14. Public perception and economic implications of bottled water consumption in underprivileged urban areas.

    PubMed

    Massoud, M A; Maroun, R; Abdelnabi, H; Jamali, I I; El-Fadel, M

    2013-04-01

    This paper presents a comparative assessment of public perception of drinking water quality in two underprivileged urban areas in Lebanon and Jordan with nearly similar cultural and demographic characteristics. It compares the quality of bottled water to the quality of the drinking water supplied through the public network and examines the economic implications of bottled water consumption in the two study areas. Participants' perception of the quality of drinking water provided via the public network was generally negative, and bottled water was perceived to be of better quality in both areas, thus affecting drinking water preferences and consumption patterns. The results reveal that the quality of bottled water is questionable in areas that lack enforcement of water quality standards, thus adding to the burden of an already disadvantaged community. Both areas demonstrated a considerable cost incurred for purchasing bottled water in low income communities reaching up to 26 % of total income.

  15. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)

    EPA Science Inventory

    The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...

  17. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    USGS Publications Warehouse

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy Reservoirs. Modelers cited limitations in data, including too few years with sufficient stormflow data, and (or) a lack of (readily available) data, for selected tributary and reservoir hydrodynamic, water-quality, and biotic conditions. Reservoir monitoring also is too infrequent to adequately address the above water-quality endpoints. Monitoring data also have been effectively used to generally describe trophic states, changes in trophic state or conditions related to trophic state, and in selected cases, trends in water-quality or biotic parameters that reflect RWMA water-quality concerns. Limitations occur in the collection, aggregation, analyses, and (or) archival of monitoring data in relation to most RWMA water-quality concerns. Trophic, including eutrophic, conditions have been broadly described for each reservoir in terms of phytoplankton production, and variations in production related to typical seasonal patterns in the concentration of DO, and hypoxic to anoxic conditions, where the latter have led to elevated concentrations of iron and manganese in reservoir and supply waters. Trend analyses for the period 1981-2004 have shown apparent declines in production (algal counts and possibly chl-a). The low frequency of phytoplankton data collection (monthly or bimonthly, depending on the reservoir), however, limits the development of a model to quantitatively describe and relate temporal variations in phytoplankton production including seasonal succession to changes in trophic states or other reservoir water-quality or biotic conditions. Extensive monitoring for nutrients, which, in excessive amounts, cause eutrophic conditions, has been conducted in the watershed tributaries and reservoirs. Data analyses (1980-90s) have (a) identified seasonal patterns in concentrations, (b) characterized loads from (non)point sources, and (c) shown that different seasonal patterns and trends in nutrient concentrations occur between watershed tributaries and downstream reservoir

  18. Afloat in a Boat: Linking Land Use / Land Cover to the Spatial Evolution of Water Quality along a Blackwater Stream

    NASA Astrophysics Data System (ADS)

    Neville, J.; Vose, J. M.; Nichols, E. G.; Jass, T. L.; Emanuel, R. E.; McRae, J.

    2016-12-01

    Water quality and land use/land cover (LULC) are linked intimately in many watersheds, although exact relationships are often nonlinear and sometimes complex. Together with watershed topography, LULC can affect water quality in various ways. As such, attributing water quality characteristics to LULC variations (either in space or time) can be difficult. Many studies seek to understand these relationships from a Eulerian reference frame, which typically involves many samples or observations through time at a fixed location. Here we explore an alternative approach to understanding relationships between LULC and water quality that relies on a Lagrangian, or moving, reference frame, in which the effects of LULC and watershed topography on water quality can be observed through a different lens. We studied three reaches of the Lumber River, a blackwater stream in North Carolina's Coastal Plain, to assess relationships between LULC and water quality in a watershed that is a patchwork of agriculture, forests, wetlands and developed land. Our study combines spatially intensive water quality measurements (temperature, specific conductance, dissolved oxygen, pH and nitrate concentration), collected by boat, with geospatial analyses of LULC to understand influences on the spatial evolution of reach-scale water quality. In particular, we investigate relationships between spatial patterns in nitrate and the changing spatial characteristics of the watershed integrated at sampling points along each reach. We also assess relationships between nitrate and other water quality variables, such as pH, temperature, and dissolved oxygen to better understand the potential role of in-stream nutrient processing in observed spatial patterns. This work has implications for the regulation and management of agriculture, wetlands, and forests in a region that has long struggled to balance agriculture, a major economic driver, with water quality, a major concern for recreation and cultural practices locally and for nutrient sensitive coastal environments downstream.

  19. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies.

  20. Framework for Evaluating Water Quality of the New England Crystalline Rock Aquifers

    USGS Publications Warehouse

    Harte, Philip T.; Robinson, Gilpin R.; Ayotte, Joseph D.; Flanagan, Sarah M.

    2008-01-01

    Little information exists on regional ground-water-quality patterns for the New England crystalline rock aquifers (NECRA). A systematic approach to facilitate regional evaluation is needed for several reasons. First, the NECRA are vulnerable to anthropogenic and natural contaminants such as methyl tert-butyl ether (MTBE), arsenic, and radon gas. Second, the physical characteristics of the aquifers, termed 'intrinsic susceptibility', can lead to variable and degraded water quality. A framework approach for characterizing the aquifer region into areas of similar hydrogeology is described in this report and is based on hypothesized relevant physical features and chemical conditions (collectively termed 'variables') that affect regional patterns of ground-water quality. A framework for comparison of water quality across the NECRA consists of a group of spatial variables related to aquifer properties, hydrologic conditions, and contaminant sources. These spatial variables are grouped under four general categories (features) that can be mapped across the aquifers: (1) geologic, (2) hydrophysiographic, (3) land-use land-cover, and (4) geochemical. On a regional scale, these variables represent indicators of natural and anthropogenic sources of contaminants, as well as generalized physical and chemical characteristics of the aquifer system that influence ground-water chemistry and flow. These variables can be used in varying combinations (depending on the contaminant) to categorize the aquifer into areas of similar hydrogeologic characteristics to evaluate variation in regional water quality through statistical testing.

  1. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.

  2. Qualifying variability: patterns in water quality and biota from a long-term, multi-stream dataset

    Treesearch

    Camille Flinders; Douglas McLaughlin

    2016-01-01

    Effective water resources assessment and management requires quantitative information on the variability of ambient and biological conditions in aquatic communities. Although it is understood that natural systems are variable, robust estimates of variation in water quality and biotic endpoints (e.g. community-based structure and function metrics) are rare in US waters...

  3. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  4. Evaluating Water Quality in the Lovros River (Greece), Using Biotic Indices based on Invertebrate Communities.

    ERIC Educational Resources Information Center

    Koussouris, Theodore; And Others

    1990-01-01

    Presented is a survey of a river including physiochemical measurements and river fauna observations. It is shown that the self-purification gradient of river water quality and the possible ecological disturbances due to pollutants entering the river create an unpredictable pattern of recovery. (CW)

  5. Compilation and analysis of multiple groundwater-quality datasets for Idaho

    USGS Publications Warehouse

    Hundt, Stephen A.; Hopkins, Candice B.

    2018-05-09

    Groundwater is an important source of drinking and irrigation water throughout Idaho, and groundwater quality is monitored by various Federal, State, and local agencies. The historical, multi-agency records of groundwater quality include a valuable dataset that has yet to be compiled or analyzed on a statewide level. The purpose of this study is to combine groundwater-quality data from multiple sources into a single database, to summarize this dataset, and to perform bulk analyses to reveal spatial and temporal patterns of water quality throughout Idaho. Data were retrieved from the Water Quality Portal (https://www.waterqualitydata.us/), the Idaho Department of Environmental Quality, and the Idaho Department of Water Resources. Analyses included counting the number of times a sample location had concentrations above Maximum Contaminant Levels (MCL), performing trends tests, and calculating correlations between water-quality analytes. The water-quality database and the analysis results are available through USGS ScienceBase (https://doi.org/10.5066/F72V2FBG).

  6. Water quality in three creeks in the backcountry of Grand Teton National Park, USA

    USGS Publications Warehouse

    Farag, A.M.; Goldstein, J.N.; Woodward, D.F.

    2001-01-01

    This study was conducted in Grand Teton National Park during the summers of 1996 and 1997 to investigate the water quality in two high human use areas: Garnet Canyon and lower Cascade Canyon. To evaluate the water quality in these creeks, fecal coliform, Giardia lamblia, coccidia, and microparticulates were measured in water samples. No evidence of fecal coliform, Giardia lamblia, or coccidia, was found in Garnet Creek. The water quality and general water chemistry of Garnet Creek was similar to the reference site. No Giardia lamblia or coccidia were found in Cascade Creek, but fecal coliforms were present. The isolated colonies of Escherichia coli from Cascade Creek matched the ribosome patterns of avian, deer, canine, elk, rodent, and human coliforms.

  7. Concentration-discharge relationships to understand the interplay between hydrological and biogeochemical processes: insights from data analysis and numerical experiments in headwater catchments.

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J. R.; Marçais, J.; Moatar, F.; Minaudo, C.; Courtois, Q.; Thomas, Z.; Longuevergne, L.; Pinay, G.

    2017-12-01

    Integration of hydrological and biogeochemical processes led to emerging patterns at the catchment scale. Monitoring in rivers reflects the aggregation of these effects. While discharge time series have been measured for decades, high frequency water quality monitoring in rivers now provides prominent measurements to characterize the interplay between hydrological and biogeochemical processes, especially to infer the processes that happen in the heterogeneous subsurface. However, we still lack frameworks to relate observed patterns to specific processes, because of the "organized complexity" of hydrological systems. Indeed, it is unclear what controls, for example, patterns in concentration-discharge (C/Q) relationships due to non-linear processes and hysteresis effects. Here we develop a non-intensive process-based model to test how the integration of different landforms (i.e. geological heterogeneities and structures, topographical features) with different biogeochemical reactivity assumptions (e.g. reactive zone locations) can shape the overall water quality time series. With numerical experiments, we investigate typical patterns in high frequency C/Q relationships. In headwater basins, we found that typical hysteretic patterns in C/Q relationships observed in data time series can be attributed to differences in water and solute locations stored across the hillslope. At the catchment scale though, these effects tend to average out by integrating contrasted hillslopes' landforms. Together these results suggest that information contained in headwater water quality monitoring can be used to understand how hydrochemical processes determine downstream conditions.

  8. Evaluation of the San Dieguito, San Elijo, and San Pasqual hydrologic subareas for reclaimed water use, San Diego County, California

    USGS Publications Warehouse

    Izbicki, J.A.

    1983-01-01

    A study was made to determine the suitability of three small hydrologic subareas in San Diego County, California, for reuse of municipal wastewater. Ground-water quality has been impacted by agricultural water use, imported water use, changes in natural recharge patterns, seawater intrusion, and intrusion of ground water from surrounding marine sediments; therefore, ground water is of limited value as a water-supply source. Reclaimed water use is feasible and expected to improve ground-water quality, creating a new source of water for agricultural use. (USGS)

  9. Identification of Surface Water Quality along the Coast of Sanya, South China Sea

    PubMed Central

    Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin

    2015-01-01

    Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay. PMID:25894980

  10. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA

    USGS Publications Warehouse

    Volkmar, E.C.; Dahlgren, R.A.; Stringfellow, W.T.; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E. E.

    2011-01-01

    To investigate the mechanism for diel (24h) changes commonly observed at fixed sampling locations and how these diel changes relate to downstream transport in hypereutrophic surface waters, we studied a parcel of agricultural drainage water as it traveled for 84h in a concrete-lined channel having no additional water inputs or outputs. Algal fluorescence, dissolved oxygen, temperature, pH, conductivity, and turbidity were measured every 30min. Grab samples were collected every 2h for water quality analyses, including nutrients, suspended sediment, and chlorophyll/pheophytin. Strong diel patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. In contrast, algal pigments and nitrate did not exhibit diel patterns within the parcel of water, but did exhibit strong diel patterns for samples collected at a fixed sampling location. The diel patterns observed at fixed sampling locations for these constituents can be attributed to algal growth during the day and downstream transport (washout) of algae at night. Algal pigments showed a rapid daytime increase during the first 48h followed by a general decrease for the remainder of the study, possibly due to sedimentation and photobleaching. Algal growth (primarily diatoms) was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, despite low phosphate concentrations (<0.01mgL-1). ?? 2011 Elsevier B.V.

  11. MODIS-derived spatiotemporal water clarity patterns in optically shallow FloridaKeys waters: A new approach to remove bottom contamination

    EPA Science Inventory

    Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...

  12. Identification of temporal patterns of long-term hydrological signals in Lower Mississippi River Basin using wavelet analysis

    Treesearch

    Ying Ouyang

    2016-01-01

    Estimates of surface hydrological characteristics in watershed ecosystems are essential to climate change assessment, water supply planning, water quality protection, ecological restoration, and water resources management.

  13. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  14. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 52 percent of the zinc load at M34. Characterized sources accounted for more of the loading gains estimated in the example reach during September, possibly indicating the presence of diffuse inputs during snowmelt runoff. The results indicate that metal sources in the upper Animas River Basin may change substantially with season, regardless of the source.

  15. Assessment for water quality by artificial neural network in Daya Bay, South China Sea.

    PubMed

    Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.

  16. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  17. Patterns of fish diversity and assemblage structure and water quality in the longest Asian tropical river (Mekong)

    NASA Astrophysics Data System (ADS)

    Chea, R.; Lek, S.; Grenouillet, G.

    2016-12-01

    Although the Mekong River is one of the world's 35 biodiversity hotspots, the large-scale patterns of fish diversity and assemblage structure remain poorly addressed. The present study aimed to investigate the spatial variability of water quality in the Lower Mekong Basin and the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH, and total phosphorus. Specifically, upstream assemblages were characterized by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch-like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR. Overall of the LMR water quality, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMR. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human disturbance and particularly apparent in sites distributed along the man-made canals in Vietnam delta where population growth and agricultural development are intensive.

  18. Interactive Effects of Storms, Drought, and Weekly Land Cover Changes on Water Quality Patterns in an Agricultural-dominated Subtropical Catchment in New Zealand

    NASA Astrophysics Data System (ADS)

    Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2013-12-01

    Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to capture rainfall event-based water quality patterns. Together, the event-based and monthly turbidity data suggest that intense land disturbances in the Hoteo Catchment have the ability to switch the catchment from supply-limited (river loadings are dictated by what is available from the landscape) to transport-limited (loadings from the landscape are abundant, and thus dictated by water runoff). The findings from this research can be used to assess (1) the vulnerability of agricultural land uses to climate changes, particularly the impact of severe droughts from intensifying ENSO phenomena; and (2) the interactive effects of changing climate and land use on water quality across multiple spatiotemporal scales.

  19. Spatial and seasonal patterns in water quality in an embayment-mainstem reach of the tidal freshwater Potomac River, USA: a multiyear study.

    PubMed

    Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine

    2008-12-01

    Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.

  20. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  1. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  2. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    PubMed

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  3. Water vapor d2H dynamics over China derived from SCIAMACHY satellite measurements

    USDA-ARS?s Scientific Manuscript database

    This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor delta2H data retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) observations. The results show that water vapor delta2H values on both annual and...

  4. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region.

    PubMed

    Li, Yangfan; Li, Yi; Wu, Wei

    2016-01-01

    The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Deng, Xin; Geraci, Jeff; Worcester, Karen; Tjeerdema, Ron S

    2018-03-01

    Regulation of agriculture irrigation water discharges in California, USA, is assessed and controlled by its 9 Regional Water Quality Control Boards under the jurisdiction of the California State Water Resources Control Board. Each Regional Water Board has developed programs to control pesticides in runoff as part of the waste discharge requirements implemented through each region's Irrigated Lands Regulatory Program. The present study assessed how pesticide use patterns differ in the Imperial (Imperial County) and the Salinas and Santa Maria (Monterey County) valleys, which host 3 of California's prime agriculture areas. Surface-water toxicity associated with current use pesticides was monitored at several sites in these areas in 2014 and 2015, and results were linked to changes in pesticide use patterns in these areas. Pesticide use patterns appeared to coincide with differences in the way agriculture programs were implemented by the 2 respective Regional Water Quality Control Boards, and these programs differed in the 2 Water Board Regions. Different pesticide use patterns affected the occurrence of pesticides in agriculture runoff, and this influenced toxicity test results. Greater detection frequency and higher concentrations of the organophosphate pesticide chlorpyrifos were detected in agriculture runoff in Imperial County compared to Monterey County, likely due to more rigorous monitoring requirements for growers using this pesticide in Monterey County. Monterey County agriculture runoff contained toxic concentrations of pyrethroid and neonicotinoid pesticides, which impacted amphipods (Hyalella azteca) and midge larvae (Chironomus dilutus) in toxicity tests. Study results illustrate how monitoring strategies need to evolve as regulatory actions affect change in pesticide use and demonstrate the importance of using toxicity test indicator species appropriate for the suite of contaminants in runoff in order to accurately assess environmental risk. Integr Environ Assess Manag 2018;14:270-281. © 2017 SETAC. © 2017 SETAC.

  6. Hydrologic effects of impoundments in Sherburne National Wildlife Refuge, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The hydrologic effects of proposed impoundments in Sherburne National Wildlife Refuge were found to be insignificant with respect to both ground- and surface-water flow patterns and water quality. Monitoring of water levels in 23 observation wells and of discharge in the St. Francis River during 1980 and 1981 has shown that ground water in the surf icial aquifer responds quickly to areal recharge and subsequently discharges to the St. Francis River. The impoundment of surface water in the refuge was not found to affect water levels in the refuge significantly. The impoundments may affect ground-water-flow systems beneath and adjacent to the impoundments. Quality of ground and surface water was found to be similar except ground water contained higher concentrations of dissolved nitrite plus nitrate nitrogen than surface water. Phytoplankton removed dissolved nitrite plus nitrate nitrogen from surface water. The effects of impoundments on water quality are expected to be minor.

  7. Principal locations of major-ion, trace-element, nitrate, and Escherichia coli loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  8. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  9. Analyzing the Relative Linkages of Land Use and Hydrologic Variables with Urban Surface Water Quality using Multivariate Techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Abdul-Aziz, O. I.

    2015-12-01

    We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.

  10. Geology and ground-water resources of Outagamie County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1957-01-01

    The ground water differs greatly in chemical quality from well to well, but it is generally a very hard calcium magnesium bicarbonate water, some of it high in iron. To aid in determining the source of well waters, 22 chemical analyses were plotted on a logarithmic diagram to obtain characteristic patterns for waters from several geologic sources.

  11. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  12. Spatiotemporal Variation and the Role of Wildlife in Seasonal Water Quality Declines in the Chobe River, Botswana

    PubMed Central

    Fox, J. Tyler; Alexander, Kathleen A.

    2015-01-01

    Sustainable management of dryland river systems is often complicated by extreme variability of precipitation in time and space, especially across large catchment areas. Understanding regional water quality changes in southern African dryland rivers and wetland systems is especially important because of their high subsistence value and provision of ecosystem services essential to both public and animal health. We quantified seasonal variation of Escherichia coli (E. coli) and Total Suspended Solids (TSS) in the Chobe River using spatiotemporal and geostatistical modeling of water quality time series data collected along a transect spanning a mosaic of protected, urban, and developing urban land use. We found significant relationships in the dry season between E. coli concentrations and protected land use (p = 0.0009), floodplain habitat (p = 0.016), and fecal counts from elephant (p = 0.017) and other wildlife (p = 0.001). Dry season fecal loading by both elephant (p = 0.029) and other wildlife (p = 0.006) was also an important predictor of early wet season E. coli concentrations. Locations of high E. coli concentrations likewise showed close spatial agreement with estimates of wildlife biomass derived from aerial survey data. In contrast to the dry season, wet season bacterial water quality patterns were associated only with TSS (p<0.0001), suggesting storm water and sediment runoff significantly influence E. coli loads. Our data suggest that wildlife populations, and elephants in particular, can significantly modify river water quality patterns. Loss of habitat and limitation of wildlife access to perennial rivers and floodplains in water-restricted regions may increase the impact of species on surface water resources. Our findings have important implications to land use planning in southern Africa’s dryland river ecosystems. PMID:26460613

  13. Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results

    EPA Science Inventory

    Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...

  14. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  15. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.

    PubMed

    Sawyer, Audrey H; David, Cédric H; Famiglietti, James S

    2016-08-12

    Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.

  16. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Water color and circulation southern Chesapeake Bay, part 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. M.; Gordon, H. H.

    1975-01-01

    Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.

  18. The New York City Operations Support Tool: Supporting Water Supply Operations for Millions in an Era of Changing Patterns in Hydrological Extreme Events

    NASA Astrophysics Data System (ADS)

    Matonse, A. H.; Porter, J. H.; Frei, A.

    2015-12-01

    Providing an average 1.1 billion gallons (~ 4.2 x 106 cubic meters) of drinking water per day to approximately nine million people in New York City (NYC) and four upstate counties, the NYC water supply is among the world's largest unfiltered systems. In addition to providing a reliable water supply in terms of water quantity and quality, the city has to fulfill other flow objectives to serve downstream communities. At times, such as during extreme hydrological events, water quality issues may restrict water usage for parts of the system. To support a risk-based water supply decision making process NYC has developed the Operations Support Tool (OST). OST combines a water supply systems model with reservoir water quality models, near real time data ingestion, data base management and an ensemble hydrological forecast. A number of reports have addressed the frequency and intensities of extreme hydrological events across the continental US. In the northeastern US studies have indicated an increase in the frequency of extremely large precipitation and streamflow events during the most recent decades. During this presentation we describe OST and, using case studies we demonstrate how this tool has been useful to support operational decisions. We also want to motivate a discussion about how undergoing changes in patterns of hydrological extreme events elevate the challenge faced by water supply managers and the role of the scientific community to integrate nonstationarity approaches in hydrologic forecast and modeling.

  19. The impact of channel capture on estuarine hydro-morphodynamics and water quality in the Amazon delta.

    PubMed

    Silva Dos Santos, Eldo; Pinheiro Lopes, Paula Patrícia; da Silva Pereira, Hyrla Herondina; de Oliveira Nascimento, Otávio; Rennie, Colin David; da Silveira Lobo O'Reilly Sternberg, Leonel; Cavalcanti da Cunha, Alan

    2018-05-15

    Due to progressive erosion of the new Urucurituba Channel, the Amazon River has recently captured almost all discharge from the lower Araguari River (Amapá-AP, Brazil), which previously flowed directly to the Atlantic Ocean. These recent geomorphological changes have caused strong impacts on the landscape and hydrodynamic patterns near the Araguari River mouth, especially the alteration of the riverine drainage system and its water quality. Landsat images were used to assess the estuarine landscape morphodynamic, particularly the expansion of the Urucurituba Channel, 80km from the Araguari River mouth, chronicling its connection to the Amazon River. The results suggest that the Urucurituba developed by headward migration across the Amazon delta; this is perhaps the first observation of estuarine distributary network development by headward channel erosion. The rate of Urucurituba Channel width increase has been ≈5m/month since 2011, increasing drainage capacity of the channel. We also collected in situ hydrodynamic measurements and analyzed 17 water quality parameters. Having 2011 as baseline, the flowrate of Araguari River has been diverted by up to 98% through Urucurituba Channel, with substantial changes in net discharge recorded at 3 monitoring stations. Statistically significant differences in water quality (p<0.05) were observed between 2011 and 2015, associated with the change in the flow pattern. Estuarine salinity and solids concentrations have increased. Overall, we demonstrate changes in landscape, hydrodynamics and water quality of the lower Araguari River. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    NASA Astrophysics Data System (ADS)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  1. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    USGS Publications Warehouse

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. This report presents the analytical results of source- water samples from 448 community water system wells and 21 surface-water sites. This report also presents the analytical results of finished-water samples from 285 wells and 20 surface-water sites from community water systems. Results of quality-assurance/quality-control samples also are presented including data for equipment blanks, field blanks, source solution blanks, and replicate samples.

  2. Spatial Patterns Study for Sediments from Lake Michigan

    EPA Science Inventory

    Accurately understanding the distribution of sediment measurements within large water bodies such as Lake Michigan is critical for modeling and understanding of carbon, nitrogen, silica and phosphorus dynamics. Several water quality models have been formulated and applied to the ...

  3. Evidence for acid-precipitation-induced trends in stream chemistry at hydrologic bench-mark stations

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.

    1983-01-01

    Ten- to 15-year water-quality records from a network of headwater sampling stations show small declines in stream sulfate concentrations at stations in the northeastern quarter of the Nation and small increases in sulfate at most southeastern and western sites. The regional pattern of stream sulfate trends is similar to that reported for trends in S02 emissions to the atmosphere during the same period. Trends in the ratio of alkalinity to total major cation concentrations at the stations follow an inverse pattern of small increases in the Northeast and small, but widespread decreases elsewhere. The undeveloped nature of the sampled basins and the magnitude and direction of observed changes in relation to SO2 emissions support the hypothesis that the observed patterns in water quality trends reflect regional changes in the rates of acid deposition.

  4. Assessment of Historical Water-Quality Data for National Park Units in the Rocky Mountain Network, Colorado and Montana, through 2004

    USGS Publications Warehouse

    Mast, M. Alisa

    2007-01-01

    This report summarizes historical water-quality data for six National Park units that compose the Rocky Mountain Network. The park units in Colorado are Florissant Fossil Beds National Monument, Great Sand Dunes National Park and Preserve, and Rocky Mountain National Park; and in Montana, they are Glacier National Park, Grant-Kohrs Ranch National Historic Site, and Little Bighorn Battlefield National Monument. This study was conducted in cooperation with the Inventory and Monitoring Program of the National Park Service to aid in the design of an effective and efficient water-quality monitoring plan for each park. Data were retrieved from a number of sources for the period of record through 2004 and compiled into a relational database. Descriptions of the environmental setting of each park and an overview of the park's water resources are presented. Statistical summaries of water-quality constituents are presented and compared to aquatic-life and drinking-water standards. Spatial, seasonal, and temporal patterns in constituent concentrations also are described and suggestions for future water-quality monitoring are provided.

  5. Water quality and waterborne disease in the Niger River Inland Delta, Mali: a study of local knowledge and response.

    PubMed

    Halvorson, Sarah J; Williams, Ashley L; Ba, Sidy; Dunkel, Florence V

    2011-03-01

    This paper presents the findings of a study to assess patterns in local knowledge of and response to water quality and waterborne diseases in relation to seasonal changes in the Niger River Inland Delta. The study draws on field data collected in four villages along the Niger River in the Mopti region of Mali during September 2008. The major findings suggest: (1) water use behaviors and diarrheal disease management are influenced by the tremendous seasonal fluctuations in the riverine environment; (2) local awareness of the relationship between poor water quality, oral-fecal disease transmission, and waterborne disease is low; (3) interventions to mitigate the high incidence of childhood diarrhea and degraded water quality are limited by ongoing socio-economic, cultural, and environmental factors; and (4) women's level of health knowledge is socially and culturally dependent. Published by Elsevier Ltd.

  6. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  7. Characterization of water quality in Government Highline Canal at Camp 7 Diversion and Highline Lake, Mesa County, Colorado, July 2000 through September 2003

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Colorado Division of Parks and Recreation, collected and analyzed water-quality data for the Government Highline Canal and Highline Lake from July 2000 through September 2003. Implementation of modernization strategies for the canal, which supplies most of the water to the lake, would decrease the amount of water spilled to Highline Lake from August through October. A reduction in spill water into Highline Lake could adversely affect the recreational uses of the lake. To address this concern and to characterize the water quality in the Government Highline Canal and Highline Lake, the U.S. Geological Survey conducted a study to evaluate limnological conditions prior to implementation of the modernization strategies. This report characterizes the water quality of inflow from the Government Canal and in Highline Lake prior to implementation of modernization strategies in the Government Canal. Flow entering the lake from the Government Canal was characterized using field properties and available chemical, sediment, and bacteria concentrations. Data collected at Highline Lake were used to characterize the seasonal stratification patterns, water-quality chemistry, bacteria populations, and phytoplankton community structure in the lake. Data used for this report were collected at one inflow site to the lake and four sites in Highline Lake. Highline Lake is a mesotrophic/eutrophic lake that has dimictic thermal stratification patterns. Samples collected in the photic zone indicated that there was little physical, chemical, or biological variability at this depth at any of the sampled sites in Highline Lake. Strong thermal and dissolved-oxygen stratification patterns were observed during summer. Dissolved-oxygen concentrations of less than 1 milligram per liter were observed during the summer. Ammonia likely was released from the bottom sediments of Highline Lake. The limiting nutrient in Highline Lake could be nitrogen or phosphorus. In general, the seasonal succession of phytoplankton was similar to that of other lakes in the temperate zone. Several types of algae associated with taste and odor issues were identified in samples, but critical concentrations were not exceeded for any listed algal group with the exception of the diatom genus Cyclotella in one sample. Bacteria concentrations were determined at the public swim beach at Highline Lake. E. coli samples were collected periodically by the USGS and weekly by the Colorado Division of Parks and Recreation. During the study period, no reported E. coli concentration exceeded the standard for natural swimming areas. Inflow water quality was characterized by samples collected at the Camp 7 check structure on the Government Canal. Inflow water temperatures reflected the seasonal patterns of the source water in the Colorado River. The water was well oxygenated. Nitrogen and phosphorus concentrations were low, and concentrations did not differ substantially from year to year or seasonally within a year. All samples had reportable numbers of fecal streptococcus. The maximum reported concentration of E. coli was reported at 77 colonies per 100 milliliters of sample. Suspended-sediment concentrations were relatively low.

  8. A national-scale analysis of the impacts of drought on water quality in UK rivers

    NASA Astrophysics Data System (ADS)

    Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.

    2015-12-01

    Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are diverse both in terms of timing, magnitude and duration. We consider several scenarios in which management interventions may alleviate water quality pressures, and discuss how the many interacting factors need to be better characterised to support detailed mechanistic models to improve our process understanding.

  9. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  10. Long Creek Creek Mine Drainage Study: South Fork Reservation: Final Report

    EPA Science Inventory

    To characterize water quality in streams affected by historical mining it is necessary to determine the seasonal and spatial distribution patterns of trace metals concentrations. Identification of these patterns is used to identify the trace metals that are of ecological concern ...

  11. Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India

    NASA Astrophysics Data System (ADS)

    Vijith, H.; Satheesh, R.

    2007-09-01

    Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows seasonal fluctuations and these spatial patterns of physical and chemical constituents are useful in deciding water use strategies for various purposes.

  12. Young runoff fractions control streamwater age and solute concentration dynamics

    Treesearch

    Paolo Benettin; Scott W. Bailey; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter

    2017-01-01

    We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age...

  13. Cistern and planter box monitoring in Camden, NJ revisited ...

    EPA Pesticide Factsheets

    The Camden County Municipal Utilities Authority installed green infrastructure Stormwater Control Measures at multiple locations around the city of Camden, NJ. The Stormwater Control Measures include raised downspout planter boxes and cisterns. EPA is monitoring a subset of the locations to document the performance of individual Stormwater Control Measures. The selected monitoring sites include two sets of raised downspout planter boxes and five cisterns. These Stormwater Control Measures are being monitored: to investigate their hydrologic performances, to document water consumption patterns of cisterns for a better understanding of the supply and demand relationship, and to analyze cistern water quality. The continuous electronic monitoring devices included time domain reflectometers, rain gauges and pressure transducers. EPA decided to monitor these Stormwater Control Measures for three years and second year monitoring is ongoing. Monitoring data present the internal water flow patterns and media saturation frequency of the raised planter boxes and the capture ratio, water use patterns and water quality analysis of cisterns. Second year monitoring shows larger capture ratio for cisterns compared to the first year data and higher metal concentration at one site. The high metal concentration was later resolved by flushing the cistern and resampling. The presentation will summarize the comparison between first and second year data, providing results from the

  14. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it is proposed to link SWAT model with an optimization algorithm, whose objective is to identify the optimal cropping pattern that results in maximum biomass production for biofuel generation as well as a minimum guaranteed amount of grain production. The optimal allocation ensures that the downstream water quality in the river is within a desirable limit. The study employed probabilistic information in order to address the uncertainty in model simulations. The residual variance of the model is used to transform the deterministic simulations in to probabilistic information. The proposed framework is illustrated using data pertaining to an agricultural watershed in the USA. The preliminary results of the study are encouraging and suggest that an appropriate combination of Corn, Soyabean, Miscanthus, Switch Grass and Pasture land can be arrived at through the developed framework. The placement of Miscanthus and Switch Grass in the watershed help improve the downstream water quality, while Corn and Soyabean makes it deteriorated. The spatial allocation of these crops therefore certainly plays a major role in the downstream water quality.

  15. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    PubMed

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  16. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  17. Developing hydrological model for water quality in Iraq marshes zone using Landsat-TM

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Hasab, Hashim Ali; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    The Mesopotamia marshlands constitute the largest wetland ecosystem in the Middle East and Western Eurasia. These wetlands are located at the confluence of the Tigris and Euphrates Rivers in southern Iraq. However, there are series reductions in the wetland zones because of neighbor countries, i.e. Turkey, Syria built dams upstream of Tigris and Euphrates Rivers. In addition, the first Gulf war of the 1980s had damaged majority of the marches resources. In fact,the marshes had been reduced in size to less than 7% since 1973 and had deteriorated in water quality parameters. The study integrates Hydrological Model of RMA-2 with Geographic Information System, and remote sensing techniques to map the water quality in the marshlands south of Iraq. This study shows that RMA-2 shows the two dimensional water flow pattern and water quality quantities in the marshlands. It can be said that the integration between Hydrological Model of RMA-2, Geographic Information System, and remote sensing techniques can be used to monitor water quality in the marshlands south of Iraq.

  18. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.

  19. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment.

    PubMed

    Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G

    2015-08-01

    The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.

  20. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Tsvetkova, Olga

    2011-06-01

    SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.

  1. Framework and tools for agricultural landscape assessment relating to water quality protection.

    PubMed

    Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine

    2009-05-01

    While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

  2. Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources.

    PubMed

    Halstead, Judith A; Kliman, Sabrina; Berheide, Catherine White; Chaucer, Alexander; Cock-Esteb, Alicea

    2014-06-01

    The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO[Formula: see text], Cl(-), HCO(-)3, SO9(2-)4, Na(+), K(+), Ca(2+), and Mg(2+)). Adjusted R(2) values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg(2+) was omitted. The more common R (2), ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg(2+) was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca(2+) and HCO(-)3 are suggested.

  3. Provision of safe domestic water for the promotion and protection of public health: a case study of the city of Beirut, Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Jurdi, Mey

    2009-04-01

    Securing adequate safe drinking water and proper sanitation is a major challenge facing the developing world. The "Water for Life Decade" emphasizes the importance of upgrading national water quality and sanitation services. This study assessed the domestic water profile in the city of Beirut. Samples were collected from three types of household water sources (municipality, private wells, and vended water bottles) and assessed for their physiochemical and microbiological profile. At the same time, a cross-sectional survey assessing water consumption patterns and the prevalence of water-borne diseases was conducted. The results showed a deficient water quality profile in all three water sources. The measured physiochemical and bacteriological parameters reflected the high frequency of water-borne diseases. Action to secure a safe domestic water supply is essential. The plan should guarantee the protection of water sources, ensure sufficient treatment of domestic water and upgrade the national program for potable water quality control. Periodic quality monitoring and legislating the chaotic water-vending sector are indispensable. Additionally, the deterioration of private well sources by sea and wastewater infiltration necessitates the enforcement of legislation associated with the use and management of private wells. Consumer awareness and active contributions to promote and protect public health are important.

  4. Natural ground-water quality in Michigan, 1974-87

    USGS Publications Warehouse

    Cummings, T. Ray

    1989-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 20 to 76,000 mg/L. Waters having low dissolved-solids concentrations are calcium bicarbonate-type waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium concentrations are higher at some locations than is common in most natural waters. Lead concentrations exceed U.S. Environmental Protection Agency 's primary drinking-water regulations at some locations in the northern part of the lower Peninsula. Generalized areal patterns of water-quality variability indicate that geology is a primary cause of differences across the State. Examples of chemical associations in water indicate that chemical analyses may be valuable in tracing and identifying mineral deposits.

  5. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  6. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots.

    PubMed

    Rizo-Decelis, L D; Pardo-Igúzquiza, E; Andreo, B

    2017-12-15

    In order to treat and evaluate the available data of water quality and fully exploit monitoring results (e.g. characterize regional patterns, optimize monitoring networks, infer conditions at unmonitored locations, etc.), it is crucial to develop improved and efficient methodologies. Accordingly, estimation of water quality along fluvial ecosystems is a frequent task in environment studies. In this work, a particular case of this problem is examined, namely, the estimation of water quality along a main stem of a large basin (where most anthropic activity takes place), from observational data measured along this river channel. We adapted topological kriging to this case, where each watershed contains all the watersheds of the upstream observed data ("nested support effect"). Data analysis was additionally extended by taking into account the upstream distance to the closest contamination hotspot as an external drift. We propose choosing the best estimation method by cross-validation. The methodological approach in spatial variability modeling may be used for optimizing the water quality monitoring of a given watercourse. The methodology presented is applied to 28 water quality variables measured along the Santiago River in Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    PubMed

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).

  8. Residual currents and long-term transport

    USGS Publications Warehouse

    Cheng, R.T.

    1990-01-01

    Estuaries, bays, and contiguous coastal seas of the world are the most valuable and yet most vulnerable marine ecosystems. For centuries, society has placed enormous value on coastal areas for living, working, and recreation. In nearly all regions of the world, the largest population is distributed along the coastlines. The marine ecosystems provide food, shelter, and spawning grounds for fisheries, and refuge and sanctuary for wildlife. Dramatic increases in the population living in coastal regions have changed the pattern of land use and the movement of sediments. Obviously, these changes have not come without a price. Accompanying the coastal population increase is competition for the use of estuarine and coastal resources: the diversion of fresh water for irrigation and the discharge of waste water into these systems. The changing patterns of water use have resulted in deterioration of water quality, and in irreversible impacts on many marine ecosystems. All of these alterations directly affect the economic development and the quality of life in adjacent regions.

  9. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Water policy sinkhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.L.

    1983-10-01

    The pollution of both surface and ground waters and the withdrawal of ground water will present the US with a major water-quality and -supply problem unless changes are made in how we use water. If water is priced at market value instead of relying on federal subsidies, price signals could alter consumption patterns. Other changes that could help are removing restrictions on water transfers and allowing private ownership of waterways and appropriable rights to ground water. These steps, it is felt, would encourage responsible consumption and allocations. (DCK)

  11. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  12. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    NASA Astrophysics Data System (ADS)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The successions of water quality factors y were similar and the mainly pattern was Pre-rainy period > Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.

  13. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  14. Assessment of groundwater quality data for the Turtle Mountain Indian Reservation, Rolette County, North Dakota

    USGS Publications Warehouse

    Lundgren, Robert F.; Vining, Kevin C.

    2013-01-01

    The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.

  15. Drought Resilience and Water Conservation - Agency-Wide Actions and Research

    EPA Science Inventory

    In many areas of the United States, the frequency and duration of drought events are increasing. This pattern is expected to continue and to shift outside of historical trends, making forecasting our water quality and supply more difficult. EPA is conducting research and working ...

  16. Surveillance of bacteriological quality of drinking water in Chandigarh, northern India.

    PubMed

    Goel, Naveen K; Pathak, Rambha; Gulati, Sangeeta; Balakrishnan, S; Singh, Navpreet; Singh, Hardeep

    2015-09-01

    The study was carried out in Chandigarh, India with the following objectives: (1) to monitor the bacteriological quality of drinking water; (2) to collect data on bacteriological contamination of water collected at point of use; (3) to test both groundwater being supplied through hand pumps and pre-treated water; and (4) to determine the pattern of seasonal variations in quality of water. The community-based longitudinal study was carried out from 2002 to 2007. Water samples from hand pumps and tap water were collected from different areas of Chandigarh following a simple random sampling strategy. The time trends and seasonal variations in contamination of water according to area and season were analysed. It was found that the contamination of water was higher during the pre-monsoon period compared with the rest of the year. The water being used in slums and rural areas for drinking purposes also had higher contamination levels than urban areas, with highest levels in rural areas. This study found that drinking water supply in Chandigarh is susceptible to contamination especially in rural areas and during pre-monsoon. Active intervention from public health and the health department along with raising people's awareness regarding water hygiene are required for improving the quality of drinking water.

  17. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    PubMed

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  18. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    NASA Astrophysics Data System (ADS)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  19. Towards Sustainable Water Quality In Estuarine Impoundments: The Current State.

    NASA Astrophysics Data System (ADS)

    Wright, J.; Worrall, F.

    Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. Detailed water quality surveys have been carried out on a total of 79 dates on the Tees, Tawe, Wansbeck and Blyth estuaries. Water quality parameters which have been determined are pH, Eh, dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, transparency, suspended solids, alkalinity, temperature, nutri- ents (nitrate+nitrite, ammonium and orthophosphate), and a large range of dissolved metals. Statistical analyses are used to demonstrate the major controls on water qual- ity in impoundments. A distinction is made between total tidal exclusion (freshwater) systems, in which water quality is primarily influenced by external/catchment factors, and partial tidal exclusion systems, in which water quality is processed internally. This internal processing is due to density stratification creating compartments of saline wa- ter in contact with oxygen demanding sediments and isolated from the atmosphere, which leads to conditions of low DO and changes in redox conditions which may lead to release of metals and phosphate from the sediment.

