Three-parameter AVO crossplotting in anisotropic media
Hao, Chen; Castagna, J.P.; Brown, R.L.; Ramos, A.C.B.
2001-01-01
Amplitude versus offset (AVO) interpretation can be facilitated by crossplotting AVO intercept (A), gradient (B), and curvature (C) terms. However, anisotropy, which exists in the real world, usually complicates AVO analysis. Recognizing anisotropic behavior on AVO crossplots can help avoid AVO interpretation errors. Using a modification to a three-term (A, B, and C) approximation to the exact anisotropic reflection coefficients for transversely isotropic media, we find that anisotropy has a nonlinear effect on an A versus C crossplot yet causes slope changes and differing intercepts on A versus B or C crossplots. Empirical corrections that result in more accurate crossplot interpretation are introduced for specific circumstances.
AVO Analysis of a Shallow Gas Accumulation in the Marmara Sea
NASA Astrophysics Data System (ADS)
Er, M.; Dondurur, D.; Çifçi, G.
2012-04-01
In recent years, Amplitude versus Offset-AVO analysis is widely used in determination and classification of gas anomalies from wide-offset seismic data. Bright spots which are among the significant factors in determining the hydrocarbon accumulations, can also be determined sucessfully using AVO analysis. A bright spot anomaly were identified on the multi-channel seismic data collected by R/V K. Piri Reis research vessel in the Marmara Sea in 2008. On prestack seismic data, the associated AVO anomalies are clearly identified on the supergathers. Near- and far-offset stack sections are plotted to show the amplitudes changes at different offsets and the bright amplitudes were observed on the far-offset stack. AVO analysis was applied to the observed bright spot anomaly following the standart data processing steps. The analysis includes the preparation of Intercept, Gradient and Fluid Factor sections of AVO attribues. Top and base boundaries of gas bearing sediment were shown by intercept - gradient crossplot method. 1D modelling was also performed to show AVO classes and models were compared with the analysis results. It is interpreted that the bright spot anomaly arises from a shallow gas accumulation. In addition, the gas saturation from P-wave velocity was also estimated by the analysis. AVO analysis indicated Class 3 and Class 4 AVO anomalies observed on the bright spot anomaly.
Venezky, Dina Y.; Murray, Tom; Read, Cyrus
2008-01-01
Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.
Liao, Hsien-Ching; Chen, Mei-Yu
2012-02-24
The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.
NASA Astrophysics Data System (ADS)
Adleman, J. N.
2006-12-01
The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops, all activity reports, images, and selected data streams were posted in near real time on the AVO public website. Hundreds of emails were answered. The AVO website quickly became highly organized and the most up-to-date and comprehensive place for anyone with internet access to learn about the eruption and AVO's response. This was the first such organized response of AVO and may be the outgrowth of increased expectations of AVO by the public. From November 28, 2005, through May 16, 2006, staff logged and answered approximately 400 phone calls and 1000 emails about Augustine. AVO's interagency response plan and relationships with other key agencies helped in responding to requests from the media and the public for a wide variety of information. However, the most frequent questions from callers were about ash fall advisories and what to do in the event of an ash fall. This highlighted the need to produce coordinated, co-agency reporting of ash fall potential and recommended preparation.
Ripening-Related Gene from Avocado Fruit 1
McGarvey, Douglas J.; Sirevåg, Reidun; Christoffersen, Rolf E.
1992-01-01
Fruit ripening involves a series of changes in gene expression regulated by the phytohormone ethylene. AVOe3, a ripening-related gene in avocado fruit (Persea americana Mill. cv Hass), was characterized with regard to its ethylene-regulated expression. The AVOe3 mRNA and immunopositive protein were induced in mature fruit within 12 hours of propylene treatment. The AVOe3 mRNA levels reached a maximum 1 to 2 days before the ethylene climacteric, whereas the immunopositive protein continued to accumulate. RNA selected by the pAVOe3 cDNA clone encoded a polypeptide with molecular mass of 34 kilodaltons, corresponding to the molecular mass of the AVOe3 protein determined by immunoblots. The protein was soluble, remaining in solution at 100,000 gravity and eluted as a monomer on gel filtration. Because of its pattern of induction and relationship to an ethylene-related gene of tomato, the possible involvement of AVOe3 in ethylene biosynthesis is discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:16668676
de Miguel, Dunia; Burgaleta, Carmen; Reyes, Eduardo; Pascual, Teresa
2003-07-01
We evaluated a new portable monitor (AvoSure PT PRO, Menarini Diagnostics, Firenze, Italy) developed to test the prothrombin time in capillary blood and plasma by comparing it with the standard laboratory determination. We studied 62 patients receiving acenocoumarol therapy. The international normalized ratio (INR) in capillary blood was analyzed by 2 methods: AvoSure PT PRO and Thrombotrack Nycomed Analyzer (Axis-Shield, Dundee, Scotland). Parallel studies were performed in plasma samples by a reference method using the Behring Coagulation Timer (Behring Diagnostics, Marburg, Germany). Plasma samples also were tested with the AvoSure PT PRO. Correlation was good for INR values for capillary blood and plasma samples by AvoSure PT PRO and our reference method (R2 = 0.8596) and for capillary blood samples tested by the AvoSure PT PRO and Thrombotrack Nycomed Analyzer (R2 = 0.8875). The correlation for INR in capillary blood and plasma samples by AvoSure PT PRO was 0.6939 (P < .0004). Capillary blood determinations are rapid and effective for monitoring oral anticoagulation therapy and have a high correlation to plasma determinations. AvoSure PT PRO is accurate for controlling INR in plasma and capillary blood samples, may be used in outpatient clinics, and has advantages over previous portable monitors.
The Alaska Volcano Observatory Website a Tool for Information Management and Dissemination
NASA Astrophysics Data System (ADS)
Snedigar, S. F.; Cameron, C. E.; Nye, C. J.
2006-12-01
The Alaska Volcano Observatory's (AVO's) website served as a primary information management tool during the 2006 eruption of Augustine Volcano. The AVO website is dynamically generated from a database back- end. This system enabled AVO to quickly and easily update the website, and provide content based on user- queries to the database. During the Augustine eruption, the new AVO website was heavily used by members of the public (up to 19 million hits per day), and this was largely because the AVO public pages were an excellent source of up-to-date information. There are two different, yet fully integrated parts of the website. An external, public site (www.avo.alaska.edu) allows the general public to track eruptive activity by viewing the latest photographs, webcam images, webicorder graphs, and official information releases about activity at the volcano, as well as maps, previous eruption information, bibliographies, and rich information about other Alaska volcanoes. The internal half of the website hosts diverse geophysical and geological data (as browse images) in a format equally accessible by AVO staff in different locations. In addition, an observation log allows users to enter information about anything from satellite passes to seismic activity to ash fall reports into a searchable database. The individual(s) on duty at the watch office use forms on the internal website to post a summary of the latest activity directly to the public website, ensuring that the public website is always up to date. The internal website also serves as a starting point for monitoring Alaska's volcanoes. AVO's extensive image database allows AVO personnel to upload many photos, diagrams, and videos which are then available to be browsed by anyone in the AVO community. Selected images are viewable from the public page. The primary webserver is housed at the University of Alaska Fairbanks, and holds a MySQL database with over 200 tables and several thousand lines of php code gluing the database and website together. The database currently holds 95 GB of data. Webcam images and webicorder graphs are pulled from servers in Anchorage every few minutes. Other servers in Fairbanks generate earthquake location plots and spectrograms.
Alaska Volcano Observatory Seismic Network Data Availability
NASA Astrophysics Data System (ADS)
Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.
2009-12-01
The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in Anchorage. AVO waveform data were added to the Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC) beginning in 2008 and now includes continuous waveform data from all available AVO seismograph stations in real time. Data coverage is available through the DMC’s Metadata Aggregator.