  20. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  1. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  2. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  3. MERCURY DEPOSITION AND WATER QUALITY IN THE UPPER MIDWEST, USA

    EPA Science Inventory

    Total wet mercury deposition was monitored weekly at six Upper-Midwest, USA sites for a period of six years, 1990-195, to assess temporal and spatial patterns, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variation...

  4. MERCURY DEPOSITIOIN AND WATER QUALITY TRENDS IN THE UPPER MIDWEST, USA

    EPA Science Inventory

    Total wet mercur deposition was monitored weekly at six Upper-Midwest USA sites for a period of six years, 1990-95, to assess temporal and spatial pattern, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variations b...

  5. Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...

  6. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  7. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

    PubMed

    Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem

    2018-02-15

    The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

  8. Synthesis and interpretation of surface-water quality and aquatic biota data collected in Shenandoah National Park, Virginia, 1979-2009

    USGS Publications Warehouse

    Jastram, John D.; Snyder, Craig D.; Hitt, Nathaniel P.; Rice, Karen C.

    2013-01-01

    Shenandoah National Park in northern and central Virginia protects 777 square kilometers of mountain terrain in the Blue Ridge physiographic province and more than 90 streams containing diverse aquatic biota. Park managers and visitors are interested in the water quality of park streams and its ability to support healthy coldwater communities and species, such as the native brook trout (Salvelinus fontinalis), that are at risk in the eastern United States. Despite protection from local stressors, however, the water quality of streams in the park is at risk from many regional stressors, including atmospheric pollution, decline in the health of the surrounding forests because of invasive forest pests, and global climate change. In 2010, the U.S. Geological Survey, in cooperation with the National Park Service, undertook a study to compile, analyze, and synthesize available data on water quality, aquatic macroinvertebrates, and fish within Shenandoah National Park. Specifically, the effort focused on creating a comprehensive water-resources database for the park that can be used to evaluate temporal trends and spatial patterns in the available data, and characterizing those data to better understand interrelations among water quality, aquatic macroinvertebrates, fish, and the landscape.

  9. Rocky-shore communities as indicators of water quality: a case study in the Northwestern Mediterranean.

    PubMed

    Pinedo, Susana; García, María; Satta, Maria Paola; de Torres, Mariona; Ballesteros, Enric

    2007-01-01

    The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status.

  10. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    USGS Publications Warehouse

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).

  11. A method for the use of landscape metrics in freshwater research and management

    USGS Publications Warehouse

    Kearns, F.R.; Kelly, N.M.; Carter, J.L.; Resh, V.H.

    2005-01-01

    Freshwater research and management efforts could be greatly enhanced by a better understanding of the relationship between landscape-scale factors and water quality indicators. This is particularly true in urban areas, where land transformation impacts stream systems at a variety of scales. Despite advances in landscape quantification methods, several studies attempting to elucidate the relationship between land use/land cover (LULC) and water quality have resulted in mixed conclusions. However, these studies have largely relied on compositional landscape metrics. For urban and urbanizing watersheds in particular, the use of metrics that capture spatial pattern may further aid in distinguishing the effects of various urban growth patterns, as well as exploring the interplay between environmental and socioeconomic variables. However, to be truly useful for freshwater applications, pattern metrics must be optimized based on characteristic watershed properties and common water quality point sampling methods. Using a freely available LULC data set for the Santa Clara Basin, California, USA, we quantified landscape composition and configuration for subwatershed areas upstream of individual sampling sites, reducing the number of metrics based on: (1) sensitivity to changes in extent and (2) redundancy, as determined by a multivariate factor analysis. The first two factors, interpreted as (1) patch density and distribution and (2) patch shape and landscape subdivision, explained approximately 85% of the variation in the data set, and are highly reflective of the heterogeneous urban development pattern found in the study area. Although offering slightly less explanatory power, compositional metrics can provide important contextual information. ?? Springer 2005.

  12. Spatial and Seasonal Dynamics of Water Environmental Capacity in Mountainous Rivers of the Southeastern Coast, China

    PubMed Central

    Jiang, Jingang; Jing, Changwei

    2018-01-01

    The south-east littoral is one of the most populous and developed regions in China suffering from serious water pollution problems, and the Xian-Jiang Basin in the mid of this region is among the most polluted watersheds. Critical information is needed but lacking for improved pollution control and water quality assessment, among which water environmental capacity (WEC) is the most important variable but is difficult to calculate. In this study, a one-dimensional water quality model combined with a matrix calculation algorithm was first developed and calibrated with in-situ observations in the Xian-Jiang basin. Then, the model was applied to analyze the spatial and temporal patterns of WEC of the entire basin. The results indicated that, in 2015, the total pollutant discharges into the river reached 6719.68 t/yr, 488.12 t/yr, and 128.57 t/yr for COD, NH3-N and TP, respectively. The spatial pattern suggested a strong correlation between these water contaminants and industrial enterprises, residential areas, and land-use types in the basin. Furthermore, it was noticed that there was a significant seasonal pattern in WEC that the dry season pollution is much greater than that in the plum season, while that in the typhoon season appears to be the weakest among all seasons. The WEC differed significantly among the 24 sub-basins during the dry season but varied to a smaller extent in other seasons, suggesting differential complex spatial-temporal dependency of the WEC. PMID:29315265

  13. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  14. Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem.

    PubMed

    Xu, Guangjian; Yang, Eun Jin; Xu, Henglong

    2017-08-15

    Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  15. Assessment of domestic water quality: case study, Beirut, Lebanon.

    PubMed

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  16. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana

    PubMed Central

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A.; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-01-01

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650

  17. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana.

    PubMed

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-03-09

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012-2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision.

  18. Integrated planning for regional development planning and water resources management under uncertainty: A case study of Xining, China

    NASA Astrophysics Data System (ADS)

    Fu, Z. H.; Zhao, H. J.; Wang, H.; Lu, W. T.; Wang, J.; Guo, H. C.

    2017-11-01

    Economic restructuring, water resources management, population planning and environmental protection are subjects to inner uncertainties of a compound system with objectives which are competitive alternatives. Optimization model and water quality model are usually used to solve problems in a certain aspect. To overcome the uncertainty and coupling in reginal planning management, an interval fuzzy program combined with water quality model for regional planning and management has been developed to obtain the absolutely ;optimal; solution in this study. The model is a hybrid methodology of interval parameter programming (IPP), fuzzy programing (FP), and a general one-dimensional water quality model. The method extends on the traditional interval parameter fuzzy programming method by integrating water quality model into the optimization framework. Meanwhile, as an abstract concept, water resources carrying capacity has been transformed into specific and calculable index. Besides, unlike many of the past studies about water resource management, population as a significant factor has been considered. The results suggested that the methodology was applicable for reflecting the complexities of the regional planning and management systems within the planning period. The government policy makers could establish effective industrial structure, water resources utilization patterns and population planning, and to better understand the tradeoffs among economic, water resources, population and environmental objectives.

  19. Beyond Flint: National Trends in Drinking Water Quality Violations

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Wu, H.; Lall, U.

    2016-12-01

    Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and policy.

  20. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map.

    PubMed

    Tsai, Wen-Ping; Huang, Shih-Pin; Cheng, Su-Ting; Shao, Kwang-Tsao; Chang, Fi-John

    2017-02-01

    The steep slopes of rivers can easily lead to large variations in river water quality during typhoon seasons in Taiwan, which may poses significant impacts on riverine eco-hydrological environments. This study aims to investigate the relationship between fish communities and water quality by using artificial neural networks (ANNs) for comprehending the upstream eco-hydrological system in northern Taiwan. We collected a total of 276 heterogeneous datasets with 8 water quality parameters and 25 fish species from 10 sampling sites. The self-organizing feature map (SOM) was used to cluster, analyze and visualize the heterogeneous datasets. Furthermore, the structuring index (SI) was adopted to determine the relative importance of each input variable of the SOM and identify the indicator factors. The clustering results showed that the SOM could suitably reflect the spatial characteristics of fishery sampling sites. Besides, the patterns of water quality parameters and fish species could be distinguishably (visually) classified into three eco-water quality groups: 1) typical upstream freshwater fishes that depended the most on dissolved oxygen (DO); 2) typical middle-lower reach riverine freshwater fishes that depended the most on total phosphorus (TP) and ammonia nitrogen; and 3) low lands or pond (reservoirs) freshwater fishes that depended the most on water temperature, suspended solids and chemical oxygen demand. According to the results of the SI, the representative indicators of water quality parameters and fish species consisted of DO, TP and Onychostoma barbatulum. This grouping result suggested that the methodology can be used as a guiding reference to comprehensively relate ecology to water quality. Our methods offer a cost-effective alternative to more traditional methods for identifying key water quality factors relating to fish species. In addition, visualizing the constructed topological maps of the SOM could produce detailed inter-relation between water quality and the fish species of stream habitat units. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley

    Treesearch

    Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger

    2012-01-01

    Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...

  2. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    PubMed Central

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  3. Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower Breton Sound Estuary, Louisiana using 20 years of data

    USGS Publications Warehouse

    LaPeyre, Megan K.; Geaghan, James; Decossas, Gary A.; La Peyre, Jerome F.

    2016-01-01

    Freshwater inflow characteristics define estuarine functioning by delivering nutrients, sediments, and freshwater, which affect biological resources and ultimately system production. Using 20 years of water quality, weather, and oyster growth and mortality data from Breton Sound Estuary (BSE), Louisiana, we examined the relationship of riverine, weather, and tidal influence on estuarine salinity, and the relationship of salinity to oyster growth and mortality. Mississippi River discharge was found to be the most important factor determining salinity patterns over oyster grounds within lower portions of BSE, with increased river flow associated with lowered salinities, while easterly winds associated with increased salinity were less influential. These patterns were consistent throughout the year. Salinity and temperature (season) were found to critically control oyster growth and mortality, suggesting that seasonal changes to river discharge affecting water quality over the oyster grounds have profound impacts on oyster populations. The management of oyster reefs in estuaries (such as BSE) requires an understanding of how estuarine hydrodynamics and salinity are influenced by forcing factors such as winds, river flow, and by the volume, timing, and location of controlled releases of riverine water.

  4. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Meyer, Matthew D.; Cox, Stephen B.; Sharma, Bibek; Patino, Reynaldo

    2012-01-01

    The Double Mountain Fork Brazos River (Texas, USA) consists of North (NF) and South Forks (SF). The NF receives urban runoff and twice-reclaimed wastewater effluent, whereas the SF flows through primarily rural areas. The objective of this study was to determine and compare associations between standard water quality variables and ichthyotoxicity at a landscape scale that included urban (NF) and rural (SF) sites. Five NF and three SF sites were sampled quarterly from March 2008 to March 2009 for specific conductance, salinity, hardness, pH, temperature, and turbidity; and a zebrafish (Danio rerio) embryo bioassay was used to determine ichthyotoxicity. Metal and nutrient concentrations at all sites were also measured in addition to standard water quality variables in spring 2009. Principal component analyses identified hardness, specific conductance, and salinity as the water variables that best differentiate the urban NF (higher levels) from rural SF habitat. Nutrient levels were also higher in the NF, but no landscape scale patterns in metal concentrations were observed. Ichthyotoxicity was generally higher in NF water especially in winter, and multiple regression analyses suggested a positive association between water hardness and ichthyotoxicity. To test for the potential influence of the toxic golden alga (Prymnesium parvum) on overall ichthyotoxicity, a cofactor known to enhance golden alga toxin activity was used in the bioassays. Golden alga ichthyotoxicity was detected in the NF but not the SF, suggesting golden alga may have contributed to overall ichthyotoxicity in the urban but not in the rural system. In conclusion, the physicochemistry of the urban-influenced NF water was conducive to the expression of ichthyotoxicity and also point to water hardness as a novel factor influencing golden alga ichthyotoxicity in surface waters.

  5. Assessment of quality of water provided for wildlife in the Central Kalahari Game Reserve, Botswana

    NASA Astrophysics Data System (ADS)

    Selebatso, Moses; Maude, Glyn; Fynn, Richard W. S.

    2018-06-01

    Arid and semi-arid environments have low and unpredictable rainfall patterns resulting in limited availability of surface water for wildlife. In the Central Kalahari Game Reserve (CKGR) wildlife populations have lost access to natural surface water through cordon fences, livestock and human encroachment along the access routes. Artificial waterholes have been developed in the reserve to compensate for this loss. However, there have not been any assessments of the quality of water provided for wildlife and how that may be contributing to populations declines in the CKGR. We assessed water quality from 12 artificial waterholes against both Botswana and international livestock standards for drinking. Overall the quality of water provided is poor and poses a health risk to both animals and humans. Eight out of twelve boreholes tested exceeded the maximum acceptable Total Dissolved Solids (TDS) limits while three and four boreholes have toxic levels of lead and arsenic, respectively. Thus, pumping ground water could have more negative than positive impacts on wildlife thus defeating the intended management purpose. Failure to provide water of acceptable quality is a major concern for wildlife management in the CKGR and it may underlie some wildlife declines in the reserve. These findings confirm that restriction of populations from natural water sources create complex management challenges, especially where safe and sustainable alternative sources are scarce. Restriction of access of the population to natural water sources by fences and provision of poor quality water could compromise the overall fitness of wildlife populations and contribute to their decline.

  6. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  7. Seasonal and annual watershed nitrogen export within the Willamette River Basin (Water in Columia conference)

    EPA Science Inventory

    Anthropogenic nitrogen (N) enrichment is recognized as one of the leading threats to aquatic ecosystems and water quality. In order to manage this threat, we need to understand patterns of N input to the landscape and export from watersheds. Nitrogen export from watersheds is i...

  8. Nutrient Chemistry and Microbial Activity in the Upper Mississippi River Basin: Stoichiometry and Downstream Patterns

    EPA Science Inventory

    Nutrients, carbon, and silica have been used to track changes in water quality in the major rivers of the world. Most studies focus on the mouths of rivers and adjacent coastal waters. Studies on the Mississippi River have concluded that N enrichment and stable or declining Si co...

  9. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins

    USGS Publications Warehouse

    Fischer, D.; Charles, E.G.; Baehr, A.L.

    2003-01-01

    Infiltration of storm water through detention and retention basins may increase the risk of groundwater contamination, especially in areas where the soil is sandy and the water table shallow, and contaminants may not have a chance to degrade or sorb onto soil particles before reaching the saturated zone. Groundwater from 16 monitoring wells installed in basins in southern New Jersey was compared to the quality of shallow groundwater from 30 wells in areas of new-urban land use. Basin groundwater contained much lower levels of dissolved oxygen, which affected concentrations of major ions. Patterns of volatile organic compound and pesticide occurrence in basin groundwater reflected the land use in the drainage areas served by the basins, and differed from patterns in background samples, exhibiting a greater occurrence of petroleum hydrocarbons and certain pesticides. Dilution effects and volatilization likely decrease the concentration and detection frequency of certain compounds commonly found in background groundwater. High recharge rates in storm water basins may cause loading factors to be substantial even when constituent concentrations in infiltrating storm water are relatively low.

  10. Insights into assessing water quality using taxonomic distinctness based on a small species pool of biofilm-dwelling ciliate fauna in coastal waters of the Yellow Sea, northern China.

    PubMed

    Zhang, Wei; Liu, Yuanyuan; Warren, Alan; Xu, Henglong

    2014-12-15

    The aim of this study is to determine the feasibility of using a small species pool from a raw dataset of biofilm-dwelling ciliates for bioassessment based on taxonomic diversity. Samples were collected monthly at four stations within a gradient of environmental stress in coastal waters of the Yellow Sea, northern China from August 2011 to July 2012. A 33-species subset was identified from the raw 137-species dataset using a multivariate method. The spatial patterns of this subset were significantly correlated with the changes in the nutrients and chemical oxygen demand. The taxonomic diversity indices were significantly correlated with nutrients. The pair-wise indices of average taxonomic distinctness (Δ(+)) and the taxonomic distinctness (Λ(+)) showed a clear departure from the expected taxonomic pattern. These findings suggest that this small ciliate assemblage might be used as an adequate species pool for discriminating water quality status based on taxonomic distinctness in marine ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Modeling soil erosion and transport on forest landscape

    Treesearch

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  12. Landscape pattern and context of forest and grassland in Alaska, Hawaii, and Puerto Rico

    Treesearch

    Kurt H. Riitters

    2012-01-01

    As development introduces competing land uses into forest and grassland landscapes, the public concerns for landscape patterns are expressed through headline issues such as urban sprawl and forest fragmentation. The task for resource managers is to maintain an appropriate balance of biodiversity, water quality, recreation experience, and other amenities in forest and...

  13. Detection of outliers in water quality monitoring samples using functional data analysis in San Esteban estuary (Northern Spain).

    PubMed

    Díaz Muñiz, C; García Nieto, P J; Alonso Fernández, J R; Martínez Torres, J; Taboada, J

    2012-11-15

    Water quality controls involve large number of variables and observations, often subject to some outliers. An outlier is an observation that is numerically distant from the rest of the data or that appears to deviate markedly from other members of the sample in which it occurs. An interesting analysis is to find those observations that produce measurements that are different from the pattern established in the sample. Therefore, identification of atypical observations is an important concern in water quality monitoring and a difficult task because of the multivariate nature of water quality data. Our study provides a new method for detecting outliers in water quality monitoring parameters, using oxygen and turbidity as indicator variables. Until now, methods were based on considering the different parameters as a vector whose components were their concentration values. Our approach lies in considering water quality monitoring through time as curves instead of vectors, that is to say, the data set of the problem is considered as a time-dependent function and not as a set of discrete values in different time instants. The methodology, which is based on the concept of functional depth, was applied to the detection of outliers in water quality monitoring samples in San Esteban estuary. Results were discussed in terms of origin, causes, etc., and compared with those obtained using the conventional method based on vector comparison. Finally, the advantages of the functional method are exposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Can tintinnids be used for discriminating water quality status in marine ecosystems?

    PubMed

    Feng, Meiping; Zhang, Wuchang; Wang, Weiding; Zhang, Guangtao; Xiao, Tian; Xu, Henglong

    2015-12-30

    Ciliated protozoa have many advantages in bioassessment of water quality. The ability of tintinnids for assessing water quality status was studied during a 7-yearcycle in Jiaozhou Bay of the Yellow Sea, northern China. The samples were collected monthly at four sites with a spatial gradient of environmental pollution. Environmental variables, e.g., temperature, salinity, chlorophyll a (Chl a), dissolved inorganic nitrogen, soluble reactive phosphate (SRP), and soluble active silicate (SRSi), were measured synchronously for comparison with biotic parameters. Results showed that: (1) tintinnid community structures represented significant differences among the four sampling sites; (2) spatial patterns of the tintinnid communities were significantly correlated with environmental variables, especially SRSi and nutrients; and (3) the community structural parameters and the five dominant species were significantly correlated with SRSi and nutrients. We suggested that tintinnids may be used as a potential bioindicator for discriminating water quality status in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  17. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt

  18. Performance of stochastic approaches for forecasting river water quality.

    PubMed

    Ahmad, S; Khan, I H; Parida, B P

    2001-12-01

    This study analysed water quality data collected from the river Ganges in India from 1981 to 1990 for forecasting using stochastic models. Initially the box and whisker plots and Kendall's tau test were used to identify the trends during the study period. For detecting the possible intervention in the data the time series plots and cusum charts were used. The three approaches of stochastic modelling which account for the effect of seasonality in different ways. i.e. multiplicative autoregressive integrated moving average (ARIMA) model. deseasonalised model and Thomas-Fiering model were used to model the observed pattern in water quality. The multiplicative ARIMA model having both nonseasonal and seasonal components were, in general, identified as appropriate models. In the deseasonalised modelling approach, the lower order ARIMA models were found appropriate for the stochastic component. The set of Thomas-Fiering models were formed for each month for all water quality parameters. These models were then used to forecast the future values. The error estimates of forecasts from the three approaches were compared to identify the most suitable approach for the reliable forecast. The deseasonalised modelling approach was recommended for forecasting of water quality parameters of a river.

  19. Risk of nitrate in groundwaters of the United States - A national perspective

    USGS Publications Warehouse

    Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.

    1997-01-01

    Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as 'input' factors (population density end the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and 'aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as `input' factors (population density and the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and `aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.

  20. Analysis and detection of functional outliers in water quality parameters from different automated monitoring stations in the Nalón river basin (Northern Spain).

    PubMed

    Piñeiro Di Blasi, J I; Martínez Torres, J; García Nieto, P J; Alonso Fernández, J R; Díaz Muñiz, C; Taboada, J

    2015-01-01

    The purposes and intent of the authorities in establishing water quality standards are to provide enhancement of water quality and prevention of pollution to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses as well as to maintain and improve the biological integrity of the waters. In this way, water quality controls involve a large number of variables and observations, often subject to some outliers. An outlier is an observation that is numerically distant from the rest of the data or that appears to deviate markedly from other members of the sample in which it occurs. An interesting analysis is to find those observations that produce measurements that are different from the pattern established in the sample. Therefore, identification of atypical observations is an important concern in water quality monitoring and a difficult task because of the multivariate nature of water quality data. Our study provides a new method for detecting outliers in water quality monitoring parameters, using turbidity, conductivity and ammonium ion as indicator variables. Until now, methods were based on considering the different parameters as a vector whose components were their concentration values. This innovative approach lies in considering water quality monitoring over time as continuous curves instead of discrete points, that is to say, the dataset of the problem are considered as a time-dependent function and not as a set of discrete values in different time instants. This new methodology, which is based on the concept of functional depth, was applied to the detection of outliers in water quality monitoring samples in the Nalón river basin with success. Results of this study were discussed here in terms of origin, causes, etc. Finally, the conclusions as well as advantages of the functional method are exposed.

  1. Coast Salish and U.S. Geological Survey 2009 Tribal Journey water quality project

    USGS Publications Warehouse

    Akin, Sarah K.; Grossman, Eric E.

    2010-01-01

    The Salish Sea, contained within the United States and British Columbia, Canada, is the homeland of the Coast Salish Peoples and contains a diverse array of marine resources unique to this area that have sustained Coast Salish cultures and traditions for millennia. In July 2009, the Coast Salish People and U.S. Geological Survey conducted a second water quality study of the Salish Sea to examine spatial and temporal variability of environmental conditions of these surface waters as part of the annual Tribal Journey. Six canoes of approximately 100 towed multi parameter water-quality sondes as the Salish People traveled their ancestral waters during the middle of summer. Sea surface temperature, salinity, pH, dissolved oxygen, and turbidity were measured simultaneously at ten-second intervals, and more than 54,000 data points spanning 1,300 kilometers of the Salish Sea were collected. The project also synthesized Coast Salish ecological knowledge and culture with scientific monitoring to better understand and predict the response of coastal habitats and marine resources. Comparisons with data collected in 2008 reveal significantly higher mean surface-water temperatures in most subbasins in 2009 linked to record air temperatures that affected the Pacific Northwest in July 2009. Through large-scale spatial measurements collected each summer, the project helps to identify patterns in summer water quality, areas of water-quality impairment, and trends occurring through time.

  2. Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination

    USGS Publications Warehouse

    Yager, Richard M.; Heywood, Charles E.

    2014-01-01

    Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.

  3. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  4. Proceedings of a Seminar on Water Quality Data Interpretation, 8-9 February 1978, Atlanta, Georgia.

    DTIC Science & Technology

    1978-01-01

    patterns of growth are confused by variable rates of mortality and internal translocations of mass above and below ground. The oxygen technique...top of the heavier 40 C water. Second and more important, the density of water decreases with an escalating rate with increasing temperatures above...including the amount of oxidizable material, the settling rate of the oxidizable material, the water temperature, and the bottom profile and depth of

  5. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    USGS Publications Warehouse

    Miller, Matthew P.

    2012-01-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  6. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    USGS Publications Warehouse

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    The probable source of trend patterns in nutrients and measures of oxygen in the Trinity River Basin was changes in the wastewater treatment facilities in the Dallas-Fort Worth metropolitan area. A pattern of increased concentrations of inorganic constituents in the upper Colorado River Basin resulted from emergency releases of water from the Natural Darn Lake, a salinity control structure. Trend patterns in inorganic constituents in the Rio Grande Basin were a result of increasing concentrations in the Pecos River and, to a lesser extent, the Rio Grande above the Amistad Reservoir, combined with the effects of reservoir regulation. A pattern of increasing concentrations of organic plus ammonia nitrogen and ammonia nitrogen was detected for the 1975-86 water years for stations with low concentrations (generally less than 5 milligrams per liter) of these nitrogen species. The trends were no longer evident when the period of trend analysis was extended to the 1989 water year. A positive bias in the data caused by the addition of mercuric chloride tablets to preserve nutrient samples during 1980-86 was the probable source of this trend pattern. A pattern of increasing concentrations in dissolved sulfate in the eastern part of the State was a result of a positive bias in the analytical results of a turbidimetric method of sulfate analysis. The source of a statewide pattern of increased pH in streams could not be identified.

  7. Evaluating the Effect of Three Water Management Techniques on Tomato Crop.

    PubMed

    Elnesr, Mohammad Nabil; Alazba, Abdurrahman Ali; Zein El-Abedein, Assem Ibrahim; El-Adl, Mahmoud Maher

    2015-01-01

    The effects of three water management techniques were evaluated on subsurface drip irrigated tomatoes. The three techniques were the intermittent flow (3 pulses), the dual-lateral drip system (two lateral lines per row, at 15 and 25 cm below soil surface), and the physical barrier (buried at 30 cm below soil surface). Field experiments were established for two successive seasons. Water movement in soil was monitored using continuously logging capacitance probes up to 60 cm depth. The results showed that the dual lateral technique positively increased the yield up to 50%, water use efficiency up to 54%, while the intermittent application improved some of the quality measures (fruit size, TSS, and Vitamin C), not the quantity of the yield that decreased in one season, and not affected in the other. The physical barrier has no significant effect on any of the important growth measures. The soil water patterns showed that the dual lateral method lead to uniform wetting pattern with depth up to 45 cm, the physical barrier appeared to increase lateral and upward water movement, while the intermittent application kept the wetting pattern at higher moisture level for longer time. The cost analysis showed also that the economic treatments were the dual lateral followed by the intermittent technique, while the physical barrier is not economical. The study recommends researching the effect of the dual lateral method on the root growth and performance. The intermittent application may be recommended to improve tomato quality but not quantity. The physical barrier is not recommended unless in high permeable soils.

  8. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    Treesearch

    Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...

  9. Water Quality and Herbivory Interactively Drive Coral-Reef Recovery Patterns in American Samoa

    PubMed Central

    Houk, Peter; Musburger, Craig; Wiles, Phil

    2010-01-01

    Background Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. Methodology/Principal Findings This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Conclusions/Significance Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management. PMID:21085715

  10. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    PubMed

    Houk, Peter; Musburger, Craig; Wiles, Phil

    2010-11-10

    Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process. This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  11. Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: Sources, characteristics, and environmental pathways

    USGS Publications Warehouse

    Haack, S.K.; Fogarty, L.R.; Wright, C.

    2003-01-01

    This study quantified Escherichia coli(EC) and enterococci (ENT) in beach waters and dominant source materials, correlated these with ambient conditions, and determined selected EC genotypes and ENT phenotypes. Bathing-water ENT criteria were exceeded more frequently than EC criteria, providing conflicting interpretations of water quality. Dominant sources of EC and ENT were bird feces (108/d/bird), storm drains (107/d), and river water (1011/d); beach sands, shallow groundwater and detritus were additional sources. Beach-water EC genotypes and ENT phenotypes formed clusters with those from all source types, reflecting diffuse inputs. Some ENT isolates had phenotypes similar to those of human pathogens and/or exhibited high-level resistance to human-use antibiotics. EC and ENT concentrations were influenced by collection time and wind direction. There was a 48-72-h lag between rainfall and elevated EC concentrations at three southern shoreline beaches, but no such lag at western and eastern shoreline beaches, reflecting the influence of beach orientation with respect to cyclic (3-5 d) summer weather patterns. In addition to local contamination sources and processes, conceptual or predictive models of Great Lakes beach water quality should consider regional weather patterns, lake hydrodynamics, and the influence of monitoring method variables (time of day, frequency).

  12. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    PubMed

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  14. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    PubMed

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  15. Exploring the nutrient inputs and cycles in Tampa Bay and coastal watersheds using MODIS images and data mining

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Xuan, Zhemin

    2011-09-01

    Excessive nutrients, which may be represented as Total Nitrogen (TN) and Total Phosphorus (TP) levels, in natural water systems have proven to cause high levels of algae production. The process of phytoplankton growth which consumes the excess TN and TP in a water body can also be related to the changing water quality levels, such as Dissolved Oxygen (DO), chlorophyll-a, and turbidity, associated with their changes in absorbance of natural radiation. This paper explores spatiotemporal nutrient patterns in Tampa Bay, Florida with the aid of Moderate Resolution Imaging Spectroradiometer or MODIS images and Genetic Programming (GP) models that are deigned to link those relevant water quality parameters in aquatic environments.

  16. Discharge and water chemistry of High Arctic rivers in NW Greenland (76° N, 68° W)

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Sletten, R. S.; Vigna, A. C.; Hallet, B.

    2004-12-01

    The volume, temperature, and quality of freshwater runoff from high latitude areas ultimately affect sensitive components of polar oceans, including water stratification, nutrient cycling, and formation of deepwater currents. Freshwater is conveyed from Greenland to the ocean from a multitude of medium-sized rivers for which little is known about discharge and water characteristics. River runoff together with microclimate and soil processes were recorded in a typical high Arctic area in NW Greenland where complete climate records from pre-1978 to the present indicate increases in mean annual air temperature from -12.0° C to -10.7° C and precipitation from 65 mm to 120 mm water equivalent between 1993 and 2002. The study will improve understanding of the interaction between climate, landscape processes, and river runoff. The study site extends from the western edge of the Greenland Ice Sheet to Baffin Bay; it covers an area ranging between 10-20 km E-W and 10-15 km N-S, and the elevations reach 700 m. It is a typical high Arctic environment with sparse vegetation and pervasive active patterned ground. Most of the area is covered by glacial drift that resembles the underlying sedimentary and igneous Archean and Proterozoic bedrock. To address how seasonal weather patterns and landscape processes affect runoff and water quality, as well as to examine weathering and carbon budgets in the drainage, we monitor water discharge and suspended load, water temperature, water chemistry (pH, dissolved ions, dissolved organic and inorganic carbon) of three rivers. Two of these rivers originate as melt water runoff from the Greenland Ice Sheet. The third stream is fed by local snowmelt and summer rain events. In addition, climate data along with soil moisture and temperature are recorded with automated stations at two locations. The potential sources of river water are thawing permafrost, local snowmelt, rain, and melting of glacial ice that all have distinct isotopic signatures (δ D and δ 18O). Stable isotopes therefore, are used to separate the hydrograph into these sources to help us relate discharge pattern and water quality to climate (precipitation, temperature) and landscape processes (thawing of permafrost, weathering, decomposition of organic matter). This presentation focuses on first data set collected from June to September 2004.

  17. Spatial and Temporal Patterns of Dissolved Nitrogen and Phosphorus in Surface Waters of a Multi-Land Use Basin

    EPA Science Inventory

    Research on relationships between dissolved nutrients and land use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-bas...

  18. Distribution patterns study of Escherichia coli as an Indicator for ground water quality at Matraman District, East Jakarta

    NASA Astrophysics Data System (ADS)

    Anisah, U.; Iswanto, B.; Rinanti, A.

    2018-01-01

    The purpose of this study was to determine the distribution pattern E.coli as indicators of ground water contamination by fecal coliforms at Matraman District, East Jakarta, Indonesia (106049‧35″E 06010‧37″LS) consisting of six sub-districts (Utan Kayu Selatan, Utan Kayu Utara, Kayu Manis, Pal Meriam, Kebon Manggis and Pisangan Baru). The presence of E.coli examined by the method of Most Probable Number (MPN) according to SNI 01-2332.1-2006 about the determination of coliforms and E.coli in fishery products which consists of three stages of tests in a row, the estimation, determination or confirmation and complementary or morphology test. Matraman District is a densely populated area and the distance between septic tank and well is inadequate, both with their own’s septic tank or with neighbors’s septic tank. The result of sample analysis shows that E.coli counts exceeds water quality standards in accordance with regulation Health Ministry No.492/2010 concerning the drinking water quality requirements. The lowest MPN number is 3 MPN/100 ml and the highest number of E. coli is more than1100 MPN/100 ml. The temperature, pH and DO0 on average are 27.520C, 5.59 and 2.24 mg/L. This study is expected to be a reference in the use of ground water for daily activities in the district Matraman.

  19. A Survey of Recreation Behavior and Attitude Patterns of High School Juniors and Seniors: Implications for Environmental Education and Resource Management.

    ERIC Educational Resources Information Center

    Ditton, Robert B.; Johnsen, Per K.

    In this study, the behavior and attitude patterns of high school juniors and seniors in northeastern Wisconsin have been examined with respect to recreational activities and water quality conditions. Most popular activities were identified in order as swimming, boating, fishing, waterskiing, sailing, and duck hunting. Location of participation in…

  20. Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo

    2008-03-01

    Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of themore » stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river.« less

  1. Effects of land use and geohydrology on the quality of shallow ground water in two agricultural areas in the western Lake Michigan drainages, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    1997-01-01

     Estimated recharge dates showed that historic patterns of atrazine plus deethyl atrazine concentrations in ground water mimic historic patterns of atrazine use on corn. Concentrations in ground water that recharged prior to the early 1960s, when atrazine started to become widely used on corn in Wisconsin, were very low or not detectable. As atrazine use on corn steadily increased from the late 1960s to the late 1970s and early 1980s, detectable concentrations of atrazine plus deethyl atrazine in ground water became more common. The recharge dates of some of the highest measured concentrations of atrazine plus ethyl atrazine in ground water from both study areas correspond to the period of highest atrazine use on corn within the State.

  2. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management.

    PubMed

    Caccia, Valentina G; Boyer, Joseph N

    2005-11-01

    An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.

  3. Assessing the spatial pattern of iron in well water from a small central Florida community.

    PubMed

    Hudgins, Jason; Lambert, Nicholas; Duranceau, Steven; Russell Butler, J

    2018-02-01

    Iron is one of the most common elements in the Earth's crust, which corresponds to it being a common constituent in drinking water supplies. Residents of Bithlo, an unincorporated community in east-central Florida, have observed that their drinking water tastes like metal and stains clothing and teeth. An evaluation of water samples collected from over 200 private drinking water wells revealed iron concentrations that exceeded the US Environmental Protection Agency's (EPA's) secondary standard of 0.3 mg/L. Households with and without point-of-entry treatment were found to have over three times (0.92 mg/L) and ten times (3.86 mg/L) more iron than the EPA's secondary standard, respectively. The human health-based threshold of 4.2 mg/L established by the Centers for Disease Control and Prevention was exceeded in 38.6% of untreated residences. Community-wide statistical and spatial water-quality trends were developed by combining the collected well water quality data with historically available water quality reports. Spatial analyses revealed that greater than 99% of the Bithlo community's private household supplies would exceed the EPA's drinking water secondary standard.

  4. Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2014-04-01

    We investigate relationships between environmental governance and water quality in two adjacent growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many common biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining how differences in governance might affect environmental quality. We conceptualize possible linkages in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly by using the change in the sale price of single-family residential properties. Governance may then influence water quality directly through riparian restoration resulting from monitoring results and indirectly through land use policy. We investigate evidence to substantiate these linkages. Our results showed that changes in monitoring regimes and land development patterns differed in response to differences in growth management policy and environmental governance systems. Our results also showed similarities in environmental quality responses to varying governance systems. For example, we found that sales prices responded positively to improved water quality (e.g., increases in DO and reductions in bacteria counts) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in water temperature over time, despite an expansion of these urban areas of more than 20 % over 24 years. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefited indirectly from land use policy. A combination of long-term legacy effects of land development, and a relatively short history of riparian restoration in both the Portland and Vancouver regions, may have masked any subtle differences between study areas. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a much longer-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies.

  5. Understanding the Effect of Stratification on Vertical and Temporal Heterogenieties of Cyanobacteria Blooms in Lakes Using a Long Term in-situ Monitoring Station

    NASA Astrophysics Data System (ADS)

    Wilkinson, A.; Guala, M.; Hondzo, M.

    2017-12-01

    Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.

  6. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  7. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and for spatial analysis and presentation of the data. A digital computer model will be developed to study the regional groundwater flow system and to investigate the effects of development on the aquifer system. (USGS)

  8. Evaluation of the Mission, Santee, and Tijuana hydrologic subareas for reclaimed-water use, San Diego County, California

    USGS Publications Warehouse

    Izbicki, J.A.

    1985-01-01

    A study was made to determine the suitability of three small hydrologic subareas in San Diego County, California, for reuse of treated municipal wastewater (reclaimed water). Groundwater quality has been impacted by agricultural water use, changes in natural recharge patterns, seawater intrusion, and groundwater movement from surrounding marine sediments. Groundwater levels near land surface may limit artificial recharge of reclaimed water or may require pumping of groundwater from the aquifer prior to recharge with reclaimed water. Reclaimed water may be used for irrigated water in upland areas. (USGS)

  9. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significantmore » trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.« less

  10. Analysis of ground-water levels and associated trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    USGS Publications Warehouse

    Fenelon, Joseph M.

    2005-01-01

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  11. Disentangling natural and anthropogenic influences on Patagonian pond water quality.

    PubMed

    Epele, Luis B; Manzo, Luz M; Grech, Marta G; Macchi, Pablo; Claverie, Alfredo Ñ; Lagomarsino, Leonardo; Miserendino, M Laura

    2018-02-01

    The water quality of wetlands is governed not only by natural variability in hydrology and other factors, but also by anthropogenic activities. Patagonia is a vast sparsely-populated in which ponds are a key component of rural and urban landscapes because they provide several ecosystem services such as habitat for wildlife and watering for livestock. Integrating field-based and geospatial data of 109 ponds sampled across the region, we identified spatial trends and assessed the effects of anthropogenic and natural factors in pond water quality. The studied ponds were generally shallow, well oxygenated, with maximum nutrient values reported in sites used for livestock breeding. TN:TP ratio values were lower than 14 in >90% of the ponds, indicating nitrogen limitation. Water conductivity decreased from de east to the west, meanwhile pH and dissolved oxygen varied associated with the latitude. To assess Patagonian ponds water status we recommend the measure of total suspended solids and total nitrogen in the water, and evaluate the mallín (wetland vegetation) coverage in a 100m radius from the pond, since those features were significantly influenced by livestock land use. To evaluate the relative importance of natural variability and anthropogenic influences as driving factors of water quality we performed three generalized linear models (GLM) that encompassed the hydrology, hydroperiod and biome (to represent natural influences), and land use (to represent anthropogenic influences) as fixed effects. Our results revealed that at the Patagonian scale, ponds water quality would be strongly dependent on natural gradients. We synthetized spatial patterns of Patagonian pond water quality, and disentangled natural and anthropic factors finding that the dominant environmental influence is rainfall gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. National trends in drinking water quality violations.

    PubMed

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  13. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  14. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  15. An application of MC-SDSS for water supply management during a drought crisis.

    PubMed

    Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Shahabi, Mahmoud; Bazdar, Saba

    2015-07-01

    Climate change influences many countries' rainfall patterns and temperatures. In Iran, population growth has increased water demands. Tabriz is the capital of East Azerbaijan province, in northwestern Iran. A large proportion of the water required for this city is supplied from dams; thus, it is important to find alternatives to supply water for this city, which is the largest industrial city in northwestern Iran. In this paper, the groundwater quality was assessed using 70 wells in Tabriz Township. This work seeks to define the spatial distribution of groundwater quality parameters such as chloride, electrical conductivity (EC), pH, hardness, and sulfate using Geographic Information Systems (GIS) and geostatistics; map groundwater quality for drinking purposes employing multiple-criteria decision-making (MCDM), such as the Analytical Hierarchy Process (AHP) and fuzzy logic, in the study area; and develop an Spatial Decision Support System (SDSS) for managing a water crisis in the region. The map produced by the AHP is more accurate than the map produced using fuzzy logic because in the AHP, priorities were assigned to each parameter based on the weights given by water quality experts. The final map indicates that the groundwater quality increases from the north to the south and from the west to the east within the study area. During critical conditions, the groundwater quality maps and the presented SDSS core can be utilized by East Azerbaijan Regional Water Company to develop an SDSS to drill new wells or to select existing wells to supply drinking water to Tabriz City.