NASA Astrophysics Data System (ADS)
Zou, G.
2016-12-01
Coal bed methane content (CBMC) is a measure of the quantity of methane stored in coals, and is important for many applications, including the quantitative assessment of methane resources and methane extraction and control. The coal bed methane content (CBMC) in the Zhaozhuang coalmine of Jincheng coalfield, northwestern Qinshui Basin, is studied based on seismic data and well-logs together with laboratory measurements. The amplitude versus offset (AVO) response from the log characteristics was analyzed and the seismic amplitude, after relative preserved amplitude processing, was corrected to maintain the relative amplitude characteristics. The AVO attributes were calculated based on AVO theory and the statistical relationship between AVO attributes and CBMC was established and used to predict the CBMC. The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result; the designed fold number for an ordinary seismic data is insufficient for pre-stack data regarding the signal to noise ratio (SNR). Therefore a larger grid analysis was created in order to improve the SNR. The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness. A reasonable distribution of the amplitude versus offset (AVO) attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution. Some AVO attributes have a close relationship with CBMC. The worst attribute is weighted polarization product, for which the correlation coefficient is 0.23; and the best attribute is the intercept, of which the correlation coefficient is -0.79. CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC; the validation error of the former is 12.5%, which is lower than that of the latter. CBMC of this area ranges from 7.1 m3/t to 21.4 m3/t.
Wearable Sensing of Cardiac Timing Intervals from Cardiogenic Limb Vibration Signals
Wiens, Andrew D.; Johnson, Ann; Inan, Omer T.
2017-01-01
In this paper we describe a new method to measure aortic valve opening (AVO) and closing (AVC) from cardiogenic limb vibrations (i.e., wearable ballistocardiogram [BCG] signals). AVO and AVC were detected for each heartbeat with accelerometers on the upper arm (A), wrist (W), and knee (K) of 22 subjects following isometric exercise. Exercise-induced changes were recorded with impedance cardiography. The method, Filter BCG, detects peaks in distal vibrations after filtering with individually-tuned bandpass filters. In agreement with recent studies, we did not find peaks at AVO and AVC in limb vibrations directly. Interestingly, distal vibrations filtered with FilterBCG yielded reliable peaks at AVO (r2 = 0.95 A, 0.94 W, 0.77 K) and AVC (r2= 0.92 A, 0.89 W, 0.68 K). FilterBCG measures AVO and AVC accurately from arm, wrist, and knee vibrations, and it outperforms the standard R-J interval method. PMID:29123459
Direct hydrocarbon identification using AVO analysis in the Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lye, Y.C.; Yaacob, M.R.; Birkett, N.E.
1994-07-01
Esso Production Malaysia Inc. and Petronas Carigali Sdn. Bhd. have been conducting AVO (amplitude versus offset) processing and interpretation since April 1991 in an attempt to identify hydrocarbon fluids predrill. The major part of this effort was in the PM-5, PM-8, and PM-9 contract areas where an extensive exploration program is underway. To date, more than 1000 km of seismic data have been analyzed using the AVO technique, and the results were used to support the drilling of more than 50 exploration and delineation wells. Gather modeling of well data was used to calibrate and predict the presence of hydrocarbonmore » in proposed well locations. In order to generate accurate gather models, a geophysical properties and AVO database was needed, and great effort was spent in producing an accurate and complete database. This database is continuously being updated so that an experience file can be built to further improve the reliability of the AVO prediction.« less
Panahi, Y; Izadi, M; Sayyadi, N; Rezaee, R; Jonaidi-Jafari, N; Beiraghdar, F; Zamani, A; Sahebkar, A
2015-10-01
Aloe vera is a medicinal plant that has been traditionally used to accelerate wound healing. Olive oil is also a natural product that may contribute to wound healing owing to its antimicrobial and anti-inflammatory effects. The present study aimed to evaluate the effect of an Aloe vera-olive oil (AVO) combination cream on the healing process of chronic wounds. In this randomised, double-blind, comparator-controlled, parallel-group trial, patients with chronic wounds were treated with either AVO cream or phenytoin cream as the standard treatment for a period of 30 days. Wound healing was evaluated using Bates-Jensen assessment tool and the severity of pain was assessed using a visual analogue scale (VAS). After initial assessment, 60 patients with chronic wounds (41 with pressure ulcer, 13 with diabetic wounds and 6 with venous ulcers), were recruited and randomised into 2 groups of 30. After 30 days of treatment, significant improvements in the wound size, depth, and edges; necrotic tissue type and amount; exudate type and amount; colour of wound surroundings; and peripheral tissue oedema score were observed in the AVO cream group (p<0.001). The total score of wound healing showed significant improvement with both AVO (p<0.001) and phenytoin (p<0.01) creams, although AVO was more efficacious (p<0.001). Likewise, although both treatments reduced the initial VAS score, the efficacy of AVO was significantly greater (p<0.001). AVO cream significantly accelerates biological healing of chronic wounds and helps to reduce pain severity with a higher efficacy compared with phenytoin cream.
2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris
2015-08-14
The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.
McGimsey, Robert G.; Wallace, Kristi L.
1999-01-01
The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.
Identification of lithology in Gulf of Mexico Miocene rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilterman, F.J.; Sherwood, J.W.C.; Schellhorn, R.
1996-12-31
In the Gulf of Mexico, many gas-saturated sands are not Bright Spots and thus are difficult to detect on conventional 3D seismic data. These small amplitude reflections occur frequently in Pliocene-Miocene exploration plays when the acoustic impedances of the gas-saturated sands and shales are approximately the same. In these areas, geophysicists have had limited success using AVO to reduce the exploration risk. The interpretation of the conventional AVO attributes is often difficult and contains questionable relationships to the physical properties of the media. A 3D AVO study was conducted utilizing numerous well-log suites, core analyses, and production histories to helpmore » calibrate the seismic response to the petrophysical properties. This study resulted in an extension of the AVO method to a technique that now displays Bright spots when very clean sands and gas-saturated sands occur. These litho-stratigraphic reflections on the new AVO technique are related to Poisson`s ratio, a petrophysical property that is normally mixed with the acoustic impedance on conventional 3D migrated data.« less
Adleman, Jennifer N.; Cameron, Cheryl E.; Snedigar, Seth F.; Neal, Christina A.; Wallace, Kristi L.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.
2010-01-01
The AVO Web site, with its accompanying database, is the backbone of AVO's external and internal communications. This was the first Cook Inlet volcanic eruption with a public expectation of real-time access to data, updates, and hazards information over the Internet. In March 2005, AVO improved the Web site from individual static pages to a dynamic, database-driven site. This new system provided quick and straightforward access to the latest information for (1) staff within the observatory, (2) emergency managers from State and local governments and organizations, (3) the media, and (4) the public. From mid-December 2005 through April 2006, the AVO Web site served more than 45 million Web pages and about 5.5 terabytes of data.
Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993
Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.
1996-01-01
During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).
NASA Astrophysics Data System (ADS)
Qian, Jin; Wang, Xiu-Juan; Wu, Shi-Guo; Wang, Zhen-zhen; Yang, Sheng-Xiong
2014-06-01
Gas hydrates have been identified from two-dimensional (2D) seismic data and logging data above bottom simulating reflector (BSR) during China's first gas hydrate drilling expedition in 2007. The multichannel reflection seismic data were processed to be preserved amplitudes for quantitatively analyzing amplitude variation with offset (AVO) at BSRs. Low P-wave velocity anomaly below BSR, coinciding with high amplitude reflections in 2D seismic data, indicates the presence of free gas. The absolute values of reflection coefficient versus incidence angles for BSR range from 0 to 0.12 at different CMPs near Site SH2. According to logging data and gas hydrate saturations estimated from resistivity of Site SH2, P-wave velocities calculated from effective media theory (EMT) fit the measured sonic velocities well and we choose EMT to calculate elastic velocities for AVO. The rock-physics modeling and AVO analysis were combined to quantitatively assess free gas saturations and distribution by the reflection coefficients variation of the BSRs in Shenhu area, South China Sea. AVO estimation indicates that free gas saturations immediately beneath BSRs may be about 0.2 % (uniform distribution) and up to about 10 % (patchy distribution) at Site SH2.