  16. Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization

    PubMed Central

    Kaestli, Mirjam; Skillington, Anna; Kennedy, Karen; Majid, Matthew; Williams, David; McGuinness, Keith; Munksgaard, Niels; Gibb, Karen

    2017-01-01

    Darwin Harbour in northern Australia is an estuary in the wet-dry tropics subject to increasing urbanization with localized water quality degradation due to increased nutrient loads from urban runoff and treated sewage effluent. Tropical estuaries are poorly studied compared to temperate systems and little is known about the microbial community-level response to nutrients. We aimed to examine the spatial and temporal patterns of the bacterial community and its association with abiotic factors. Since Darwin Harbour is macrotidal with strong seasonal patterns and mixing, we sought to determine if a human impact signal was discernible in the microbiota despite the strong hydrodynamic forces. Adopting a single impact–double reference design, we investigated the bacterial community using next-generation sequencing of the 16S rRNA gene from water and sediment from reference creeks and creeks affected by effluent and urban runoff. Samples were collected over two years during neap and spring tides, in the dry and wet seasons. Temporal drivers, namely seasons and tides had the strongest relationship to the water microbiota, reflecting the macrotidal nature of the estuary and its location in the wet-dry tropics. The neap-tide water microbiota provided the clearest spatial resolution while the sediment microbiota reflected current and past water conditions. Differences in patterns of the microbiota between different parts of the harbor reflected the harbor's complex hydrodynamics and bathymetry. Despite these variations, a microbial signature was discernible relating to specific effluent sources and urban runoff, and the composite of nutrient levels accounted for the major part of the explained variation in the microbiota followed by salinity. Our results confirm an overall good water quality but they also reflect the extent of some hypereutrophic areas. Our results show that the microbiota is a sensitive indicator to assess ecosystem health even in this dynamic and complex ecosystem. PMID:28751882

  17. Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén

    2017-06-26

    A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen isotopes of nitrate indicates that the origin of nitrate in the streams is most likely animal and human waste. A baseline was established for the concentrations of selected human health and pharmaceutical products at stations in some of the streams within the Municipality of Caguas. Thirty-eight human health and pharmaceutical products were present at or above the measurement detection level.

  18. Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system.

    PubMed

    Jin, L; Whitehead, P G; Sarkar, S; Sinha, R; Futter, M N; Butterfield, D; Caesar, J; Crossman, J

    2015-06-01

    Anthropogenic climate change has impacted and will continue to impact the natural environment and people around the world. Increasing temperatures and altered rainfall patterns combined with socio-economic factors such as population changes, land use changes and water transfers will affect flows and nutrient fluxes in river systems. The Ganga river, one of the largest river systems in the world, supports approximately 10% global population and more than 700 cities. Changes in the Ganga river system are likely to have a significant impact on water availability, water quality, aquatic habitats and people. In order to investigate these potential changes on the flow and water quality of the Ganga river, a multi-branch version of INCA Phosphorus (INCA-P) model has been applied to the entire river system. The model is used to quantify the impacts from a changing climate, population growth, additional agricultural land, pollution control and water transfers for 2041-2060 and 2080-2099. The results provide valuable information about potential effects of different management strategies on catchment water quality.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing

    Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO)more » in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.« less

  20. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  1. Arsenic in Water Resources of the Southern Pampa Plains, Argentina

    PubMed Central

    Paoloni, Juan D.; Sequeira, Mario E.; Espósito, Martín E.; Fiorentino, Carmen E.; Blanco, María del C.

    2009-01-01

    Confronted with the need for accessible sources of good quality water and in view of the fact that the threat to public health posed by arsenic occurs mainly through the ingestion of contaminated drinking water, the presence and distribution of arsenic was evaluated in the southern Pampa Plains of Bahía Blanca district in Argentina. The findings show variable concentrations of arsenic in a complex distribution pattern. Complementary information is provided on the behavior of the groundwater resource and its salinity in terms of dissolved ions. Groundwater is the most severely affected, 97% of the samples exceeding the guideline value for arsenic in drinking water as recommended by the WHO (Guidelines for Drinking Water Quality, 2004). and showing maximum concentrations of up to 0.30 mg/L. Informing those responsible for preventive medicine and alerting the community at large will facilitate measures to mitigate exposure and ensure the safety of drinking water. PMID:19936127

  2. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  3. Integrated impact assessment of climate change, land use, and adaptation policies on water quality in Austria

    NASA Astrophysics Data System (ADS)

    Trautvetter, Helen; Schoenhart, Martin; Parajaka, Juraj; Schmid, Erwin; Zessner, Matthias

    2017-04-01

    Climate change is one of the major challenges of our time and adds considerable stress to the human society and environment. A change in climate will not only shift general weather patterns, but might also increase the recurrence of extreme weather events such as drought and heavy rainfall. These changes in climatic conditions will affect the quality and quantity of water resources both directly as well as indirectly through autonomous adaptation by farmers (e.g. cultivar choices, fertilization intensity or soil management). This will influence the compliance with the good ecological and chemical status according to the EU Water Framework Directive. We present results from an integrated impact modelling framework (IIMF) to tackle those direct and indirect impacts and analyze policy options for planned adaptation in agricultural land use and sustainable management of land and water resources until 2040. The IIMF is the result of an interdisciplinary collaboration among economists, agronomists, and hydrologists. It consists of the bio-physical process model EPIC, the regional land use optimization model PASMA[grid], the quantitative precipitation/runoff TUWmodel and the surface water emission model MONERIS. Scenarios have been developed and parameterized in collaboration with stakeholders in order to facilitate multi-actor knowledge transfer. The set of climate change scenarios until 2040 includes three scenarios with equal temperature changes but varying precipitation patterns. They are combined with potential socio-economic and policy development. The latter include water protection measures on fertilization management, soil management, or crop rotation choices. We will presented the development of interfaces among the research, the definition of scenarios and major scenario results for Austria. We will focus on nutrient emissions to surface waters, which are the major link between the different models. The results, available at watershed level indicate the significant impact on future precipitation development on the risk of not achieving nutrient criteria of the good ecological water quality status of surface waters. Policy measures show relatively low impacts for nitrogen, while they may highly affect the phosphorus emissions and hence the compliance with environmental quality standards for phosphate phosphorus.

  4. Seasonal patterns of gastrointestinal illness and streamflow along the Ohio River

    EPA Science Inventory

    Waterborne gastrointestinal (GI) illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses....

  5. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.

  6. Improved water quality can ameliorate effects of climate change on corals.

    PubMed

    Wooldridge, Scott A; Done, Terence J

    2009-09-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Moreover, rates of genetic adaptation and/or changes in the coral-zooxanthella partnerships are considered unlikely to be sufficiently fast for corals to acquire increased physiological resistance to increasing sea temperatures and declining pH. However, it has been suggested that coral reef resilience to climate change may be improved by good local management of coral reefs, including management of water quality. Here, using major data sets from the Great Barrier Reef (GBR), Australia, we investigate geographic patterns of coral bleaching in 1998 and 2002 and outline a synergism between heat stress and nutrient flux as a major causative mechanism for those patterns. The study provides the first concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of coral reefs to global climate change.

  7. Marine Recreational Uses of Green Bay: A Survey of Human Behavior and Attitude Patterns of High School Juniors and Seniors.

    ERIC Educational Resources Information Center

    Ditton, Robert B.; Johnsen, Per K.

    From a random sample of high school juniors and seniors in northeastern Wisconsin, this study obtained information concerning the subjects' participation in water recreation activities, their perceptions of water quality, and attitudinal data in related areas. The data obtained from the questionnaire were analyzed by chi-square methods to check…

  8. Insights from long-term research on the Fernow Experimental Forest

    Treesearch

    Mary Beth Adams

    2016-01-01

    In 1951, five weirs were constructed in the mixed hardwood forests of the Fernow Experimental Forest and watershed research began. Specializing in long-term watershed scale manipulations, researchers at the Fernow have evaluated effects of various silvicultural practices on water yield, seasonal flow patterns, water quality and on ecosystem processes and ecosystem...

  9. Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests

    Treesearch

    Laura A. Giese; W. Michael Aust; Carl C. Trettin; Randall K. Kolka

    2000-01-01

    The distribution of organic matter within a floodplain is a controlling factor affecting water quality, habitat, and food webs. Accordingly, developn~ent of vegetation in the riparian zone can be expected to influence ecosystem functions, and organic matter storage patterns are believed to be indicators of functional recovery in disturbed riparian zones. Our objective...

  10. Freshwater mussel population status and habitat quality in the Clinch River, Virginia and Tennessee, USA: a featured collection

    USGS Publications Warehouse

    Zipper, Carl E.; Beaty, Braven; Johnson, Gregory C.; Jones, Jess W.; Krstolic, Jennifer Lynn; Ostby, Brett J.K.; Wolfe, William J.; Donovan, Patricia

    2014-01-01

    The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water- and sediment-quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery-raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed-sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water- and sediment-quality concerns for mussel conservation in the Clinch River.

  11. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  12. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.

  13. Wet-weather urban discharges: implications from adopting the revised European Directive concerning the quality of bathing water.

    PubMed

    David, L M; Matos, J S

    2005-01-01

    Wet weather urban discharges are responsible for bathing water contamination. The proposal for a revised EU Directive concerning the quality of bathing water imposes significantly more stringent requirements for the management of bathing water quality, with particularly important repercussions on beaches subjected to short-term pollution incidents. The paper reviews the aspects from EU legislation most directly related to the problem of wet-weather discharges, placing special emphasis on the recent revision process of the Directive on bathing water quality, and evaluates the benefits of some potential solutions based on continuous modelling of a combined sewer system. Increasing the sewer system storage capacity or the STP hydraulic capacity may substantially reduce the untreated discharge volumes, but spill frequency reductions under 2 to 3 spill days per bathing season will hardly be achieved. Results show the severe strains that local rainfall patterns would place on compliance with the Commission's proposal for a revised Directive and highlight the importance of the changes introduced in the amended proposal recently approved by the Council, making it less prescriptive if adequate measures are adopted to prevent bathers' exposure to short-term pollution incidents.

  14. Natural and Human Influences on Water Quality in a Shallow Regional Unconsolidated Aquifer, Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.

    2008-01-01

    Data collected from more than 400 wells in the surficial unconfined aquifer in the Northern Atlantic Coastal Plain (New York through North Carolina) were compiled and analyzed to improve understanding of multiple natural and human influences on water quality in such shallow regional aquifers. Geochemical patterns were identified and described through principal components analysis on major ions, and correlation and logistic regression were used to relate observed concentrations of nitrate and selected pesticide compounds (atrazine, metolachlor, simazine, and deethylatrazine, an atrazine degradate) and volatile organic compounds (chloroform, 1,1,1-trichloroethane, tetrachlorethene, and methyl tert-butyl ether) to likely influences, such as observed geochemical patterns, land use, hydrogeology, and soils. Variability in major-ion concentrations is primarily related to ionic strength and redox condition. Concentrations of nitrate, pesticides, and volatile organic compounds are related to natural conditions, as well as the distribution of likely sources reflected in land use. Nitrate is most common in aerobic ground water and in relatively well-drained areas, for example; concentrations greater than 0.4 milligrams per liter may result from a variety of human activities, although concentrations greater than 3 milligrams per liter are more likely in agricultural areas. Atrazine, deethylatrazine, and metolachlor also are related to geochemical patterns, likely because ground-water geochemistry reflects hydrogeologic and soil conditions affecting pesticide transport to the water table. Results demonstrate the value of geochemical information along with the distribution of sources and other influences to understanding the regional occurrence of selected compounds in ground water. Such influences are not unique to the Northern Atlantic Coastal Plain, and thus observations and interpretations are relevant to broader areas.

  15. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Lockaby, B. Graeme

    2006-12-01

    SummaryAs urbanization infiltrates into rural areas, stream water quality is expected to decline as a result from increased impervious surface and greater sources for pollutants. Consequently, West Georgia's water quality is threatened by extensive development as well as other land uses such as livestock grazing and silvicultural activity. Maintenance of stream water quality, as land development occurs, is critical for the protection of drinking water and biotic integrity. A 2-phase, watershed-scale study was established to develop relationships among land cover and water quality within western Georgia. During phase 1, nutrient and fecal coliform data were collected within 18 mixed land use watersheds, ranging in size from 500 to 2500 ha. Regression models were developed that related land cover to stream water nutrient and fecal coliform concentrations. Nutrient and fecal coliform concentrations within watersheds having >24% impervious surface (IS) were often higher than those in nonurban watersheds (i.e., <5% IS) during both base flow (N: 1.64 mg/L versus 0.61 mg/L, and FC: 430 versus 120 MPN/100 ml) and storm flow (N: 1.93 mg/L versus 0.36 mg/L, and FC: 1600 versus 167 MPN/100 ml). Fecal coliform bacteria in urbanized areas consistently exceeded the US EPA's review criterion for recreational waters during both base flow and to a greater extent storm flow. During phase 2, regression models were tested based on data from six newly chosen watersheds with similar land use/cover patterns. Lastly, theoretical watersheds, based on land use percentages, were created to illustrate trends in water quality impairment as land development occurs. The models developed from this research could be used to forecast water quality changes under various land use scenarios in the developing Piedmont region of the US.

  16. Assessment of water-quality data from Long Lake National Wildlife Refuge, North Dakota--2008 through 2012

    USGS Publications Warehouse

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.; Rabenberg, Michael J.; Dahl, Charles F.; Ell, Mike J.

    2013-01-01

    ong Lake National Wildlife Refuge, located in south-central North Dakota, is an important habitat for numerous migratory birds and waterfowl, including several threatened or endangered species. The refuge is distinguished by Long Lake, which is approximately 65 square kilometers and consists of four primary water management units. Water levels in the Long Lake units are maintained by low-level dikes and water-control structures, which after construction during the 1930s increased the water-storage capacity of Long Lake and reduced the frequency and volume of flushing flows downstream. The altered water regime, along with the negative precipitation:evaporation ratio of the region, may be contributing to the accumulation of water-borne chemical constituents such as salts, trace metals, and other constituents, which at certain threshold concentrations may impair aquatic plant, invertebrate, and bird communities of the refuge. The refuge’s comprehensive conservation planning process identified the need for water-quality monitoring to assess current (2013) conditions, establish comparative baselines, evaluate changes over time (trends), and support adaptive management of the wetland units. In 2008, the U.S. Geological Survey, U.S. Fish and Wildlife Service, and North Dakota Department of Health began a water-quality monitoring program at Long Lake National Wildlife Refuge to address these needs. Biweekly water-quality samples were collected for ions, trace metals, and nutrients; and in situ sensors and data loggers were installed for the continuous measurement of specific conductance and water depth. Long Lake was characterized primarily by sodium, bicarbonate, and sulfate ions. Overall results for total alkalinity and hardness were 580 and 329 milligrams per liter, respectively; thus, Long Lake is considered alkaline and classified as very hard. The mean pH and sodium adsorption ratio for Long Lake were 8.8 and 10, respectively. Total dissolved solids concentrations averaged approximately 1,750 milligrams per liter, and ranged from 117 to 39,700 milligrams per liter. Twelve of the 14 trace metals detected in the water samples had established North Dakota water-quality standards for aquatic life, and only aluminum and copper consistently exceeded these criteria. Aluminum is considered harmful to aquatic biota in acidic (pH less than 5.5) systems and most of the copper standard exceedances were collected from highly concentrated waters because of evaporation and seasonally low water levels. Concentrations for various forms of nitrogen and phosphorus generally were similar to reported regional values. Specific conductance of Long Lake varied seasonally and annually both within and among management units, with values ranging from less than 500 to nearly 40,000 microsiemens per centimeter at 25 degrees Celsius. Long Lake was characterized by consistent seasonal patterns of increasing specific conductance from spring (March and April) to fall (September and October), with levels stabilizing through the end of the sampling season (November). These seasonal patterns in specific conductance were associated with decreasing water levels throughout the summer due primarily to evaporation and continuous water releases through the Unit 1 outlet structure, which resulted in the concentration of salts. Specific conductance of each unit, along with water levels, also varied among years. Overall, specific conductance levels were greatest during the drier year of 2008 when water levels were low. Specific conductance levels were lowest during the spring of 2009 following above-average volumes of fresh water from snowmelt runoff. Comparisons of specific conductance among sample sites that were spatially distributed within each management unit suggested that spatial variability within units was low except for areas associated with local inflows. Data collected during this study revealed consistent seasonal patterns and low within-unit spatial variability of specific conductance. Based on these data results, future sample collection efforts may be reduced, as well as the number of sample locations, to limit sampling costs. Water-quality samples collected monthly or seasonally during the growing season (spring, summer, and fall) from a single representative location within each water-management unit should provide sufficient data to assess seasonal changes in water-quality over time and provide information for Long Lake management decisions.

  17. Measures of Water Quality in Merrit Island National Wildlife Refuge Impoundments and Adjacent Indian River Lagoon

    NASA Technical Reports Server (NTRS)

    Blum, Linda K.

    2000-01-01

    The goal of this project was to conduct preliminary investigations to determine appropriate sampling strategies to measure the flux of dissolved nutrients (specifically, NH4+, NO3-, NO2-, and PO4(3-)) and suspended particulate matter (TSS) between impoundments and the IRL in preparation for an intensive three-year monitoring program. In addition to nutrients and TSS, a variety of common water quality indicators were also measured during these preliminary studies. Six impoundments and a single restored marsh were selected for study. Over a month long period, water samples were collected weekly at selected impoundment culverts. Water was collected in duplicate as independent grab samples from both the lagoon side and within the perimeter ditch directly adjacent to the culverts. Water quality indicators inside and outside the marsh impoundments were different. Ammonium, salinity, bacteria, and chlorophyll-a were higher inside the impoundments as expected possibly as a result of the great affect of evaporation on impoundment water. Water quality indicators responded rapidly both inside and outside the impoundments as exemplified by the increase in NH4(+)-N concentrations during a horseshoe crab die-off. Water quality indicators were high variable during the month in which water samples were collected. Because the impoundments are widely spaced it is logistically unrealistic to sample each of the impoundments and associated seagrass beds on a single day, sampling must be stratified to allow patterns of material movement and the annual flux of materials to and from the impoundments to be determined.

  18. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    PubMed

    Busse, Annika; Antiqueira, Pablo A P; Neutzling, Alexandre S; Wolf, Anna M; Romero, Gustavo Q; Petermann, Jana S

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  19. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    PubMed Central

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  20. Analysis on the spatiotemporal characteristics of water quality and trophic states in Tiegang Reservoir: A public drinking water supply reservoir in South China

    NASA Astrophysics Data System (ADS)

    Song, Yun-long; Zhu, Jia; Li, Wang; Tao, Yi; Zhang, Jin-song

    2017-08-01

    Shenzhen is the most densely populated city in China and with a severe shortage of water. The per capita water resource is less than 200 m3, which is approximately 1/12 of the national average level. In 2016, nearly 90% of Shenzhen’s drinking water needed to be imported from the Pearl River. After arrived at Shenzhen, overseas water was firstly stockpiled in local reservoirs and then was supplied to nearby water works. Tiegang Reservoir is the largest drinking water supply reservoir and its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Tiegang Reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The distribution pattern of WT, TOC, Silicate, NO3 --N, TN and Fe was pre-rainy period > latter rainy period > high temperature and rain free period > temperature jump period > winter drought period, while SD showed the contrary. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession. Tiegang reservoir was seriously polluted by TN, as a result WQI were at IV∼V level. If TN was not taken into account, WQI were atI∼III level. TLI (Σ) were about 35∼60, suggesting Tiegang reservoir was in mesotrophic and light-eutrophic trophic states. The WQI and TLI (Σ) in sampling sites 9 and 10 were poorer than that of other sites. The 14 water quality factors were divided into 5 groups by factor analysis (FA). The total interpretation rate was 73.54%. F1 represents the climatic change represented by water temperature. F2 and F4 represent the concentration of nutrients. F3 and F5 represent the sensory indexes of water body, such as turbidity, transparency. The FA results indicated that water quality potential risk factors was total nitrogen (TN), and potential risk factors also include chlorophyll-a and nitrate nitrogen (NO3 --N).

  1. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract.

    PubMed

    Lirman, Diego; Fong, Peggy

    2007-06-01

    Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.

  2. Investigation of Spatial and Temporal Trends in Water Quality in Daya Bay, South China Sea

    PubMed Central

    Wu, Mei-Lin; Wang, You-Shao; Dong, Jun-De; Sun, Cui-Ci; Wang, Yu-Tu; Sun, Fu-Lin; Cheng, Hao

    2011-01-01

    The objective is to identify the spatial and temporal variability of the hydrochemical quality of the water column in a subtropical coastal system, Daya Bay, China. Water samples were collected in four seasons at 12 monitoring sites. The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on water quality in Daya Bay. In the spatial pattern, two groups have been identified, with the help of multidimensional scaling analysis and cluster analysis. Cluster I consisted of the sites S3, S8, S10 and S11 in the west and north coastal parts of Daya Bay. Cluster I is mainly related to anthropogenic activities such as fish-farming. Cluster II consisted of the rest of the stations in the center, east and south parts of Daya Bay. Cluster II is mainly related to seawater exchange from South China Sea. PMID:21776234

  3. Time-integrated passive sampling as a complement to conventional point-in-time sampling for investigating drinking-water quality, McKenzie River Basin, Oregon, 2007 and 2010-11

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Alvarez, David A.

    2014-01-01

    The Eugene Water & Electric Board (EWEB) supplies drinking water to approximately 200,000 people in Eugene, Oregon. The sole source of this water is the McKenzie River, which has consistently excellent water quality relative to established drinking-water standards. To ensure that this quality is maintained as land use in the source basin changes and water demands increase, EWEB has developed a proactive management strategy that includes a combination of conventional point-in-time discrete water sampling and time‑integrated passive sampling with a combination of chemical analyses and bioassays to explore water quality and identify where vulnerabilities may lie. In this report, we present the results from six passive‑sampling deployments at six sites in the basin, including the intake and outflow from the EWEB drinking‑water treatment plant (DWTP). This is the first known use of passive samplers to investigate both the source and finished water of a municipal DWTP. Results indicate that low concentrations of several polycyclic aromatic hydrocarbons and organohalogen compounds are consistently present in source waters, and that many of these compounds are also present in finished drinking water. The nature and patterns of compounds detected suggest that land-surface runoff and atmospheric deposition act as ongoing sources of polycyclic aromatic hydrocarbons, some currently used pesticides, and several legacy organochlorine pesticides. Comparison of results from point-in-time and time-integrated sampling indicate that these two methods are complementary and, when used together, provide a clearer understanding of contaminant sources than either method alone.

  4. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity, water treatment and nutrient management. Our analysis by sector highlights that the economic cost of water scarcity due to pollution in this region is largely borne by the public.

  5. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet is to inform the public and resource managers of the availability of these water-quality data.

  6. Agriculture — A river runs through it — The connections between agriculture and water quality

    USGS Publications Warehouse

    Capel, Paul D.; McCarthy, Kathleen A.; Coupe, Richard H.; Grey, Katia M.; Amenumey, Sheila E.; Baker, Nancy T.; Johnson, Richard L.

    2018-06-06

    Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and longterm economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.This report is one of a series of publications, The Quality of Our Nation’s Waters, which describes major findings of the NAWQA Project on water-quality issues of regional and national concern and provides science-based information for assessing and managing the quality of our groundwater resources. Other reports in this series focus on occurrence and distribution of nutrients, pesticides, and volatile organic compounds in streams and groundwater, the effects of contaminants and stream-flow alteration on the condition of aquatic communities in streams, and on the quality of groundwater from private domestic and public supply wells. Each reports builds toward a more comprehensive understanding of the quality of regional and national water resources. All NAWQA reports are available online (https://water.usgs.gov/nawqa/bib/).We hope this publication will provide you with insights and information to meet your water-resource needs and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters. The information in this report is intended primarily for those interested or involved in resource management and protection, conservation, regulation, and policymaking at the regional and national levels.

  7. Preliminary Guidelines for Installation Product Line Land Management Suite (LMS) Product Developers

    DTIC Science & Technology

    2005-01-01

    land use patterns might call a storm simulation model available as a CDF service to evaluate the ability of the pattern to maintain water quality ...Analysis GIS data Server Internal DIAS objects External DIAS objects External CDF services Fort Future DIAS Model GUI Figure 10. A Fort Future DIAS...31 iv ERDC/CERL TR-05-1 Are Programs that Analyze Data Being Developed as CDF Services

  8. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    USGS Publications Warehouse

    Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.

  9. [Research on the influence of urban land use structure and pattern on nitrogen, phosphorus of wetland water environment in Xianlin New Town of Nanjing].

    PubMed

    Cai, Chun-Xiao; Liu, Hong-Yu; Li, Yu-Feng; Wang, Cong; Hou, Ming-Hang

    2014-08-01

    The 10 typical wetlands in Xianlin New Townof Nanjing were classified into three categories, including rural wetland, suburban wetland, and urban wetland according to the influence of urbanization as well as the characteristics of wetland and LUCC of catchment regions. RDA was used to analyse the relationships between nitrogen and phosphorus in urban wetland and various types and patterns of land use. It was found that the water quality of the urban wetlands presented to be worse than that from rural wetlands, followed by sub urban wetlands. Secondly, according to all investigated wetlands, TP and TN turned out to be higher during the wet seasons than dry seasons. In addition, significant differences of TP were observed between wet and dry seasons for rural and suburban wetlands, and it was not so obvious for urban wetlands. However, the differences of TN was opposite to that of TP. Thirdly, factors affecting the water quality of wetlands were comprised of types and patterns of land use, and thus significant positive relationships were found between the concentrations of TN and TP and the impervious land, while negative correlations for meadows, woodlands and wetlands. What's more, higher remarkable differences were found in wetlands than those from meadows and woodlands. Regarding to patterns of land use, TP, TN concentrations were negatively correlated with the average patch shape in the dry and wet seasons, whereas positively relationships were observed for patch density and diversity index; furthermore, with refer to the impact of adjacent landscape, significant relationships were found between the content of TN and the patterns of land use and thus, a negative correlation in the wet season and a positive correlation in the dry season were observed, respectively.

  10. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  11. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study

    NASA Astrophysics Data System (ADS)

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; do Carmo Calijuri, Maria

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation ( P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050 org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  13. Trophic State Evolution and Nutrient Trapping Capacity in a Transboundary Subtropical Reservoir: A 25-Year Study.

    PubMed

    Cunha, Davi Gasparini Fernandes; Benassi, Simone Frederigi; de Falco, Patrícia Bortoletto; Calijuri, Maria do Carmo

    2016-03-01

    Artificial reservoirs have been used for drinking water supply, other human activities, flood control and pollution abatement worldwide, providing overall benefits to downstream water quality. Most reservoirs in Brazil were built during the 1970s, but their long-term patterns of trophic status, water chemistry, and nutrient removal are still not very well characterized. We aimed to evaluate water quality time series (1985-2010) data from the riverine and lacustrine zones of the transboundary Itaipu Reservoir (Brazil/Paraguay). We examined total phosphorus and nitrogen, chlorophyll a concentrations, water transparency, and phytoplankton density to look for spatial and temporal trends and correlations with trophic state evolution and nutrient retention. There was significant temporal and spatial water quality variation (P < 0.01, ANCOVA). The results indicated that the water quality and structure of the reservoir were mainly affected by one internal force (hydrodynamics) and one external force (upstream cascading reservoirs). Nutrient and chlorophyll a concentrations tended to be lower in the lacustrine zone and decreased over the 25-year timeframe. Reservoir operational features seemed to be limiting primary production and phytoplankton development, which exhibited a maximum density of 6050  org/mL. The relatively small nutrient concentrations in the riverine zone were probably related to the effect of the cascade reservoirs upstream of Itaipu and led to relatively low removal percentages. Our study suggested that water quality problems may be more pronounced immediately after the filling phase of the artificial reservoirs, associated with the initial decomposition of drowned vegetation at the very beginning of reservoir operation.

  14. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  15. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.

    PubMed

    Dodemaide, David T; Matthews, Ty G; Iervasi, Dion; Lester, Rebecca E

    2018-03-01

    Ecological research associated with the importance of refuges has tended to focus on natural rather than anthropogenic water bodies. The frequency of disturbances, including drought events, is predicted to increase in many regions worldwide due to human-induced climate change. More frequent disturbance will affect freshwater ecosystems by altering hydrologic regimes, water chemistry, available habitat and assemblage structure. Under this scenario, many aquatic biota are likely to rely on permanent water bodies as refuge, including anthropogenic water bodies. Here, macroinvertebrate and macrophyte assemblages from waste-water treatment and raw-water storages (i.e. untreated potable water) were compared with nearby natural water bodies during autumn and winter 2013. We expected macroinvertebrate and macrophyte assemblages in raw-water storages to be representative of natural water bodies, while waste-water treatment storages would not, due to degraded water quality. However, water quality in natural water bodies differed from raw-water storages but was similar to waste-water treatment storages. Macroinvertebrate patterns matched those of water quality, with no differences occurring between natural water bodies and waste-water treatment storages, but assemblages in raw-water storages differed from the other two water bodies. Unexpectedly, differences associated with raw-water storages were attributable to low abundances of several taxa. Macrophyte assemblages in raw-water storages were representative of natural water bodies, but were less diverse and abundant in, or absent from, waste-water treatment storages. No clear correlations existed between any habitat variables and macroinvertebrate assemblages but a significant correlation between macrophyte assemblages and habitat characteristics existed. Thus, there were similarities in both water quality and macroinvertebrate assemblages between natural water bodies and waste-water treatment storages, and similarities in macrophyte assemblages between raw-water storages and natural water bodies. These similarities illustrate that anthropogenic water storages support representative populations of some aquatic biota across the landscape, and thus, may provide important refuge following disturbance where dispersal capabilities allow. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Case study: Fixture water use and drinking water quality in a new residential green building.

    PubMed

    Salehi, Maryam; Abouali, Mohammad; Wang, Mian; Zhou, Zhi; Nejadhashemi, Amir Pouyan; Mitchell, Jade; Caskey, Stephen; Whelton, Andrew J

    2018-03-01

    Residential plumbing is critical for the health and safety of populations worldwide. A case study was conducted to understand fixture water use, drinking water quality and their possible link, in a newly plumbed residential green building. Water use and water quality were monitored at four in-building locations from September 2015 through December 2015. Once the home was fully inhabited average water stagnation periods were shortest at the 2nd floor hot fixture (90 percentile of 0.6-1.2 h). The maximum water stagnation time was 72.0 h. Bacteria and organic carbon levels increased inside the plumbing system compared to the municipal tap water entering the building. A greater amount of bacteria was detected in hot water samples (6-74,002 gene copy number/mL) compared to cold water (2-597 gene copy number/mL). This suggested that hot water plumbing promoted greater microbial growth. The basement fixture brass needle valve may have caused maximum Zn (5.9 mg/L), Fe (4.1 mg/L), and Pb (23 μg/L) levels compared to other fixture water samples (Zn ≤ 2.1 mg/L, Fe ≤ 0.5 mg/L and Pb ≤ 8 μg/L). At the basement fixture, where the least amount of water use events occurred (cold: 60-105, hot: 21-69 event/month) compared to the other fixtures in the building (cold: 145-856, hot: 326-2230 event/month), greater organic carbon, bacteria, and heavy metal levels were detected. Different fixture use patterns resulted in disparate water quality within a single-family home. The greatest drinking water quality changes were detected at the least frequently used fixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the downstream regions, followed by fertilizer application optimization.

  18. Regional variations in water quality and relationships to soil and bedrock weathering in the southern Sacramento Valley, California, USA

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Morrison, J.M.; Lee, L.

    2009-01-01

    Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey's National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

  19. Numerical modeling of overland flow due to rainfall-runoff

    USDA-ARS?s Scientific Manuscript database

    Runoff is a basic hydrologic process that can be influenced by management activities in agricultural watersheds. Better description of runoff patterns through modeling will help to understand and predict watershed sediment transport and water quality. Normally, runoff is studied with kinematic wave ...

  20. RESPONSE PATTERNS OF GREAT RIVER FISH ASSEMBLAGE METRICS TO OUTFALL EFFECTS FROM POINT SOURCE DISCHARGES

    EPA Science Inventory

    Human disturbance alters key attributes of aquatic ecosystems such as water quality, habitat structure, hydrological regime, energy flow, and biological interactions. In great rivers, this is particularly evident because they are disproportionately degraded by habitat alteration...

  1. ASSESSING VULNERABILITIES FROM ALTERNATIVE DEVELOPMENT PATTERNS

    EPA Science Inventory

    Planners in a rapidly urbanizing area must take into account trade offs between multiple environmental issues of concern. A 15-county region centered on Charlotte, North Carolina, is experiencing a boom in growth resulting in both air and water quality concerns. In this paper,...

  2. Sustainable Management of Springs and Associated Wetlands in Aridland Regions: A Water Quality Perspective for Cibola National Forest, NM

    NASA Astrophysics Data System (ADS)

    Paffett, K.; Crossey, L. J.; Crowley, L.; Karlstrom, K. E.

    2010-12-01

    In the arid southwestern U.S., springs and their associated wetlands provide an opportunity for diverse ecosystems to flourish. With increasing encroachment, multiple-use requirements and increasing groundwater depletion, a better understanding of how the springs function is needed in order to properly manage the springs as a resource. Critical data on spring status (discharge patterns across seasons and water quality) are lacking for most springs. New strategies and environmental sensors can be employed to provide baseline information, as well as continuous data. We report here on systematic evaluation of a suite of springs of the Cibola National Forest in central New Mexico, including characteristics of discharge and water quality. The work is prompted by concerns on preservation of vital habitat for the Zuni Bluehead Sucker in portions of the Cibola National Forest. Spring occurrence includes a range of elevation (2000-2500m), vegetation type (arid grasslands to alpine wilderness), impact (livestock use, increased groundwater withdrawal, species of concern, and increased recreational use), and water quality (potable to saline). Many of the springs occur along fault structures, and are fed by groundwater from confined aquifer systems. Two levels of protocols are described: Level One for developing a baseline survey for water quality in managed lands (geospatial data, geologic map, systematic photography, discharge estimate and field-determined water quality parameters); and Level Two Impact Evaluation Monitoring (includes high-resolution geologic mapping, major ion chemistry, multiple sampling dates, and real-time autonomous logging of several parameters including temperature, pH, conductance and dissolved oxygen). Data collected from the surveys are stored in a geospatial repository to serve as background for future monitoring of the water resources in the area.

  3. A study of Minnesota forests and lakes using data from Earth Resources Technology Satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Highlights of research and practical benefits are discussed for the following projects which utilized ERTS 1 data to provide municipal, state, federal, and industrial users with environmental resource information for the state of Minnesota: (1) forest disease detection and control; (2) evaluation of water quality by remote sensing techniques; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) snowmelt flood prediction; (6) remote sensing applications to hydrology; (7) Rice Creek watershed project; (8) water quality in Lake Superior and the Duluth Superior Harbor; and (9) determination of Lake Superior currents from turbidity patterns.

  4. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    NASA Technical Reports Server (NTRS)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  5. Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico

    NASA Technical Reports Server (NTRS)

    Norat, Jose

    1994-01-01

    The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.

  6. Seasonality of water quality and diarrheal disease counts in urban and rural settings in south India

    NASA Astrophysics Data System (ADS)

    Kulinkina, Alexandra V.; Mohan, Venkat R.; Francis, Mark R.; Kattula, Deepthi; Sarkar, Rajiv; Plummer, Jeanine D.; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N.

    2016-02-01

    The study examined relationships among meteorological parameters, water quality and diarrheal disease counts in two urban and three rural sites in Tamil Nadu, India. Disease surveillance was conducted between August 2010 and March 2012; concurrently water samples from street-level taps in piped distribution systems and from household storage containers were tested for pH, nitrate, total dissolved solids, and total and fecal coliforms. Methodological advances in data collection (concurrent prospective disease surveillance and environmental monitoring) and analysis (preserving temporality within the data through time series analysis) were used to quantify independent effects of meteorological conditions and water quality on diarrheal risk. The utility of a local calendar in communicating seasonality is also presented. Piped distribution systems in the study area showed high seasonal fluctuations in water quality. Higher ambient temperature decreased and higher rainfall increased diarrheal risk with temperature being the predominant factor in urban and rainfall in rural sites. Associations with microbial contamination were inconsistent; however, disease risk in the urban sites increased with higher median household total coliform concentrations. Understanding seasonal patterns in health outcomes and their temporal links to environmental exposures may lead to improvements in prospective environmental and disease surveillance tailored to addressing public health problems.

  7. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TMmore » and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.« less

  8. Water quality variation during a strong El Niño event in 2016: a case study in Kampar River, Malaysia.

    PubMed

    Ng, Casey Keat-Chuan; Goh, Choo-Hou; Lin, Jia-Chun; Tan, Minn-Syenn; Bong, Willie; Yong, Chea-Soon; Chong, Jun-Yao; Ooi, Peter Aun-Chuan; Wong, Wey-Lim; Khoo, Gideon

    2018-06-15

    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.

  9. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    USGS Publications Warehouse

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this pattern and show a wide distribution of concentrations in the unconfined aquifer, indicating possible anthropogenic influence. Time-series plots of historical water-quality data indicated that nitrate does not seem to be increasing or decreasing in groundwater over time; however, time-series plots of chloride concentrations indicate that chloride may be increasing in some wells. The small amount of temporal variability in nitrate concentrations indicates a lack of major temporal changes to groundwater inputs.

  10. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India.

    PubMed

    Diwan, Vishal; Hanna, Nada; Purohit, Manju; Chandran, Salesh; Riggi, Emilia; Parashar, Vivek; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2018-06-17

    To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river.

  11. Chemical quality of the Saw Mill River, Westchester County, New York, 1981-83

    USGS Publications Warehouse

    Rogers, R.J.

    1984-01-01

    Surface waters, bottom sediments and coatings formed on artificial substrates (ceramic tiles) were analyzed to evaluate the chemical quality of the Saw Mill River, New York. Heavy metals, nutrients, and organic contaminants were studied. Dissolved orthophosphate concentrations were highest in the lower third of the river. Dissolved manganese was the only metal to exceed U.S. Environmental Protection Agency water-quality criteria. Arsenic, cadmium, copper, lead, and zinc concentrations were highest in waters from the lowest 4 river miles. Concentrations of copper, lead, and zinc in bottom sediments from the lowest 3 river miles were greater than in upstream sediments. Concentrations of nine heavy metals were higher on tiles emplaced below river mile 3 than on tiles upstream. Few organic compounds were detected in the water column; none persisted at all sites. Chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were found in bottom sediments throughout the basin. PCB concentrations were highest in the lowest 6 river miles; the other organic compounds exhibited no spatial patterns. Polynuclear aromatic hydrocarbons were most abundant in bottom sediments from the lowest 2 river miles. Collectively the distribution of contaminants indicates that river quality deteriorates in the lower, more heavily urbanized reach. (USGS)

  12. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS) in conjunction with each test. * Determine which samples caused a significant decrease in percent fertilization success relative to the negative control.

  13. Persistent Urban Impacts on Surface Water Quality Mediated by Stormwater Recharge

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Brooks, P. D.; Neilson, B. T.; Bowen, G. J.; Jameel, M. Y.; Hall, S. J.; Eiriksson, D.; Millington, M. R.; Gelderloos, A.

    2016-12-01

    Growing population centers along mountain watersheds put added stress on sensitive hydrologic systems and create water quality impacts downstream. We examined the mountain-to-urban transition in watersheds on Utah's Wasatch Front to identify mechanisms by which urbanization impacts water resources. Rivers in the Wasatch flow from the mountains directly into an urban landscape, where they are subject to channelization, stormwater runoff systems, and urban inputs to water quality from sources such as road salt and fertilizer. As part of an interdisciplinary effort within the iUTAH project, multiple synoptic surveys were performed and a variety of measurements were made, including basic water chemistry along with discharge, water isotopes, and nutrients. Red Butte Creek, a stream in Salt Lake City, does not show significant urban impact to water quality until several kilometers after it enters the city where concentrations of solutes such as chloride and nitrate more than triple in a gaining reach. Groundwater springs discharging to this gaining section demonstrate urban-impacted water chemistry, suggesting that during baseflow a contaminated alluvial aquifer significantly controls stream chemistry. By combining hydrometric and hydrochemical observations we were able to estimate that these groundwater springs were 17-20% urban runoff. We were then able to predict the chemistry of urban runoff that feeds into the alluvial aquifer. Samples collected from storm culverts, roofs, and asphalt during storms had chemistry values within the range of those predicted by the mixing model. This evidence that urbanization affects the water quality of baseflow through impacted groundwater suggests that stormwater mitigation may not be sufficient for protecting urban watersheds, and quantifying these persistent groundwater mediated impacts is necessary to evaluate the success of restoration efforts. By comparing these results from Red Butte Creek with similar studies from other rivers in the Wasatch Front and other alluvial systems, we can quantify how characteristics such as discharge patterns and land-use determine alluvial recharge controls on surface water quality.

  14. Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni.

    PubMed

    Teo, Chin Chye; Tan, Swee Ngin; Yong, Jean Wan Hong; Hew, Choy Sin; Ong, Eng Shi

    2009-02-01

    An approach that combined green-solvent methods of extraction with chromatographic chemical fingerprint and pattern recognition tools such as principal component analysis (PCA) was used to evaluate the quality of medicinal plants. Pressurized hot water extraction (PHWE) and microwave-assisted extraction (MAE) were used and their extraction efficiencies to extract two bioactive compounds, namely stevioside (SV) and rebaudioside A (RA), from Stevia rebaudiana Bertoni (SB) under different cultivation conditions were compared. The proposed methods showed that SV and RA could be extracted from SB using pure water under optimized conditions. The extraction efficiency of the methods was observed to be higher or comparable to heating under reflux with water. The method precision (RSD, n = 6) was found to vary from 1.91 to 2.86% for the two different methods on different days. Compared to PHWE, MAE has higher extraction efficiency with shorter extraction time. MAE was also found to extract more chemical constituents and provide distinctive chemical fingerprints for quality control purposes. Thus, a combination of MAE with chromatographic chemical fingerprints and PCA provided a simple and rapid approach for the comparison and classification of medicinal plants from different growth conditions. Hence, the current work highlighted the importance of extraction method in chemical fingerprinting for the classification of medicinal plants from different cultivation conditions with the aid of pattern recognition tools used.