AVO in North of Paria, Venezuela: Gas methane versus condensate reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regueiro, J.; Pena, A.
1996-07-01
The gas fields of North of Paria, offshore eastern Venezuela, present a unique opportunity for amplitude variations with offset (AVO) characterization of reservoirs containing different fluids: gas-condensate, gas (methane) and water (brine). AVO studies for two of the wells in the area, one with gas-condensate and the other with gas (methane) saturated reservoirs, show interesting results. Water sands and a fluid contact (condensate-water) are present in one of these wells, thus providing a control point on brine-saturated properties. The reservoirs in the second well consist of sands highly saturated with methane. Clear differences in AVO response exist between hydrocarbon-saturated reservoirsmore » and those containing brine. However, it is also interesting that subtle but noticeable differences can be interpreted between condensate-and methane-saturated sands. These differences are attributed to differences in both in-situ fluid density and compressibility, and rock frame properties.« less
Hermans, H J E; Schmidt, S H
2002-01-01
In the 1920's concern about the rising number of disabled unemployed urban poor led to the founding of the AVO (Dutch organization for labour care for the disabled) in 1927. The AVO presented the problem of the vulnerability of the physically and mentally disabled in the labour market as a matter of collective responsibility. At the Amsterdam AVO congress of 1928 expert contributors discussed the economic, social and medical aspects of disability and work. Simultaneously, a museum exhibition aimed at arousing the interest of the general public and at promoting a more understanding attitude towards the disabled. Though the twofold AVO manifestation raised an immediate favourable general response and the subject was put on the political agenda, the subsequent economic recession and war forestalled concrete measures. Essentially it was the first public debate on disability in the Netherlands.
McGimsey, Robert G.; Neal, Christina A.
1996-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.
Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karu, A.E.; Roberts, V.A.; Li, Q.X.
1998-06-01
'The long-term goal of this project is to develop antibodies and antibody-based methods for detection and recovery of polynuclear aromatic hydrocarbons (PAHs) and PAH adducts that are potential biomarkers in environmental and biological samples. The inherent cross-reactivity will be exploited by pattern recognition methods. Dr. Karu''s laboratory uses new haptens representing key PAHs to derive recombinant Fab (rFab) and single-chain Fv (scFv) antibodies from hybridoma lines and combinatorial phage display libraries. Computational models of the haptens and combining sites made by Dr. Roberts''s group are used to guide antibody engineering by mutagenesis. Dr. Li''s laboratory develops enzyme immunoassays (EIAs), sensors,more » and immunoaffinity methods that make use of the novel haptens and antibodies for practical analytical applications in support of DOE''s mission. This report summarizes work completed in one and one-half years of a 3-year project, with close collaboration between the three research groups. Dr. Alexander Karu''s laboratory: the authors proceeded with the two strategies described in the original proposal. Site-directed mutagenesis was used to correct differences in the rFab N-terminal amino acids that were introduced by the degenerate PCR primers used for gene amplification. The binding constants of the rFabs with the corrected sequences will be compared with those of the parent MAbs, and should be very similar. The 4D5 and 10C10 heavy and light chain sequences are being moved to the pCOMB3H phagemid vector to facilitate selection of new engineered mutants.'« less
NASA Astrophysics Data System (ADS)
Okay, S.; Cifci, G.; Ozel, S.; Atgin, O.; Ozel, O.; Barin, B.; Er, M.; Dondurur, D.; Kucuk, M.; Gurcay, S.; Choul Kim, D.; Sung-Ho, B.
2012-04-01
Recently, the continental margins of Black Sea became important for its gas content. There are no scientific researches offshore Trabzon-Giresun area except the explorations of oil companies. This is the first survey that performed in that area. 1700 km high resolution multichannel seismic and chirp data simultaneously were collected onboard R/V K.Piri Reis . The seismic data reveal BSRs, bright spots and acoustic maskings especially on the eastern part of the survey area. The survey area in the Eastern Black Sea includes continental slope, apron and deep basin. Two mud volcanoes are discovered and named as Busan and Izmir. The observed fold belt is believed to be the main driving force for the growth of mud volcanoes.Faults are developed at the flanks of diapiric uplift. Seismic attributes and AVO analysis are applied to 9 seismic sections which have probable gassy sediments and BSR zones. In the seismic attribute analysis high amplitude horzions with reverse polarity are observed in instantaneous frequency, envelope and apparent polarity sections also with low frequency at instantaneous frequency sections. These analysis verify existence of gas accumulations in the sediments. AVO analysis and cross section drawing and Gradient analysis show Class 1 AVO anomaly and indicate gas in sediments. Keywords: BSR, Bright spot, Mud volcano, Seismic Attributes, AVO
McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey
2008-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.
NASA Astrophysics Data System (ADS)
Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.
2003-04-01
Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.
Haykowsky, Mark J.; Brubaker, Peter H.; John, Jerry M.; Stewart, Kathryn P.; Morgan, Timothy M.; Kitzman, Dalane W.
2011-01-01
Objectives To determine the mechanisms responsible for reduced aerobic capacity (peak VO2) in heart failure patients with preserved ejection fraction (HFPEF). Background HFPEF is the predominant form of HF in older persons. Exercise intolerance is the primary symptom among patients with HFPEF and a major determinant of reduced quality of life. In contrast to patients with HF and reduced EF, the mechanism of exercise intolerance in HFPEF is less well understood. Methods Left ventricular volumes (2D echocardiography), cardiac output (CO), VO2 and calculated arterial-venous oxygen content difference (A-VO2 Diff) were measured at rest and during incremental, exhaustive upright cycle exercise in 48 HFPEF patients (age 69±6 years) and 25 healthy age-matched controls (HC). Results In HFPEF compared to HC, VO2 was reduced at peak exercise (mean±SE: 14.3±0.5 vs. 20.4±0.6 mL·kg min−1; p<0.0001) and was associated with a reduced peak CO (6.3±0.2 vs. 7.6±0.2 L·min−1, p<0.0001) and A-VO2 Diff (17±0.4 vs. 19±0.4 ml·dl−1, p<0.0007). The strongest independent predictor of peak VO2 was the change in A-VO2 Diff from rest to peak exercise (A-VO2 Diff reserve) for both HFPEF (partial correlant 0.58, standardized β coefficient 0.66; p=0.0002) and HC (partial correlant 0.61, standardized β coefficient 0.41; p=0.005) Conclusions Both reduced CO and A-VO2 Diff contribute significantly to the severe exercise intolerance in elderly HFPEF patients. The finding that A-VO2 Diff reserve is an independent predictor of peak exercise VO2 suggests that peripheral, ‘non-cardiac’ factors are important contributors to exercise intolerance in these patients. PMID:21737017
NASA Astrophysics Data System (ADS)
Murray, T. L.; Nye, C. J.; Eichelberger, J. C.
2006-12-01
The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided reliable and rapid access to much of the information to each office. Information flow between the observatory and the public and emergency responders was accomplished through the AVO public web site, e-mail, faxes, public meetings, and frequent phone calls. AVO's newly renovated Operations Center in Anchorage provided a central 24/7 site to both receive and disseminate information and conduct media interviews. With selected real time data sets and hourly updates provided on the AVO public web site, many emergency responders and even private citizens tracked the eruption in near real time themselves.