  15. Miniaturized video-microscopy system for near real-time water quality biomonitoring using microfluidic chip-based devices

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Nigam, Abhimanyu; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Biomonitoring studies apply biological responses of sensitive biomonitor organisms to rapidly detect adverse environmental changes such as presence of physic-chemical stressors and toxins. Behavioral responses such as changes in swimming patterns of small aquatic invertebrates are emerging as sensitive endpoints to monitor aquatic pollution. Although behavioral responses do not deliver information on an exact type or the intensity of toxicants present in water samples, they could provide orders of magnitude higher sensitivity than lethal endpoints such as mortality. Despite the advantages of behavioral biotests performed on sentinel organisms, their wider application in real-time and near realtime biomonitoring of water quality is limited by the lack of dedicated and automated video-microscopy systems. Current behavioral analysis systems rely mostly on static test conditions and manual procedures that are time-consuming and labor intensive. Tracking and precise quantification of locomotory activities of multiple small aquatic organisms requires high-resolution optical data recording. This is often problematic due to small size of fast moving animals and limitations of culture vessels that are not specially designed for video data recording. In this work, we capitalized on recent advances in miniaturized CMOS cameras, high resolution optics and biomicrofluidic technologies to develop near real-time water quality sensing using locomotory activities of small marine invertebrates. We present proof-of-concept integration of high-resolution time-resolved video recording system and high-throughput miniaturized perfusion biomicrofluidic platform for optical tracking of nauplii of marine crustacean Artemia franciscana. Preliminary data demonstrate that Artemia sp. exhibits rapid alterations of swimming patterns in response to toxicant exposure. The combination of video-microscopy and biomicrofluidic platform facilitated straightforward recording of fast moving objects. We envisage that prospectively such system can be scaled up to perform high-throughput water quality sensing in a robotic biomonitoring facility.

  16. Efficiency of temporary storage of geothermal waters in a lake system: Monitoring the changes of water quality and bacterial community structures.

    PubMed

    Szirányi, Barbara; Krett, Gergely; Kosáros, Tünde; Janurik, Endre; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2017-12-01

    Disposal of used geothermal waters in Hungary often means temporary storage in reservoir lakes to reduce temperature and improve water quality. In this study, the physical and chemical properties and changes in the bacterial community structure of a reservoir lake system in southeast region of Hungary were monitored and compared through 2 years, respectively. The values of biological oxygen demand, concentrations of ammonium ion, total inorganic nitrogen, total phosphorous, and total phenol decreased, whereas oxygen saturation, total organic nitrogen, pH, and conductivity increased during the storage period. Bacterial community structure of water and sediment samples was compared by denaturing gradient gel electrophoresis (DGGE) following the amplification of the 16S rRNA gene. According to the DGGE patterns, greater seasonal than spatial differences of bacterial communities were revealed in both water and sediment of the lakes. Representatives of the genera Arthrospira and Anabaenopsis (cyanobacteria) were identified as permanent and dominant members of the bacterial communities.

  17. Finding clean water habitats in urban landscapes: professional researcher vs citizen science approaches.

    PubMed

    McGoff, Elaine; Dunn, Francesca; Cachazo, Luis Moliner; Williams, Penny; Biggs, Jeremy; Nicolet, Pascale; Ewald, Naomi C

    2017-03-01

    This study investigated patterns of nutrient pollution in waterbody types across Greater London. Nitrate and phosphate data were collected by both citizen scientists and professional ecologists and their results were compared. The professional survey comprised 495 randomly selected pond, lake, river, stream and ditch sites. Citizen science survey sites were self-selected and comprised 76 ponds, lakes, rivers and streams. At each site, nutrient concentrations were assessed using field chemistry kits to measure nitrate-N and phosphate-P. The professional and the citizen science datasets both showed that standing waterbodies had significantly lower average nutrient concentrations than running waters. In the professional datasets 46% of ponds and lakes had nutrient levels below the threshold at which biological impairment is likely, whereas only 3% of running waters were unimpaired by nutrients. The citizen science dataset showed the same broad pattern, but there was a trend towards selection of higher quality waterbodies with 77% standing waters and 14% of rivers and streams unimpaired. Waterbody nutrient levels in the professional dataset were broadly correlated with landuse intensity. Rivers and streams had a significantly higher proportion of urban and suburban land cover than other waterbody types. Ponds had higher percentage of semi-natural vegetation within their much smaller catchments. Relationships with land cover and water quality were less apparent in the citizen-collected dataset probably because the areas visited by citizens were less representative of the landscape as whole. The results suggest that standing waterbodies, especially ponds, may represent an important clean water resource within urban areas. Small waterbodies, including ponds, small lakes<50ha and ditches, are rarely part of the statutory water quality monitoring programmes and are frequently overlooked. Citizen scientist data have the potential to partly fill this gap if they are co-ordinated to reduce bias in the type and location of the waterbodies selected. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hyporheic flow patterns in relation to large river floodplain attributes

    EPA Science Inventory

    Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...

  19. Hyporheic flow patterns in relation to large river floodplain attributes Journal

    EPA Science Inventory

    Field-calibrated models of hyporheic flow have emphasized low-order headwater systems. In many cases, however, hyporheic flow in large lowland river floodplains may be an important contributor to ecosystem services such as maintenance of water quality and habitat. In this study, ...

  20. From existing in situ, high-resolution measurement technologies to lab-on-a-chip - the future of water quality monitoring?

    NASA Astrophysics Data System (ADS)

    Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R.

    2012-05-01

    This paper introduces new insights into the hydrochemical functioning of lowland river-systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames, one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex, seemingly chaotic, dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage works in the rural, River Enborne, and that the time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The dominance of respiration over photosynthesis in The Cut indicated a prevalence of heterotrophic algae, and the seasonal patterns in respiration and photosynthesis corresponded with those of temperature and light in this nutrient over-enriched stream. These results highlight the utility of sub-daily water quality measurements but the deployment of modified wet-chemistry technologies into the field was limited by mains electricity availability. A new approach is therefore needed to allow measurement of a wide range of analytes at a broader range of locations for the development of water quality web-sensor networks. The development and field deployment of a miniaturised "lab-on-a-chip" ion chromatograph is proposed and justified.

  1. Water quality variability in San Francisco Bay, Some gGeneral lessons from 1996 sampling: 1996 annual report, San Francisco estuary regional monitoring program for trace substances

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Baylosis, J.I.

    1997-01-01

    This report describes the results from the 1996 Regional Monitoring Program for Trace Substances (RMP). It is the fourth Annual Report from the RMP which began in 1993 and attempts to synthesize the most obvious data patterns from the last four years. This report includes data from Base Program monitoring activities, as well as results of Pilot and Special Studies conducted or completed in 1996. Additionally, several articles contributed by RMP investigators and others, are included. These articles provide perspective and insight on important contaminant issues identified by the RMP. This summary addresses which kinds of pollutants measured by the RMP appear to be at levels that warrant concern, what kinds of trends may be discerned, and which stations have consistently shown elevated contaminant levels. The goals or general objectives of the RMP are: 1. To obtain high quality baseline data describing the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediment of the San Francisco Estuary. 2. To determine seasonal and annual trends in chemical and biological water quality in the San Francisco Estuary. 3. To continue to develop a data set that can be used to determine long-term trends in the concentrations of toxic and potentially toxic trace elements and organic contaminants in the water and sediments of the San Francisco Estuary. 4. To determine whether water quality and sediment quality in the Estuary at large are in compliance with objectives established by the Basin Plan (the regulatory planning document used by the Regional Water Quality Control Board). 5. To provide a database on water and sediment quality in the Estuary which is compatible with data being developed in other ongoing studies, including wasteload allocation studies and model development, sediment quality objectives development, in-bay studies of dredged material disposal, Interagency Ecological Program (IEP) water quality studies, primary productivity studies, local effects biomonitoring programs, and state and federal mussel watch programs.

  2. Time series analysis for the estimation of tidal fluctuation effect on different aquifers in a small coastal area of Saijo plain, Ehime prefecture, Japan.

    PubMed

    Kumar, Pankaj; Tsujimura, Maki; Nakano, Takanori; Minoru, Tokumasu

    2013-04-01

    Considering the current poor understanding of the seawater-freshwater (SW-FW) interaction pattern at dynamic hydro-geological boundary of coastal aquifers, this work strives to study tidal effect on groundwater quality using chemical tracers combined with environmental isotopes. In situ measurement data of electrical conductivity and groundwater level along with laboratory measurement data of hydro-chemical species were compared with tidal level data measured by Hydrographic and Oceanographic Department, Saijo City, Japan for time series analysis. Result shows that diurnal tides have significant effect on groundwater level as well as its chemical characteristics; however, the magnitude of effect is different in case of different aquifers. Various scatter diagrams were plotted in order to infer mechanisms responsible for water quality change with tidal phase, and results show that cations exchange, selective movement and local SW-FW mixing were likely to be the main processes responsible for water quality changes. It was also found that geological structure of the aquifers is the most important factor affecting the intensity of tidal effect on water quality.

  3. Quality of water resources in Kullu Valley in Himachal Himalayas, India: perspective and prognosis

    NASA Astrophysics Data System (ADS)

    Thakur, Nandini; Rishi, Madhuri; Sharma, Diana A.; Keesari, Tirumalesh

    2018-03-01

    The water quality in mountain regions of Himalaya is considered to be good and quantity adequate. However, recent reports suggest that urbanisation and population growth have been tremendous, which are impacting the land use/cover changes and also endangering the water resources both in quality and quantity. This paper elaborates the systematic investigation carried out on different attributes impacting the drinking water resources in Kullu valley. Two approaches were employed in this study: (1) ex-ante approach involving field survey and secondary data analysis from ancillary sources and (2) hydrochemical approach for the measurement of water quality parameters from springs. Results from ex-ante approach infer rise in population of about 15% during 2001-2011, which led to a significant change in land use pattern, microclimate and also increased water demand. Hydrochemistry of the water samples in the study area has indicated that the current status of spring waters is satisfactory for drinking purposes with a few incidences of high NO3 - which is mostly attributed to contamination from sewage, while F-, Cl- and TDS contamination is mainly confined to hot springs. From both ex-ante approach and primary hydrochemical data it can be inferred that springs need to be restored in terms of both quantity and quality. Hydrochemical interpretation suggests two main groups of samples: (1) low TDS and Ca-Mg-Cl-HCO3 type, which are mainly recharging waters with very less interaction with the aquifer material and (ii) moderate TDS and Mg-Ca-Cl, Ca-Na-HCO3, Na-Ca-Cl-SO4 and Ca-Mg-HCO3 and have undergone water-rock interaction. Based on the inferences obtained from the Piper's, Chadha's and Durov's classification no evidence of hot springs contaminating or contributing to other cold springs and shallow groundwater (hand pump) is found. The study concludes that the water resources are vulnerable to anthropogenic interventions and needs treatment prior to drinking. Periodic monitoring of water quality and adopting proper treatment procedures are essential for supplying safe and sustainable water to the community in the Kullu valley, Himachal Pradesh.

  4. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    NASA Astrophysics Data System (ADS)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  5. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  6. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    USGS Publications Warehouse

    Fong, Alison L.

    2000-01-01

    Comparisons of previous land-use studies in Minnesota with the three NAWQA land-use studies generally indicated the same patterns. Ground-water quality in surficial sand and gravel aquifers is affected by land-use practices. Ground water in urban studies has greater specific conductances, alkalinities, chloride, sodium, sulfate, and dissolved solid concentrations than agricultural or forested/undeveloped studies. Nitrate-nitrogen was detected in greater concentrations in agricultural studies than in urban studies, with concentrations in the forested/undeveloped studies less than in the agricultural or the urban studies. Agricultural studies have the greatest detection rates, numbers, and total concentrations of pesticides. Pesticide detection rates and total pesticide concentrations in the urban studies were less than in the agricultural studies, with the most frequently detected pesticides (prometon and dicamba) different than those in the agricultural studies (atrazine and deethylatrazine). A greater number of VOCs were detected in urban studies and at greater concentrations than in agricultural studies. Few pesticides or VOCs were detected in forested/undeveloped studies.

  7. Water Quality Studies: Richard B. Russell and Clarks Hill Lakes.

    DTIC Science & Technology

    1986-12-01

    total manga - nese ranged from 2.4 mg/i to 2.3 mg/i at Stations 130 and 140, respectively, by September. Dissolved forms exhibited similar patterns at...iron at mid-hypolimnetic depths was in the particulate form. 122. Figure 54 illustrates seasonal patterns in total dissolved manga - nese for Stations...was the fact that most of the iron in the outflow was in the particulate form. Manga - nese concentrations also increased during stratification and

  8. Air- and stream-water-temperature trends in the Chesapeake Bay region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-12-14

    Water temperature is a basic, but important, measure of the condition of all aquatic environments, including the flowing waters in the streams that drain our landscape and the receiving waters of those streams. Climatic conditions have a strong influence on water temperature, which is therefore naturally variable both in time and across the landscape. Changes to natural water-temperature regimes, however, can result in a myriad of effects on aquatic organisms, water quality, circulation patterns, recreation, industry, and utility operations. For example, most species of fish, insects, and other organisms, as well as aquatic vegetation, are highly dependent on water temperature. Warming waters can result in shifts in floral and faunal species distributions, including invasive species and pathogens previously unable to inhabit the once cooler streams. Many chemical processes are temperature dependent, with reactions occurring faster in warmer conditions, leading to degraded water quality as contaminants are released into waterways at greater rates. Circulation patterns in receiving waters, such as bays and estuaries, can change as a result of warmer inflows from streams, thereby affecting organisms in those receiving waters. Changes in abundance of some aquatic species and (or) degradation of water quality can reduce the recreational value of water bodies as waters are perceived as less desirable for water-related activities or as sportfish become less available for anglers. Finally, increasing water temperatures can affect industry and utilities as the thermal capacity is reduced, making the water less effective for cooling purposes.Chesapeake Bay is the largest estuary in the United States. Eutrophication, the enrichment of a water body with excess nutrients, has plagued the bay for decades and has led to extensive restoration efforts throughout the bay watershed. The warming of stream water can exacerbate eutrophication through increased release of nutrients from in-stream sediments, so understanding changes in stream-water temperature throughout the bay watershed is critical to resource managers seeking to restore the bay ecosystem.The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  9. Ecology of Lake Superior: Linking Landscape to Nearshore Condition

    EPA Science Inventory

    High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...

  10. SPATIAL PATTERNS OF WATER QUALITY AND PLANKTON FROM HIGH-RESOLUTION CONTINUOUS IN SITU SENSING ALONG A 537-KM NEARSHORE TRANSECT OF WESTERN LAKE SUPERIOR, 2004

    EPA Science Inventory

    A demonstration that the adaptation of electronic instrumentation and towed survey strategies are effective in providing rapid, spatially extensive, and cost effective data for assessment of the Great Lakes.

  11. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... alternating or mixed pattern. Marketable. Pear production acceptable for processing or other human consumption... irrigation water supply, if caused by an insured peril that occurs during the insurance period. (b) In... provisions of the Basic Provisions are not applicable. 13. Pear Quality Adjustment Endorsement (a) This...

  12. Fragmentation of forest, grassland, and shrubland

    Treesearch

    Kurt H. Riitters

    2013-01-01

    As humans introduce competing land uses into natural landscapes, the public concerns regarding landcover patterns are expressed through headline issues such as urban sprawl, forest fragmentation, water quality, and wilderness preservation. The spatial arrangement of an environment affects all human perceptions and ecological processes within that environment, but this...

  13. Green Bay: Spatial patterns in water quality and landscape correlations

    EPA Science Inventory

    We conducted a high-resolution survey along the nearshore (369 km) in Green Bay using towed electronic instrumentation at approximately the 15 m depth contour, with additional transects of the bay that were oriented cross-contour (49 km). Electronic sensor data provided an effic...

  14. Lake Superior: Nearshore Variability and a Landscape Driver Concept

    EPA Science Inventory

    High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...

  15. Water Quality Research Program: Abstracts of the International Symposium on Gas Transfer at Water Surfaces (2nd) Held in Minneapolis, Minnesota on 11-14 September 1990

    DTIC Science & Technology

    1990-08-01

    layer on the surface) it is 2 - 3 times less. Many in- situ observations show that different patterns of temperature distribution in the surface water...Coeficiente de Reaeracao dos Escoamentos Naturais da Agua com o Emprego de Tracador Gasoso. M.Sc Dissertation, Universidade de Sao Paulo, EESC, Depto. de...structure. If methane is present in measurable quantities it may prove to be an excellent in- situ tracer of gas transfer. Transfer efficiency has been used

  16. Patterns, structures and regulations of domestic water cycle systems in China

    NASA Astrophysics Data System (ADS)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system management efforts typically fail in China, because the approach is generally narrowly-focused and fragmented. This paper put forward a total-process control framework following the water and pollutants (or nutrients) flows along the dualistic domestic water cycle process. Five key objectives of domestic water cycle system regulation are identified including water use safety, water use equity, water saving, wastewater reduction and nutrient recycling. Comprehensive regulatory framework regarding administrative, economic, technical and social measures is recommended to promote sustainable domestic water usage and demand management. Considering the relatively low affordability in rural area, economic measures should be mainly applied in urban domestic water systems and metropolitan domestic water systems. Engineering or technological measures which are suitable to the three domestic water cycle systems are discussed respectively.

  17. Robust Decision Making to Support Water Quality Climate Adaptation: a Case Study in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Fischbach, J. R.; Lempert, R. J.; Molina-Perez, E.

    2017-12-01

    The U.S. Environmental Protection Agency (USEPA), together with state and local partners, develops watershed implementation plans designed to meet water quality standards. Climate uncertainty, along with uncertainty about future land use changes or the performance of water quality best management practices (BMPs), may make it difficult for these implementation plans to meet water quality goals. In this effort, we explored how decision making under deep uncertainty (DMDU) methods such as Robust Decision Making (RDM) could help USEPA and its partners develop implementation plans that are more robust to future uncertainty. The study focuses on one part of the Chesapeake Bay watershed, the Patuxent River, which is 2,479 sq km in area, highly urbanized, and has a rapidly growing population. We simulated the contribution of stormwater contaminants from the Patuxent to the overall Total Maximum Daily Load (TMDL) for the Chesapeake Bay under multiple scenarios reflecting climate and other uncertainties. Contaminants considered included nitrogen, phosphorus, and sediment loads. The assessment included a large set of scenario simulations using the USEPA Chesapeake Bay Program's Phase V watershed model. Uncertainties represented in the analysis included 18 downscaled climate projections (based on 6 general circulation models and 3 emissions pathways), 12 land use scenarios with different population projections and development patterns, and alternative assumptions about BMP performance standards and efficiencies associated with different suites of stormwater BMPs. Finally, we developed cost estimates for each of the performance standards and compared cost to TMDL performance as a key tradeoff for future water quality management decisions. In this talk, we describe how this research can help inform climate-related decision support at USEPA's Chesapeake Bay Program, and more generally how RDM and other DMDU methods can support improved water quality management under climate uncertainty.

  18. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea.

    PubMed

    Khan, Muhammad Tariq; Manes, Carmem-Lara de O; Aubry, Cyril; Croué, Jean-Philippe

    2013-02-01

    The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    PubMed

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  20. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  1. Mobile data buoy system. [water quality measurements in watersheds and Mobile Bay, Alabama

    NASA Technical Reports Server (NTRS)

    Morton, R. A.

    1975-01-01

    The Mobile Data Buoy System was conceived to serve the users requirement for obtaining water quality parameters from two separate watershed systems. In view of the cost constraints of the ERTS program it was obvious that the network of 10 sampling stations required could not be of the fixed installation type; therefore, it was decided to go to a system of battery powered buoys of a size that could be used in one watershed system for a period of time and then moved to another by use of a relatively small 6.7 m (22 foot) boat. The basic idea of the water quality measurement program was to establish the water quality pattern of change from the headwaters of the watersheds to and through the Mobile Bay. This would allow the investigator to develop a good picture of the state's major water resources and the pressures from pollution that are being imposed. At this point in deployment of this mobile system of buoys, it is too early to put a quantitative value on the system, however it appears less expensive than known fixed installations as to first cost. It has a basic advantage in that it can be moved, at very little expense, to alternate sites where it is desired to obtain water quality data. It is to be noted this buoy system which covers a 80 Km (50 mile) stretch of the Black Warrior River and then skips down 483 Km (300 miles) to Mobile Bay for the next measurements would not be feasible unless there is a satellite to collect and relay the data.

  2. Water quality and Inuit health: an examination of drinking water consumption, perceptions, and contamination in Rigolet, Canada.

    PubMed

    Wright, Carlee

    2017-01-01

    Canadian Inuit have often reported concerns about the quality of their municipal drinking water; research has also shown that some Inuit communities experience some of the highest incidence rates of self-reported acute gastrointestinal illness (AGI) in Canada and globally. The goal of this thesis research was to investigate drinking water perceptions and consumption patterns, as well as water contamination and potential associations with AGI in the Inuit community of Rigolet, Canada. Three census cross-sectional surveys captured data on AGI, drinking water, and water storage (2012-2014); additionally, bacterial contamination of household drinking water was assessed alongside the 2014 survey. Concerns regarding the taste, smell, and colour of tap water were associated with lower odds of consuming tap water. The use of transfer devices (i.e. small bowls or measuring cups) was associated with household water contamination; while no water-related risk factors for AGI were identified, incidence of AGI was high compared with southern Canada. This thesis research provides a valuable contribution to the limited literature assessing drinking water and health in the Arctic. Ultimately, this work is intended to inform safe water management practices, as well as contextually appropriate drinking water interventions, risk assessments, and public health messaging in the Canadian Arctic.

  3. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    PubMed

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  4. Spatial and temporal microbial pollution patterns in a tropical estuary during high and low river flow conditions.

    PubMed

    Wiegner, T N; Edens, C J; Abaya, L M; Carlson, K M; Lyon-Colbert, A; Molloy, S L

    2017-01-30

    Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions

  6. Pesticides in Surface and Ground Water of the San Joaquin-Tulare Basins, California: Analysis of Available Data, 1966 Through 1992

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1997-01-01

    Available pesticide data (1966-92) for surface and ground water were analyzed for the San Joaquin-Tulare Basins, California, one of 60 large hydrologic systems being studied as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Most of the pesticide data were for the San Joaquin Valley, one of the most intensively farmed and irrigated areas of the United States. Data were obtained from the Storage and Retrieval data base of the U.S. Environmental Protection Agency, the water-quality data base of the U.S. Geological Survey, and from data files of State agencies. Pesticides detected in surface water include organochlorine pesticides, organophosphate pesticides, carbamate pesticides, and triazine herbicides. Pesticides detected in ground water include triazine and other organonitrogen herbicides and soil fumi gants. Surface-water data indicate seasonal patterns for the detection of organophosphate and carbamate pesticides, which are attributed to their use on almond orchards and alfafa fields. Organochlorine pesticides were detected primarily in river-bed sediments. Concentrations detected in bed sediments of the San Joaquin River near Vernalis are among the highest of any major river system in the United States. Patterns and timing of pesticide use indicate that pesticides might be present in surface-water systems during most months of a year. The most commonly detected pesticide in ground water is the soil fumigant, dibromochloropropane. Dibromochloropropane, used primarily on vineyards and orchards, was detected in ground water near the city of Fresno. Triazine and other organonitrogen herbicides were detected near vineyards and orchards in the same general locations as the detections of dibromochloropropane. Pesticides were detected in ground water of the east side of the valley floor, where the soils are sandy or coarsegrained, and water-soluble pesticides with long environmental half-lives were used. In contrast, fewer pesticides were detected in ground water of the west side of the valley, where soils generally are finer grained.

  7. An innovative approach for Predicting Farmers' Adaptive Behavior at the Large Watershed Scale: Implications for Water Quality and Crop Yields

    NASA Astrophysics Data System (ADS)

    Valcu-Lisman, A. M.; Gassman, P. W.; Arritt, R. W.; Kling, C.; Arbuckle, J. G.; Roesch-McNally, G. E.; Panagopoulos, Y.

    2017-12-01

    Projected changes in the climatic patterns (higher temperatures, changes in extreme precipitation events, and higher levels of humidity) will affect agricultural cropping and management systems in major agricultural production areas. The concept of adaption to new climatic or economic conditions is an important aspect of the agricultural decision-making process. Adopting cover crops, reduced tillage, extending the drainage systems and adjusting crop management are only a few examples of adaptive actions. These actions can be easily implemented as long as they have private benefits (increased profits, reduced risk). However, each adaptive action has a different impact on water quality. Cover crops and no till usually have a positive impact on water quality, but increased tile drainage typically results in more degraded water quality due primarily to increased export of soluble nitrogen and phosphorus. The goal of this research is to determine the changes in water quality as well in crop yields as farmers undertake these adaptive measures. To answer this research question, we need to estimate the likelihood that these actions will occur, identify the agricultural areas where these actions are most likely to be implemented, and simulate the water quality impacts associated with each of these scenarios. We apply our modeling efforts to the whole Upper-Mississippi River Basin Basin (UMRB) and the Ohio-Tennessee River Basin (OTRB). These two areas are critical source regions for the re-occurring hypoxic zone in the gulf of Mexico. The likelihood of each adaptive agricultural action is estimated using data from a survey conducted in 2012. A large, representative sample of farmers in the Corn Belt was used in the survey to elicit behavioral intentions regarding three of the most important agricultural adaptation strategies (no-till, cover crops and tile drainage). We use these data to study the relationship between intent to adapt, farmer characteristics, farm characteristics, and weather characteristics, and to predict the probability of adoption for each action. Next, we use these estimated probabilities to create different scenarios for the two large scale-watersheds. Finally, we simulate the impact of these scenarios on water quality using calibrated UMRB and OTRB SWAT water quality models.

  8. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  9. Physical characteristics and chemical quality of selected springs in parts of Juab, Millard, Tooele, and Utah counties, Utah

    USGS Publications Warehouse

    Wilberg, D.E.; Stolp, B.J.

    1985-01-01

    Hydrologic, geologic, and partial water quality data were collected at 90 selected springs in west-central Utah, and chemical analyses performed on water samples from 62 of the springs. Descriptions of the physiographic and geologic conditions, climate, and vegetation patterns for the study area are included. Allowable limits of certain chemical constituents in water for human and livestock consumption are included with the water quality data. Three classifications of springs were established based on physical characteristics of the springs, and chemical composition of the springflow: (1) mountain springs; (2) non-thermal valley springs, and (3) thermal valley springs. Mountain springs are in and near recharge areas, have seasonal variations of discharge and temperature, typically discharge from extrusive and metamorphic geohydrologic units, and generally discharge freshwater. Non-thermal valley springs are peripheral to recharge areas, have seasonal variations of discharge and temperature, typically discharge from a variety of geohydrologic units, and have variable water composition. Thermal valley springs are near topographic low areas of valleys , and have little seasonal variation of discharge or temperature. They typically discharge from unconsolidated deposits (but the discharge probably has flowed through buried carbonate geohydrologic units). They also have a considerable range of water composition that reflects the relative complexity of the groundwater system. (Author 's abstract)

  10. Analysis of Groundwater Reserved in Dusun Ngantru Sekaran Village East Java

    NASA Astrophysics Data System (ADS)

    Pandjaitan, N. H.; Waspodo, R. S. B.; Karunia, T. U.; Mustikasari, N.

    2018-05-01

    Limited capacity of fresh water in some areas in Indonesia made some regions had drought problem or lack of surface water. One of the solutions was increasing ground water used. This research aimed to identify aquifer and the pattern of ground water flow and also to determine potential of groundwater reserved in Dusun Ngantru. The result would be use to find the right location to be used as groundwater wells. The method used in this research was geoelectric method. This method was used to determine the condition of aquifer and rocks under the soil and to define hydrogeological condition of Dusun Ngantru.The analysis results can be used as a reference of where and what kind of groundwater runs underneath, in order to be optimally utilized. The results of hydrogeological studies and the distribution of aquifer showed that there were unconfined and semi aquifers. The direction of the groundwater flow in the study site varied greatly as the lithologic arrangement varied just as much. In the study locations there were Ledok formation, Mundu formation, and Lidah formation. Groundwater potential ware predicted of 55.33 m3/day or 0.64 lt/s. Based on water quality standard in Indonesia, the water quality of wells were classified as first class quality.

  11. Supporting data for Environmental Trends

    USGS Publications Warehouse

    Tunstall, D.B.

    1983-01-01

    Information has been compiled as a companion document to ' Environmental Trends ' to provide analysts and researchers with statistical data to understand better how natural and man-made environments were changing. Subjects include land and climate; wetlands; wild areas; historic places; risk zones; settlement patterns; housing units; housing conditions; neighborhood conditions; transportation systems, including use and impacts on the environment such as noise, energy consumption; material use and solid waste; toxic substances, including radiation; cropland , forests and rangeland; wildlife, including extinct, threatened and endangered species; energy; water resources, water quality and air quality; and the biosphere. Statistics in the tables were taken from various published and unpublished sources. Therefore, the number of significant figures for the same information may differ. (Author 's abstract)

  12. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing concentration of most dissolved constituents over time, with a leveling off and decline in the middle to late 1970's.

  13. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.

  14. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  15. Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.

    PubMed

    Deng, Qi; Wang, Yaling; Sun, Lijun; Li, Jianrong; Fang, Zhijia; Gooneratne, Ravi

    2018-06-15

    Water and protein are major constituents of shrimp, any changes in protein and the state of water influence the quality of shrimp. Therefore, a study to examine the law of moisture migration and protein denaturation under different freezing and thawing conditions is important. The proton density images of thawed frozen-shrimp revealed that the water loss during quick-freezing was much greater than that during slow freezing or microfreezing. At room temperature (25 °C), the water loss from brine-thawing was more than still-water thawing and still-water thawing was more than thawing spontaneously. Freezing-thawing resulted in uniform water redistribution in shrimp muscle. Nuclear magnetic resonance technology (low field magnetic imaging) was used to directly monitor the dynamic processes of fluidity state in shrimp and indirectly monitor protein denaturation and thereby determine the optimal method of freezing-thawing shrimp. Our research showed that microfreezing preservation minimized weight loss, juice leakage and protein denaturation in shrimp muscle during thawing. Water is one of the major components in most organs and is an important factor that influences the shrimp muscle quality. Water migration patterns and subsequent effects on the shrimp muscle under different freezing and thawing conditions were examined using low field nuclear magnetic resonance (NMR) technology. This research provides a theoretical foundation for shrimp processing plants to improve the freezing and thawing process to obtain optimal quality and flavor of shrimp products. © 2018 Institute of Food Technologists®.

  16. Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015 — United States

    PubMed Central

    Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-01-01

    Problem/Condition The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. Reporting Period 2008–2012 for air quality and 2010–2015 for water quality. Description of System Since 2002, CDC’s National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008–2012 and one water-quality measure for 26 states during 2010–2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency’s (EPA’s) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Results Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Interpretation Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Public Health Action Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality. PMID:28640797

  17. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    PubMed

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM 2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM 2.5 concentration decreased from 11.15 μg/m 3 in large central metropolitan counties to 8.87 μg/m 3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM 2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

  18. RIPARIAN VEGETATION AND CHANNEL MORPHOLOGY IMPACT ON SPATIAL PATTERNS OF WATER QUALITY IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    A model based on the KLS factors of the Universal Soil Loss Equation (USLE) accurately predicted temporal dynamics and relative peak levels of suspended solids, turbidity, and phosphorus in an agricultural watershed with well-protected streambanks and cultivation to the stream ed...

  19. Longitudinal Variability in Streamwater Chemistry and Carbon and Nitrogen Fluxes in Restored and Degraded Urban Stream Networks

    EPA Science Inventory

    Stream restoration has increasingly been used as a best management practice for improving water quality in urbanizing watersheds, yet few data exist to assess restoration effectiveness. This study examined the longitudinal patterns in carbon and nitrogen concentrations and mass ...

  20. Patterns and sources of nitrogen and microbial contamination in a Pacific Northwest estuarine watershed

    EPA Science Inventory

    Tillamook Bay, a National Estuary Program site, is located on the northwest coast of Oregon. The Bay is one of Oregon’s leading producers of shellfish for human consumption. However, high levels of fecal indicator bacteria that exceed state water quality standards often r...

  1. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    USDA-ARS?s Scientific Manuscript database

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  2. Lake Superior: Nearshore Variability and a Landscape Driver Concept (journal article)

    EPA Science Inventory

    Spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches also have been observed and found to be robust across seasonal time frames. Less is known about robustness of inter-annual variation wi...

  3. Application of landscape models to alternative futures analyses

    Treesearch

    Anne C. Neale; K. Bruce Jones; Maliha S. Nash; Rick D. Van Remortel; James D. Wickham; Kurt H. Riitters; Robert V. O' neil

    2003-01-01

    Scientists and environmental managers alike are concerned about broadscale changes in land use and landscape pattern and their cumulative impact on environmental and economic end points, such as water quality and quantity, species habitat, productivity, erosion potential, recreational value, and overall ecological health (Rapport et al., 1998). They also are interested...

  4. Development and integration of sub-hourly rainfall-runoff modeling capability within a watershed model

    USDA-ARS?s Scientific Manuscript database

    Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...

  5. Perspectives on impacts of water quality on agriculture and community well-being-a key informant study from Sri Lanka.

    PubMed

    Thoradeniya, Bhadranie; Pinto, Uthpala; Maheshwari, Basant

    2017-11-04

    Integrated management of water quality is critical for sustaining food production and achieving overall well-being of a community. Further, understanding people's perceptions and engagement can play an important role in achieving water and food security. The main aim of this study was to investigate the perspectives of community and other stakeholders as to how water quality impacts on agriculture, livelihood and community well-being within rural farming communities of two dry zone districts of Sri Lanka. The study adopted 'key informant interviews' as the methodology to investigate community and other stakeholder perspectives to collect primary data over a period of four months. The interview contents were then examined using a frequency matrix and graphed using an Excel graphing tool. The raw text was also analysed to understand the broader patterns in the text. A fuzzy logic cognitive map (FCM) was developed using the relationships between various concepts and linkages provided by the key informants. All key informants were concerned with the quality of drinking water they consume and the water used for their food preparation. Key informants representing the farming community indicated that the use of poor quality groundwater with higher levels of hardness has made growing crops difficult in the region. The key informants also identified extensive and ongoing use of agro-chemicals and fertilisers as a major source of pollution in water bodies in both spatio-temporal scale. Based on key informant interviews, possible initiatives that can help improve surface water and groundwater qualities for both drinking and agricultural use in the dry zone of Sri Lanka can be categorised into four broader themes, viz., provision of filtering/treatment systems, reduction in the use of agro-chemical and fertilisers, education of community stakeholders and support of alternative options for portable water supplies. The study indicates that in the key informants' view of groundwater and surface waters' continued deterioration in the absence of a proper governance structure, a majority of farmers will have restricted access to good quality water to meet daily and agricultural needs, and this will affect the health of the elderly and children in the area. Further, a majority of key informants were of the view that management of surface water and groundwater should be a shared responsibility between the government and the community in the region and appropriate policy initiatives that will improve water literacy at all levels are mandatory to address future water quality challenges.

  6. Chemical and physical characteristics of natural ground waters in Michigan: A preliminary report

    USGS Publications Warehouse

    Cummings, T. Ray

    1980-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 23 to 2,100 milligrams per liter. Waters having low dissolved-solids concentrations are calcium bicarbonate waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium are higher at some locations than is common in most natural waters. Lead concentrations exceed those desirable in drinking water at some locations in the northern part of the Lower Peninsula. Generalized areal patterns of water quality variation suggest that geology is a primary cause of differences across the State. Examples of chemical associations in water suggest that chemical analyses may be valuable in tracing and identifying mineral deposits.

  7. Water quality of the Luján river, a lowland watercourse near the metropolitan area of Buenos Aires (Argentina).

    PubMed

    Castañé, Patricia M; Sánchez-Caro, Aníbal; Salibián, Alfredo

    2015-10-01

    Luján river is a lowland watercourse which runs 130 km before flowing into the Río de la Plata Estuary, and receives a mixture of domestic and industrial wastewaters originating at its margins. In order to know the physicochemical profile of its surface water, 36 physical-chemical variables were analyzed in samples collected seasonally between 2004 and 2006 at three sampling stations. The results obtained through the principal component analysis (PCA) suggest that the variations in water quality are explained by natural components (soluble salts; metals), nonpoint inputs (nutrients), and anthropogenic (organic and bacterial) and industrial (toxic heavy metals) pollutants. The cases did not fit a clear spatial or seasonal pattern when plotted against the first two PCA axes. The three water quality indices calculated gave middle scores; Sampling station 1 gave a baseline for the comparison of the river's water quality along its course while Sampling station 3 (downriver) was the most degraded. A variety of pollution pulses reach and affect the watercourse downstream. Cities' sewage discharges into the river seem to be the major polluting factor, together with natural metals and other solutes loads that are present from the headwaters. The results may be useful for the development of local and regional mitigation and remediation programs regarding toxic and eutrophying loads in the upper basin of the river.

  8. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  9. Estimation of the possible flood discharge and volume of stormwater for designing water storage.

    PubMed

    Kirzhner, Felix; Kadmon, Avri

    2011-01-01

    The shortage of good-quality water resources is an important issue in arid and semiarid zones. Stormwater-harvesting systems that are capable of delivering good-quality wastewater for non-potable uses while taking into account environmental and health requirements must be developed. For this reason, the availability of water resources of marginal quality, like stormwater, can be a significant contribution to the water supply. Current stormwater management practices in the world require the creation of control systems that monitor quality and quantity of the water and the development of stormwater basins to store increased runoff volumes. Public health and safety considerations should be considered. Urban and suburban development, with the creation of buildings and roads and innumerable related activities, turns rain and snow into unwitting agents of damage to our nation's waterways. This urban and suburban runoff, legally known as stormwater, is one of the most significant sources of water pollution in the world. Based on various factors like water quality, runoff flow rate and speed, and the topography involved, stormwater can be directed into basins, purification plants, or to the sea. Accurate floodplain maps are the key to better floodplain management. The aim of this work is to use geographic information systems (GIS) to monitor and control the effect of stormwater. The graphic and mapping capabilities of GIS provide strong tools for conveying information and forecasts of different storm-water flow and buildup scenarios. Analyses of hydrologic processes, rainfall simulations, and spatial patterns of water resources were performed with GIS, which means, based on integrated data set, the flow of the water was introduced into the GIS. Two cases in Israel were analyzed--the Hula Project (the Jordan River floods over the peat soil area) and the Kishon River floodplains as it existed in the Yizrael Valley.

  10. Landscape pattern metrics and regional assessment

    USGS Publications Warehouse

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  11. Analysis of water quality and circulation of four recreational Miami beaches through the use of Lagrangian Coherent Structures.

    PubMed

    Fiorentino, L A; Olascoaga, M J; Reniers, A

    2014-06-15

    Four popular, recreational beaches in Miami, FL are Hobie Beach, Virginia Key Beach, Crandon Park Beach, and Bill Baggs Cape Florida State Park. While all of the beaches are within a few miles of each other in Biscayne Bay, they have greatly differing water qualities, as determined by the testing for fecal indicator bacteria performed by the Florida Department of Health. Using the geodesic theory of transport barriers, we identify Lagrangian Coherent Structures (LCSs) in each area. We show how these material curves, which shape circulation and mixing patterns, can be used to explain the incongruous states of the water at beaches that should be comparable. The LCSs are computed using a hydrodynamic model and verified through field experimentation at each beach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A review of distributed parameter groundwater management modeling methods

    USGS Publications Warehouse

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  13. A Review of Distributed Parameter Groundwater Management Modeling Methods

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  14. Calibration and validation of a two-dimensional hydrodynamic model of the Ohio River, Jefferson County, Kentucky

    USGS Publications Warehouse

    Wagner, C.R.; Mueller, D.S.

    2001-01-01

    The quantification of current patterns is an essential component of a Water Quality Analysis Simulation Program (WASP) application in a riverine environment. The U.S. Geological Survey (USGS) provided a field validated two-dimensional Resource Management Associates-2 (RMA-2) hydrodynamic model capable of quantifying the steady-flowpatterns in the Ohio River extending from river mile 590 to 630 for the Ohio River Valley Water Sanitation Commission (ORSANCO) water-quality modeling efforts on that reach. Because of the hydrodynamic complexities induced by McAlpine Locks and Dam (Ohio River mile 607), the model was split into two segments: an upstream reach, which extended from the dam upstream to the upper terminus of the study reach at Ohio River mile 590; and a downstream reach, which extended from the dam downstream to a lower terminus at Ohio River mile 636. The model was calibrated to a low-flow hydraulic survey (approximately 35,000 cubic feet per second (ft3/s)) and verified with data collected during a high-flow survey (approximately 390,000 ft3/s). The model calibration and validation process included matching water-surface elevations at 10 locations and velocity profiles at 30 cross sections throughout the study reach. Based on the calibration and validation results, the model is a representative simulation of the Ohio River steady-flow patterns below discharges of approximately 400,000 ft3/s.

  15. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land use patterns and landscaping practices that would: (1) help to reduce non-point sources of nutrient pollution in urban watersheds; and (2) be likely to gain public support. This research will inform sustainable development policy while furthering interdisciplinary research in the fields of planning and water resource management.