2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.
Tsunami Warning Protocol for Eruptions of Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Whitmore, P.; Neal, C.; Nyland, D.; Murray, T.; Power, J.
2006-12-01
Augustine is an island volcano that has generated at least one tsunami. During its January 2006 eruption coastal residents of lower Cook Inlet became concerned about tsunami potential. To address this concern, NOAA's West Coast/ Alaska Tsunami Warning Center (WC/ATWC) and the Alaska Volcano Observatory (AVO) jointly developed a tsunami warning protocol for the most likely scenario for tsunami generation at Augustine: a debris avalanche into the Cook Inlet. Tsunami modeling indicates that a wave generated at Augustine volcano could reach coastal communities in approximately 55 minutes. If a shallow seismic event with magnitude greater than 4.5 occurred near Augustine and the AVO had set the level of concern color code to orange or red, the WC/ATWC would immediately issue a warning for the lower Cook Inlet. Given the short tsunami travel times involved, potentially affected communities would be provided as much lead time as possible. Large debris avalanches that could trigger a tsunami in lower Cook Inlet are expected to be accompanied by a strong seismic signal. Seismograms produced by these debris avalanches have unique spectral characteristics. After issuing a warning, the WC/ATWC would compare the observed waveform with known debris avalanches, and would consult with AVO to further evaluate the event using AVO's on-island networks (web cameras, seismic network, etc) to refine or cancel the warning. After the 2006 eruptive phase ended, WC/ATWC, with support from AVO and the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK), developed and installed "splash-gauges" which will provide confirmation of tsunami generation.
Wu, Hao; Li, Ming; Zhong, Li; Luo, Yuan Yuan; Li, Guang Hai
2016-12-05
Amorphous VO 2 (a-VO 2 ) colloids were synthesized by electrochemical anodic oxidation of metallic vanadium. It was found that the a-VO 2 colloids have a cotton-like morphology composed of very small clusters, and that the crystallization temperature of the a-VO 2 colloids can be adjusted either by the electrolyte of the anodic oxidation or/and the dispersion agent of the colloids. VO 2 (M) nanoparticles (NPs) (and a NP film) with an average size of about 50 nm can be obtained by a rapid thermal annealing of the a-VO 2 colloids at 310 °C under air, which is beneficial for practical applications. The VO 2 (M) NP film shows an obvious metal-semiconductor transition with a resistance less than 10 Ω in the metallic state. An integral visible transmittance of 40.7 %, a solar transmittance modulation of 9.4 %, and a resistance modulation in the order of 5×10 4 were realized in the VO 2 (M) NP film. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
AVO helps seismic imaging in deepwater environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, C.; Lindsay, R.O.; Ratcliff, D.
1997-11-03
Amplitude and frequency variations related to offset should be analyzed routinely during interpretation of seismic data acquired in deepwater environments. Amplitude variation with offset (AVO) in three dimensions is the key exploration tool in deep waters of the Gulf of Mexico. But application of the tool requires special care. Three-dimensional AVO helps the interpreter understand stratigraphy and the meaning of amplitude anomalies. Used in conjunction with well log data, it can help the interpreter distinguish amplitudes related to the presence of hydrocarbons from those that result from, for example, rock-property changes within a non-hydrocarbon-bearing layer, such as a shale, ormore » residual gas (fizz water) in high-porosity sands. The paper discusses examples from the Gulf of Mexico, will control application, improving detail, and frequency-dependent analysis.« less
Eruption of Alaska volcano breaks historic pattern
Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.
2009-01-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
Eruption of Alaska Volcano Breaks Historic Pattern
NASA Astrophysics Data System (ADS)
Larsen, Jessica; Neal, Christina; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick
2009-05-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (˜2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud “thunder,” lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
Negligible heat strain in armored vehicle officers wearing personal body armor
2011-01-01
Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs) wearing personal body armor (PBA) in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG) was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing. PMID:21801453
2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.
Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Alaska Volcano Observatory at 20
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.
2008-12-01
The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and research opportunities for Russian and American students. AVO was a three-way partnership of the federal and state geological surveys and the state university from the start. This was not a flowering of ecumenism but was rather at the insistence of the Alaska congressional delegation. Such shared enterprises are not managerially convenient, but they do bring a diversity of roles, thinking, and expertise that would not otherwise be possible. Through AVO, the USGS performs its federally mandated role in natural hazard mitigation and draws on expertise available from its network of volcano observatories. The Alaska Division of Geological and Geophysical Surveys performs a similar role at the state level and, in the tradition of state surveys, provides important public communications, state data base, and mapping functions. The University of Alaska Fairbanks brought seismological, remote sensing, geodetic, petrological, and physical volcanological expertise, and uniquely within US academia was able to engage students directly in volcano observatory activities. Although this "model" cannot be adopted in total elsewhere, it has served to point the USGS Volcano Hazards Program in a direction of greater openness and inclusiveness.
Nonlinear Classification of AVO Attributes Using SVM
NASA Astrophysics Data System (ADS)
Zhao, B.; Zhou, H.
2005-05-01
A key research topic in reservoir characterization is the detection of the presence of fluids using seismic and well-log data. In particular, partial gas discrimination is very challenging because low and high gas saturation can result in similar anomalies in terms of Amplitude Variation with Offset (AVO), bright spot, and velocity sag. Hence, a successful fluid detection will require a good understanding of the seismic signatures of the fluids, high-quality data, and good detection methodology. Traditional attempts of partial gas discrimination employ the Neural Network algorithm. A new approach is to use the Support Vector Machine (SVM) (Vapnik, 1995; Liu and Sacchi, 2003). While the potential of the SVM has not been fully explored for reservoir fluid detection, the current nonlinear methods classify seismic attributes without the use of rock physics constraints. The objective of this study is to improve the capability of distinguishing a fizz-water reservoir from a commercial gas reservoir by developing a new detection method using AVO attributes and rock physics constraints. This study will first test the SVM classification with synthetic data, and then apply the algorithm to field data from the King-Kong and Lisa-Anne fields in Gulf of Mexico. While both field areas have high amplitude seismic anomalies, King-Kong field produces commercial gas but Lisa-Anne field does not. We expect that the new SVM-based nonlinear classification of AVO attributes may be able to separate commercial gas from fizz-water in these two fields.
2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory
Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.
2017-09-07
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.
Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Li, Kun; Zong, Zhaoyun
2016-10-01
AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, Longxiao; Gu, Hanming
2018-03-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.
The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results
Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.
2004-01-01
Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.
Use of SAR data to study active volcanoes in Alaska
Dean, K.G.; Engle, K.; Lu, Z.; Eichelberger, J.; Near, T.; Doukas, M.
1996-01-01
Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.
2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory
Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi
2017-09-28
The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.
Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory
NASA Astrophysics Data System (ADS)
2002-12-01
Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of Video News Release 11:40 Demonstration of the AVO prototype, Nicholas Walton (University of Cambridge) 12:00 Q&A, including interview possibilities with the scientists 12:30-13:45 Buffet lunch, including individual hands-on demos 14:00 Science Demo (also open to interested journalists) For more information about Virtual Observatories and the AVO, see the website or the explanation below. Notes to editors The AVO involves several partner organisations led by the European Southern Observatory (ESO). The other partner organisations are the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, AstroGrid, CDS, TERAPIX/CNRS and the University of Manchester. Science Contacts Peter J. Quinn European Southern Observatory (ESO) Garching, Germany Tel: +49-89-3200 -6509 email: pjq@eso.org Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-25 (0147 in the United Kingdom) email: pdiamond@jb.man.ac.uk Press contacts Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-10 (0147 in the United Kingdom) E-mail: email: im@jb.man.ac.uk Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel: +49-89-3200-6306 (089 in Germany) Cellular (24 hr): +49-173-3872-621 (0173 in Germany) email: lars@eso.org Richard West (ESO EPR Dept.) ESO EPR Dept. Garching, Germany Phone: +49-89-3200-6276 email: rwest@eso.org Background information What is a Virtual Observatory? - A short introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual Observatory (VO) so that astronomers can explore the digital Universe in the new archives across the entire spectrum. Similarly to how a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the VO consists of a collection of data centres each with unique collections of astronomical data, software systems, and processing capabilities. The Astrophysical Virtual Observatory Project (AVO) will conduct a research and demonstration programme on the scientific requirements and technologies necessary to build a VO for European astronomy. The AVO has been jointly funded by the European Commission (under FP5 - Fifth Framework Programme) with six European organisations participating in a three year Phase-A work programme, valued at 5 million Euro. The partner organisations are the European Southern Observatory (ESO) in Munich, Germany, the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. The Phase A program will focus its effort in the following areas: * A detailed description of the science requirements for the AVO will be constructed, following the experience gained in a smaller-scale science demonstration program called ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes). * The difficult issue of data and archive interoperability will be addressed by new standards definitions for astronomical data and trial programmes of "joins" between specific target archives within the project team. * The necessary GRID and database technologies will be assessed and tested for use within a full AVO implementation. The AVO project is currently working in conjunction with other international VO efforts in the United States and Asia-Pacific region. This is part of an International Virtual Observatory Alliance to define essential new data standards so that the VO concept can have a global dimension. The AVO partners will join with all astronomical data centres in Europe to put forward an FP6 IST (Sixth Framework Programme - Information Society Technologies Programme) Integrated Project proposal to make a European VO fully operational by the end of 2007.
Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory
NASA Astrophysics Data System (ADS)
2001-12-01
N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded $10 million (EUR 11.4 m) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on each other's committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first-class international astronomical archives. AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich. The other partner organisations are the European Space Agency (ESA), the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory at the University of Manchester. Note for editors A 13-minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). It will also be transmitted via satellite on Wednesday 12 December 2001 from 12:00 to 12:15 CET on the ESA TV Service: http://television.esa.int
NASA Astrophysics Data System (ADS)
Skoog, R. A.
2007-12-01
Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.
Time lapse (4D) and AVO analysis: A case study of Gullfaks field, Northern North Sea
NASA Astrophysics Data System (ADS)
Umoren, Emmanuel Bassey; George, Nyakno Jimmy
2018-06-01
A 4D seismic or time lapse survey has been used to investigate the amplitude versus offset (AVO) effects on seismic data in order to identify anomalies in the Gullfaks field for three different reservoir intervals namely the Tarbert, Cook and Statfjord reservoirs. Repeatability analysis has shown that the earlier seismic vintages are the most unreliable for amplitude anomaly analysis as normalised root-mean square (NRMS) values are greater than 50%. This is above the threshold of good and medium repeatability. Fluid substitution models show increases in both P-wave velocity and density for increasing water saturations with a maximum change of 7.33% in the P-wave velocity, and this is in line with predictions from previous work using the Biot - Gassman equations. AVO modelling for the top Tarbert Formation interface produced scenarios of increasing amplitudes with offset for the presence of hydrocarbons, which dim out with 100% brine saturation. This correlates to class III gas sands for different situations of varying Poisson's ratio across an interface, which has been previously modelled. Two anomalies were identified with one being related to increasing pressure due to water injection correlating to poor permeability around injector well 34/10-B-33. The second anomaly is a case of potential unswept hydrocarbons that displayed a consistent bright spot throughout all of the seismic vintages (in-inlines and crosslines). AVO attribute analysis of this event produced a class II anomaly. However, when comparing near and far offset seismic data, dimming effect was observed producing contrasting evidence. The dimming offset is viewed to have been as a result of poor repeatability values at far offsets. The modelling of the fluid contents in the studied formations to conform to existing literatures justifies the efficacy of the method.
Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations
NASA Astrophysics Data System (ADS)
Zhi, L.; Gu, H.
2017-12-01
The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.
Kawakami, Camila Martins; Gaspar, Lorena Rigo
2015-10-01
Efficient UV-absorbing molecules are designed to protect against UV-light exposure. However, the development of photostable sunscreens is important to preserve the photoprotective efficacy and to prevent the formation of reactive oxygen species (ROS) and photodegradation products, which can promote phototoxic or photoallergic contact dermatitis. The aim of this study was to evaluate the effects of mangiferin and naringenin on the photostability and phototoxicity of sunscreens containing avobenzone. Cosmetic sunscreen formulations containing octocrylene (OCT), octyl methoxycinnamate (OMC) and avobenzone (AVO) were prepared and supplemented or not with mangiferin, naringenin, or with both compounds in combination. For photostability studies, samples of the formulations were spread onto glass plates, exposed to UVA radiation and then analyzed by high performance liquid chromatography (HPLC) to determine UV filters and the antioxidants recovery. The phototoxicity of the UV filters and antioxidants was evaluated using 3T3 fibroblast cultures that were subjected (or not) to irradiation according to OECD TG 432. The photostability studies demonstrated that AVO and naringenin showed the highest photodegradation when present in formulation FN (containing octocrylene, avobenzone, octyl methoxycinnamate and naringenin). The addition of mangiferin to this combination (FMN) resulted in an improved photostability of both substances compared to FN. The in vitro phototoxicity test showed that only avobenzone was considered phototoxic. The combination containing AVO/naringenin exhibited phototoxic potential; however, this was reduced by the addition of mangiferin (combination CMN). The results of this study are promising because it was demonstrated that mangiferin could increase the photostability and reduce the phototoxic potential of the combination of naringenin and AVO. Copyright © 2015 Elsevier B.V. All rights reserved.
Estimation of the state of solar activity type stars by virtual observations of CrAVO
NASA Astrophysics Data System (ADS)
Dolgov, A. A.; Shlyapnikov, A. A.
2012-05-01
The results of precosseing of negatives with direct images of the sky from CrAO glass library are presented in this work, which became a part of on-line archive of the Crimean Astronomical Virtual Observatory (CrAVO). Based on the obtained data, the parameters of dwarf stars have been estimated, included in the catalog "Stars with solar-type activity" (GTSh10). The following matters are considered: searching methodology of negatives with positions of studied stars and with calculated limited magnitude; image viewing and reduction with the facilities of the International Virtual Observatory; the preliminary results of the photometry of studied objects.
Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy.
Thomé, Marcos P; Filippi-Chiela, Eduardo C; Villodre, Emilly S; Migliavaca, Celina B; Onzi, Giovana R; Felipe, Karina B; Lenz, Guido
2016-12-15
Acridine Orange is a cell-permeable green fluorophore that can be protonated and trapped in acidic vesicular organelles (AVOs). Its metachromatic shift to red fluorescence is concentration-dependent and, therefore, Acridine Orange fluoresces red in AVOs, such as autolysosomes. This makes Acridine Orange staining a quick, accessible and reliable method to assess the volume of AVOs, which increases upon autophagy induction. Here, we describe a ratiometric analysis of autophagy using Acridine Orange, considering the red-to-green fluorescence intensity ratio (R/GFIR) to quantify flow cytometry and fluorescence microscopy data of Acridine-Orange-stained cells. This method measured with accuracy the increase in autophagy induced by starvation or rapamycin, and the reduction in autophagy produced by bafilomycin A1 or the knockdown of Beclin1 or ATG7. Results obtained with Acridine Orange, considering R/GFIR, correlated with the conversion of the unlipidated form of LC3 (LC3-I) into the lipidated form (LC3-II), SQSTM1 degradation and GFP-LC3 puncta formation, thus validating this assay to be used as an initial and quantitative method for evaluating the late step of autophagy in individual cells, complementing other methods. © 2016. Published by The Company of Biologists Ltd.
Vinogradov uses computer in the SM during Expedition 13
2006-05-01
ISS013-E-10269 (1 May 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, uses a computer in the Zvezda Service Module of the International Space Station.
Vinogradov reads manual in the SM during Expedition 13
2006-06-26
ISS013-E-27377 (26 May 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, looks over a procedures checklist in the Zvezda Service Module of the International Space Station.
2013-06-18
ISS036-E-009219 (18 June 2013) --- Russian cosmonaut Pavel Vinogradov, Expedition 36 commander, performs cargo operations in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
Vinogradov uses a communication system in the SM during Expedition 13
2006-06-22
ISS013-E-40015 (22 June 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, uses a communication system in the Zvezda Service Module of the International Space Station.
Vinogradov uses communication equipment in the U.S. Laboratory during Expedition 13
2006-04-18
ISS013-E-08059 (18 April 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, uses a communication system in the Destiny laboratory of the International Space Station.
Vinogradov enters data into laptop computer in the SM during Expedition 13
2006-06-01
ISS013-E-29282 (1 June 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, uses a computer in the Zvezda Service Module of the International Space Station.
Pavel Ivanovich Karpov (1873-1932?)--the Russian Prinzhorn: art of the insane in Russia.
Lerner, Vladimir; Podolsky, Grigory; Witztum, Eliezer
2016-03-01
The complicated relationship between the discipline of mental health and the arts has barely been studied systematically. Mental hospitals, shelters and prisons--institutions that accommodate the mentally ill--sometimes promote but often discourage and disrupt the patients' artistic creativity and the images created. In psychiatric circles, the recognition of patient art was a long, slow and frustrating process. Among the Western psychiatrists who studied the creative activity of the mentally ill, researchers usually mention such names as C. Lombroso, M. Shearing, V. Morgentaller, H. Prinzhorn and others, but rarely refer to their Russian colleagues and contemporaries. Pavel Ivanovich Karpov (1873-1932?), a Russian psychiatrist, was one of the most extensive researchers in the field of the art of the insane, but unfortunately his name is little known among modern psychiatrists. For his clinical and scientific contributions, he deserves to be remembered in the history of psychiatry. © The Author(s) 2016.
McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Vinogradov reconfigures communication in the SM during Expedition 13
2006-04-26
ISS013-E-10238 (26 April 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, uses a communication system while working with equipment in the Zvezda Service Module of the International Space Station.
Vinogradov makes notation on pad in the SM during Expedition 13
2006-04-19
ISS013-E-08185 (19 April 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, takes notes while using a communication system in the Zvezda Service Module of the International Space Station.
The AVO Website - a Comprehensive Tool for Information Management and Dissemination
NASA Astrophysics Data System (ADS)
Snedigar, S.; Cameron, C.; Nye, C. J.
2008-12-01
The Alaska Volcano Observatory (AVO) website serves as a primary information management, browsing, and dissemination tool. It is database-driven, thus easy to maintain and update. There are two different, yet fully integrated parts of the website. An external site (www.avo.alaska.edu) allows the general public to track eruptive activity by viewing the latest photographs, webcam images, seismic data, and official information releases about the volcano, as well as maps, previous eruption information, and bibliographies. This website is also the single most comprehensive source of Alaska volcano information available. The database now contains 14,000 images, 3,300 of which are publicly viewable, and 4,300 bibliographic citations - many linked to full-text downloadable files.. The internal portion of the website is essential to routine observatory operations, and hosts browse images of diverse geophysical and geological data in a format accessible by AVO staff regardless of location. An observation log allows users to enter information about anything from satellite passes to seismic activity to ash fall reports into a searchable database, and has become the permanent record of observatory function. The individual(s) on duty at home, at the watch office, or elsewhere use forms on the internal website to log information about volcano activity. These data are then automatically parsed into a number of primary activity notices which are the formal communication to appropriate agencies and interested individuals. Geochemistry, geochronology, and geospatial data modules are currently being developed. The website receives over 100 million hits, and serves 1,300 GB of data annually. It is dynamically generated from a MySQL database with over 300 tables and several thousand lines of php code which write the actual web display. The primary webserver is housed at (but not owned by) the University of Alaska Fairbanks, and currently holds 200 GB of data. Webcam images, webicorder graphs, earthquake location plots, and spectrograms are pulled and generated by other servers in Fairbanks and Anchorage.
High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays
NASA Astrophysics Data System (ADS)
Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.
2004-12-01
Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not this goal has indeed been achieved at the time the fault zone is penetrated can only be answered if the rock properties found at the penetration point can be compared to the surrounding volume. This task will require mapping of rock properties inverted from AVO/AVA analyzes of fault zone reflections. We will also show real data examples of a test deployment of a 4000 ft, 80-level clamped 3-component receiver array in the SAFOD main hole in 2004.
2013-06-18
ISS036-E-009184 (18 June 2013) --- Russian cosmonaut Pavel Vinogradov, Expedition 36 commander, opens the hatch in the Zvezda Service Module transfer tunnel/ATV vestibule of the International Space Station after European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" docked with the station.
1989-12-01
s -M-COM ST-1815A, Ada Joint Program Office 17.gbJftYCLSSF~ATW4 Is. SECURITY CLASSFAT04 OAS. TRUmVACAT M. LUITAf WCOF ABSTRACT Xi LLASSIFIED I CM ...Department of Defense Dist Specla Washington DC 20301 AVF Control Number: NIST89USN5556_1. 10 DATE VSR CPIEM BEFORE ON-SITE: 08-11-89 DATE VSR C34PLETED AFTER...ON-SITE: 12-04-89 DATE VSR MODIFIED PER AVO C31ME : 12-29-89 DATE VSR MODIFIED PER AVO CMtEN: 04-27-90 Ada O4PIIER VALIDATION SUM4M REPORT
1989-12-01
T~IC F LE COK _"_ "NTATION PAGE I r070O18- AD-A223 693 M w-__wow_=ORT DATE ILREPORT TYP ND DATES CM RID I Dec 89 to I Dec 90 Final 4.1LE frMlTWLE...target), 891201.10213 LAVUTORS) National Institute of Standards and Technology Gaithersburg, MD USA 7 . PEWOOMWOPAA AT HW M S) L PEVodM ORGANIZATION 7 ...DATE VSR CCLPIETED BEFORE CN-SITE: 08-11-89 DATE VSR CPEIED AFE ON-SITE: 12-04-89 DATE VSR MODIFIED PER AVO CCMKENTS: 12-29-89 DATE VSR MODIFIED PER AVO
Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander
2008-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
A Strategy for Uncertainty Visualization Design
2009-10-01
143–156, Magdeburg , Germany . [11] Thomson, J., Hetzler, E., MacEachren, A., Gahegan, M. and Pavel, M. (2005), A Typology for Visualizing Uncertainty...and Stasko [20] to bridge analytic gaps in visualization design, when tasks in the strategy overlap (and therefore complement) design frameworks
Marshburn gives Vinogradov a haircut in Node 1
2013-04-28
ISS035-E-030128 (28 April 2013) --- Most of the six Expedition 35 crew members got haircuts on April 28 in the Unity node of the Earth-orbiting International Space Station. Here, NASA astronaut Tom Marshburn trims the head of Russian cosmonaut Pavel Vinogradov.
McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Waddell; William J. Domoracki; Tom J. Temples
2001-12-01
This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectivenessmore » of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume geometry. The AVO analysis located a major amplitude anomaly, which was tested using a Geoprobe{trademark} direct push system. The Geoprobe{trademark} was equipped with a membrane interface probe (MIP) that was interfaced with a sorbent trap/gas chromatograph (GC) system. Both the Photo Ionization Detector (PID) and Electron Capture Detector (ECD) on the GC exceeded the maximum measurement values through the anomaly. A well was installed to collect a water sample. The concentration of chlorinated solvents in the water sample was in excess of 500 ppm. Other amplitude anomalies located directly under an asphalt road were also tested. Both the PID and ECD were zero. It appears that editing of poor quality near-offset traces during data processing caused these anomalies. Not having the full range of source to receiver offset traces in those areas resulted in a false anomaly during AVO analysis. This phenomenon was also observed at the beginning and end of each seismic profile also for the same reason. Based upon the water samples and MIP probes, it appears that surface seismic and AVO analysis were able to detect the area of highest concentration of DNAPL.« less
Seismic modeling of complex stratified reservoirs
NASA Astrophysics Data System (ADS)
Lai, Hung-Liang
Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization, however, is complicated by the heterogeneous of the sand and shale distribution and also by the lack of resolution when imaging thin channel deposits. Amplitude variation with offset (AVO) is a very important technique that is widely applied to locate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result in misleading interpretations because of these problems in application to turbidite reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic responses for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid modeling algorithm. The wavefront construction approach is a modern, fast implementation of ray tracing that I have extended to model quasi-shear wave propagation in anisotropic media. Composite reflection coefficients, which are computed using propagator matrix methods, provide the exact seismic reflection amplitude for a stratified reservoir model. This is a distinct improvement over conventional AVO analysis based on a model with only two homogeneous half spaces. I combine the two methods to compute synthetic seismograms for test models of turbidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against exact calculations using the discrete wavenumber method. The new method, however, can also be used to generate synthetic seismograms for the laterally heterogeneous, complex stratified reservoir models. The results show important frequency dependence that may be useful for exploration. Because turbidite channel systems often display complex vertical and lateral heterogeneity that is difficult to measure directly, stochastic modeling is often used to predict the range of possible seismic responses. Though binary models containing mixtures of sands and shales have been proposed in previous work, log measurements show that these are not good representations of real seismic properties. Therefore, I develop a new approach for generating stochastic turbidite models (STM) from a combination of geological interpretation and well log measurements that are more realistic. Calculations of the composite reflection coefficient and synthetic seismograms predict direct hydrocarbon indicators associated with such turbidite sequences. The STMs provide important insights to predict the seismic responses for the complexity of turbidite reservoirs. Results of AVO responses predict the presence of gas saturation in the sand beds. For example, as the source frequency increases, the uncertainty in AVO responses for brine and gas sands predict the possibility of false interpretation in AVO analysis.
Native Birthrights and Indigenous Science
ERIC Educational Resources Information Center
James, Adrienne Brant; Lunday, Tammy
2014-01-01
In traditional tribal cultures, children are treated with great respect and eagerly learn from their elders. But in contemporary Western society, Native students have the highest dropout rates and are subjected to disproportionate school disciplinary exclusion, which becomes a pipeline into the justice system (Sprague, Vincent, Tobin, & Pavel,…
STATEMAP - Program information | Alaska Division of Geological &
Observatory (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements critical Earth science problems. STATEMAP products Alaska benefits of NCGMP's STATEMAP program Summary map
Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei
2007-01-01
On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft in the atmosphere.
NASA Astrophysics Data System (ADS)
Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.
2010-12-01
Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion models from detected ash clouds and develop the browser interfaces to display other remote sensing datasets, such as volcanic sulfur dioxide detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webley, Peter W.; Atkinson, D.; Collins, Richard L.
On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat tomore » the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.« less
Vinogradov uses a Sony HD Video Camcorder and laptop computer in the SM during Expedition 13
2006-08-01
ISS013-E-66727 (August 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, wears a communication system headset while using a video camcorder and computer in the Zvezda Service Module of the International Space Station.
Vinogradov uses a Sony HD Video Camcorder and laptop computer in the SM during Expedition 13
2006-08-01
ISS013-E-66726 (August 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, wears a communication system headset while using a video camcorder and computer in the Zvezda Service Module of the International Space Station.
Vinogradov adds a patch to the Node 1/Unity collection during Expedition 13
2006-09-04
ISS013-E-75813 (4 Sept. 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, adds the Expedition 13 patch to the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
Augustine Volcano, Cook Inlet, Alaska January 31, 2006
2006-02-02
Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.
Augustine Volcano, Cook Inlet, Alaska January 12, 2006
2006-02-02
Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.
Presentations - Freeman, L.K., 2015 | Alaska Division of Geological &
Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources ; Apollo Mine; Arctic Prospect; Bee Creek Prospect; Bokan Mountain; Bornite Prospect; Caribou Dome Prospect
Presentations - Freeman, L.K., 2016 | Alaska Division of Geological &
Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources ) Keywords Ambler Mineral Belt; Apollo Mine; Arctic Prospect; Bee Creek Prospect; Bokan Mountain; Bornite
Satellite Remote Sensing Tools at the Alaska Volcano Observatory
NASA Astrophysics Data System (ADS)
Dehn, J.; Dean, K.; Webley, P.; Bailey, J.; Valcic, L.
2008-12-01
Volcanoes rarely conform to schedules or convenience. This is even more the case for remote volcanoes that still have impact on local infrastructure and air traffic. With well over 100 eruptions in the North Pacific over 20 years, the Alaska Volcano Observatory has developed a series of web-based tools to rapidly assess satellite imagery of volcanic eruptions from virtually anywhere. These range from automated alarms systems to detect thermal anomalies and ash plumes at volcanoes, as well as efficient image processing that can be done at a moments notice from any computer linked to the internet. The thermal anomaly detection algorithm looks for warm pixels several standard deviations above the background as well as pixels which show stronger mid infrared (3-5 microns) signals relative to available thermal channels (10-12 microns). The ash algorithm primarily uses the brightness temperature difference of two thermal bands, but also looks for shape of clouds and noise elimination. The automated algorithms are far from perfect, with 60-70% success rates, but improve with each eruptions. All of the data is available to the community online in a variety of forms which provide rudimentary processing. The website, avo-animate.images.alaska.edu, is designed for use by AVO's partners and "customers" to provide quick synoptic views of volcanic activity. These tools also have been essential in AVO's efforts in recent years and provide a model for rapid response to eruptions at distant volcanoes anywhere in the world. animate.images.alaska.edu
Preliminary human factors guidelines for traffic management centers
DOT National Transportation Integrated Search
2006-04-01
Sometimes the development of infrastructure can negatively impact habitat and ecosystems. Ways to better avoid, minimize, and mitigate these impacts, as well as the impacts of past infrastructure projects, have been developed. Nevertheless, these avo...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
...; POB Moscow Region, Russia (individual) [MAGNIT]. 2. KUZNETSOV, Artem (a.k.a. KUZNETSOV, Artyom); DOB... Samarkand, Uzbekistan (individual) [MAGNIT]. 4. STEPANOVA, Olga G.; DOB 29 Jul 1962; POB Moscow, Russia... Region, Russia (individual) [MAGNIT]. 6. KARPOV, Pavel; DOB 27 Aug 1977; POB Moscow, Russia (individual...