  16. Applying Data Mining Techniques to Chemical Analyses of Pre-drill Groundwater Samples within the Marcellus Formation Shale Play in Bradford County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Wen, T.; Niu, X.; Gonzales, M. S.; Li, Z.; Brantley, S.

    2017-12-01

    Groundwater samples are collected for chemical analyses by shale gas industry consultants in the vicinity of proposed gas wells in Pennsylvania. These data sets are archived so that the chemistry of water from homeowner wells can be compared to chemistry after gas-well drilling. Improved public awareness of groundwater quality issues will contribute to designing strategies for both water resource management and hydrocarbon exploration. We have received water analyses for 11,000 groundwater samples from PA Department of Environmental Protection (PA DEP) in the Marcellus Shale footprint in Bradford County, PA for the years ranging from 2010 to 2016. The PA DEP has investigated these analyses to determine whether gas well drilling or other activities affected water quality. We are currently investigating these analyses to look for patterns in chemistry throughout the study area (related or unrelated to gas drilling activities) and to look for evidence of analytes that may be present at concentrations higher than the advised standards for drinking water. Our preliminary results reveal that dissolved methane concentrations tend to be higher along fault lines in Bradford County [1]. Lead (Pb), arsenic (As), and barium (Ba) are sometimes present at levels above the EPA maximum contaminant level (MCL). Iron (Fe) and manganese (Mn) more frequently violate the EPA standard. We find that concentrations of some chemical analytes (e.g., Ba and Mn) are dependent on bedrock formations (i.e., Catskill vs. Lock Haven) while concentrations of other analytes (e.g., Pb) are not statistically significantly distinct between different bedrock formations. Our investigations are also focused on looking for correlations that might explain water quality patterns with respect to human activities such as gas drilling. However, percentages of water samples failing EPA MCL with respect to Pb, As, and Ba have decreased from previous USGS and PSU studies in the 1990s and 2000s. Public access to pre-drill datasets such as the one we are investigating will allow better understanding of the controls on ground water chemistry, i.e., natural and anthropogenic impacts. [1] Li et al. (2016) Journal of Contaminant Hydrology 195, 23-30.

  17. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    NASA Astrophysics Data System (ADS)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.

  18. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  19. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  20. A novel technique to monitor thermal discharges using thermal infrared imaging.

    PubMed

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  1. Characterisation of sources and pathways of microbiological pollutants to protect remote private water supplies

    NASA Astrophysics Data System (ADS)

    Neill, Aaron; Tetzlaff, Doerthe; Strachan, Norval; Hough, Rupert; Soulsby, Chris

    2016-04-01

    In order to comply with legislation such as the Water Framework Directive and to safeguard public health, there is a critical need to maintain the quality of water sources that are used to supply drinking water. Private water supplies (PWS) are still common in many rural areas in the UK, and are especially vulnerable to poor water quality, owing to the limited treatment they often receive and variable raw water quality in groundwater and surface water sources. A significant issue affecting PWS quality is contamination by faecal pathogens derived from grazing animals or agricultural practices. In Scotland, approximately 20,000 PWS serve around 200,000 people, with a number of these PWS consistently failing to meet water quality targets relating to coliform bacteria and E. coli, both of which can be indicative of faecal contamination (faecal indicator organisms - FIOs). The purpose of our study was to employ integrated empirical and modelling approaches from hydrology and microbiology to elucidate the nature of the still poorly-understood interplay between hydrological flow pathways which connect sources of pathogens to PWS sources, antecedent conditions, seasonality and pathogen transfer risk, for two catchments with contrasting land uses in Scotland: an agricultural catchment (Tarland Burn) and a montane catchment (Bruntland Burn). In the Tarland Burn, 15 years of spatially-distributed samples collected at the catchment-scale of FIO counts were analysed alongside hydrometric data to identify "hot spots" of faecal pathogen transfer risk and possible spatial and temporal controls. We also used a combination of tracer-based and numerical modelling approaches to identify the relationship between hydrological connectivity, flow pathways, and the mobilisation of faecal pathogens from different sources. In the Bruntland Burn, we coupled a pathogen storage, mobilisation and transport scheme to a previously developed tracer-informed hydrological model for the catchment to investigate temporal patterns and controls of pathogen transfer risk from different hydrological source areas identified from extensive past tracer and numerical modelling work: groundwater, hillslopes and the dynamic riparian zone.

  2. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Water-quality data were synthesized to evaluate factors that affect spatial and depth variability in water quality and to assess aquifer vulnerability to contaminants from geologic materials and those of human origin. The quality of shallow groundwater in the alluvial aquifer and shallow bedrock aquifer system has been adversely affected by development of agricultural and urban areas. Land use has altered the pattern and composition of recharge. Increased recharge from irrigation water has mobilized dissolved constituents and increased concentrations in the shallow groundwater. Concentrations of most constituents associated with poor or degraded water quality in shallow groundwater decreased with depth; many of these constituents are not geochemically conservative and are affected by geochemical reactions such as oxidation-reduction reactions. Groundwater age tracers provide additional insight into aquifer vulnerability and help determine if young groundwater of potentially poor quality has migrated to deeper parts of the bedrock aquifers used for drinking-water supply. Age-tracer results were used to group samples into categories of young, mixed, and old groundwater. Groundwater ages transitioned from mostly young in the water-table wells to mostly mixed in the shallowest bedrock aquifer, the Dawson aquifer, to mostly old in the deeper bedrock aquifers. Although the bedrock aquifers are mostly old groundwater of good water quality, several lines of evidence indicate that young, contaminant-bearing recharge has reached shallow to moderate depths in some areas of the bedrock aquifers. The Dawson aquifer is the most vulnerable of the bedrock aquifers to contamination, but results indicate that the older (deeper) bedrock aquifers are also vulnerable to groundwater contamination and that mixing with young recharge has occurred in some areas. Heavy pumping has caused water-level declines in the bedrock aquifers in some parts of the Denver Basin, which has the potential to enhance the transport of contaminants from overlying units. Results of this study are consistent with the existing conceptual understanding of aquifer processes and groundwater issues in the Denver Basin and add new insight into the vulnerability of the bedrock aquifers to groundwater contamination.

  3. The concentration-discharge slope as a tool for water quality management.

    PubMed

    Bieroza, M Z; Heathwaite, A L; Bechmann, M; Kyllmar, K; Jordan, P

    2018-07-15

    Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to manage eutrophication in agricultural catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Seasonal variations in the water quality of a tropical wetland dominated by floating meadows and its implication for conservation of Ramsar wetlands

    NASA Astrophysics Data System (ADS)

    Tuboi, Chongpi; Irengbam, Michelle; Hussain, Syed Ainul

    2018-02-01

    The Loktak Lake is a palustrine wetland located in the Barak-Chindwin river basin of Northeast India. The Lake is characterized by floating meadows of various thickness which support severely depleted endangered Eld's deer (Rucervus eldii) and sympatric hog deer (Axis porcinus). The southern part of the Lake is protected as Keibul Lamjao National Park as the last remaining habitat of the Eld's deer in India. The Loktak Lake has been included in the Montreux record as it is changing its ecological character due to anthropogenic pressures especially due to water pollution. We examined the seasonal pattern of water quality of Loktak Lake and compared it with the Keibul Lamjao National Park with a view to suggest measures for removal of this wetland from the Montreux record and for improved conservation. The evaluation of spatio-temporal variations in the water quality parameters over two years was carried out using multivariate statistical analysis. Hierarchical cluster analysis grouped the 11 sampling sites into four groups, less polluted, medium polluted, highly polluted and most polluted and the 12 months into three time periods. Principal Component Analysis identified three factors in the data structure which explained 92.9% of the total variance of the data set which was used to group the selected parameters according to common features and to evaluate the influence of each group on the overall variation in water quality. Significant difference in terms of water quality parameters were observed across different parts of the lake and seasons (ANOVA, p < 0.05). Our study revealed that the Loktak Lake is hypereutrophic leading to decreased water quality that has adverse impacts on ecosystem level processes. Restoration of the Lake requires an integrated approach in reduction of nutrient inputs, enhanced flushing mechanism and restoration of environmental flow which has been disrupted due to damming.

  5. Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future

    PubMed Central

    Weeks, John R.; Fink, Günther

    2013-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481

  6. Sachet drinking water in Ghana's Accra-Tema metropolitan area: past, present, and future.

    PubMed

    Stoler, Justin; Weeks, John R; Fink, Günther

    2012-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana's Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision.

  7. Drinking water quality in six small tea gardens of Sonitpur District of Assam, India, with special reference to heavy metals.

    PubMed

    Dutta, Joydev; Chetia, Mridul; Misra, A K

    2011-10-01

    Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.

  8. Escherichia coli as bioindicator of the groundwater quality in Palmerah District, West Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Dayanti, M. P.; Fachrul, M. F.; Wijayanti, A.

    2018-01-01

    The aim of thie research is to determine the quality of groundwater in Palmerah District, West Jakarta (6°11’24.32”S 106°47’49.88”E) by correlation between the depth of the well and the distance of septic tank with the distribution of Escherichia coli. The presence of E. coli is measured by using the Most Probable Number method. The distribution pattern of the E. coli was processed by Surfer Program. Research was conducted in April upto July 2017. The highest amount of E. coli always found in the Jati Pulo and Palmerah sub-district which is >1100 MPN/100 ml; while the lowest amount of E. coli found in the Kemanggisan sub-district and Slipi sub-district which is <3.0 MPN/100 ml; with every samples is obtained on the condition of pH 5 - 7, DO 0.81 - 7.65, and water temperature of 26 - 34°C. Refering to the Ministry of Health Regulation No. 492 of 2010 on the requirements of drinking water quality; it is shown that the groundwater in Palmerah District is not feasible to be directly consumed. This research provides the initial information to local sanitation to the distribution pattern of E. coli within the dense residential area.

  9. Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Supan, Peter; Koma, Zsófia

    2017-04-01

    Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean but also inland lake situations for MODIS and MERIS satellite sensor data. In addition to being relatively robust and less sensitive to atmospheric influence, this algorithm is also very simple, being based on the height of the 680 nm peak above the linear interpolation of the two neighbouring bands. However, not all satellite datasets suitable for FLH are catalogued for GoogleEarth Engine. In the current testing phase, Landsat 7, Landsat 8 (30 m resolution), and Sentinel 2 (20 m) are being tested. Landsat 7 has suitable band configuration, but has a strip error due to a sensor problem. Landsat 8 and Sentinel 2 lack a single spectral optimal for FLH. Sentinel 3 would be an optimal data source and has shown good performace during small-scale initial tests, but is not distributed globally for GoogleEarth Engine. In addition to FLH data from these satellites, our system delivers cloud and ice masking, qualitative suspended sediment data (based on the band closest to 600 nm) and true colour images, all within an easy-to-use Google Maps background. This allows on-demand understanding and interpretation of water quality patterns and processes in near real time. While the system is still under development, we believe it could significantly contribute to lake water quality management and monitoring worldwide.

  10. Aquatic chemistry of flood events

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Rodinov, Valery

    2015-04-01

    During flood events a major discharge of water and dissolved substances happens. However flood waters very much differs from water composition during low-water events. Aquatic chemistry of flood waters also is of importance at the calculation of loadings as well as they might have major impact on water quality in receiving water bodies (lakes, coastal waters and seas). Further flood regime of rivers is subjected to changes due to climate change and growing impact of human activities. The aim of this study is to analyse water chemical composition changes during flood events in respect to low water periods, character of high-water events and characteristics of the corresponding basin. Within this study, the concentrations of major dissolved substances in the major rivers of Latvia have been studied using monitoring data as well as field studies during high water/ low water events. As territories of studies flows of substances in river basins/subbasins with different land-use character and different anthropogenic impacts has been studied to calculate export values depending on the land-use character. Impact of relations between dissolved substances and relations in respect to budgets has been calculated. The dynamics of DOC, nutrient and major dissolved substance flows depending on landuse pattern and soil properties in Latvia has been described, including emissions by industrial and agricultural production. In these changes evidently climate change signals can be identified. The water chemistry of a large number of rivers during flood events has been determined and the possible impact of water chemical composition on DOC and nutrient flows has been evaluated. Long-term changes (1977-2013) of concentrations of dissolved substances do not follow linear trends but rather show oscillating patterns, indicating impact of natural factors, e.g. changing hydrological and climatic conditions. There is a positive correlation between content of inert dissolved substances and water discharge. This study did not reveal a clear correlation between the concentrations of dissolved substances and land-use types within the river basin. Conclusions in respect to calculation needed for loading calculations has been done. Acknowledgement: support from a Latvia Science Council grant "Stability of climate system and its impacts on water quality limiting biogeochemical flows in Latvia"

  11. Simulated Impacts of El Nino/Southern Oscillation on United States Water Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.

    The El Nino/Southern Oscillation alters global weather patterns with consequences for fresh water quality and supply. ENSO events impact regions and natural resource sectors around the globe. For example, in 1997-98, a strong El Ni?o brought warm ocean temperatures, flooding and record snowfall to the west coast of the US. Research on ENSO events and their impacts has improved long range weather predictions, potentially reducing the damage and economic cost of these anomalous weather patterns. Here, we simulate the impacts of four types of ENSO states on water resources in the conterminous United States. We distinguish between Neutral, El Ni?o,more » La Ni?a and strong El Ni?o years over the period of 1960-1989. Using climate statistics that characterize these ENSO states to drive the HUMUS water resources model, we examine the effects of 'pure' ENSO events, without complications from transition periods. Strong El Ni?o is not simply an amplification of El Ni?o; it leads to strikingly different consequences for climate and water resources.« less

  12. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  13. Combining Monitoring Data Spanning Multiple Temporal and Spatial Scales To Evaluate Water Quality Affecting Seagrass Habitat Extent in northwest Florida Estuaries

    EPA Science Inventory

    The ability to understand and manage ecological changes caused by anthropogenic stressors is often impeded by a lack of sufficient information to resolve pattern and change with sufficient resolution and extent. Increasingly, different types of environmental data are available t...

  14. REPORT TO STATES, REGIONS, AND PROGRAM OFFICES DEMONSTRATING THE USE OF TIME SERIES ANALYSIS TO IDENTIFY NON-POINT SOURCE IMPACTS.

    EPA Science Inventory

    Land use change, and the implementation of best management practices to remedy the adverse effects of land use change, alter hydrologic patterns, contaminant loading and water quality in freshwater ecosystems. These changes are not constant over time, but vary in response to di...

  15. Information support for decision making on dispatching control of water distribution in irrigation

    NASA Astrophysics Data System (ADS)

    Yurchenko, I. F.

    2018-05-01

    The research has been carried out on developing the technique of supporting decision making for on-line control, operational management of water allocation for the interfarm irrigation projects basing on the analytical patterns of dispatcher control. This technique provides an increase of labour productivity as well as higher management quality due to the improved level of automation, as well as decision making optimization taking into account diagnostics of the issues, solutions classification, information being required to the decision makers.

  16. Discovering temporal patterns in water quality time series, focusing on floods with the LDA method

    NASA Astrophysics Data System (ADS)

    Hélène Aubert, Alice; Tavenard, Romain; Emonet, Rémi; Malinowski, Simon; Guyet, Thomas; Quiniou, René; Odobez, Jean-Marc; Gascuel-Odoux, Chantal

    2013-04-01

    Studying floods has been a major issue in hydrological research for years. It is often done in terms of water quantity but it is also of interest in terms of water quality. Stream chemistry is a mix of solutes. They originate from various sources in the catchment, reach the stream by various flow pathways and are transformed by biogeochemical reactions at different locations. Therefore, we hypothesized that reaction of the stream chemistry to a rainfall event is not unique but varies according to the season (1), and the global meteorological conditions of the year (2). Identifying a typology of temporal chemical patterns of reaction to a rainfall event is a way to better understand catchment processes at the flood time scale. To answer this issue, we applied a probabilistic model (Latent Dirichlet Allocation or LDA (3)) mining recurrent sequential patterns to a dataset of floods. The dataset is 12 years long and daily recorded. It gathers a broad range of parameters from which we selected rainfall, discharge, water table depth, temperature as well as nitrate, dissolved organic carbon, sulphate and chloride concentrations. It comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. A set of 472 floods was automatically extracted (4). From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns that can easily be represented in graphics. These patterns correspond to typical reactions to rainfall events. The patterns themselves are carefully studied, as well as their repartition along the year and along the 12 years of the dataset. The novelties are fourfold. First, as a methodological point of view, we learn that hydrological data can be analyzed with this LDA model giving a typology of a multivariate chemical signature of floods. Second, we outline that chemistry parameters are sufficient to obtain meaningful patterns. There is no need to include hydro-meteorological parameters to define the patterns. However, hydro-meteorological parameters are useful to understand the processes leading to these patterns. Third, our hypothesis of seasonal specific reaction to rainfall is verified, moreover detailed; so is our hypothesis of different reactions to rainfall for years with different hydro-meteorological conditions. Fourth, this method allows the consideration of overlapping floods that are usually not studied. We would recommend the use of such model to study chemical reactions of stream after rainfall events, or more broadly after any hydrological events. The typology that has been provided by this method is a kind of bar code of water chemistry during floods. It could be well suited to compare different geographical locations by using the same patterns and analysing the resulting different pattern distributions. (1) Aubert, A.H. et al., 2012. The chemical signature of a livestock farming catchment: synthesis from a high-frequency multi-element long term monitoring. HESSD, 9(8): 9715 - 9741. (2) Aubert, A.H., Gascuel-Odoux, C., Merot, P., 2013. Annual hysteresis of water quality: A method to analyse the effect of intra- and inter-annual climatic conditions. Journal of Hydrology, 478(0): 29-39. (3) Blei, D. M.; Ng, A. Y.; Jordan, M. I., 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4-5): 993-1022. (4) de Lavenne, A., Cudennec, C., Streamflow velocity estimation in GIUH-type approach: what can neighbouring basins tell us? Poster Presentation - EGU General Assembly, 22-27 April 2012, Vienna, Austria.

  17. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    PubMed

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  18. Water-quality, discharge, and biologic data for streams and springs in the Highland Rim Escarpment of southeastern Bedford County, Tennessee

    USGS Publications Warehouse

    Hollyday, E.F.; Byl, T.D.

    1995-01-01

    From November 1994 through April 1995, streams and springs in 9 drainage basins were observed and sampled at 176 sites to obtain information on environmental quality near the Quail Hollow landfill, Bedford County, Tennessee. Reconnaissance data were collected to establish a regional pattern. Water samples from 26 seepage sites were analyzed to determine water-quality conditions. During the reconnaissance, conductivity ranged regionally from 17 to 617 microsiemens per centimeter. The greatest biologic diversity was in Bennett Branch, followed by Daniel Hollow, Prince, Powell and Renegar, County Line, and Anthony Branches, Hurricane Creek, and Anderton Branch, respectively. In general, conductivity was less than 50 microsiemens per centimeter at and upstream of the Chattanooga Shale but increased downstream to between 200 and 300 microsiemens per centimeter. Of the constituents and properties analyzed, only pH and four metals at six sites had values that were not within the limits set by the State of Tennessee for drinking water. Chloride and dissolved manganese concentrations were highest for a spring and a seep adjacent to the landfill. Scans indicated the presence of about 37 unidentified organic compounds at these same two sites.

  19. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface-water stations that have water-quality data, only one has chemical analyses from more than 10 samples. Therefore, sufficient data to characterize the area in detail are not available. Suspended sediment data are available only for a few surface- water stations in the area. Erosion rates generally are less than 1 acre-foot per square mile per year. Greater erosion rates are found within the badland areas. Water levels are periodically measured at 21 selected wells in Area 62. These observation wells are located mostly along the Rio San Jose and northeast of Gallup, New Mexico. The recharge to ground-water aquifers generally coincide with areas of greater precipitation in the mountainous areas. Depth to water below land surface is generally less than 200 feet. Well yields of 100 gallons per minute are common in most of the area. Ground-water quality is variable both within each aquifer and between aquifers. Water quality generally is best near recharge areas. Historical and current data related to stream discharge, water quality, and suspended sediment are available from computer files in the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) and through the National Water Data Exchange (NAWDEX).

  20. Water quality of the St. Clair River, Lake St. Clair, and their U.S. tributaries, 1946-2005

    USGS Publications Warehouse

    Healy, Denis F.; Chambers, Douglas B.; Rachol, Cynthia M.; Jodoin, Richard S.

    2007-01-01

    The St. Clair River/Lake St. Clair waterway forms an international boundary between the United States and Canada. The waters of the area are an important part of the cultural heritage of the area and serves as an important water-supply and power-generating resource; the waterway also supports an economy based largely on recreation, agriculture, and manufacturing. This report was undertaken as part of the Lake St. Clair Regional Monitoring Project for the purpose of providing a comprehensive assessment of the hydrological, chemical, and physical state of the surface water of Lake St. Clair and its tributaries. The data varied in focus and density over the period of compilation which in many cases this variation prevented the completion of statistical analyses because data did not meet minimum comparability or quality requirements for those tests. Comparison of water quality of the Belle, Black, Clinton, and Pine River Basins, as well as basins of minor rivers in the study area, showed that water quality in many of the tributaries, particularly the Clinton River and some of the minor rivers, was degraded compared to the water quality of the St. Clair River/Lake St. Clair waterway. Data analyses included comparison of nutrients, chloride, specific conductance, turbidity, biochemical oxygen demand (BOD), and pesticides among the basins and the St. Clair River. Median concentrations of total nitrate were well below the recommended USEPA total nitrogen ambient water-quality criterion of 0.54 mg/L as N for nutrient ecoregion VII for all study-area streams except the Clinton River. More than 93 percent of the phosphorus concentrations for the Belle, Black, Pine and minor river basins and 84 percent of the phosphorus concentrations for the Clinton River Basin are greater than the USEPA recommended ambient total phosphorus criterion of 0.033 mg/L for rivers and streams. Nine chloride concentrations exceeded the USEPA criterion maximum concentration (CMC) for chloride set at 860 mg/L for all study-area streams, with the six largest being in the Belle River Basin. Higher chloride concentrations were increasingly common from 2002 to 2005. The urban minor river basins had the highest median specific conductance, whereas the agricultural Pine River Basin had the lowest median specific conductance. The median values of BOD for the five basins in the study area ranged from 2.4 mg/L for the Pine River Basin to 3.2 mg/L for the Black and Clinton River Basins, whereas the median for the St. Clair River was 0.5 mg/L. In 1985, the highest concentrations of pesticides were found in samples from the mouth of the Clinton River; however, in 1996–98, the majority of high pesticide concentrations were found in samples from the Black River. Changing land-use patterns, specifically conversion of agricultural lands to urban/residential lands in the Clinton River Basin, may explain this difference. Trend analysis was done for four stream sites where adequate data were available. These analyses identified no significant water-quality changes at a stream site on the Black River, where land-use patterns have changed little in the past few decades. This stands in marked contrast to trend analysis for three stream sites in the Clinton River Basin, which has undergone significant land-use change. The changes at the Clinton River stream sites, ranging from 5 to 13 significant trends, were generally decreases in nutrients and increases in total dissolved solids (TDS) and chloride. The greater flow volume of the St. Clair River/Lake St. Clair waterway is able to assimilate incoming dissolved and suspended constituents from tributaries with little effect upon its overall water quality, although incomplete mixing may result in localized water-quality impairment downstream from tributary confluences. Mixing effects on Lake St. Clair water quality was also demonstrated in analysis of Escherichia coli (E. coli) data collected at paired nearshore/offshore sites, which reflected similarity in water quality among many paired sites.

  1. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically vary on a daily cycle. Consequently, salinity, water temperature, SSC, and dissolved-oxygen concentration vary spatially and temporally throughout the bay. Therefore, continuous measurements are needed to observe these changes. The purpose of this fact sheet is to provide information about these variables, as well as internet links to access these continuous water-quality data collected by the USGS.

  2. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.

    PubMed

    Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M

    2016-03-01

    This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  3. Urban rivers as hotspots of regional nitrogen pollution.

    PubMed

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-10-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3-5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishkind, H.H.

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of themore » region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.« less

  5. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    PubMed

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p < 0.05). The iron release was remarkably correlated to the redox potential, dissolved oxygen, pH, iron-oxidized bacteria and sulfate-reducing bacteria. The cumulative total iron release (r = 0.587, p < 0.05) and total iron release rate (r = 0.71, p < 0.022) were significantly influenced by the changes in flow velocity. In short, they tended first to increase and then to decrease with an increasing flow velocity with the threshold as approximately 40% of the critical laminar flow velocity (1.16 × 10 -3  m/s). For the pipes at the terminus of the drinking water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.

  6. Assessment of roadside surface water quality of Savar, Dhaka, Bangladesh using GIS and multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, Fahad; Fakhruddin, A. N. M.; Imam, MD. Toufick; Khan, Nasima; Abdullah, Abu Tareq Mohammad; Khan, Tanzir Ahmed; Rahman, Md. Mahfuzur; Uddin, Mohammad Nashir

    2017-11-01

    In this study, multivariate statistical techniques in collaboration with GIS are used to assess the roadside surface water quality of Savar region. Nineteen water samples were collected in dry season and 15 water quality parameters including TSS, TDS, pH, DO, BOD, Cl-, F-, NO3 2-, NO2 -, SO4 2-, Ca, Mg, K, Zn and Pb were measured. The univariate overview of water quality parameters are TSS 25.154 ± 8.674 mg/l, TDS 840.400 ± 311.081 mg/l, pH 7.574 ± 0.256 pH unit, DO 4.544 ± 0.933 mg/l, BOD 0.758 ± 0.179 mg/l, Cl- 51.494 ± 28.095 mg/l, F- 0.771 ± 0.153 mg/l, NO3 2- 2.211 ± 0.878 mg/l, NO2 - 4.692 ± 5.971 mg/l, SO4 2- 69.545 ± 53.873 mg/l, Ca 48.458 ± 22.690 mg/l, Mg 19.676 ± 7.361 mg/l, K 12.874 ± 11.382 mg/l, Zn 0.027 ± 0.029 mg/l, Pb 0.096 ± 0.154 mg/l. The water quality data were subjected to R-mode PCA which resulted in five major components. PC1 explains 28% of total variance and indicates the roadside and brick field dust settle down (TDS, TSS) in the nearby water body. PC2 explains 22.123% of total variance and indicates the agricultural influence (K, Ca, and NO2 -). PC3 describes the contribution of nonpoint pollution from agricultural and soil erosion processes (SO4 2-, Cl-, and K). PC4 depicts heavy positively loaded by vehicle emission and diffusion from battery stores (Zn, Pb). PC5 depicts strong positive loading of BOD and strong negative loading of pH. Cluster analysis represents three major clusters for both water parameters and sampling sites. The site based on cluster showed similar grouping pattern of R-mode factor score map. The present work reveals a new scope to monitor the roadside water quality for future research in Bangladesh.

  7. Effects of wastewater and combined sewer overflows on water quality in the Blue River basin, Kansas City, Missouri and Kansas, July 1998-October 2000

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Blevins, Dale W.

    2002-01-01

    Samples were collected from 16 base-flow events and a minimum of 10 stormflow events between July 1998 and October 2000 to characterize the effects of wastewater and combined sewer overflows on water quality in the Blue River Basin, Kansas City, Missouri and Kansas. Waterquality effects were determined by analysis of nutrients, chloride, chemical and biochemical oxygen demand, and suspended sediment samples from three streams (Blue River, Brush Creek, and Indian Creek) in the basin as well as the determination of a suite of compounds known to be indicative of wastewater including antioxidants, caffeine, detergent metabolites, antimicrobials, and selected over-the-counter and prescription pharmaceuticals. Constituent loads were determined for both hydrologic regimes and a measure of the relative water-quality impact of selected stream reaches on the Blue River and Brush Creek was developed. Genetic fingerprint patterns of Escherichia coli bacteria from selected stream samples were compared to a data base of knownsource patterns to determine possible sources of bacteria. Water quality in the basin was affected by wastewater during both base flows and stormflows; however, there were two distinct sources that contributed to these effects. In the Blue River and Indian Creek, the nearly continuous discharge of treated wastewater effluent was the primary source of nutrients, wastewater indicator compounds, and pharmaceutical compounds detected in stream samples. Wastewater inputs into Brush Creek were largely the result of intermittent stormflow events that triggered the overflow of combined storm and sanitary sewers, and the subsequent discharge of untreated wastewater into the creek. A portion of the sediment, organic matter, and associated constituents from these events were trapped by a series of impoundments constructed along Brush Creek where they likely continued to affect water quality during base flow. Concentrations and loads of most wastewater constituents in the Blue River and Indian Creek were significantly greater than in Brush Creek, especially during base flow. However, wastewater indicator compound concentrations were sometimes greater in some Brush Creek stormflow samples. Selected stream reaches along the mid-portion of Brush Creek showed higher effects relative to other sites, primarily because these sites were in impounded reaches with the greatest density of wastewater inputs, or had relatively small drainage areas.

  8. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.

  9. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at smaller scales using locally available data.

  10. Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.

    PubMed

    Chaudhuri, Sriroop; Ale, Srinivasulu

    2013-05-01

    A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    NASA Astrophysics Data System (ADS)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  12. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey.

    PubMed

    Baba, Alper; Gunduz, Orhan

    2010-04-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.

  13. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    PubMed

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Environmental tracers for elucidating the weathering process in a phosphogypsum disposal site: Implications for restoration

    NASA Astrophysics Data System (ADS)

    Pérez-López, Rafael; Nieto, José M.; de la Rosa, Jesús D.; Bolívar, Juan P.

    2015-10-01

    This study provides geochemical data with the aim of identifying and tracing the weathering of phosphogypsum wastes stack-piled directly on salt-marshes of the Tinto River (Estuary of Huelva, SW Spain). With that purpose, different types of highly-polluted acid solutions were collected in the stack. Connection between these solutions and the estuarine environment was studied by geochemical tracers, such as rare earth elements (REE) and their North American Shale Composite (NASC)-normalized patterns and Cl/Br ratios. Phosphogypsum-related wastewaters include process water stored on the surface, pore-water contained in the phosphogypsum profile and edge outflow water emerging from inside the stack. Edge outflow waters are produced by waterlogging at the contact between phosphogypsum and the nearly impermeable marsh surface and discharge directly into the estuary. Process water shows geochemical characteristics typical of phosphate fertilizers, i.e. REE patterns with an evident enrichment of heavy-REE (HREE) with respect to middle-REE (MREE) and light-REE (LREE). By contrast, REE patterns of deeper pore-water and edge outflows are identical to those of Tinto River estuary waters, with a clear enrichment of MREE relative to LREE and HREE denoting influence of acid mine drainage. Cl/Br ratios of these solutions are very close to that of seawater, which also supports its estuarine origin. These findings clearly show that process water is not chemically connected with edge outflows through pore-waters, as was previously believed. Phosphogypsum weathering likely occurs by an upward flow of seawater from the marsh because of overpressure and permeability differences. Several recommendations are put forward in this study to route restoration actions, such as developing treatment systems to improve the quality of the edge outflow waters before discharging to the receiving environment.

  15. Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China.

    PubMed

    Gan, Huayang; Zhuo, Muning; Li, Dingqiang; Zhou, Yongzhang

    2008-05-01

    Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year's investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r > or = 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.

  16. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to be most useful for low streamflow simulations. The Ardmore BLTM/QUAL2E model was calibrated and verified with water-quality data from nine sites where two sets of five samples were collected. The streamflow during the water-quality sampling in Caddo Creek at site 7 ranged from 8.4 to 20 cubic feet per second, of which about 5.0 to 9.7 cubic feet per second was contributed by Sand Creek. The model simulates the fate and transport of 10 water-quality constituents. The model was verified by running it using data that were not used in calibration; only phytoplankton were not verified.Measured and simulated concentrations of dissolved oxygen exhibited a marked daily pattern that was attributable to waste loading and algal activity. Dissolved-oxygen measurements during this study and simulated dissolved-oxygen concentrations using the Ardmore Water-Quality Model, for the conditions of this study, illustrate that the dissolved-oxygen sag curve caused by the upstream wastewater discharges is confined to Sand Creek.

  17. Acid-base accounting to predict post-mining drainage quality on surface mines.

    PubMed

    Skousen, J; Simmons, J; McDonald, L M; Ziemkiewicz, P

    2002-01-01

    Acid-base accounting (ABA) is an analytical procedure that provides values to help assess the acid-producing and acid-neutralizing potential of overburden rocks prior to coal mining and other large-scale excavations. This procedure was developed by West Virginia University scientists during the 1960s. After the passage of laws requiring an assessment of surface mining on water quality, ABA became a preferred method to predict post-mining water quality, and permitting decisions for surface mines are largely based on the values determined by ABA. To predict the post-mining water quality, the amount of acid-producing rock is compared with the amount of acid-neutralizing rock, and a prediction of the water quality at the site (whether acid or alkaline) is obtained. We gathered geologic and geographic data for 56 mined sites in West Virginia, which allowed us to estimate total overburden amounts, and values were determined for maximum potential acidity (MPA), neutralization potential (NP), net neutralization potential (NNP), and NP to MPA ratios for each site based on ABA. These values were correlated to post-mining water quality from springs or seeps on the mined property. Overburden mass was determined by three methods, with the method used by Pennsylvania researchers showing the most accurate results for overburden mass. A poor relationship existed between MPA and post-mining water quality, NP was intermediate, and NNP and the NP to MPA ratio showed the best prediction accuracy. In this study, NNP and the NP to MPA ratio gave identical water quality prediction results. Therefore, with NP to MPA ratios, values were separated into categories: <1 should produce acid drainage, between 1 and 2 can produce either acid or alkaline water conditions, and >2 should produce alkaline water. On our 56 surface mined sites, NP to MPA ratios varied from 0.1 to 31, and six sites (11%) did not fit the expected pattern using this category approach. Two sites with ratios <1 did not produce acid drainage as predicted (the drainage was neutral), and four sites with a ratio >2 produced acid drainage when they should not have. These latter four sites were either mined very slowly, had nonrepresentative ABA data, received water from an adjacent underground mine, or had a surface mining practice that degraded the water. In general, an NP to MPA ratio of <1 produced mostly acid drainage sites, between 1 and 2 produced mostly alkaline drainage sites, while NP to MPA ratios >2 produced alkaline drainage with a few exceptions. Using these values, ABA is a good tool to assess overburden quality before surface mining and to predict post-mining drainage quality after mining. The interpretation from ABA values was correct in 50 out of 52 cases (96%), excluding the four anomalous sites, which had acid water for reasons other than overburden quality.

  18. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.

    PubMed

    Moreno-Mateos, David; Mander, Ulo; Comín, Francisco A; Pedrocchi, César; Uuemaa, Evelyn

    2008-01-01

    Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.

  19. Hydrological influences on the water quality trends in Tamiraparani Basin, South India.

    PubMed

    Ravichandran, S

    2003-09-01

    Water quality variables--Turbidity, pH, Electrical Conductivity (EC), Chlorides and Total Hardness (TH) were monitored at a downstream location in the Tamiraparani River during 1978-1992. The observations were made at weekly intervals in a water treatment and supply plant using standard methods. Graphical and statistical analyses were used for data exploration, trend detection and assessment. Box-Whisker plots of annual and seasonal changes in variables indicated apparent trends being present in the data and their response to the seasonal influence of the monsoon rainfall. Further, the examination of the median values of the variables indicated that changes in the direction of trend occurred during 1985-1986, especially in pH, EC and TH. The statistical analyses were done using non-parametric methods, the ANCOVA on rank transformed data and the Seasonal Man-Kendall test. The presence of monotonic trend in all the water quality variables was confirmed, however, with independent direction of change. The trend line was fitted by the method of least squares. The estimated values indicated significant increases in EC (28 microS cm(-1)) while significant decreases were observed in turbidity (90 NTU), pH (0.78), and total hardness (23 ppm) in a span of 15 years. The changes induced in river flow by the addition of a stabilizing reservoir, the influence of seasonal and spatial pattern of monsoon rainfall across the river basin and the increased agriculture appear causative factors for the water quality trends seen in the Tamiraparani River system.

  20. A New Approach to Look at the Electrical Conductivity of Streamflow: Decomposing a Bulk Signal to Recover Individual Solute Concentrations at High-Frequency

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Van Breukelen, B. M.

    2017-12-01

    The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, economic and management efforts can still be a barrier to high-resolution water quality instrumentation. We propose a new framework to investigate the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information on ion content which can be isolated to retrieve solute concentrations at high resolution. The approach can already be applied to a number of datasets worldwide where water quality campaigns are conducted, provided continuous EC measurements can be collected. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e. the specific contributions of the major ions which conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations during periods where solute measurements are not available. The approach is validated on a hydrochemical dataset from Plynlimon, Wales. Results show that the decomposition of EC is feasible and for at least two major elements the methodology provided improved estimates of high-frequency solute dynamics. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.

  1. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA.

    PubMed

    Lefcheck, Jonathan S; Wilcox, David J; Murphy, Rebecca R; Marion, Scott R; Orth, Robert J

    2017-09-01

    Interactions among global change stressors and their effects at large scales are often proposed, but seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, and spatially extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and constitute a globally important carbon sink, are among the most vulnerable habitats on the planet. Here, we unite 31 years of high-resolution aerial monitoring and water quality data to elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-ranging and severe ecological and economic consequences. We go on to identify an interaction between decreasing water clarity and warming temperatures as the primary drivers of this trend. Declining clarity has gradually reduced eelgrass cover the past two decades, primarily in deeper beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of acute warming, leading to recent instances of decline approaching 80%. While degraded water quality has long been known to influence underwater grasses worldwide, we demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a broader perspective into local water quality management, in the Chesapeake Bay and in the many other coastal systems facing similar stressors. © 2017 John Wiley & Sons Ltd.

  2. Groundwater ages and mixing in the Piceance Basin natural gas province, Colorado

    USGS Publications Warehouse

    McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.

    2013-01-01

    Reliably identifying the effects of energy development on groundwater quality can be difficult because baseline assessments of water quality completed before the onset of energy development are rare and because interactions between hydrocarbon reservoirs and aquifers can be complex, involving both natural and human processes. Groundwater age and mixing data can strengthen interpretations of monitoring data from those areas by providing better understanding of the groundwater flow systems. Chemical, isotopic, and age tracers were used to characterize groundwater ages and mixing with deeper saline water in three areas of the Piceance Basin natural gas province. The data revealed a complex array of groundwater ages (50,000 years) and mixing patterns in the basin that helped explain concentrations and sources of methane in groundwater. Age and mixing data also can strengthen the design of monitoring programs by providing information on time scales at which water quality changes in aquifers might be expected to occur. This information could be used to establish maximum allowable distances of monitoring wells from energy development activity and the appropriate duration of monitoring.

  3. Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps.

    PubMed

    Jin, Y-H; Kawamura, A; Park, S-C; Nakagawa, N; Amaguchi, H; Olsson, J

    2011-10-01

    Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River basin for six years and transformed into monthly mean values. With the primary objective to understand spatiotemporal characteristics of the data, a methodologically systematic application of a Self-Organizing Map (SOM) was made. The SOM application classified the environmental monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each station on a monthly basis identified the spatiotemporal distribution for the first time in the study area. Consequently, the SOM application provided useful information that the sub-basin containing a metropolitan city is associated with deteriorating water quality and should be monitored and managed carefully during spring and summer for water quality improvement in the river basin.

  4. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    NASA Astrophysics Data System (ADS)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a safe piped municipal water service may still be consuming unsafe groundwater.

  5. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE PAGES

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...

    2017-03-06

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  6. The biomass, abundance, and distribution pattern of starfish Asterias sp. (Echinodermata: Asteroidea) in East Coast of Surabaya

    NASA Astrophysics Data System (ADS)

    Dewi, N. N.; Pursetyo, K. T.; Aprilianitasari, L.; Zakaria, M. H.; Ramadhan, M. R.; Triatmaja, R. A.

    2018-04-01

    This study aims to determine the biomass, density, and distribution patterns of Asterias sp. Samples were collected from three locations such as Wonokromo, Dadapan and Juanda, each divided into 3 zones. In each zone, samples were taken as many as 5 repetitions using swept area method. Temporarily, the highest biomass of starfish was 2.95 gr/m2 in Dadapan Zone on January. Spatially, biomass of starfish was found in Dadapan Zone (3,35 gr/m2). Similarly, the high density was also found in Dadapan Zone on January (9 ind/10 m2). In general, the distributionpattern of starfish in East Coast Surabaya throughspatial and temporal showed that the pattern of starfish was grouping distribution (Id value > 1) for Dadapan and Juanda, and uniform for Wonokromo. Oceanographic condition, antropogenic activity, and water quality in East Cost of Surabaya become important things which is affected the biomass, densityand distribution pattern of starfish. The knowledge of starfish biomass and density is very important given that this biota has ecological value as a balancing ecosystem in the waters.

  7. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  8. Residence time, chemical and isotopic analysis of nitrate in the groundwater and surface water of a small agricultural watershed in the Coastal Plain, Bucks Branch, Sussex County, Delaware

    USGS Publications Warehouse

    Clune, John W.; Denver, Judith M.

    2012-01-01

    Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.

  9. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  10. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual modelsmore » of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.« less

  11. A low-cost intervention for cleaner drinking water in Karachi, Pakistan.

    PubMed

    Luby, S; Agboatwalla, M; Raza, A; Sobel, J; Mintz, E; Baier, K; Rahbar, M; Qureshi, S; Hassan, R; Ghouri, F; Hoekstra, R M; Gangarosa, E

    2001-01-01

    To pilot test an inexpensive, home-based water decontamination and storage system in a low-income neighborhood of Karachi. Fifty households received a 20-L plastic water storage vessel with a high-quality spout and a regular supply of diluted hypochlorite solution. Twenty-five control households were recruited. Water samples were collected at baseline and during unannounced follow-up visits 1, 3, 6, and 10 weeks later. Baseline drinking water samples among intervention households were contaminated with a mean 9397 colony-forming units (cfu)/100 mL of thermotolerant coliforms compared with a mean 10,990 cfu/100 mL from controls. After intervention the mean concentration of thermotolerant coliforms decreased by 99.8% among the intervention households compared with an 8% reduction among controls. Two years after vessel distribution, 34 (68%) of the families were still using the vessel. Thirteen of the households had stopped using their vessel because it had broken after more than 6 months of use, a pattern most consistent with ultraviolet radiation-induced degradation of the plastic. In a highly contaminated environment, a specifically designed water storage container and in-home water chlorination was acceptable and markedly improved water quality. Where plastic water vessels will be exposed to substantial sunlight, ultraviolet light stabilizers should be incorporated into the plastic.

  12. Production of drinking water from raw water containing cyanobacteria--pilot plant studies for assessing the risk of microcystin breakthrough.

    PubMed

    Schmidt, Wido; Willmitzer, Hartmut; Bornmann, Katrin; Pietsch, Jörg

    2002-01-01

    Toxins in cyanobacteria are a recognized risk in the treatment of drinking-water treatment. Cyanotoxins can occur in two modifications: cell bound and dissolved in water. The process of toxin release may occur naturally, but it also may be induced through the processes of drinking-water treatment. Both causes of release are relevant to the safety of drinking water. This study investigated cyanotoxin release and elimination through different treatment trains in systematic pilot-scale studies with water from the Weida Reservoir, in Thuringia, Germany. The Weida Reservoir is a dimictic mesoeutrophic reservoir typical for a number of mountainous areas in Europe, with Planktothrix rubescens as the dominant phytoplankton species, and shows a characteristic seasonal pattern of population development and microcystin occurrence. To assess the risk of microcystin breakthrough, the pilot-scale results as well as results of laboratory-scale experiments were used for developing a kinetic model of toxin release in relation to elimination. By calculating removal efficiency of total microcystins (cell bound and dissolved) for different treatment trains, raw water quality was related to the quality targets for finished water, and breakthrough risks could be calculated for given treatment trains and varying cyanobacterial population densities in the reservoir. Copyright 2002 Wiley Periodicals, Inc.

  13. Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia

    2016-01-01

    Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.

  14. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    PubMed

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content in drinking water is identified in the south region. In addition, the nitrate and ammonia data of the Wei River suggests decreasing nitrification rate in the study area from inland to estuary. High fluoride concentration, larger than 1 mg/L, is also detected in an area of about 50% of the study region. The saltwater intrusion is analyzed to be responsible for part of dissolution of minerals containing fluoride. Therefore, water treatment before drinking is needed in urgent to reduce the health expose risk.

  15. Identification of hotspots and trends of fecal surface water pollution in developing countries

    NASA Astrophysics Data System (ADS)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal pollution is increasing from 1990 to 2010 with increased loadings and larger number of river kilometers with high fecal pollution. Fecal pollution is mainly caused by the domestic sector, and hence, the sanitation type, collection and treatment (level) of collected wastewater are highly important to ensure good quality of water bodies.

  16. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    PubMed

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Climate change and wetland loss impacts on a western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-11-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  18. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments

    PubMed Central

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging footprint. PMID:26630575

  19. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    PubMed

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. Published by Elsevier B.V.

  20. Assessing Landscape Connectivity and River Water Quality Changes Using an 8-Day, 30-Meter Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2014-12-01

    Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions affect water quality.

  1. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.

  2. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments.

    PubMed

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging footprint.

  3. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  4. Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; Bitew, Menberu M.; ...

    2017-06-12

    There is growing interest in renewable and domestically produced energy which motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10–12 years) to achieve high yields. The primary differences in managing woody feedstocks for bioenergy production vs for pulp/sawtimber production include a higher frequency of pesticide and fertilizer applications, whole-tree removal, and greater ground disturbance (i.e., more bare ground during stand establishment and more frequent disturbance). And while the effects of pulp/sawtimber production on water quality are well-studied, the effects ofmore » growing short-rotation loblolly pine on water quality and the efficacy of current forestry Best Management Practices (BMPs) have not been evaluated for this emerging management system. We used a watershed-scale experiment in a before-after, control-impact design to evaluate the effects of growing loblolly pine for bioenergy on water quality in the Upper Coastal Plain of the southeastern U.S. Intensive management for bioenergy production and implementation of current forestry BMPs occurred on ~50% of two treatment watersheds, with one reference watershed in a minimally managed pine forest. Water quality metrics (nutrient and pesticide concentrations) were measured in stream water, groundwater, and interflow (i.e., shallow subsurface flow) for a two-year pre-treatment period, and for 3.5 years post-treatment. After 3.5 years, there was little change to stream water quality. Here, we report on observations where there were a few occurrences of saturated overland flow, but there were sediments and water dissipated within the streamside management zones in over 75% of these instances. Stream nutrient concentrations were low and temporal changes mainly reflected seasonal patterns in nitrogen cycling. Nitrate concentrations increased in groundwater post-treatment to < 2 mg N L -1, and these concentrations were below the U.S. drinking water standard (10 mg N L -1). Applied pesticides were almost always below detection in streams and groundwater. Overall, these findings highlight that current forestry BMPs can protect stream water quality from intensive pine management for bioenergy in the first 3.5 years. However, groundwater quality and transit times need to be considered in these low-gradient watersheds of the southeastern U.S. that are likely to become an important location for woody bioenergy feedstock production.« less

  5. Industrial water supplies of the United States

    USGS Publications Warehouse

    Love, Samuel K.

    1954-01-01

    The availability of adequate supplies of water of suitable quality determines in large measure the potential for industrial development in any community. However, the pattern of availability of water for industrial use is not so generally recognized. It is the purpose of this paper to point out the more important factors affecting the distribution and quality of existing and potential sources of water with particular reference to industrial development. From a nation-wide standpoint our country is blessed with plenty of water. If the available water could be distributed completely in accordance with needs, it is probable that no part of the country would suffer from lack of water either now or in the foreseeable future. As nature has not dealt so providently however, or perhaps as man has not been able to cope with the vagaries of nature, we find ourselves beset with droughts and floods. Added to the natural deficiencies of nature are man-made difficulties such as lowered ground-water tables and salt-water encroachment of fresh water supplies resulting from overpumping of ground waters, pollution in all its forms, and wasteful use of water for many purposes. It becomes necessary, therefore, to study and evaluate our most important natural resource in order that we may use it more intelligently. This is particularly true in regard to continued industrial growth of our country.

  6. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

    NASA Astrophysics Data System (ADS)

    Huang, Lihao; Li, Gang; Tao, Leren

    2016-07-01

    Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

  7. Breeding for sustainable production in a changing climate – understanding the physiological basis of genetic by environmental interactions

    USDA-ARS?s Scientific Manuscript database

    Abiotic stresses (drought, cold, heat, excess, water, salinity) result in loses in yield and quality of crops. In addition, these stresses limit the areas that can be cultivated because of yield instability and crop loss. Global warming models predict erratic weather patterns making the impact of th...

  8. Management of the Israeli National Water System under Uncertainty

    NASA Astrophysics Data System (ADS)

    Shamir, U.; Housh, M.; Ostfeld, A.; Zaide, M.

    2009-12-01

    Uncertainty in our region is due to the natural variability of hydrological patterns, with recurring extended droughts, reduced average and broadening variability of recharge that seem to indicate the effect of climate change, as well as to deterioration of water quality in the natural sources, to population growth and distribution, to shifting demand patterns among consumer sectors, and to expected future regional water agreements. These factors combine to create a challenging environment in which highly stressed water resources and water systems have to be developed, operated and managed. The natural sources have been used to their sustainable capacity and often beyond. The main policy responses are a shift of fresh water from agriculture to the cities, replacing it with treated wastewater for irrigation, and a major program for construction of sea-water desalination plants and the associated infrastructure needed for its integration into the supply systems. Organizational reforms, regulation, and demand management options are also being developed, including full-cost pricing. Management of the water resources and systems under these conditions requires a long-term perspective. The methodologies for supporting management decisions that have been used to date by the Israeli Water Authority include evaluation by scenarios, simulation, and optimization with sensitivity analysis. We review existing approaches and models for management of the Israeli water system (Zaide 2006) and then present some new methodologies for addressing operational decisions under hydrological uncertainty, which include generation of tradeoffs between the expected value and variability of the outcomes, and an Info-Gap (Ben-Haim 2006) based approach. These methodologies are demonstrated on examples that emulate portions of a regional water system and are then applied to the Israeli National Water System. Ben-Haim, Y. (2006) Info-Gap Theory: Decisions under Severe Uncertainty, 2nd Ed., Academic Press, London. Zaide, M. (2006) A Model for Management of Water Quantity and Quality in the Israeli National System", MSc Thesis, Faculty of Civil Engineering, Technion. http://urishamir.wri.technion.ac.il/files/documents/Miki%20Zaide%20-%20Thesis%20Final%2015.03.06.pdf

  9. Water quality and aquatic toxicity data of 2002 spring thaw conditions in the upper Animas River watershed, Silverton, Colorado

    USGS Publications Warehouse

    Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.

    2002-01-01

    This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend during the course of the study.

  10. Design and routing of storm flows in an urbanized watershed without surface streams

    NASA Astrophysics Data System (ADS)

    Schaad, David E.; Farley, Jon; Haynes, Criss

    2009-09-01

    SummaryIn the karst geologic setting of Greenbrier County, West Virginia, USA, the drainage network in the watersheds do not support surface streams, but depend entirely on sinkholes, solution cavities, or injection wells as discharge points for accumulated storm water. By providing a systematic framework for designing and routing storms in this geologic setting, functioning retention and attenuation structures have been developed which are protective of water quality while still safely discharging storm water in a controlled manner to the subsurface. This article provides a rationale for the design methodology and then examines the successful implementation of an attenuation and storm water retention design to manage the surface discharges for an entire watershed. By examining the pre-development flows and evaluating future land use patterns (i.e., installation of impermeable surfaces over large areas), as well as sinkhole conveyance capabilities, it was necessary to examine alternative disposal options for collected storm water as well as devise a basin-wide management strategy to coordinate future development of the watershed. Additionally, innovative water quality measures were implemented to help prevent contamination from preferentially infiltrating into the subsurface as a result of these land development activities.

  11. Effects of land use and municipal wastewater treatment changes on stream water quality.

    PubMed

    Ha, S R; Bae, M S

    2001-07-01

    This study was undertaken to analyze the quantitative impact of a municipal wastewater treatment operation on the long-term water quality changes in a tributary of the Han-river, Korea from 1994 to 1999. Changes of land use pattern in the study watershed are quantitatively analyzed on the basis of land use maps that were created by classifying Landsat TM images acquired in April 1994 and March 1999. During this period, the average increase of land use area in terms of residence, cultivation, and barren was 5.89, 0.13, and 0.12%, respectively, and the corresponding decrease in water and forest area was 0.21 and 0.16%. The annual average reductions of BOD, T-N, and T-P by the municipal wastewater treatment operation were about 89, 11 and 27%, respectively. Spatial analysis of the pollution discharge from watershed was undertaken using a geographic information system (GIS) based model. A clear reciprocal relationship was found between the basin-wide self-purification coefficient and the watershed form ratio excepting a catchment area with water drain facilities. Due to land use changes over the five year study period, water quality change in terms of BOD, T-N, and T-P were (+)1.04 mg l(-1) (corresponding to a 13.7% increase of pollution), (+)0.58 mgl(-1) (10.0% increase), and (-)0.01 mg l(-1) (1.6% decrease). On the other hand, the effect of water quality restoration assessed by outward appearance during the same period was about 67.6, 39, and 36.5%, respectively. Consequently, it is understood that total stream water quality recovery in terms of BOD, T-N, and T-P were 81.3, 49.0, and 38.1% respectively, and that this included a negative contribution resulting from increased land use and a positive contribution due to the wastewater treatment operation at Inchon.

  12. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics

    NASA Astrophysics Data System (ADS)

    Ai, L.; Shi, Z. H.; Yin, W.; Huang, X.

    2015-04-01

    Landscape characteristics are widely accepted as strongly influencing stream water quality in heterogeneous watersheds. Understanding the relationships between landscape and specific water contaminant can greatly improve the predictability of potential contamination and the assessment of contaminant export. In this work, we examined the combined effects of watershed complexity, in terms of land use and physiography, on specific water contaminant across watersheds close to the Danjiangkou Reservoir. The land use composition, land use pattern, morphometric variables and soil properties were calculated at the watershed scale and considered potential factors of influence. Due to high co-dependence of these watershed characteristics, partial least squares regression was used to elucidate the linkages between some specific water contaminants and the 16 selected watershed characteristic variables. Water contaminant maps revealed spatial and seasonal heterogeneity. The dissolved oxygen values in the dry season were higher than those in the wet season, whereas the other contaminant concentrations displayed the opposite trend. The studied watersheds which are influenced strongly by urbanization, showed higher levels of ammonia nitrogen, total phosphorus, potassium permanganate index and petroleum, and lower levels of dissolved oxygen. The urban land use, largest patch index and the hypsometric integral were the dominant factors affecting specific water contaminant.

  13. Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida

    USGS Publications Warehouse

    Broska, J.C.; Knochenmus, L.A.

    1996-01-01

    The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate the travel path of water as it enters the model area under a set of given conditions. Within the model area, simulated flow in the intermediate aquifer system originates primarily from the northwestern boundary. Simulated flow in the Upper Floridan aquifer originates in lower model layers (deeper flow zones) and ultimately can be traced to the southeastern and northwestern boundaries. Volumetric budgets calculated from numerical simulation of a hypothetical well field indicate that the area of contribution to the well field changes seasonally. Although ground-water flow patterns change with wet and dry seasons, most water enters the well-field flow system through lower parts of the Upper Floridan aquifer from a southeastern direction. Moreover, particle tracking indicated that ground-water flow paths with strictly lateral pathlines in model layers correspond to the intermediate aquifer system, whereas particles traced through model layers corresponding to the Upper Floridan aquifer had components of vertical and lateral flow.

  14. Pattern recognition analysis and classification modeling of selenium-producing areas

    USGS Publications Warehouse

    Naftz, D.L.

    1996-01-01

    Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.

  15. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  16. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport, and lake water quality. The integrated model will be validated using a comprehensive observational database that includes soil moisture, evapotranspiration, stomatal conductance, streamflow, stream and lake water quality, and crop yields and productivity. Integrated scenarios will be developed to synthesize decision-maker perspectives, alternative approaches to resource governance, plausible trends in demographic and economic drivers, and model projections under alternate climate and land use regimes to understand future conditions of the watershed and its ecosystem services. The quantitative data and integrated scenarios will then be linked to evaluate governance of water and land use.

  17. Macroalgal diversity along an inshore-offshore environmental gradient in the Jakarta Bay - Thousand Islands reef complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Draisma, Stefano G. A.; Prud'homme van Reine, Willem F.; Herandarudewi, Sekar M. C.; Hoeksema, Bert W.

    2018-01-01

    The Jakarta Bay - Thousand Islands reef complex extends to more than 80 km in northwest direction from the major conurbation Jakarta (Indonesia) along a pronounced inshore to offshore environmental gradient. The present study aims to determine to what extent environmental factors can explain the composition of macroalgal communities on the reefs off Jakarta. Therefore, the presence-absence of 67 macroalgal taxa was recorded for 27 sampling sites along the inshore-offshore disturbance gradient and analysed with substrate variables and water quality variables. The macroalgal richness pattern matches the pattern of other reef taxa. The 27 sites could be assigned to one of four geographical zones with 85% certainty based on their macroalgal taxon assemblages. These four zones (i.e., Jakarta Bay and, respectively, South, Central, and North Thousand Islands) had significantly different macroalgal assemblages, except for the North and South zones. Along the nearshore gradient there was a greater shift in taxon composition than within the central Thousand Islands. The patterns of ten habitat and water quality variables resembled the macroalgal diversity patterns by 56%. All ten variables together explained 69% of the variation in macroalgal composition. Shelf depth, % sand cover, gelbstoff/detrital material, chlorophyll a concentration, seawater surface temperature, and % dead coral cover were the best predictors of seaweed flora composition. Furthermore, 44 macroalgal species represented new records for the area. The present study provides important baseline data of macroalgae in the area for comparison in future biodiversity assessments in the area and elsewhere in the region.

  18. Activity of water in aqueous systems; a frequently neglected property.

    PubMed

    Blandamer, Mike J; Engberts, Jan B F N; Gleeson, Peter T; Reis, Joao Carlos R

    2005-05-01

    In this critical review, the significance of the term 'activity' is examined in the context of the properties of aqueous solutions. The dependence of the activity of water(l) at ambient pressure and 298.15 K on solute molality is examined for aqueous solutions containing neutral solutes, mixtures of neutral solutes and salts. Addition of a solute to water(l) always lowers its thermodynamic activity. For some solutes the stabilisation of water(l) is less than and for others more than in the case where the thermodynamic properties of the aqueous solution are ideal. In one approach this pattern is accounted for in terms of hydrate formation. Alternatively the pattern is analysed in terms of the dependence of practical osmotic coefficients on the composition of the aqueous solution and then in terms of solute-solute interactions. For salt solutions the dependence of the activity of water on salt molalities is compared with that predicted by the Debye-Hückel limiting law. The analysis is extended to consideration of the activities of water in binary aqueous mixtures. The dependence on mole fraction composition of the activity of water in binary aqueous mixtures is examined. Different experimental methods for determining the activity of water in aqueous solutions are critically reviewed. The role of water activity is noted in a biochemical context, with reference to the quality, stability and safety of food and finally with regard to health science.

  19. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution

  20. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water.

    PubMed

    Wasana, Hewa M S; Aluthpatabendi, Dharshani; Kularatne, W M T D; Wijekoon, Pushpa; Weerasooriya, Rohan; Bandara, Jayasundera

    2016-02-01

    High prevalence of chronic kidney disease of unknown etiology (CKDu) in some regions of the world is suspected mainly due to a toxin-mediated renal failure. We examined the incidence of CKDu and potable chemical water quality in a CKDu-affected region. This region has been identified as a high-risk zone for CKDu (location: latitude: 8.3500°-9.0000°, longitude: 80.3833°-81.3000°, North Central Province, NCP, Sri Lanka) by the World Health Organization (WHO). However, within this macro-region, small pockets of CKDu non-prevalence zones do exist; notably, the residents in those pockets consume spring water. Therefore, the drinking water quality of four areas, namely high-CKDu-prevalence areas (zone I), low-CKDu-prevalence area (zone II), the CKDu-free isolated pockets (zone III) and control areas (controls) were examined for F, Al, Cd, and As, and hardness and the statistical analysis were carried out to probe possible correlations among these parameters. The fluoride and hardness concentrations of water in zone III and control areas are much lower compared to zones I and II, and the water hardness is ~61 mg/L CaCO3. In zones I and II, the harness of drinking water is ~121-180 mg/L CaCO3; however, Al, Cd and As concentrations are almost comparable and below WHO recommendations. In most of the locations in zones I and II, the F concentration in drinking water is higher than the WHO recommendations. The peculiar distribution patterns of CKDu point to a synergic effect of trace elements in water for etiology of the disease.

  1. Modelling of the Water Exchange between Shallow Groundwater and River during bank filtration and changing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha E.

    2015-04-01

    The interaction of river water and groundwater is of importance for the hydrological cycle and water quality in rivers. Moreover, drinking water is often obtained by pumping groundwater in the direct vicinity of rivers, called bank filtration. Typically this implies a considerable dynamics, because changes in river water level and pumping activities will cause varying conditions, and in its effects modified by the local hydrogeology. Numerical modelling can be a tool to study spatial patterns and temporal changes. Often this is limited by model performance, uncertainty of geological structure and lack of sufficient observation values beyond water heads, for example water quality or temperature data. The aim of this research is to model the hydraulic conditions for transient conditions, including a period of substantial re-construction works in the river. Later this will then be used to include the temperature and other water quality data to improve the model performance. As shown from the geological information analysis, the majority of the water volume pumped is from the first and second aquifers, where a strong exchange between the river and groundwater can happen. The implementation of the geological structure is based on 7 main geological profiles and several scattered drilling wells of difference depths. A first model has been built in FEFLOW 6.2 as a steady fluid flow model, while the pilot-points auto-calibration method is used for estimating the hydraulic conductivity of different sediment types, based on water head information of 19 observation wells. Then a transient model during the year 2011-2013 is further calibrated based on estimated hydraulic conductivity. Furthermore, the observation wells are used to make a statistic analysis with the hydrograph of the river to clarify the correlation of changes in river to changes in groundwater.

  2. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves.

    PubMed

    Lanoue, Jason; Leonardos, Evangelos D; Grodzinski, Bernard

    2018-01-01

    Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO 2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14 CO 2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths ( r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.

  3. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves

    PubMed Central

    Lanoue, Jason; Leonardos, Evangelos D.; Grodzinski, Bernard

    2018-01-01

    Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65–83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90–0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships. PMID:29915612

  4. Water-quality monitoring and process understanding in support of environmental policy and management

    USGS Publications Warehouse

    Peters, N.E.

    2008-01-01

    The quantity and quality of freshwater at any point on the landscape reflect the combined effects of many processes operating along hydrological pathways within a drainage basin/watershed/catchment. Primary drivers for the availability of water are landscape changes and patterns, and the processes affecting the timing, magnitude, and intensity of precipitation, including global climate change. The degradation of air, land, and water in one part of a drainage basin can have negative effects on users downstream; the time and space scales of the effects are determined by the residence time along the various hydrological pathways. Hydrology affects transport, deposition, and recycling of inorganic materials and sediment. These components affect biota and associated ecosystem processes, which rely on sustainable flows throughout a drainage basin. Human activities on all spatial scales affect both water quantity and quality, and some human activities can have a disproportionate effect on an entire drainage basin. Aquatic systems have been continuously modified by agriculture, through land-use change, irrigation and navigation, disposal of urban, mining, and industrial wastes, and engineering modifications to the environment. Interdisciplinary integrated basin studies within the last several decades have provided a more comprehensive understanding of the linkages among air, land, and water resources. This understanding, coupled with environmental monitoring, has evolved a more multidisciplinary integrated approach to resource management, particularly within drainage basins.

  5. Using SCADA Data, Field Studies, and Real-Time Modeling to ...

    EPA Pesticide Factsheets

    EPA has been providing technical assistance to the City of Flint and the State of Michigan in response to the drinking water lead contamination incident. Responders quickly recognized the need for a water distribution system hydraulic model to provide insight on flow patterns and water quality as well as to evaluate changes being made to the system operation to enhance corrosion control and improve chlorine residuals. EPA partnered with the City of Flint and the Michigan Department of Environmental Quality to update and calibrate an existing hydraulic model. The City provided SCADA data, GIS data, customer billing data, valve status data, design diagrams, and information on operations. Team members visited all facilities and updated pump and valve types, sizes, settings, elevations, and pump discharge curves. Several technologies were used to support this work including the EPANET-RTX based Polaris real-time modeling software, WaterGEMS, ArcGIS, EPANET, and RTX:LINK. Field studies were conducted to collect pressure and flow data from more than 25 locations throughout the distribution system. An assessment of the model performance compared model predictions for flow, pressure, and tank levels to SCADA and field data, resulting in error measurements for each data stream over the time period analyzed. Now, the calibrated model can be used with a known confidence in its performance to evaluate hydraulic and water quality problems, and the model can be easily

  6. Integrated climate-chemical indicators of diffuse pollution from land to water.

    PubMed

    Mellander, Per-Erik; Jordan, Phil; Bechmann, Marianne; Fovet, Ophélie; Shore, Mairead M; McDonald, Noeleen T; Gascuel-Odoux, Chantal

    2018-01-17

    Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.

  7. Accumulation, metabolism and toxicity of parathion in tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.J.

    1990-04-01

    Earlier work exposing tadpoles to organophosphorus pesticides indicated the great resistance of tadpoles of the bullfrog (Rana catesbeiana) to these chemicals and their surprising ability to accumulate parathion and fenthion from water. These qualities seemed to make them an ideal model with which to test a hypothesis advanced by Burke and Ferguson, who noted that parathion is more toxic to resistant mosquitofish in static water than in flowing water--a reversal of the pattern normally seen. They believed that highly toxic metabolite paraoxon was produced by the fish and that its buildup in static systems resulted in the unexpected mortality. Amphibiansmore » have been shown to produce paraoxon and to accumulate the parent compound parathion to levels that are potentially hazardous to other organisms. In the course of examining paraoxon production by tadpoles, it would also be possible to learn more about their patterns of parathion uptake and elimination. Retention of residues is also a matter of concern given the high levels observed in the earlier studies.« less

  8. Automated digital magnetofluidics

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Garcia, A. A.; Marquez, M.

    2008-08-01

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  9. Consumer Perception and Preference of Drinking Water Sources

    PubMed Central

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-01-01

    Introduction Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. Methods This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples’ preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). Conclusion According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source. PMID:28070256

  10. Consumer Perception and Preference of Drinking Water Sources.

    PubMed

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples' preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  11. Composition and protein quality of Lupinus mutabilis.

    PubMed

    Schoeneberger, H; Gross, R; Cremer, H D; Elmadfa, I

    1982-01-01

    The chemical composition and the protein quality of three samples of Lupinus mutabilis (a raw, semi-sweet variety; cooked, water-extracted seeds; and alcohol-extracted oil cake) were studied. The protein content varied from 47.7% dry weight (raw seeds) to 65.3% (oil-cake). Compared to the FAO reference pattern sulfur- containing amino acids are first limiting. The water-extracted sample contained 26.9% oil and the polyunsaturated/saturated fatty acid ratio of 30 seed samples was 5.3. Alkaloid content of raw seed was high (3.3%), but could be reduced or nearly eliminated by water-and-alcohol extraction or plant breeding. Other anti-nutritive substances were present only in trace quantities. Protein quality measured as protein efficiency ratio (PER) gave low values for the non-supplemented lupin proteins (1.34 semi-sweet variety; 1.53 water-extracted seeds; 1.19 oil-cake; 3.09 casein), but the PER's were improved by the addition of 0.2% DL-methionine to the diets (3.05, 2.69, 2,81, respectively). Raw as well as processed lupin protein showed an excellent apparent digestibility (80.0-85.8%, casein 87.1%). Studies of net protein utilization (NPU) and biological value (BV) confirmed the importance of methionine supplementation, The true digestibility of 92% was equivalent to that of casein.

  12. From microbes to water districts: Linking observations across scales to uncover the implications of riparian and channel management on water quality in an irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Webster, A.; Cadenasso, M. L.

    2016-12-01

    Interactions among runoff, riparian and stream ecosystems, and water quality remain uncertain in many settings, particularly those heavily impacted by human activities. For example, waterways in the irrigated agricultural landscape of California's Central Valley are seasonally disconnected from groundwater tables and are extensively modified by infrastructure and management. These conditions make the impact of riparian and channel management difficult to predict across scales, which hinders efforts to promote best management practices to improve water quality. We seek to link observations across catchment, reach, and patch scales to understand patterns of nitrate and turbidity in waterways draining irrigated cropland. Data was collected on 80 reaches spanning two water management districts. At the catchment scale, water districts implemented waterway and riparian management differently: one water district had a decentralized approach, allowing individual land owners to manage their waterway channels and banks, while the other had a centralized approach, in which land owners defer management to a district-run program. At the reach scale, riparian and waterway vegetation, geomorphic complexity, and flow conditions were quantified. Reach-scale management such as riparian planting projects and channel dredging frequency were also considered. At the patch scale, denitrification potential and organic matter were measured in riparian toe-slope soils and channel sediments, along with associated vegetation and geomorphic features. All factors were tested for their ability to predict water quality using generalized linear mixed effects models and the consistency of predictors within and across scales was evaluated. A hierarchy of predictors emerges: catchment-scale management regimes predict reach-scale geomorphic and vegetation complexity, which in turn predicts sediment denitrification potential - the patch-scale factor most associated with low nitrate. Similarly, turbidity conveyance was most associated with reach-scale factors. These findings suggest that, in the absence of other regulations, a decentralized management approach to riparian zones and waterways allows reach-scale complexity to arise, which in turn promotes ecosystem function and improved water quality.

  13. Water-Quality Conditions and Constituent Loads, Water Years 1996-2002, and Water-Quality Trends, Water Years 1983-2002, in the Scituate Reservoir Drainage Area, Rhode Island

    USGS Publications Warehouse

    Nimiroski, Mark T.; DeSimone, Leslie A.; Waldron, Marcus C.

    2008-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality data and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 1, 1995 through September 30, 2002, (water years (WY) 1996-2002) were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1, 1982 through September 30, 2002 (WY 1983-2002). Water samples were collected and analyzed by Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics were calculated for WY 1996-2002 for all 37 monitoring stations for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli) bacteria, orthophosphate, iron, and manganese. Instantaneous loads and yields (loads per unit area) of total coliform and E. coli bacteria (indicator bacteria), chloride, nitrite, nitrate, orthophosphate, iron, and manganese were calculated for all sampling dates during WY 1996-2002 for the 23 stations with streamflow data. Values of physical properties and concentrations of constituents were compared to State and Federal water-quality standards and guidelines, and were related to streamflow, land-use characteristics, and road density. Tributary stream water in the Scituate Reservoir drainage area for WY 1996-2002 was slightly acidic (median pH of all stations equal to 6.1) and contained low concentrations of chloride (median 13 milligrams per liter (mg/L)), nitrate (median 0.04 mg/L as N), and orthophosphate (median 0.04 mg/L as P). Turbidity and alkalinity values also were low with median values of 0.62 nephelometric turbidity units and 4.8 mg/L as calcium carbonate, respectively. Indicator bacteria were detected in samples from all stations, but median concentrations were low, 23 and 9 colony-forming units per 100 mL for total coliform and E. coli bacteria, respectively. Median values of several physical properties and median concentrations of several constituents that can be related to human activities correlated positively with the percentages of developed land and correlated negatively with the percentages of forest cover in the drainage areas of the monitoring stations. Median concentrations of chloride also correlated positively with the density of roads in the drainage areas of monitoring stations, likely reflecting the effects of road-salt applications. Median values of color correlated positively with the percentages of wetlands in the drainage areas of monitoring stations, reflecting the natural sources of color in tributary stream waters. Negative correlations of turbidity, indicator bacteria, and chloride with streamflow likely reflect seasonal patterns, in which higher values and concentrations of these properties and constituents occur during low-flow conditions at the ends of water years. Similar seasonal patterns were observed for pH, alkalinity, and color. Loads and yields of chloride, nitrate, orthophosphate, and bacteria varied among monitoring stations in the Scituate Reservoir drainage area. Loads generally were higher at stations with larger drainage areas and at stations in the eastern, more developed parts of the Scituate Reservoir drainage area. Yields generally were higher at stations in the eastern parts of the drainage area. Upward trends in pH were identified for nearly half the monitoring stations and may reflect regional reductions in acid precipitation. Upward and downward trends were identified in chloride concentrations at various stations; upward trends may reflect the effects of increasing development, whereas strong downward trends at

  14. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  15. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Destouni, Georgia; Jawitz, James W.; Thompson, Sally E.; Loukinova, Natalia V.; Darracq, Amélie; Zanardo, Stefano; Yaeger, Mary; Sivapalan, Murugesu; Rinaldo, Andrea; Rao, P. Suresh C.

    2010-12-01

    Complexity of heterogeneous catchments poses challenges in predicting biogeochemical responses to human alterations and stochastic hydro-climatic drivers. Human interferences and climate change may have contributed to the demise of hydrologic stationarity, but our synthesis of a large body of observational data suggests that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long-term monitoring data from the Mississippi-Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter-annual variations in loads (LT) for total-N (TN) and total-P (TP), exported from a catchment are dominantly controlled by discharge (QT) leading inevitably to temporal invariance of the annual, flow-weighted concentration, $\\overline{Cf = (LT/QT). Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents that also exhibit a linear LT-QT relationship. These responses are characteristic of transport-limited systems. In contrast, in the absence of legacy sources in less-managed catchments, $\\overline{Cf values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that: (1) expected inter-annual variations in LT can be robustly predicted given discharge variations arising from hydro-climatic or anthropogenic forcing, and (2) water-quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The finding has notable implications on catchment management to mitigate adverse water-quality impacts, and on acceleration of global biogeochemical cycles.

  16. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  17. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin.

    PubMed

    Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin

    2018-10-15

    To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Relative Linkages of Stream Dissolved Oxygen with the Hydroclimatic and Biogeochemical Drivers across the Gulf Coast of U.S.A.

    NASA Astrophysics Data System (ADS)

    Gebreslase, A. K.; Abdul-Aziz, O. I.

    2017-12-01

    Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.

  19. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    NASA Astrophysics Data System (ADS)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  20. Freshwater mussel shells (Unionidae) chronicle changes in a North American river over the past 1000years.

    PubMed

    Fritts, Andrea K; Fritts, Mark W; Haag, Wendell R; DeBoer, Jason A; Casper, Andrew F

    2017-01-01

    The Illinois River was substantially altered during the 20th century with the installation of navigational locks and dams, construction of extensive levee networks, and degradation of water quality. Freshwater mussels were affected by these changes. We used sclerochronology and stable isotopes to evaluate changes over time in age-and-growth and food sources for two mussel species: Amblema plicata and Quadrula quadrula. Specimens were collected in years 1894, 1897, 1909, 1912, 1966, and 2013, and archeological specimens were collected circa 850. The von Bertalanffy growth parameter (K) was similar between 850 and 1897, but it increased by 1912 and remained elevated through 2013. Predicted maximum size (L inf ) increased over the past millennium, and 2013 individuals were over 50% larger than in 850. Growth indices showed similar patterns of continual increases in growth. Shells were enriched in 13 C and 15 N during the 20th century, but exhibited a partial return to historical conditions by 2013. These patterns are likely attributable to impoundment, nutrient pollution and eutrophication beginning in the early 20th century followed by recent water quality improvement. Published by Elsevier B.V.

  1. Characterization of water quality in Bushy Park Reservoir, South Carolina, 2013–15

    USGS Publications Warehouse

    Conrads, Paul A.; Journey, Celeste A.; Petkewich, Matthew D.; Lanier, Timothy H.; Clark, Jimmy M.

    2018-04-25

    The Bushy Park Reservoir is the principal water supply for 400,000 people in the greater Charleston, South Carolina, area, which includes homes as well as businesses and industries in the Bushy Park Industrial Complex. Charleston Water System and the U.S. Geological Survey conducted a cooperative study during 2013–15 to assess the circulation of Bushy Park Reservoir and its effects on water-quality conditions, specifically, recurring taste-and-odor episodes. This report describes the water-quality data collected for the study that included a combination of discrete water-column sampling at seven locations in the reservoir and longitudinal water-quality profiling surveys of the reservoir and tributaries to characterize the temporal and spatial water-quality dynamics of Bushy Park Reservoir. Water-quality profiling surveys were conducted with an autonomous underwater vehicle equipped with a multiparameter water-quality-sonde bulkhead. Data collected by the autonomous underwater vehicle included water temperature, dissolved oxygen, pH, specific conductance, turbidity, total chlorophyll as fluorescence (estimate of algal biomass), and phycocyanin as fluorescence (estimate of cyanobacteria biomass) data.Characterization of the water-quality conditions in the reservoir included comparison to established State nutrient guidelines, identification of any spatial and seasonal variation in water-quality conditions and phytoplankton community structures, and assessment of the degree of influence of water-quality conditions related to Foster Creek and Durham Canal inflows, especially during periods of elevated taste-and-odor concentrations. Depth-profile and autonomous underwater vehicle survey data were used to identify areas within the reservoir where greater phytoplankton and cyanobacteria densities were most likely occurring.Water-quality survey results indicated that Bushy Park Reservoir tended to stratify thermally at a depth of about 20 feet from June to early October. The stratification was limited to the deeper portions of the reservoir near the dam and often dissipated within the reservoir near the CWS intake less than a mile upstream from the dam. Where thermally stratified, a corresponding depletion of dissolved oxygen also occurred at about the same depth and resulted in an anoxic hypolimnion below the 25-foot depth and an increase in specific conductance, likely due to re-mobilized metals and phosphorus under reducing conditions. In general, chlorophyll estimated from fluorescence exhibited some spatial variation, but no strong consistent pattern or “hot spot” was observed. Phycocyanin, estimated from relative fluorescence unit output as blue-green algae cell density, periodically seemed to be greater in the upper portion of the reservoir, but those differences may be attributed to increased turbidity and the potential change in phytoplankton community structure that affects fluorescence. Increased phycocyanin was observed at about the 10-foot depth during the summer months.A constant production of 2-methylisoborneol (MIB) near the dam and geosmin in the middle and upper portions of the reservoir appears to be occurring during the summer and early fall in the reservoir, but concentrations of these compounds tend to be between 10 and 15 nanograms per liter, which is at the Charleston Water System treatment threshold. At the Bushy Park Reservoir intake, the dominant taste-and-odor compound tended to be MIB, measured at a 2- or 3-to-1 ratio with geosmin during the summer and fall. During springtime episodes, however, when taste-and-odor compound concentrations typically are elevated above the Charleston Water System treatment threshold, the spatial distribution of geosmin concentrations greater than 15 nanograms per liter (28 to 38 nanograms per liter) was best explained by in situ production in the lower portion of the Bushy Park Reservoir near the dam rather than transport from Foster Creek. This pattern seems to indicate a possible shift in phytoplankton communities (or, at least, cyanobacteria communities) from MIB producers to geosmin producers.The spatial and seasonal assessment of water-quality conditions in Bushy Park Reservoir identified seasonal differences in water chemistry and spatial differences between the upper and lower portions of the reservoir that correspond to the location of elevated geosmin concentrations. On the basis of the spatial and seasonal assessment of actinomycetes concentrations compared to taste-and-odor compound concentrations, cyanobacteria production likely was the dominant source of the taste-and-odor episodes rather than actinomycetes. The lack of spatial and seasonal patterns in actinomycetes concentrations did not correspond to the springtime geosmin concentrations that were elevated above the Charleston Water System treatment threshold in the lower portion of the reservoir. Additionally, actinomycetes concentrations, although ubiquitous, had a median of about 9 and maximum of about 20 colonies per milliliter, which can be considered low for elevated taste-and-odor compound production. Nonetheless, the potential exists for actinomycetes to be a secondary source of taste-and-odor production and could explain some of the ubiquitous occurrence of low-level taste-and-odor production, such as MIB concentrations, observed throughout the summer and early fall months.When evaluated by biovolume, cyanobacteria were not the dominant phytoplankton group in Bushy Park Reservoir during the study period. Dolichospermum planctonicum (previously Anabaena planktonica ) was the dominant genera of the cyanobacteria group during spring periods. The geosmin-producing genera that were identified in the 2014 and 2015 spring communities in Bushy Park Reservoir were not observed in the 1999 and 2000 algal taxonomic data.A more robust examination of phytoplankton species was conducted by using a multivariate analysis that identified seasonal changes in phytoplankton community structure. These seasonal phytoplankton communities appeared to be explained by seasonal changes in water chemistry and may be responsible for episodes of taste-and-odor occurrence, especially geosmin. The most probable source of geosmin identified during the study was D. planctonicum.In a synoptic sampling event during a taste-and-odor episode in April 2015, cyanobacteria, not acinomycetes, also was indicated to be the more prevalent source of the geosmin. Although the Edisto River intake and its associated supply tunnel to the treatment facility had relatively high actinomycetes concentrations (130 and 140 colonies per milliliter, respectively) compared to the Bushy Park intake and tunnel (2 colonies per milliliter), corresponding geosmin concentrations were below 5 nanograms per liter for source water from the Edisto River intake and tunnel. Elevated geosmin concentrations above the Charleston Water System treatment threshold were identified in source waters from the Bushy Park Reservoir. The cyanobacteria community at the sampled sites in April 2015 was statistically similar to the community in the Bushy Park Reservoir in April 2014, when geosmin concentrations also were elevated. The only geosmin-producing genus identified at the Bushy Park intake, however, was D. planctonicum.

  2. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    PubMed

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  3. Classroom Activities about Water and Climate Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.

    2012-04-01

    The purpose of this activity is to demonstrate practical work and experiments in the classroom, with students on Water: Water is the most neccesary Earth's resource, although it is decreasing because many human activities are changing its quality and its availability. The activity is designed in order to recreate experiments, simulations, and determine the aspects of the problematic environment currently plaguing our planet, especially those related to water and climate change. The selected activities have to be easy to make, and easy to understand. Each activity will be illustrated, explained and described using pictures and short texts, so teachers could replay them in their classroom. 1. Simulation of the Ocean Water Currents Convection to understand the heat distribution in our planet. 2. Ocean Water Stratification According to Water Salinity. We can understand the behaviour of water when we mix water from different densities 3. Melting of the Arctic and Antarctic Polar Caps. In this experiment, we can see the consequences of changing environment and climate conditions as it pertains to ice and our polar ice caps. We want to show the different behaviours of continental and floating ice and to evaluate the consequences of their melting. 4. Detecting water pollution. Here, we can analyse some water patterns and get to know the existence or absence of pollutants in the water, as well as learning how to determine its pH level, hardness, nitrogen composition, bacteria content and more. 5. Creating a home treatment. We show the necessity to preserve the water quality through a suitable treatment.

  4. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya.

    PubMed

    K'oreje, K O; Vergeynst, L; Ombaka, D; De Wispelaere, P; Okoth, M; Van Langenhove, H; Demeestere, K

    2016-04-01

    Emerging organic contaminants have not received a lot of attention in developing countries, particularly Africa, although problems regarding water quantity and quality are often even more severe than in more developed regions. This study presents general water quality parameters as well as unique data on concentrations and loads of 24 pharmaceuticals including antibiotic, anti(retro)viral, analgesic, anti-inflammatory and psychiatric drugs in three wastewater treatment plants, three rivers and three groundwater wells in Nairobi and Kisumu. This allowed studying removal efficiencies in wastewater treatment, identifying important sources of pharmaceutical pollution and distinguishing dilution effects from natural attenuation in rivers. In general, antiretrovirals and antibiotics, being important in the treatment of common African diseases such as HIV and malaria, were in all matrices more prevalent as compared to the Western world. Wastewater stabilization ponds removed pharmaceuticals with an efficiency between 11 and 99%. Despite this large range, a different removal is observed for a number of compounds, as compared to more conventional activated sludge systems. Total concentrations in river water (up to 320 μg L(-1)) were similar or exceeded concentrations in untreated wastewater, with domestic discharges from slums, wastewater treatment plant effluent and waste dumpsites identified as important sources. In shallow wells situated next to pit latrines and used for drinking water, the recalcitrant antiretroviral nevirapine was measured at concentrations as high as 1-2 μg L(-1). Overall, distinct pharmaceutical contamination patterns as compared to the Western world can be concluded, which might be a trigger for further research in developing regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  6. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements.

    PubMed

    Chaffin, Justin D; Kane, Douglas D; Stanislawczyk, Keara; Parker, Eric M

    2018-06-25

    Microcystin (MCY)-producing harmful cyanobacterial blooms (cHABs) are an annual occurrence in Lake Erie, and buoys equipped with water quality sondes have been deployed to help researchers and resource managers track cHABs. The objective of this study was to determine how well water quality sondes attached to buoys measure total algae and cyanobacterial biomass and water turbidity. Water samples were collected next to two data buoys in western Lake Erie (near Gibraltar Island and in the Sandusky subbasin) throughout summers 2015, 2016, and 2017 to determine correlations between buoy sonde data and water sample data. MCY and nutrient concentrations were also measured. Significant (P < 0.001) linear relationships (R 2  > 0.75) occurred between cyanobacteria buoy and water sample data at the Gibraltar buoy, but not at the Sandusky buoy; however, the coefficients at the Gibraltar buoy differed significantly across years. There was a significant correlation between buoy and water sample total chlorophyll data at both buoys, but the coefficient varied considerably between buoys and among years. Total MCY concentrations at the Gibraltar buoy followed similar temporal patterns as buoy and water sample cyanobacterial biomass data, and the ratio of MCY to cyanobacteria-chlorophyll decreased with decreased ambient nitrate concentrations. These results suggest that buoy data are difficult to compare across time and space. Additionally, the inclusion of nitrate concentration data can lead to more robust predictions on the relative toxicity of blooms. Overall, deployed buoys with sondes that are routinely cleaned and calibrated can track relative cyanobacteria abundance and be used as an early warning system for potentially toxic blooms.

  7. Groundwater Nitrogen Pollution and Assessment of Its Health Risks: A Case Study of a Typical Village in Rural-Urban Continuum, China

    PubMed Central

    Gao, Yang; Yu, Guirui; Luo, Chunyan; Zhou, Pei

    2012-01-01

    Protecting groundwater from nitrogen contamination is an important public-health concern and a major national environmental issue in China. In this study, we monitored water quality in 29 wells from 2009 to 2010 in a village in Shanghai city, whick belong to typical rural-urban continuum in China. The total N and NO3-N exhibited seasonal changes, and there were large fluctuations in NH4-N in residential areas, but without significant seasonal patterns. NO2-N in the water was not stable, but was present at high levels. Total N and NO3-N were significantly lower in residential areas than in agricultural areas. The groundwater quality in most wells belonged to Class III and IV in the Chinese water standard, which defines water that is unsuitable for human consumption. Our health risk assessments showed that NO3-N posed the greatest carcinogenic risk, with risk values ranging from 19×10−6 to 80×10−6, which accounted for more than 90% of the total risk in the study area. PMID:22514611

  8. Development of a fuzzy-stochastic programming with Green Z-score criterion method for planning water resources systems with a trading mechanism.

    PubMed

    Zeng, X T; Huang, G H; Li, Y P; Zhang, J L; Cai, Y P; Liu, Z P; Liu, L R

    2016-12-01

    This study developed a fuzzy-stochastic programming with Green Z-score criterion (FSGZ) method for water resources allocation and water quality management with a trading-mechanism (WAQT) under uncertainties. FSGZ can handle uncertainties expressed as probability distributions, and it can also quantify objective/subjective fuzziness in the decision-making process. Risk-averse attitudes and robustness coefficient are joined to express the relationship between the expected target and outcome under various risk preferences of decision makers and systemic robustness. The developed method is applied to a real-world case of WAQT in the Kaidu-Kongque River Basin in northwest China, where an effective mechanism (e.g., market trading) to simultaneously confront severely diminished water availability and degraded water quality is required. Results of water transaction amounts, water allocation patterns, pollution mitigation schemes, and system benefits under various scenarios are analyzed, which indicate that a trading-mechanism is a more sustainable method to manage water-environment crisis in the study region. Additionally, consideration of anthropogenic (e.g., a risk-averse attitude) and systemic factors (e.g., the robustness coefficient) can support the generation of a robust plan associated with risk control for WAQT when uncertainty is present. These findings assist local policy and decision makers to gain insights into water-environment capacity planning to balance the basin's social and economic growth with protecting the region's ecosystems.

  9. CrossWater - Modelling micropollutant loads from different sources in the Rhine basin

    NASA Astrophysics Data System (ADS)

    Moser, Andreas; Bader, Hans-Peter; Fenicia, Fabrizio; Scheidegger, Ruth; Stamm, Christian

    2016-04-01

    The pressure on rivers from micropollutants (MPs) originating from various sources is a growing environmental issue and requiring political regulations. The challenges for the water management are numerous, particularly for international water basins. Spatial knowledge of MP sources and the water quality are prerequisites for an effective water quality policy. In this study we analyze the sources of MPs in the international Rhine basin in Europe, and model their transport to the streams. The spatial patterns of MP loads and concentrations from different use classes are investigated with a mass flow analysis and compared to the territorial jurisdictions that shape the spatial arrangement of water management. The source area of MPs depends on the specific use of a compound. Here, we focus on i) herbicides from agricultural land use, ii) biocides from material protection on buildings and iii) human pharmaceuticals from households. The total mass of MPs available for release to the stream network is estimated from statistical application and consumption data. The available mass of MPs is spatially distributed to the catchments areas based on GIS data of agricultural land use, vector data of buildings and wastewater treatment plant (WWTP) locations, respectively. The actual release of MPs to the stream network is calculated with empirical loss rates related to river discharge for agricultural herbicides and to precipitation for biocides. For the pharmaceuticals the release is coupled to the human metabolism rates and elimination rates in WWTP. The released loads from the catchments are propagated downstream with hydraulic routing. Water flow, transport and fate of the substances are simulated within linked river reaches. Time series of herbicide concentrations and loads are simulated for the main rivers in the Rhine basin. Accordingly the loads from the primary catchments are aggregated and constitute lateral or upstream input to the simulated river reaches. Pronounced differences in the spatial patterns of concentrations in the aquatic system are observed between the different compounds. The comparison with measurements from monitoring stations along the Rhine yield satisfactory results.

  10. Pork Quality Traits According to Postmortem pH and Temperature in Berkshire

    PubMed Central

    Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk

    2016-01-01

    This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661

  11. Understanding relationships among ecosystem services across spatial scales and over time

    NASA Astrophysics Data System (ADS)

    Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.

    2018-05-01

    Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.

  12. Patterns of water-quality variability in San Francisco Bay during the first six years of the regional monitoring program, 1993-1998

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Edmunds, J.L.; Schraga, T.S.; Arnsberg, A.

    2000-01-01

    Monitoring Results presents data from the Status and Trends portion of the 1998 San Francisco Estuary Regional Monitoring Program for Trace Substances (RMP). A list of reports on Pilot and Special Studies, as well as other RMP related activities can be found at the end of this document. These reports provide perspective and insight on important contaminant issues identified by the RMP, and they describe results from projects that took advantage of RMP field operations. For a summary of the conditions of the Estuary see The Pulse . A print copy may also be ordered by contacting the San Francisco Estuary Institute (SFEI). In 1998, the San Francisco Regional Water Quality Control Board (Regional Board) and seventy-three federal, state, and local agencies and companies participated in the RMP as funders and service providers (Table 1.1). Participants also assist in directing the Program through input or participation on the Steering and Technical Review Committees. The RMP’s overall goal is to provide data and interpretation that helps to address certain information needs of the Regional Board. In general, these efforts fall under five major objectives which provide a framework for efforts to respond to more specific management questions. 1. Describe patterns and trends in contaminant concentration and distribution. 2. Describe general sources and loadings of contamination to the Estuary. 3. Measure contaminant effects on selected parts of the Estuary ecosystem. 4. Compare monitoring information to relevant water quality objectives and other guidelines. 5. Synthesize and distribute information from a range of sources to present a more complete picture of the sources, distribution, fates, and effects of contaminants in the Estuary ecosystem.

  13. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand

    NASA Astrophysics Data System (ADS)

    Caruso, B. S.

    2002-02-01

    The temporal and spatial patterns of summer extreme low flows and effects on stream ecosystems were evaluated throughout the Otago Region of the South Island of New Zealand during a severe drought in 1998-1999. Flows, water quality, and aquatic biology were monitored bimonthly at 12 locations as part of a long-term regional monitoring programme and results were evaluated and compared among summer 1998-1999 and all previous summers, as well as among three major subregions. Flows during the drought were extremely low for prolonged periods in many locations, particularly in North Otago. At most sites temperatures were slightly higher for a longer period than during other summers. In predominantly agricultural/pastoral catchments, widespread bacterial contamination of streams occurred due to increased livestock use of watercourses and decreased dilution during low flows. Concentrations of other contaminants derived from non-point sources, including nitrogen, phosphorus, and sediment, decreased in many locations due to the lack of rainfall and runoff events. Electrical conductivity generally increased as a result of the lack of dilution and increased evaporation and groundwater inputs. Overall water quality was worst in agricultural catchments in South Otago, and returned to conditions prior to the low flows by late autumn in most areas. The diversity of benthic macroinvertebrate communities and number of sensitive taxa decreased somewhat in many locations, but the magnitude and duration of these effects were not great. Differences between summer 1998-1999 and other periods, and among subregions, were not significant. Although some differences in low flows and effects on stream ecosystems across a range of landscapes and catchments can occur, the rapid recovery of water quality and benthic macroinvertebrates in most locations indicates that many streams are resilient to extreme low flows and drought with minor long-term effects.

  14. Spatio-temporal variation analysis of hydrochemical characteristics in the Luanhe River Basin, China.

    PubMed

    Xie, Ying; Li, Xuyong; Wang, Huiliang; Li, Wenzan

    2013-01-01

    The analysis of river pollution and assessment of spatial and temporal variation in hydrochemistry are essential to river water pollution control in the context of rapid economic growth and growing pollution threats in China. In this study, we focused on hydrochemical characteristics of the Luanhe River Basin (China) and evaluation of 12 hydrochemical variables obtained from 32 monitoring stations during 2001-2010. In each study year, the streams were monitored in the three hydrological periods (April, August, and October) to observe differences in the impacts of agricultural activity and rainfall pattern. Multivariate statistical methods were applied to the data set, and the river water hydrochemical characteristics were assessed using the water quality identification index (WQIIM). The results showed that parameters had variable contribution to water quality status in different months except for ammonia nitrogen (NH4-N) and total nitrogen (TN), which were the most important parameters in contributing to water quality variations for all three periods. Results of WQIIM revealed that 18 sites were classified as 'meeting standard' while the other 14 sites were classified as 'not meeting standard', with most of the seriously polluted sites located in urban area, mainly due to discharge of wastewater from domestic and industrial sources. Sites with low pollution level were located primarily in smaller tributaries, whereas sites of medium and high pollution levels were in the main river channel and the larger tributaries. Our findings provide valuable information and guidance for water pollution control and water resource management in the Luanhe River Basin.

  15. Patterns of domestic water use in rural areas of Zimbabwe, gender roles and realities

    NASA Astrophysics Data System (ADS)

    Makoni, Fungai S.; Manase, Gift; Ndamba, Jerry

    This paper presents practical experiences into the pattern of domestic water use, benefits and the gender realities. The study was undertaken in two districts of Zimbabwe, Mt Darwin and Bikita covering a total of 16 villages. The study aimed to assess the patterns of domestic water use, benefits derived from its use among the gender groups. Methodology for participatory assessment (MPA) was used for data collection and was done in a participatory manner. Traditionally most people in Zimbabwe are subsistence farmers who rely on rain fed agriculture. Where primary water sources are available such as shallow wells, family wells, deep wells and boreholes households use the water for household water and sanitation, irrigate small family gardens as well as their livestock. The survey established that women and men usually rank uses of water differently. In the two districts it was evident that women are playing more roles in water use and it is apparent that women are most often the users, managers and guardians of household water and hygiene. Women also demonstrated their involvement in commercial use of water, using water for livestock watering (20%) as well as brick moulding (21%). These involvement in commercial use were influenced by survival economics as well as the excess and reliability of the supply. The different roles and incentives in water use of women and men was demonstrated in how they ranked the benefits of water and sanitation. Men ranked clean drinking water among others as a top priority while women ranked improved health and hygiene and reduced distance as top priority. Overall the benefits highlighted by the communities and especially women were meeting the practical needs such as better access to water and reducing their work load. The assessment demonstrated the active role of women in water sources management highlighting quality, reliability and restrictions to their use. Though the communities gave the impression that decision making in the sitting and construction of water points was equally among the gender groups, however it was evident that men have a greater role than women in public decision making.

  16. Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications.

    PubMed

    Jiang, Chong; Wang, Fei

    2016-01-28

    Chengde city is located in the agro-pastoral transitional zone in northern China near the capital city of Beijing, which has experienced large-scale ecological construction in the past three decades. This study quantitatively assessed the environmental changes in Chengde through observation records of water resources, water environment, atmospheric environment, and vegetation activity and investigated the possible causes. From the late 1950s to 2002, the streamflow presented a downward trend induced by climate variability and human activities, with contribution ratios of 33.2% and 66.8%, respectively. During 2001-2012, the days of levels I and II air quality presented clear upward trends. Moreover, the air pollutant concentration was relatively low compared with that in the adjacent areas, which means the air quality has improved more than that in the neighboring areas. The water quality, which deteriorated during 1993-2000, began to improve in 2002. The air and water quality changes were closely related to pollutant emissions induced by anthropogenic activities. During 1982-2012, the vegetation in the southeastern and central regions presented restoration trends, whereas that in the northwestern area showed degradation trends. The pixels with obvious degradation trends correlated significantly with annual mean temperature and annual precipitation. Ecological engineering also played a positive role in vegetation restoration. This analysis can be beneficial to environment managers in the active response and adaptation to the possible effects of future climate change, population growth, and industrial development and can be used to ensure sustainable development and environmental safety.

  17. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    NASA Astrophysics Data System (ADS)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal data.

  18. Quality of rivers of the United States, 1975 water year; based on the National Stream Quality Accounting Network (NASQAN)

    USGS Publications Warehouse

    Briggs, John C.; Ficke, John F.

    1977-01-01

    The National Stream Quality Accounting Network (NASQAN) was established by the U.S. Geological Survey to provide a nationally uniform basis for continuously assessing the quality of U.S. rivers. Stations generally are at the downstream end of hydrologic accounting units in order to measure the quantity and quality of water flowing from the units. The 1975 water year was the first year of operation of the network that represents essentially all of the accounting units and thereby describes the water- quality of the entire country. Data are available on a large number of water-quality constituents measured at 345 stations during the 1975 water year. Temperature data (usually continuous or daily measurements) from NASQAN stations were fitted to a first order harmonic equation and the parameters for the harmonic function are reported for each station. Mean temperatures generally range from 5°-10°C in the North to more than 20°C along the southern border of the continental United States and in Hawaii and Puerto Rico; means were less than 10°C at 63 stations and greater than 25°C at only 7 stations. Amplitudes of the temperature curves are greatest (greater than 12°C) for the streams at midlatitudes and in the Great and Central Plains, and they are smallest for the subtropical and cold-climate streams. Considering chemical and biological characteristics of U.S. streams as described by NASQAN data, water quality is best (by many standards) in the Northeast, Southeast, and Northwest. Waters there generally are low in dissolved solids and major and minor chemical constituents, generally are soft (except in Florida), and carry relatively small amounts of sediment. These conditions mainly reflect the geology of the regions and the relatively large amounts of precipitation. However, many of these waters show the effects of pollution and carry moderate or high levels of major nutrients and have correspondingly high populations of attached and floating plants. High counts of indicator bacteria also show signs of local pollution, particularly in regions of the country with large human and animal populations. In the Northeast, some heavy metals are at moderate levels, but not above most water-quality criteria.Rivers of most of the Mid-Continent and Southwest reflect the arid or semi-arid climate, erodible soils, and agricultural activities. They are characterized by moderate to high levels of dissolved major and minor constituents, sediment, major nutrients, and biota (floating and attached aquatic plants and indicator bacteria). In addition, the most incidences of pesticides in stream and bottom sediments were found in these regions. A special analysis was made to study the patterns of dissolved solids, major nutrients, phytoplankton, and zinc in the Mississippi River above Memphis, Tennessee. It was found that flow volume is an important factor in influencing river quality, and that stations with low concentration of major nutrients generally had low phytoplankton populations as well.

  19. Hydrology and water quality of Elkhead Creek and Elkhead Reservoir near Craig, Colorado, July 1995-September 2001

    USGS Publications Warehouse

    Kuhn, Gerhard; Stevens, Michael R.; Elliott, John G.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District, collected and analyzed baseline streamflow and water-quality information for Elkhead Creek and water-quality and trophic-state information for Elkhead Reservoir from July 1995 through September 2001. In the study area, Elkhead Creek is a meandering, alluvial stream dominated by snowmelt in mountainous headwaters that produces most of the annual discharge volume and discharge peaks during late spring and early summer. During most of water year 1996 (a typical year), daily mean discharge at station 09246400 (downstream from the reservoir) was similar to daily mean discharge at station 09246200 (upstream from the reservoir). Flow-duration curves for stations 09246200 and 09246400 were nearly identical, except for discharges less than about 10 cubic feet per second. Specific conductance generally had an inverse relation to discharge in Elkhead Creek. During late fall and winter when discharge was small and derived mostly from ground water, specific conductance was high, whereas during spring and early summer, when discharge was large and derived mostly from snowmelt, specific conductance was low. Water temperatures in Elkhead Creek were smallest during winter, about 0.0 degrees Celsius (oC), and largest during summer, about 20?25oC. Concentrations of major ions, nutrients, trace elements, organic carbon, and suspended sediment in Elkhead Creek indicated no substantial within-year variability and no substantial differences in variability from one year to the next. A seasonal pattern in the concentration data was evident for most constituents. The seasonal concentration pattern for most of the dissolved constituents followed the seasonal pattern of specific conductance, whereas some nutrients, some trace elements, and suspended sediment followed the seasonal pattern of discharge. Statistical differences between station 09246200 (upstream from the reservoir) and station 09246400 (downstream from the reservoir) were indicated for specific conductance, dissolved calcium, magnesium, sodium, and sulfate, acid-neutralizing capacity, and dissolved solids. Trend analysis indicated upward temporal trends for pH, dissolved ammonia plus organic nitrogen, total nitrogen, and total phosphorus at station 09246200; upward temporal trends for dissolved and total ammonia plus organic nitrogen, total nitrogen, and total phosphorus were indicated at station 09246400. No downward trends were indicated for any constituents. Annual loads for dissolved constituents during water years 1996?2001 were consistently larger at station 09246400 than at station 09246200, except for silica and sulfate. Mean monthly loads for dissolved constituents followed the seasonal pattern of discharge, indicating that most of the annual loads were transported during March?June. Annual dissolved nutrient loads at stations 09246400 and 09246200 were not substantially different, except for total phosphorus and total nitrogen loads, which were smaller at the downstream station than at the upstream station, most likely due to biological uptake and settling in the reservoir. Mean annual suspended-sediment load during water years 1996?2001 was about 87-percent smaller at the downstream station than at the upstream station. Temperature in Elkhead Reservoir varied seasonally, from about 0oC during winter when ice develops on the reservoir to about 20oC during summer. Specific conductance varied from minimums of 138 to 169 microsiemens per centimeter at 25oC (?S/cm) during snowmelt inflow to maximums of 424 to 610 ?S/cm during early spring low flow (April). Median pH in the reservoir ranged from 7.2 to 8.0 at all sites near the surface. Median dissolved oxygen ranged from 7.1 to 7.2 milligrams per liter (mg/L) in near-surface samples and from 4.8 to 5.6 mg/L in near-bottom samples. During reservoir stratification, specific conductance generally was largest in the e

  20. Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

    USGS Publications Warehouse

    Vonins, Branden L.; Jackson, P. Ryan

    2017-05-25

    Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The observations from this study, if repeatable and driven primarily by changes in gate operations, can inform nutrient management strategies for Hoover Reservoir. Increased mixing across the thermocline may potentially supply nutrients from the hypolimnion to algae in the epilimnion. Although operation of the lower gate has the potential to export nutrients from the hypolimnion (where the concentrations of nutrients have typically been higher during summer months) through two mechanisms (direct withdrawal and mixing into the epilimnion), supply of nutrients to the epilimnion through enhanced mixing could lead to a short-term increase in algal populations. Therefore, further study is recommended to (1) test the repeatability of the results of gate changes on water-quality distributions and circulation patterns in lower Hoover Reservoir, (2) identify the immediate effect of gate changes on nutrient concentrations in the water column, and (3) identify the best management practices to reduce the nutrient storage in the hypolimnion of Hoover Reservoir without increasing the potential for nutrient transport to the highly productive epilimnion.

  1. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River

    PubMed Central

    Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; Kolarevic, S.; Farnleitner, A.H.

    2017-01-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. PMID:28806705

  2. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River.

    PubMed

    Kirschner, A K T; Reischer, G H; Jakwerth, S; Savio, D; Ixenmaier, S; Toth, E; Sommer, R; Mach, R L; Linke, R; Eiler, A; Kolarevic, S; Farnleitner, A H

    2017-11-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.

    PubMed

    Lobón-Cerviá, J; Mazzoni, R; Rezende, C F

    2016-07-01

    The effects of riparian forest removal on a neotropical stream fish assemblage were assessed in the Mata Atlântica. Fish assemblage structure and fish feeding patterns were quantified at three sites along a pristine-to-deforested gradient in a Serra do Mar stream: (1) a pristine site fully covered by canopy with no light penetration and transparent waters, (2) an intermediate site with partially removed forest and (3) a fully removed forest site with no canopy and full light penetration where siltation and turbid waters predominate. Fish assemblage structure, fish densities and their feeding patterns differed widely among sites. Whilst the same five fish species occurred at the three sites, forest removal favoured the occurrence of sediment-tolerant iliophagous benthic species at the deforested site. At the pristine site, invertebrate prey predominated in water column fish diet and feeding overlap among species was low. Severe shifts in the feeding patterns were noticed in both deforested sites. Invertebrates were replaced by detritus, organic matter and algae at both sites and feeding overlap increased markedly. The overwhelming feeding adaptability of these neotropical fishes appeared capable of buffering the deleterious effects of forest removal on stream quality in terms of increased light penetration, siltation and water turbidity. Forest cutting in this Mata Atlântica stream clearly caused strong functional changes associated with forest clearance through important modifications in the assemblage organization and trophic patterns of the main species, but did not eliminate species. © 2016 The Fisheries Society of the British Isles.

  4. Solute-specific patterns and drivers of urban stream chemistry revealed by long-term monitoring in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.

    2017-12-01

    Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of chemical stressors is necessary to gain a broader understanding of the issues affecting urban water quality.

  5. Identifying the usage patterns of methyl tert-butyl ether (MTBE) and other oxygenates in gasoline using gasoline surveys

    USGS Publications Warehouse

    Moran, M.J.; Clawges, R.M.; Zogorski, J.S.

    2000-01-01

    Data on the volumes of oxygenates and other compounds in gasoline are available from several sources collectively referred as gasoline surveys. The gasoline surveys provide the most definitive knowledge of which oxygenate, if any, and what volumes of that oxygenate are being used in various areas of the country. This information is important in water-quality assessments for relating the detection of MTBE in water to patterns of usage of MTBE in gasoline. General information on three surveys that have been conducted by the National Institute for Petroleum and Energy Research, the Motor Vehicle Manufacturers Association, and the EPA was presented. The samples were tested for physical properties and constituents including octane number, specific gravity, and volumes of olefins, aromatics, benzene, alcohols, and various ether oxygenates. The data in each survey had its own utility based on the type of assessment that is undertaken. Quality Assessment (NAWQA) Program. Using NAWQA data, the percent occurrence of MTBE in ground water in metropolitan areas that use substantial amounts of MTBE (> 5% by vol) was ??? 21%, compared to ??? 2% in areas that do not use substantial amounts of MTBE (< 5% by vol). When several other factors are considered in a logistic regression model including MTBE usage in RFG or OXY gasoline areas (??? 3% by vol) as a factor, a 4-6 fold increase in the detection frequency of MTBE in ground water was found when compared to areas that do not use MTBE or use it only for octane enhancement (< 3% by vol).

  6. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming

    USGS Publications Warehouse

    Godwin, B.L.; Albeke, S.E.; Bergman, H.L.; Walters, Annika W.; Ben-David, M.

    2015-01-01

    Exploration and extraction of oil and natural gas have increased in recent years and are expected to expand in the future. Reduction in water quality from energy extraction may negatively affect water supply for agriculture and urban use within catchments as well as down river. We used non-invasive genetic techniques and capture–recapture modeling to estimate the abundance and density of North American river otters (Lontra canadensis), a sentinel species of aquatic ecosystems, in Southwestern Wyoming. While densities in two of three river reaches were similar to those reported in other freshwater systems in the western US (1.45–2.39 km per otter), otters appeared to avoid areas near energy development. We found no strong difference in habitat variables, such as overstory cover, at the site or reach level. Also, fish abundance was similar among the three river reaches. Otter activity in our study area could have been affected by elevated levels of disturbance surrounding the industrial gas fields, and by potential surface water contamination as indicated by patterns in water conductivity. Continued monitoring of surface water quality in Southwestern Wyoming with the aid of continuously recording devices and sentinel species is warranted.

  7. Quality of drinking water and high incidence rate of esophageal cancer in Golestan province of Iran: a probable link.

    PubMed

    Keshavarzi, Behnam; Moore, Farid; Najmeddin, Ali; Rahmani, Farah; Malekzadeh, Ahad

    2012-02-01

    Golestan province in north Iran is known to be a high-risk area for esophageal cancer (EC). Of a long list of multiple risk factors, this study focuses on a possible link between the epidemiologic patterns of EC and the anomalous concentration of some ions and elements in the drinking water sources. A total of 183 samples from 45 villages covering a wide range of EC mortality rates are collected and analyzed. The results demonstrate that NO(3)(-), SO(4)(2-), Sb, and Sr exceed the recommended maximum concentration level (MCL) in drinking water. This is more prominent in the villages with high esophageal cancer mortality rate, suggesting a possible link between EC incidence and water quality. Se concentration in drinking water increases from low to the high EC areas, a finding contrary to the expected trend. It is concluded that Se deficiency does not play a major role in the etiology of EC in the Golestan province. The statistical results obtained from Mann-Whitney and Kruskal-Wallis tests along with cluster analysis are consistent with the observed trend of EC mortality rate in Golestan province. © Springer Science+Business Media B.V. 2011

  8. Quantitative assessment of groundwater quality using a biological indicator: some preliminary observations.

    PubMed

    Pfeil, R M; Venkat, J A; Plimmer, J R; Sham, S; Davis, K; Nair, P P

    1994-02-01

    The genotoxicity of groundwater was evaluated, using a novel application of the SOS microplate assay (SOSMA). Organic residues were extracted from groundwater samples from Maryland, Pennsylvania, and Delaware by using C-18 bonded silica solid phase extraction tubes. Total organic carbon content (TOC) of water samples was also determined. The genotoxicity of the extracts was determined by the SOSMA. Relative activity (RA) as determined by the SOSMA is a quantitative measure of genotoxicity based on a comparison to the activity of the mutagen, 4-nitroquinoline oxide. Low levels of RA (about 2x background) were detected in waters from sites within these states. There was considerable temporal and spatial variation in the observed RA, but no definite patterns were observed in the variation. Between sampling sites there was a positive correlation between RA and TOC; however, this relationship appeared to be reversed occasionally within a sampling site. The extraction and bioassay methods provide an easy and relatively inexpensive means of determining water quality.

  9. Effects of pulsed, high-velocity water flow on larval robust redhorse and V-lip redhorse

    USGS Publications Warehouse

    Weyers, R.S.; Jennings, C.A.; Freeman, Mary C.

    2003-01-01

    The pulsed, high-velocity water flow characteristic of water-flow patterns downstream from hydropower-generating dams has been implicated in the declining abundance of both aquatic insects and fishes in dam-regulated rivers. This study examined the effects of 0, 4, and 12 h per day of pulsed, high-velocity water flow on the egg mortality, hatch length, final length, and survival of larval robust redhorse Moxostoma robusturn, a presumedly extinct species that was rediscovered in the 1990s, and V-lip redhorse M. collapsum (previously synonomized with the silver redhorse M. anisurum) over a 3-5 week period in three separate experiments. Twelve 38.0-L aquaria (four per treatment) were modified to simulate pulsed, high-velocity water flow (>35 cm/s) and stable, low-velocity water flow (<10 cm/s). Temperature, dissolved oxygen, zooplankton density, and water quality variables were kept the same across treatments. Fertilized eggs were placed in gravel nests in each aquarium. Hatch success was estimated visually at greater than 90%, and the mean larval length at 24 h posthatch was similar in each experiment. After emergence from the gravel nest, larvae exposed to 4 and 12 h of pulsed, high-velocity water flow grew significantly more slowly and had lower survival than those in the 0-h treatment. These results demonstrate that the altered water-flow patterns that typically occur when water is released during hydropower generation can have negative effects on the growth and survival of larval catostomid suckers.

  10. Spatial variation of dissolved organic matter composition and characteristics in an urbanized watershed

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Li, M.

    2013-12-01

    Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their river channel characters in urbanized watersheds. Based on our result, it indicates river channel characters which can have effects on biogeochemical processes of DOM. This knowledge can help us in understanding biogeochemical processes controlled or manipulated by anthropogenic activities at different spatial scales, and help us to make an integrative river health management in a watershed.

  11. Habitat quality and geometry affect patch occupancy of two Orthopteran species.

    PubMed

    Pasinelli, Gilberto; Meichtry-Stier, Kim; Birrer, Simon; Baur, Bruno; Duss, Martin

    2013-01-01

    Impacts of habitat loss and fragmentation on distribution and population size of many taxa are well established. In contrast, less is known about the role of within-patch habitat quality for the spatial dynamics of species, even though within-patch habitat quality may substantially influence the dynamics of population networks. We studied occurrence patterns of two Orthopteran species in relation to size, isolation and quality of habitat patches in an intensively managed agricultural landscape (16.65 km(2)) in the Swiss lowland. Occurrence of field crickets (Gryllus campestris) was positively related to patch size and negatively to the distance to the nearest occupied patch, two measures of patch geometry. Moreover, field crickets were more likely to occur in extensively managed meadows, meadows used at low intensity and meadows dominated by Poa pratensis, three measures of patch quality. Occurrence of the large gold grasshopper (Chrysochraon dispar) was negatively related to two measures of patch geometry, distance to the nearest occupied patch and perimeter index (ratio of perimeter length to patch area). Further, large gold grasshoppers were more likely to occupy patches close to water and patches with vegetation left uncut over winter, two measures of patch quality. Finally, examination of patch occupancy dynamics of field crickets revealed that patches colonized in 2009 and patches occupied in both 2005 and 2009 were larger, better connected and of other quality than patches remaining unoccupied and patches from which the species disappeared. The strong relationships between Orthopteran occurrence and aspects of patch geometry found in this study support the "area-and-isolation paradigm". Additionally, our study reveals the importance of patch quality for occurrence patterns of both species, and for patch occupancy dynamics in the field cricket. An increased understanding of patch occupancy patterns may be gained if inference is based on variables related to both habitat geometry and quality.

  12. The effects of large-scale pumping and diversion on the water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Bradbury, Kenneth R.; Krohelski, James T.

    2001-01-01

    Throughout many parts of the U.S., there is growing concern over the effects of rapid urban growth and development on water resources. Ground- water and surface-water systems (which comprise the hydrologic system) are linked in much of Wisconsin, and ground water can be utilized both for drinking water and as a source of water for sustaining lakes, streams, springs, and wetlands. Ground water is important for surface-water systems because it commonly has greater dissolved solids and more acid-neutraliz- ing capacity than surface water or precipitation. The supplies of ground water are finite, however, and, in many cases ground water used for one purpose cannot be used for another. Moreover, ground-water use and withdrawal patterns may not be easy to alter once established. Thus, urban and rural planners are faced with decisions that balance the need for ground- water withdrawals while maintaining the quantity and quality of ground water for sustaining surface-water resources. Science-based information on the ground-water system and the connections to surface-water systems provides valuable insight for such decisions.

  13. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although freshwater supply and surface water quality were sustained or enhanced overall, these hydrologic services declined in ~60% and 20% of the landscape, respectively. The greatest improvement for most hydrologic services corresponded to areas of restored wetland, forest and perennial crops, which were less vulnerable to future degradation. In the Investment in Innovation scenario, freshwater supply declined in almost the entire watershed; improvement of surface water quality and flood regulation occurred mainly in urban areas, where highly engineered systems made them less vulnerable. Overall, our results indicated that hydrologic services will respond differently to future climate and land-use change, and sustaining one may involve tradeoffs of another. Technological progress can conserve particular services but might not be the panacea for the future. How society reacts in the face of changes can have an important role in determining the pathways to the future and the provision and spatial patterns of ecosystem services.

  14. Hydrogeophysics and geochemistry reveal heterogeneity and water quality improvements in aquifer recharge and recovery (ARR) (Invited)

    NASA Astrophysics Data System (ADS)

    Parsekian, A.; Regnery, J.; Wing, A.; Knight, R. J.; Drewes, J. E.

    2013-12-01

    Aquifer recharge and recover (ARR) is the process of infiltrating water into the ground for storage and withdrawal through wells at a later time. Two significant challenges faced during the design of ARR systems are 1) evaluating aquifer heterogeneity and 2) understanding the rock fluid interactions; these knowledge gaps may have profound impacts on the volume of recoverable water and the improvement in water quality in comparison with the source-water. Our objective in this research is to leverage the advantages of hydrogeophysical measurements and geochemical sampling to reveal the properties of an aquifer through which ARR water travels with the goal of informing current operations and future design decisions. Combined geophysical and geochemical investigations reveal subsurface heterogeneity, indicate possible flow paths though the aquifer and quantify specific reductions in contaminant concentrations. Ground penetrating radar (GPR), electromagnetic induction (EMI) and electrical resistivity tomography (ERT) were used to image the subsurface throughout two key infiltration/extraction areas of an ARR site in Colorado, USA. The most valuable results came from 2.5D ERT revealing the structural patterns and suggesting the distribution of textural composition of unconsolidated sediments. Geochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e. total organic carbon, cations, anions) and trace organic contaminants (e.g. trace organic compounds) and were also used to estimate mixing and water travel times and assess the performance of the ARR site regarding water quality and quantity. Our results indicate that the subsurface is highly heterogeneous at our study site and that the coarse-grained sedimentary units, acting as the best conduit for transporting water, are likely discontinuous. The electrical resistivity measurements indicate certain areas of the infiltration basins may have good hydraulic connections to the extraction wells, while other infiltration basins may be separated by fine-grained materials from their respective extraction wells. The geochemical results imply consistent improvements in water quality that can be achieved within short travel times (<5 days) at this ARR site receiving riverbank filtered water for infiltration.

  15. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  16. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  17. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    PubMed

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  18. Effects of seasonal change and seawater intrusion on water quality for drinking and irrigation purposes, in coastal aquifers of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia; Sweya, Lukuba Ngalya; Luciani, Giulia

    2015-05-01

    Groundwater is the major source to meet domestic, industrial and agricultural needs in the city of Dar es Salaam, Tanzania. However, population growth, increasing urbanization, industrialization and tourism, and climatic changes have caused an intensive exploitation of groundwater resources leading the aquifers become more vulnerable to seawater intrusion. The aim of this study is to examine the variations of groundwater chemistry (as resulting from natural and anthropogenic inputs) depending on seasonal changes, in order to evaluate water quality for drinking and irrigation purposes. Physical and chemical data come from the analysis of groundwater samples, collected from 72 wells, used for the evaluation of water quality parameters, during a year of monitoring. Pattern diagrams, geochemical modeling techniques and Principal Component Analysis (PCA) have been used to identify the main factors influencing groundwater composition. Based on the hydrochemistry, the groundwater was classified into three types: (a) Na-Cl, (b) Ca-Cl, (c) mixed Ca-Na-HCO3-Cl (d) mixed Ca-Mg-Cl-SO4. The geochemical modeling results show that groundwater chemistry is mainly influenced by evaporation process, as it is suggested by the increase of Na and Cl ions concentrations. According to irrigation water quality assessment diagrams of USDA, most water samples from dry and rainy seasons, distributed in category C2-S1, C3-S1, C3-S2, C4-S2 highlighting medium to very high salinity hazard and low to medium sodium content class. PCA evidenced the role of seawater intrusion, evaporation process and anthropogenic pollution (i.e. high NO3 levels due to agricultural activities), as the major factors that influenced the water chemistry, and hence the water quality. Based on Pearson correlation matrix, the presence of high correlations (>0.8) among Na, Cl, Mg and SO4, in association with EC, were interpreted as the seawater intrusion effects. In this area groundwater quality is generally low, and often exceeds permissible limits of standard guideline values of WHO and FAO, referred to EC and chloride values. The high salinity and the groundwater level depletion create serious problems for current use of water supplies as well as future exploitation.

  19. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.

  20. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  1. Relation Between Selected Water-Quality Variables, Climatic Factors, and Lake Levels in Upper Klamath and Agency Lakes, Oregon, 1990-2006

    USGS Publications Warehouse

    Morace, Jennifer L.

    2007-01-01

    Growth and decomposition of dense blooms of Aphanizomenon flos-aquae in Upper Klamath Lake frequently cause extreme water-quality conditions that have led to critical fishery concerns for the region, including the listing of two species of endemic suckers as endangered. The Bureau of Reclamation has asked the U.S. Geological Survey (USGS) to examine water-quality data collected by the Klamath Tribes for relations with lake level. This analysis evaluates a 17-year dataset (1990-2006) and updates a previous USGS analysis of a 5-year dataset (1990-94). Both univariate hypothesis testing and multivariable analyses evaluated using an information-theoretic approach revealed the same results-no one overarching factor emerged from the data. No single factor could be relegated from consideration either. The lack of statistically significant, strong correlations between water-quality conditions, lake level, and climatic factors does not necessarily show that these factors do not influence water-quality conditions; it is more likely that these conditions work in conjunction with each other to affect water quality. A few different conclusions could be drawn from the larger dataset than from the smaller dataset examined in 1996, but for the most part, the outcome was the same. Using an observational dataset that may not capture all variation in water-quality conditions (samples were collected on a two-week interval) and that has a limited range of conditions for evaluation (confined to the operation of lake) may have confounded the exploration of explanatory factors. In the end, all years experienced some variation in poor water-quality conditions, either in timing of occurrence of the poor conditions or in their duration. The dataset of 17 years simply provided 17 different patterns of lake level, cumulative degree-days, timing of the bloom onset, and poor water-quality conditions, with no overriding causal factor emerging from the variations. Water-quality conditions were evaluated for their potential to be harmful to the endangered sucker species on the basis of high-stress thresholds-water temperature values greater than 28 degrees Celsius, dissolved-oxygen concentrations less than 4 milligrams per liter, and pH values greater than 9.7. Few water temperatures were greater than 28 degrees Celsius, and dissolved-oxygen concentrations less than 4 milligrams per liter generally were recorded in mid to late summer. In contrast, high pH values were more frequent, occurring earlier in the season and parallel with growth in the algal bloom. The 10 hypotheses relating water-quality variables, lake level, and climatic factors from the earlier USGS study were tested in this analysis for the larger 1990-2006 dataset. These hypotheses proposed relations between lake level and chlorophyll-a, pH, dissolved oxygen, total phosphorus, and water temperature. As in the previous study, no evidence was found in the larger dataset for any of these relations based on a seasonal (May-October) distribution. When analyzing only the June data, the previous 5-year study did find evidence for three hypotheses relating lake level to the onset of the bloom, chlorophyll-a concentrations, and the frequency of high pH values in June. These hypotheses were not supported by the 1990-2006 dataset, but the two hypotheses related to cumulative degree-days from the previous study were: chlorophyll-a concentrations were lower and onset of the algal bloom was delayed when spring air temperatures were cooler. Other relations between water-quality variables and cumulative degree-days were not significant. In an attempt to identify interrelations among variables not detected by univariate analysis, multiple regressions were performed between lakewide measures of low dissolved-oxygen concentrations or high pH values in July and August and six physical and biological variables (peak chlorophyll-a concentrations, degree-days, water temperature, median October-May discharg

  2. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  3. Pharmaceutical compounds in Merrimack River water used for public supply, Lowell, Massachusetts, 2008-09

    USGS Publications Warehouse

    Massey, Andrew J.; Waldron, Marcus C.

    2011-01-01

    This report presents results of a study conducted by the U.S. Geological Survey (USGS), in cooperation with the Massachusetts Department of Environmental Protection, to determine the occurrence of 14 commonly used human-health pharmaceutical compounds and fecal-indicator bacteria in Merrimack River water used as a drinking-water source by 135,000 residents in eastern Massachusetts. The study was designed to complement the USGS National Water-Quality Assessment Program's Source Water-Quality Assessment, which identifies patterns of occurrence of 280 primarily unregulated organic wastewater contaminants in source water used by community water systems and determines whether these patterns also occur in treated drinking water prior to distribution. The study involved periodic collection and analysis of raw Merrimack River water and treated drinking water over the course of 1 year. Water samples were collected periodically without regard to flow regime or antecedent weather conditions at the Lowell Regional Water Utility's Merrimack River intake upstream from Lowell, Mass. The same parcel of water was then sampled as finished water following treatment. Despite the presence of many potential sources of contamination in the drinking-water source area, only 2 of the 14 pharmaceutical analytes were detected at reportable concentrations in the source-water samples, and these occurred in only one set of periodic samples. Acetaminophen, a nonprescription analgesic, and caffeine were detected in the September source-water samples at concentrations of 0.084 and 0.068 micrograms per liter, respectively. Three other compounds-carbamazepine, an antiepileptic; cotinine, a metabolite of nicotine; and diphenhydramine, a nonprescription antihistamine-were detected in source-water samples, but at concentrations too low to be reliably quantified. None of the 14 pharmaceuticals was found in the finished water at a reportable concentration, defined as two times the long-term detection limit used by the analytical laboratory. In addition to the pharmaceutical analyses, measurements of fecal-indicator bacteria (Escherichia coli) concentrations and several physical characteristics were made on all source-water samples. Values for these constituents were consistently within State standards. It is possible that the monthly sampling schedule missed hydrologic events that would have transported greater concentrations of sewage contaminants to the sampling site, or that the large flow volume of the river at the study site effectively diluted the contaminant signal, but it is also likely that recent efforts to separate stormwater- and wastewater-discharge systems in the reaches upstream from the Lowell Regional Water Utility have greatly reduced the potential for sewage contamination at the intake.

  4. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  5. Anthropogenic activities and coastal environmental quality: a regional quantitative analysis in southeast China with management implications.

    PubMed

    Chen, Kai; Liu, Yan; Huang, Dongren; Ke, Hongwei; Chen, Huorong; Zhang, Songbin; Yang, Shengyun; Cai, Minggang

    2018-02-01

    Regional analysis of environmental issues has always been a hot topic in the field of sustainable development. Because the different levels of economic growth, urbanization, resource endowments, etc. in different regions generate apparently different ecological responses, a better description and comparison across different regions will provide more valuable implications for ecological improvement and policymaking. In this study, seven typical bays in southeast China that are a rapid developing area were selected to quantitatively analyze the relationship between socioeconomic development and coastal environmental quality. Based on the water quality data from 2007 to 2015, the multivariate statistical method was applied to analyze the potential environmental risks and to classify the seven bays based on their environmental quality status. The possible variation trends of environmental indices were predicted based on the cross-regional panel data by Environmental Kuznets Curve. The results showed that there were significant regional differences among the seven bays, especially Quanzhou, Xiamen, and Luoyuan Bays, suffered from severer artificial disturbances than other bays, despite their different development patterns. Socioeconomic development level was significantly associated with some water quality indices (pH, DIN, PO 4 -P); the association was roughly positive: the areas with higher GDP per capita have some worse water quality indices. In addition, the decreasing trend of pH values and the increasing trend of nutrient concentration in the seven bays will continue in the foreseeable future. In consideration of the variation trends, the limiting nutrient strategy should be implemented to mitigate the deterioration of the coastal environments.

  6. Quantifying the Anthropogenic and Geological Controls on the DIC and Water Quality of the Waterways in a Closed Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2016-12-01

    Recent studies have shown that inland aquatic carbon cycling is an important component of the global carbon cycle which is being altered significantly by changes in land use/land cover (LCLU). The study of dissolved carbon species (DIC) in rivers provides important information about the processing of carbon within a watershed. In 2014, we conducted pilot surveys quantifying the spatiotemporal pattern in the DIC concentration and its isotopic ratios (δ13C) across the Bear and the Weber Rivers within the closed Great Salt Lake (GSL) Basin, which is undergoing rapid urbanization and changes in LCLU. Our data reflected significant variations among and between both rivers, where the Weber River was characterized by smaller seasonal and spatial variability. However, both the rivers showed an increase in DIC from headwaters to terminus. We observed increase in the riverine DIC along the agricultural and urbanized stretches of the river, and decrease downstream of tributaries input draining pristine watersheds. We also observed significant differences in the DIC upstream and downstream of reservoirs. We hypothesize that these variations suggest strong anthropogenic control on the DIC such as due to agriculture, urbanization, construction of reservoirs and anthropogenic modifications of the river flow. To test our hypothesis we conducted an additional geochemical survey during the high flow spring season (in 2016). An additional survey during fall 2016 will capture the base flow chemistry. We measured a suite of geochemical tracers including major ions (Ca, Mg, NO3, Cl, PO4, SO4), trace elements (Sr, Rb, Fe, Al, and Zn), nitrate (δ15N and δ18O), carbon, strontium, water isotopes and physical properties of water (temperature, pH, DO and conductivity) to quantify the factors controlling the river DIC and water quality. Our ongoing work will help evaluate the overall water quality and carbon budget of the major rivers in the GSL and partition the anthropogenic and natural processes governing the water quality of these rivers. Our study will provide an assessment of the vulnerability of the surface water resources with respect to water quality, an important factor in the management of these surface water systems which are going active development to meet the growing demand for fresh water within this semiarid region.

  7. Ground-water resources and potential hydrologic effects of surface coal mining in the northern Powder River basin, southeastern Montana

    USGS Publications Warehouse

    Slagle, Steven E.; Lewis, Barney D.; Lee, Roger W.

    1985-01-01

    The shallow ground-water system in the northern Powder River Basin consists of Upper Cretaceous to Holocene aquifers overlying the Bearpaw Shale--namely, the Fox Hills Sandstone; Hell Creek, Fort Union, and Wasatch Formations; terrace deposits; and alluvium. Ground-water flow above the Bearpaw Shale can be divided into two general flow patterns. An upper flow pattern occurs in aquifers at depths of less than about 200 feet and occurs primarily as localized flow controlled by the surface topography. A lower flow pattern occurs in aquifers at depths from about 200 to 1,200 feet and exhibits a more regional flow, which is generally northward toward the Yellowstone River with significant flow toward the Powder and Tongue Rivers. The chemical quality of water in the shallow ground-water system in the study area varies widely, and most of the ground water does not meet standards for dissolved constituents in public drinking water established by the U.S. Environmental Protection Agency. Water from depths less than 200 feet generally is a sodium sulfate type having an average dissolved-solids concentration of 2,100 milligrams per liter. Sodium bicarbonate water having an average dissolved-solids concentration of 1,400 milligrams per liter is typical from aquifers in the shallow ground-water system at depths between 200 and 1,200 feet. Effects of surface coal mining on the water resources in the northern Powder River Basin are dependent on the stratigraphic location of the mine cut. Where the cut lies above the water-yielding zone, the effects will be minimal. Where the mine cut intersects a water-ielding zone, effects on water levels and flow patterns can be significant locally, but water levels and flow patterns will return to approximate premining conditions after mining ceases. Ground water in and near active and former mines may become more mineralized, owing to the placement of spoil material from the reducing zone in the unsaturated zone where the minerals are subject to oxidation. Regional effects probably will be small because of the limited areal extent of ground-water flow systems where mining is feasible. Results of digital models are presented to illustrate the effects of varying hydraulic properties on water-level changes resulting from mine dewatering. The model simulations were designed to depict maximum-drawdown situations. One simulation indicates that after 20 years of continuous dewatering of an infinite, homogeneous, isotropic aquifer that is 10 feet thick and has an initial potentiometric surface 10 feet above the top of the aquifer, water-level declines greater than 1 foot would generally be limited to within 7.5 miles of the center of the mine excavation; declines greater than 2 feet to within about 6 miles; declines greater than 5 feet to within about 3.7 miles; declines greater than 10 feet to within about 1.7 miles; and declines greater than 15 feet to within 1.2 miles.

  8. Beverage Consumption Patterns among Norwegian Adults.

    PubMed

    Paulsen, Mari Mohn; Myhre, Jannicke Borch; Andersen, Lene Frost

    2016-09-13

    Beverages may be important contributors for energy intake and dietary quality. The purpose of the study was to investigate how beverage consumption varies between different meals (breakfast, lunch, dinner, supper/evening meal, snacks) and between weekdays and weekend-days in Norwegian adults. A cross-sectional dietary survey was conducted among Norwegian adults (n = 1787) in 2010-2011. Two telephone-administered 24 h recalls were used for dietary data collection. Breakfast was the most important meal for milk and juice consumption, dinner for sugar-sweetened beverages and wine, and snacks for water, coffee, artificially sweetened beverages, and beer. Consumption of sugar-sweetened and artificially sweetened beverages did not differ between weekdays and weekend-days among consumers. The average intake of wine and beer (men only) was higher on weekend-days. Higher age was positively associated with wine consumption and negatively associated with consumption of water, sugar-sweetened, and artificially sweetened beverages. Higher education was associated with consumption of water, beer, and wine, whereas lower education was associated with sugar-sweetened beverage consumption. Beverage consumption patterns among Norwegian adults vary between different meal types and in subgroups of the population. Alcohol consumption was higher on weekend-days. Knowledge regarding beverage consumption patterns in the population should be considered when revising dietary guidelines in the future.

  9. Beverage Consumption Patterns among Norwegian Adults

    PubMed Central

    Paulsen, Mari Mohn; Myhre, Jannicke Borch; Andersen, Lene Frost

    2016-01-01

    Beverages may be important contributors for energy intake and dietary quality. The purpose of the study was to investigate how beverage consumption varies between different meals (breakfast, lunch, dinner, supper/evening meal, snacks) and between weekdays and weekend-days in Norwegian adults. A cross-sectional dietary survey was conducted among Norwegian adults (n = 1787) in 2010–2011. Two telephone-administered 24 h recalls were used for dietary data collection. Breakfast was the most important meal for milk and juice consumption, dinner for sugar-sweetened beverages and wine, and snacks for water, coffee, artificially sweetened beverages, and beer. Consumption of sugar-sweetened and artificially sweetened beverages did not differ between weekdays and weekend-days among consumers. The average intake of wine and beer (men only) was higher on weekend-days. Higher age was positively associated with wine consumption and negatively associated with consumption of water, sugar-sweetened, and artificially sweetened beverages. Higher education was associated with consumption of water, beer, and wine, whereas lower education was associated with sugar-sweetened beverage consumption. Beverage consumption patterns among Norwegian adults vary between different meal types and in subgroups of the population. Alcohol consumption was higher on weekend-days. Knowledge regarding beverage consumption patterns in the population should be considered when revising dietary guidelines in the future. PMID:27649236

  10. ACQUA: Automated Cyanobacterial Quantification Algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning.

    PubMed

    Gandola, Emanuele; Antonioli, Manuela; Traficante, Alessio; Franceschini, Simone; Scardi, Michele; Congestri, Roberta

    2016-05-01

    Toxigenic cyanobacteria are one of the main health risks associated with water resources worldwide, as their toxins can affect humans and fauna exposed via drinking water, aquaculture and recreation. Microscopy monitoring of cyanobacteria in water bodies and massive growth systems is a routine operation for cell abundance and growth estimation. Here we present ACQUA (Automated Cyanobacterial Quantification Algorithm), a new fully automated image analysis method designed for filamentous genera in Bright field microscopy. A pre-processing algorithm has been developed to highlight filaments of interest from background signals due to other phytoplankton and dust. A spline-fitting algorithm has been designed to recombine interrupted and crossing filaments in order to perform accurate morphometric analysis and to extract the surface pattern information of highlighted objects. In addition, 17 specific pattern indicators have been developed and used as input data for a machine-learning algorithm dedicated to the recognition between five widespread toxic or potentially toxic filamentous genera in freshwater: Aphanizomenon, Cylindrospermopsis, Dolichospermum, Limnothrix and Planktothrix. The method was validated using freshwater samples from three Italian volcanic lakes comparing automated vs. manual results. ACQUA proved to be a fast and accurate tool to rapidly assess freshwater quality and to characterize cyanobacterial assemblages in aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Water disinfection: microbes versus molecules - an introduction of issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowle, J.R. III, Kopfler, F.C.

    If the chemicals used to rid drinking water of disease-causing microbes are themselves potentially harmful, is drinking water safe. What trade-offs are acceptable with respect to microbial versus chemical water quality. This conference deals with current thinking about these topics. The subjects discussed reflect the evolution of thinking, both scientifically and socially, about how best to supply the public with safe, pure potable water. The goal of this paper is to introduce the issues associated with disinfectants and disinfectant by-products in water. This will be done by presenting a historical overview of the use of chemical disinfectants to purify drinkingmore » water and the subsequent awareness of potential health concerns. Historically, the major health issue associated with water has been the demonstrated role that water has played in spreading infectious disease. Waterborne infectious agents remain in the environment, and new ones emerge through evolution of humans and microorganisms and because of changing exposure patterns.« less

  12. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    USGS Publications Warehouse

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  13. Land use in, and water quality of, the Pea Hill Arm of Lake Gaston, Virginia and North Carolina, 1988-90

    USGS Publications Warehouse

    Woodside, Michael D.

    1994-01-01

    The City of Virginia Beach currently (1994) supplies water to about 400,000 people in southeastern Virginia. The city plans to withdraw water from the Pea Hill Arm of Lake Gaston to meet projected water needs of the population to the year 2030. The purpose of this report is to (1) describe the temporal and spatial distribution of selected water-quality constituents, (2) document current (1989) land use and land cover in the Pea Hill Arm drainage basin, and (3) discuss relations, if any, between the quality of water in the inlets within the Pea Hill Arm and land uses. The report focuses on water-quality problems in the basin, including changes in concentrations of major ions, nutrients, and algae associated with urban development adjacent to water bodies.The Pea Hill Arm was classified as mesotrophic on the basis of the range of concentrations of total phosphorus (0.001 to 0.61 milligrams per liter); the range of concentrations of total organic-plus-ammonia nitrogen (0.2 to 1.4 milligrams per liter); and the range of concentrations of chlorophyll a (1.4 to 56 micrograms per liter). These water-quality data were collected at 3 feet below the water surface during water years 1989-90.Thermal stratification in Pea Hill Arm generally began in April and ended in September. Water below a depth of about 25 feet generally became anoxic by June. Destratification generally began in late September and was completed by November. Lake Gaston followed the same general stratification and destratification pattern as Pea Hill Arm, except Lake Gaston was partially destratified during the summer when large amounts of water were released from John H. Kerr Reservoir and Lake Gaston Dams. During water year 1988, streamflows were 33 percent below the long-term mean-annual streamflows at one of the major streams to Lake Gaston. Low streamflows contributed to elevated specific conductances and concentrations of sodium, calcium, magnesium, and alkalinity from October 1988 to February 1989 at sampling stations in the Pea Hill Arm and Lake Gaston.About 75 percent of the land use in the Pea Hill Arm is forest land. The remaining 25 percent of the Pea Hill Arm drainage basin is 8 percent pasture/open land, 8 percent open water, 6 percent residential land, and 3 percent cropland. No statistical relations are present between water-quality constituents measured and developed land uses within 11 basins in the Pea Hill Arm Basin, except during periods of stormwater runoff. During a stormwater-runoff event, there was a relation between total nitrite plus nitrate and land use (Kendall's tau correlation coefficient of 0.69). The relation between the developed land use and total nitrite plus nitrate can also be related to the increased ground-water inputs during high base-flow periods.Spatial differences in water-quality constituents as determined by Wilcoxon (matched-pairs) signed-rank tests and cluster analyses were longitudinal and primarily grouped into riverine, transition, and lacustrine zones. These zones were grouped on the basis of flow characteristics and nutrient concentrations.

  14. Exposure Patterns and Health Effects Associated with Swimming and Surfing in Polluted Marine Waters

    NASA Astrophysics Data System (ADS)

    Grant, S. B.

    2007-05-01

    Marine bathing beaches are closed to the public whenever water quality fails to meet State and Federal standards. In this talk I will explore the science (and lack thereof!) behind these beach closures, including the health effects data upon which standards are based, shortcomings of the current approach used for testing and notification, and the high degree of spatial and temporal heterogeneity associated with human exposure to pollutants in these systems. The talk will focus on examples from Huntington Beach, where the speaker has conducted research over the past several years.

  15. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    NASA Astrophysics Data System (ADS)

    Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas

    2017-04-01

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  16. Sustainability issues in rural water supply in Asia.

    PubMed

    1998-03-01

    This article identifies some sustainability issues in management of water supplies in rural Asia. The International Drinking Water Supply and Sanitation Decade was 1981-90. At present, less than 50% of the rural population in several Asian countries have access to safe water, and even less have access to adequate sanitation. Access does not ensure quality of services or supplies. Data on coverage is inadequate and does not take into account water quality, hours of service, reliability of supplies, distance to the source, and community use patterns. It is difficult to improve access to the poor. There is no single uniform strategy that works for all parts of a country. Countries need to promote community management that has strategic vision and appropriate priorities. Local management is constrained by centralized authority, the orientation of sector agencies, and staff with weak managerial, financial, technical, and communications skills. Many countries lack resources to maintain water delivery infrastructures and to prevent deterioration of services. There is a need to develop low cost appropriate technologies, management requirements, health education, community participation, mobilization of women, and synergistic, nonsequential development. Demand for water and sanitation is driven by survival and privacy issues. Rural water supply programs should view water as an economic and social good. Water management is effective when decisions are made locally. Local governments need to be strengthened in order to be able to perform demand management, select institutional options, and to take care of the unserviced.

  17. Water-quality conditions in Upper Klamath Lake, Oregon, 2002-04

    USGS Publications Warehouse

    Wood, Tamara M.; Hoilman, Gene R.; Lindenberg, Mary K.

    2006-01-01

    Eleven (2002) to 14 (2003 and 2004) continuous water-quality monitors that measured pH, dissolved oxygen, temperature, and specific conductance, were placed in Upper Klamath Lake to support a telemetry tracking study of endangered adult shortnose and Lost River suckers. Samples for the analysis of chlorophyll a and nutrients were collected at a subset of the water-quality monitor sites in each year. The seasonal pattern in the occurrence of supersaturated dissolved oxygen concentrations and high pH associated with photosynthetic activity, as well as the undersaturated dissolved oxygen concentrations associated with oxygen demand through respiration and decay in excess of photosynthetic production, were well described by the dynamics of the massive blooms of Aphanizomenon flos aquae (AFA) that occur each year. Data from the continuous monitors provided a means to quantify the occurrence, duration, and spatial extent of water-quality conditions potentially harmful to fish (dissolved- oxygen concentration less than 4 milligrams per liter, pH greater than 9.7, and temperature greater than 28 degrees Celsius) in the northern part of the lake, where the preferred adult sucker habitat is found. There were few observations of temperature greater than 28 degrees Celsius, suggesting that temperature is not a significant source of chronic stress to fish, although its role in the spread of disease is harder to define. Observations of pH greater than 9.7 were common during times when the AFA bloom was growing rapidly, so pH may be a source of chronic stress to fish. Dissolved oxygen concentrations less than 4 milligrams per liter were common in all 3 years at the deeper sites, in the lower part of the water column and for short periods during the day. Less common were instances of widespread low dissolved oxygen, throughout the water column and persisting through the entire day, but this was the character of a severe low dissolved oxygen event (LDOE) that culminated in the start of a fish die-off in 2003. Documented evidence indicates that LDOEs played a role in three fish die-offs in the mid-1990s as well. In the historical context of 15 years of climate and water-quality data, 3 out of 4 of the recent fish die-off years, 1996, 1997, and 2003, were characterized by low winds and high temperatures in July or August coincident with the start of the die-off. High temperatures accelerate the oxygen demanding processes that lead to a LDOE. The role of low winds remains inconclusive, but it could include the development of stratification in the water column and/or the alteration of the wind-driven circulation pattern. At a site centrally located in the study area, die-off years could be successfully identified in the historical data by screening for water characterized by exceptionally low chlorophyll a concentration, exceptionally low dissolved oxygen concentration throughout the water column (not just near the bottom), and exceptionally high ammonia concentration and water temperature, just prior to or coincident with the start of a fish die-off. These conditions indicate that a severe decline in the AFA bloom and conversion of most of the organic matter into inorganic form had taken place.

  18. The effects of footbath on sleep among the older adults in nursing home: A quasi-experimental study.

    PubMed

    Kim, Hyun-Joo; Lee, Yaelim; Sohng, Kyeong-Yae

    2016-06-01

    To examine the long-term effects of foot-bathing therapy, using different water temperatures, on the sleep quality of older adults living in nursing homes. A quasi-experimental study design with non-equivalent control group. Thirty participants were recruited from a nursing home in Gyeong-gi Province, South Korea. The participants were randomly assigned to experimental, placebo, and control groups. The foot-bathing therapy was performed for 30min daily for four weeks. Water at 40°C was used for the experimental group, while water at 36.5°C was used for the placebo group. The control group did not receive any intervention. The participants' sleep patterns (total sleep amount, sleep efficiency, and sleep latency) and sleep-disturbed behaviors were compared based on group, using actigraphy and a sleep disorder inventory. The total amount of sleep and sleep efficiency were significantly different for the experimental group, especially those with poor sleep quality. There were no differences in sleep latency or sleep-disturbed behaviors among the groups. The long-term effect of the therapy decreased in the third week of the therapy. Daily, 30-min foot-bathing therapy sessions with water at 40°C were effective in improving sleep quality for older adults. The therapy was more effective for participants with poor sleep quality at baseline assessment than those with relatively good sleep quality. The long-term effects of foot-bathing therapy decreased three weeks after initiation; therefore, it might be desirable to deliver the therapy for two weeks, pause it for a week, and then resume it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impacts of land and water use on plankton diversity and water quality in small man-made reservoirs in the Limpopo basin, Zimbabwe: A preliminary investigation

    NASA Astrophysics Data System (ADS)

    Basima, Lefranc Busane; Senzanje, Aidan; Marshall, Brian; Shick, Katharine

    This paper reports on a study carried out from February to April 2005 in the southern part of Zimbabwe in the Mzingwane catchment, Limpopo basin to investigate the impacts of land and water use on the water quality and ecosystem health of eight small man-made reservoirs. Four of the reservoirs of were located in communal lands while the remaining four were located in the National Park Estates, considered pristine. Plankton community structure was identified in terms of abundance and diversity as an indirect assessment of water quality and ecosystem health. In addition, phosphorus, nitrogen, pH, transparency, electric conductivity and hardness were analysed. The results obtained indicate that a significant difference in abundance of phytoplankton groups was found between the communal lands and the National Park Estates ( P < 0.01). Though the highest phytoplankton abundance was observed in April, February showed the highest number of taxa (highest diversity). Chlorophytes was the major group in both periods with 29 genera in February and 20 in April followed by Diatoms with 17 genera in February and 12 in April. The zooplankton community was less diverse and less abundant and did not show any seasonality pattern. Phosphorus (0.022 ± 0.037 mg/l) and nitrogen (0.101 ± 0.027 mg/l) had similar trends in the study area during the study period. Transparency of water was very low (ca. 27 cm secchi depth) in 75% of the reservoirs with communal lands’ reservoirs having a whitish colour, likely reducing light penetration and therefore photosynthetic potential. Evidence from the study indicates that, at this time, activities in the communal lands are not significantly impacting the ecosystem health of reservoirs, as water quality characteristics and plankton diversity on communal lands were not significantly different from the pristine reservoirs in National Park. However, water managers are urged to continuously monitor the changes in land and water uses around these multipurpose reservoirs in order to prevent possible detrimental land and water uses that might occur in the future.

  20. Insights into discriminating environmental quality status using taxonomic distinctness based on a small species pool of ciliated protozoa in marine ecosystems.

    PubMed

    Jiang, Yong; Xu, Henglong; Warren, Alan

    2014-01-15

    The objective of this study was to determine the feasibility of developing a protocol for assessing marine water quality based on taxonomic relatedness within a small pool of planktonic ciliates. An annual dataset was compiled based on samples collected biweekly at five sites, with a gradient of environmental stress, during a 1-year cycle in Jiaozhou Bay, northern China. A total of 60 species, belonging to 17 genera 10 families, 5 orders and 2 classes of the phylum Ciliophora, were identified. Among five orders, Tintinnida showed a low variability mainly at species level whereas the other orders (especially Strombidiida and Choreotrichida, although with the exception of the genus Strombidium) represented a high variability at higher taxonomic ranks (e.g. family or order). Mantel analyses showed that spatial patterns of the ciliate assemblages, with tinitinnids and Strombidium spp. excluded, were significantly correlated with those of the total planktonic ciliate communities in terms of their response to environmental status. The average taxonomic distinctness (Δ(+)) based on the small species pool was significantly negatively correlated with the changes in concentrations of nutrients (P<0.05). Furthermore, the paired indices of Δ(+) and the variation in taxonomic distinctness (Λ(+)) showed a clear departure from the expected taxonomic pattern. These findings suggest that it is possible to assess the status of marine water quality using the taxonomic relatedness within a small pool of planktonic ciliates. © 2013.

  1. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China.

    PubMed

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2018-04-15

    Rapid urbanization in China has dramatically deteriorated the water quality of streams and threatening aquatic ecosystem health. This study aims to 1) assess the impacts of urbanization on water quality and macroinvertebrate composition and 2) address the question of how urbanization affects macroinvertebrate distribution patterns. Environmental variables over multispatial scales and macroinvertebrate community data were collected on April (dry season) and September (wet season) of 2014 and 2015 at 19 sampling sites, of which nine had a high urbanization level (HUL), six had moderate urbanization level (MUL) and four had low urbanization level (LUL), in the Liangjiang New Area. The results of this study showed that macroinvertebrate assemblages significantly varied across the three urbanization levels. The sensitive species (e.g., EPT taxa) were mainly centralized at LUL sites, whereas tolerant species, such as Tubificidae (17.3%), Chironomidae (12.1%), and Physidae (4.61%), reached highest relative abundance at LUL sites. The values of family biotic index (FBI) and biological monitoring working party (BMWP) indicated the deterioration of water quality along urbanization gradient. Seasonal and inter - annual changes in macroinvertebrate communities were not observed. The results of variation partitioning analyses (CCAs) showed that habitat scale variables explained the major variation in macroinvertebrate community composition. Specifically, the increased nutrient concentrations favored tolerant species, whereas high water flow and substrate coarseness benefitted community taxa richness, diversity and EPT richness. Considering the interactions between scale-related processes, the results of this study suggested that urbanization resulted in less diverse and more tolerant stream macroinvertebrate assemblages mainly via increased nutrient concentrations and reduced substrate coarseness. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of seasonal operation on the quality of water produced by public-supply wells.

    PubMed

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  3. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.

  4. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  5. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    USGS Publications Warehouse

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging toward the lake. Total groundwater inflow to Shell Lake is small (approximately 5 percent of the water budget) compared with water entering the lake from precipitation (83 percent) and surface-water runoff (13 percent). The MODFLOW model also was used to simulate average annual hydrologic conditions from 1949 to 2009, including effects of the removal of 3 billion gallons of water during 2003–5. The maximum decline in simulated average annual water levels for Shell Lake due to the diversion alone was 3.3 ft at the end of the diversion process in 2005. Model simulations also indicate that although water level continued to decline through 2009 in response to local weather patterns (local drought), the effects of the diversion decreased after the diversion ceased; that is, after 4 years of recovery (2006–9), drawdown attributable to the diversion alone decreased by about 0.6 ft because of increased groundwater inflow and decreased lake-water outflow to groundwater caused by the artificially lower lake level. A delayed response in drawdown of less than 0.5 ft was transmitted through the groundwater-flow system to upgradient lakes. This relatively small effect on upgradient lakes is attributed in part to extensive layers of shallow clay that limit lake/groundwater interaction in the area. Data collected in the lake indicated that Shell Lake is polymictic (characterized by frequent deep mixing) and that its productivity is limited by the amount of phosphorus in the lake. The lake was typically classified as oligotrophic-mesotrophic in June, mesotrophic in July, and mesotrophic-eutrophic in August. In polymictic lakes like Shell Lake, phosphorus released from the sediments is not trapped near the bottom of the lake but is intermittently released to the shallow water, resulting in deteriorating water quality as summer progresses. Because the productivity of Shell Lake is limited by phosphorus, the sources of phosphorus to the lake were quantified, and the response in water quality to changes in phosphorus inputs were evaluated by means of eutrophication models. During 2009, the total input of phosphorus to Shell Lake was 1,730 pounds (lb), of which 1,320 lb came from external sources (76 percent) and 414 lb came from internal loading from sediments in the lake (24 percent). The largest external source was from surface-water runoff, which delivered about 52 percent of the total phosphorus load compared with about 13 percent of the water input. The second largest source was from precipitation (wetfall and dryfall), which delivered 19 percent of the load compared to about 83 percent of the water input. Contributions from septic systems and groundwater accounted for about 3 and 2 percent, respectively. Increased runoff raises water levels in the lake but does not necessarily increase phosphorus loading because phosphorus concentrations in the tributaries decline during increased flow, possibly because of shorter retention times in upstream wetlands. Phosphorus loading to the lake in 2009 represented what occurred after a series of dry years; therefore, this information was combined with data from 2011, a wet year, to estimate phosphorus loading during a range of hydrologic conditions by estimating loading from each component of the phosphorus budget for each year from 1949 to 2011. Comparisons of historical water-quality records with historical water levels and applications of a hydrodynamic model (Dynamic Lake Model, DLM) and empirical eutrophication models were used to understand how changes in water level and the coinciding changes in phosphorus loading affect the water quality of Shell Lake. DLM simulations indicate that large changes in water level (approximately 10 ft) affect the persistence of stratification in the lake. During periods with low water levels, the lake is a well-mixed, polymictic system, with water quality degrading slightly as summer progresses. During periods with high water levels, the lake is more stratified, and phosphorus from internal loading is trapped in the hypolimnion and released later in summer, which results in more extreme seasonality in water quality and better clarity in early summer. Results of eutrophication model simulations using a range in external phosphorus inputs illustrate how water quality in Shell Lake (phosphorus and chlorophyll a concentrations and Secchi depths) responds to changes in external phosphorus loading. Results indicate that a 50-percent reduction in external loading from that measured in 2009 would be required to change phosphorus concentrations from 0.018 milligram per liter (mg/L) (measured in 2009) to 0.012 mg/L (estimated for the mid-1800s from analysis of diatoms in sediment cores). Such reductions in phosphorus loading cannot be accomplished by targeting septic systems or internal loading alone because septic systems contribute only about 3 percent of the phosphorus input to the lake, and internal loading from the sediments of Shell Lake contributes only about 25 percent of phosphorus input. Complete elimination of phosphorus from septic systems and internal loading would decrease the phosphorus concentrations in the lake by 0.003–0.004 mg/L. Therefore, reducing phosphorus concentration in the lake more than by 0.004 mg/L requires decreasing phosphorus loading from surface-water contributions, primarily runoff to the lake. Reconstructed changes in water quality from 1860 to 2010, based on changes in the diatom communities archived in the sediments and eutrophication model simulations, suggest that anthropogenic changes in the watershed (sawmill construction in 1881; the establishment of the village of Shell Lake; and land-use changes in the 1920s, including increased agriculture) had a much larger effect on water quality than the natural changes associated with fluctuations in water level. Although the effects of natural changes in water level on water quality appear to be small, changes in water level do have a modest effect on water quality, primarily manifested as small improvements during higher water levels. Fluctuations in water level, however, have a larger effect on the seasonality of water-quality patterns, with better water quality, especially increased Secchi depths, in early summer during years with high water levels.

  6. Transmission of linearly polarized light in seawater: implications for polarization signaling.

    PubMed

    Shashar, Nadav; Sabbah, Shai; Cronin, Thomas W

    2004-09-01

    Partially linearly polarized light is abundant in the oceans. The natural light field is partially polarized throughout the photic range, and some objects and animals produce a polarization pattern of their own. Many polarization-sensitive marine animals take advantage of the polarization information, using it for tasks ranging from navigation and finding food to communication. In such tasks, the distance to which the polarization information propagates is of great importance. Using newly designed polarization sensors, we measured the changes in linear polarization underwater as a function of distance from a standard target. In the relatively clear waters surrounding coral reefs, partial (%) polarization decreased exponentially as a function of distance from the target, resulting in a 50% reduction of partial polarization at a distance of 1.25-3 m, depending on water quality. Based on these measurements, we predict that polarization sensitivity will be most useful for short-range (in the order of meters) visual tasks in water and less so for detecting objects, signals, or structures from far away. Navigation and body orientation based on the celestial polarization pattern are predicted to be limited to shallow waters as well, while navigation based on the solar position is possible through a deeper range.

  7. Interannual variability of the physical characteristics of North Thermaikos Gulf (NW Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Krestenitis, Yannis N.; Kombiadou, Katerina D.; Androulidakis, Yannis S.

    2012-08-01

    Thermaikos Gulf is a marine ecosystem of major importance, not only environmental, but also due to the various socioeconomic activities associated with the area. The physical characteristics of the gulf's waters were studied, analyzing in situ measurements of oceanographic parameters, collected during 5 oceanographic surveys from 1994 to 2007, on the same grid of 26 sampling stations. Aim of this paper is the detection and description of the main changes (seasonal and interannual) in the water masses' characteristics that are related to the seawater quality of the North Thermaikos. The connection between the main forcing factors and the major circulation patterns is also under investigation. The interannual analysis of the collected data revealed the existence of strong seasonal fluctuations that present significant deviations from a mean seasonal pattern in specific periods. A general decreasing trend of the salinities of the domain is observed during the study period. At the same time, a strong relation between open Aegean Sea waters and riverine freshwater fluxes is identified, factors that significantly influence stratification, circulation and renewal of the gulf. Based on the thermohaline properties, two dense water formation events (February 2000 and 2005), not previously reported, are detected and analyzed for the first time.

  8. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an application to Chesapeake Bay River inputs

    USGS Publications Warehouse

    Hirsch, Robert M.; Moyer, Douglas; Archfield, Stacey A.

    2010-01-01

    A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.

  9. Systematic tracking, visualizing, and interpreting of consumer feedback for drinking water quality.

    PubMed

    Dietrich, Andrea M; Phetxumphou, Katherine; Gallagher, Daniel L

    2014-12-01

    Consumer feedback and complaints provide utilities with useful data about consumer perceptions of aesthetic water quality in the distribution system. This research provides a systematic approach to interpret consumer complaint water quality data provided by four water utilities that recorded consumer complaints, but did not routinely process the data. The utilities tended to write down a myriad of descriptors that were too numerous or contained a variety of spellings so that electronic "harvesting" was not possible and much manual labor was required to categorize the complaints into majors areas, such as suggested by the Drinking Water Taste and Odor Wheel or existing check-sheets. When the consumer complaint data were categorized and visualized using spider (or radar) and run-time plots, major taste, odor, and appearance patterns emerged that clarified the issue and could provide guidance to the utility on the nature and extent of the problem. A caveat is that while humans readily identify visual issues with the water, such as color, cloudiness, or rust, describing specific tastes and odors in drinking water is acknowledged to be much more difficult for humans to achieve without training. This was demonstrated with two utility groups and a group of consumers identifying the odors of orange, 2-methylisoborneol, and dimethyl trisulfide. All three groups readily and succinctly identified the familiar orange odor. The two utility groups were much more able to identify the musty odor of 2-methylisoborneol, which was likely familiar to them from their work with raw and finished water. Dimethyl trisulfide, a garlic-onion odor associated with sulfur compounds in drinking water, was the least familiar to all three groups, although the laboratory staff did best. These results indicate that utility personnel should be tolerant of consumers who can assuredly say the water is different, but cannot describe the problem. Also, it indicates that a T&O program at a utility would benefit from identification of aesthetic issues in water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

    NASA Astrophysics Data System (ADS)

    Tobin, Benjamin W.; Springer, Abraham E.; Kreamer, David K.; Schenk, Edward

    2018-05-01

    An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The 750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

  11. An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed

    USGS Publications Warehouse

    Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen

    2014-01-01

    Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.

  12. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998–1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia–nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate=9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water.

  13. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Walton, W.E.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998-1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia - nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate = 9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Bacterial water quality and network hydraulic characteristics: a field study of a small, looped water distribution system using culture-independent molecular methods.

    PubMed

    Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B

    2012-06-01

    To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  15. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Blacks Run, Rockingham County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 7,000 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 33,000 to 260,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 95-percent reduction in the current fecal coliform load delivered from the watershed to Blacks Run would result in compliance with the designated water-quality goals and associated TMDL.

  16. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 25 to 800 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 19,000 to 340,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, deer, dogs, ducks, geese, humans, muskrats, and raccoons. According to model results, an 89-percent reduction in the current fecal coliform load delivered from the watershed to Accotink Creek would result in compliance with the designated water-quality goals and associated TMDL.

  17. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the dominant cations, and bicarbonate and sulfate are the dominant anions. Water samples indicate that the water from Rock Creek, Moose Creek, Slate Creek, and Eldorado Creek is a calcium bicarbonate-type water. The remaining sites are a calcium sulfate type water. U.S. Environmental Protection Agency guidelines for arsenic and antimony in drinking water were exceeded in water at Slate Creek and Eureka Creek. Concentrations of arsenic, cadmium, chromium, copper, lead, nickel, and zinc in streambed sediments at many sites exceed sediment quality guideline thresholds that could be toxic to aquatic life. However, assessment of these concentrations, along with the level of organic carbon detected in the sediment, indicate that only concentrations of arsenic and chromium may be toxic to aquatic life at many sites. In 2008 and 2009, 104 macroinvertebrate taxa and 164 algae taxa were identified from samples collected from seven sites. Of the macroinvertebrates, 86 percent were insects and most of the algae consisted of diatoms. Based on the National Community Index, Rock Creek, a reference site, and Caribou Creek, and a mined stream that had undergone some reclamation, exhibited the best overall stream conditions; whereas Slate Creek and Friday Creek, two small streams that were mined extensively, exhibited the worst stream conditions. A non-metric multi-dimensional scaling analysis of the macroinvertebrate and algae data showed a distinct grouping between the 2008 and 2009 samples, likely because of differences between a wet, cool summer in 2008 and a dry, warm summer in 2009.

  18. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    NASA Astrophysics Data System (ADS)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  19. Effects of seasonal operation on the quality of water produced by public-supply wells

    USGS Publications Warehouse

    Bexfield, Laura M.; Jurgens, Bryant C.

    2014-01-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.

  20. Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications

    PubMed Central

    Jiang, Chong; Wang, Fei

    2016-01-01

    Chengde city is located in the agro–pastoral transitional zone in northern China near the capital city of Beijing, which has experienced large-scale ecological construction in the past three decades. This study quantitatively assessed the environmental changes in Chengde through observation records of water resources, water environment, atmospheric environment, and vegetation activity and investigated the possible causes. From the late 1950s to 2002, the streamflow presented a downward trend induced by climate variability and human activities, with contribution ratios of 33.2% and 66.8%, respectively. During 2001–2012, the days of levels I and II air quality presented clear upward trends. Moreover, the air pollutant concentration was relatively low compared with that in the adjacent areas, which means the air quality has improved more than that in the neighboring areas. The water quality, which deteriorated during 1993–2000, began to improve in 2002. The air and water quality changes were closely related to pollutant emissions induced by anthropogenic activities. During 1982–2012, the vegetation in the southeastern and central regions presented restoration trends, whereas that in the northwestern area showed degradation trends. The pixels with obvious degradation trends correlated significantly with annual mean temperature and annual precipitation. Ecological engineering also played a positive role in vegetation restoration. This analysis can be beneficial to environment managers in the active response and adaptation to the possible effects of future climate change, population growth, and industrial development and can be used to ensure sustainable development and environmental safety. PMID:26828508

Top