The Russian Way of War: Post Soviet Adaptations in the Russian Military
2013-12-13
226Thomas Goltz , Georgia Diary (London: M. E. Sharpe, 2006), 253. 227Pavel Felgenhauer, “After August 7: The Escalation of the Russian-Georgian War,” in The...Sharpe, 2009. Goltz , Thomas. Georgia Diary. London: M. E. Sharpe, 2006. Goytisolo, Juan. Landscapes of War: From Sarajevo to Chechnya. Translated
2017 ISCB Accomplishment by a Senior Scientist Award: Pavel Pevzner
Fogg, Christiana N.; Kovats, Diane E.; Berger, Bonnie
2017-01-01
The International Society for Computational Biology ( ISCB) recognizes an established scientist each year with the Accomplishment by a Senior Scientist Award for significant contributions he or she has made to the field. This award honors scientists who have contributed to the advancement of computational biology and bioinformatics through their research, service, and education work. Pavel Pevzner, PhD, Ronald R. Taylor Professor of Computer Science and Director of the NIH Center for Computational Mass Spectrometry at University of California, San Diego, has been selected as the winner of the 2017 Accomplishment by a Senior Scientist Award. The ISCB awards committee, chaired by Dr. Bonnie Berger of the Massachusetts Institute of Technology, selected Pevzner as the 2017 winner. Pevzner will receive his award and deliver a keynote address at the 2017 Intelligent Systems for Molecular Biology-European Conference on Computational Biology joint meeting ( ISMB/ECCB 2017) held in Prague, Czech Republic from July 21-July 25, 2017. ISMB/ECCB is a biennial joint meeting that brings together leading scientists in computational biology and bioinformatics from around the globe. PMID:28713548
Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity
NASA Astrophysics Data System (ADS)
Deng, Pan; Chen, Yangkang; Zhang, Yu; Zhou, Hua-Wei
2016-04-01
The common-midpoint (CMP) stacking technique plays an important role in enhancing the signal-to-noise ratio (SNR) in seismic data processing and imaging. Weighted stacking is often used to improve the performance of conventional equal-weight stacking in further attenuating random noise and handling the amplitude variations in real seismic data. In this study, we propose to use a hybrid framework of combining AB semblance and a local-similarity-weighted stacking scheme. The objective is to achieve an optimal stacking of the CMP gathers with class II amplitude-variation-with-offset (AVO) polarity-reversal anomaly. The selection of high-quality near-offset reference trace is another innovation of this work because of its better preservation of useful energy. Applications to synthetic and field seismic data demonstrate a great improvement using our method to capture the true locations of weak reflections, distinguish thin-bed tuning artifacts, and effectively attenuate random noise.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.
2006-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of seismic velocity models used for earthquake locations; (4) a summary of earthquakes located in 2005; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2005.
Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory
NASA Astrophysics Data System (ADS)
2001-12-01
Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks! The richness and complexity of data and information available to the astronomers is overwhelming. This has created a major problem as to how astronomers can manage, distribute and analyse this great wealth of data . The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and enable them to "put the Universe online". AVO is supported by the European Commission The AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The European Commission awarded a contract valued at 4 million Euro for the AVO project , starting 15 November 2001. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the 'real' sky would, in comparison, be both costly and take far too long. Towards a Global Virtual Observatory The need for virtual observatories has also been recognised by other astronomical communities. The National Science Foundation in the USA has awarded 10 million Dollar (approx. 11.4 million Euro) for a National Virtual Observatory (NVO). The AVO project team has formed a close alliance with the NVO and both teams have representatives on their respective committees. It is clear to the NVO and AVO communities that there are no intrinsic boundaries to the virtual observatory concept and that all astronomers should be working towards a truly global virtual observatory that will enable new science to be carried out on the wealth of astronomical data held in the growing number of first class international astronomical archives. The AVO involves six partner organisations led by the European Southern Observatory (ESO) in Munich (Germany). The other partner organisations are the European Space Agency (ESA) , the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg (France), the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory of the Victoria University of Manchester (UK). Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, ASTROGRID, CDS, TERAPIX/CNRS and the University of Manchester. A 13 minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). This will also be transmitted via satellite Wednesday 12 December 2001 from 12:00 to 12:15 CET on "ESA TV Service", cf. http://television.esa.int. An international conference, "Toward an International Virtual Observatory" will take place at ESO (Garching, Germany) on June 10 - 14, 2002. Contacts AVO Contacts Peter Quinn European Southern Observatory Garching, Germany Tel.: +4989-3200-6509 email: pjq@eso.org Piero Benvenuti Space Telescope-European Coordinating Facility Garching, Germany Tel.: +49-89-3200-6290 email: pbenvenu@eso.org Andy Lawrence (on behalf of The ASTROGRID Consortium) Institute for Astronomy University of Edinburgh United Kingdom Tel.: +44-131-668-8346/56 email: al@roe.ac.uk Francoise Genova Centre de Données Astronomiques de Strasbourg (CDS) France Tel.: +33-390-24-24-76 email: genova@astro.u-strasbg.fr Yannick Mellier CNRS, Delegation Paris A (CNRSDR01-Terapix)/IAP/INSU France Tel.: +33-1-44-32-81-40 email: mellier@iap.fr Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44-147-757-2625 email: pdiamond@jb.man.ac.uk PR Contacts Richard West European Southern Observatory Garching, Germany Tel.: +49-89-3200-6276 email: rwest@eso.org Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel.: +49-89-3200-6306 or +49-173-38-72-621 email: lars@eso.org Ray Footman The ASTROGRID Consortium/University of Edinburgh United Kingdom Tel.: +44-131-650-2249 email: r.footman@ed.ac.uk Philippe Chauvin Terapix/CDS CNRS, Delegation Paris A, IAP/INSU France Tel.: +33 1 44 96 43 36 email: philippe.chauvin@cnrs-dir.fr Agnes Villanueva University of Strasbourg France Tel.: +33 3 90 24 11 35 email: agnes.villanueva@adm-ulp.u-strasbg.fr Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44 1477 572610 email: im@jb.man.ac.uk Appendix: Introduction to Europe's Astrophysical Virtual Observatory (AVO) The Digital Data Revolution Over the past thirty years, astronomers have moved from photographic and analogue techniques towards the use of high-speed, digital instruments connected to specialised telescopes to study the Universe. Whether these instruments are onboard spacecraft or located at terrestrial observatories, the data they produce are stored digitally on computer systems for later analysis. Two Challenges This data revolution has created two challenges for astronomers. Firstly, as the capability of digital detector systems has advanced, the volume of digital data that astronomical facilities are producing has expanded greatly. The rate of growth of the volume of stored data far exceeds the rate of increase in the performance of computer systems or storage devices. Secondly, astronomers have realised that many important insights into the deepest secrets in the Universe can come from combining information obtained at many wavelengths into a consistent and comprehensive physical picture . However, because the datasets from different parts of the spectrum come from different observatories using different instruments, the data are not easily combined. To unite data from different observatories, bridges must be built between digital archives to allow them to share data and "interoperate" - an important and challenging task. The Human Factor These challenges are not only technological. Our brains are not equipped to for instance analyse simultaneously the millions and millions of images available. Astronomers must adapt and learn to deal with such diverse and extensive sets of data. The "digital sky" has the potential to become a vital tool with novel and fascinating capabilities that are essential for astronomers to make progress in their understanding of the Cosmos. But astronomers must be able to find the relevant information quickly and efficiently. Currently the data needed by a particular research program may well be stored in the archives already, but the tools and methods have not yet been developed to extract the relevant information from the flood of images available. A new way of thinking, a new frame of mind and a new approach are needed. The Astrophysical Virtual Observatory The Astrophysical Virtual Observatory (AVO) will allow astronomers to overcome the challenges and extract data from the digital sky, thus "putting the Universe online" . Like a search engine helps us to find information on the Internet, astronomers need sophisticated "search engines" as well as other tools to find and interpret the information. "We're drowning in information and starving for knowledge", a Yale University librarian once said. Or to paraphrase a popular series on TV: "The information is out there, but you have to find it!" Using the latest in computer technology, data storage and analysis techniques, AVO will maximise the potential for new scientific insights from the stored data by making them available in a readily accessible and seamlessly unified form to professional researchers, amateur astronomers and students. Users of AVO will have immense multi-wavelength vistas of the digital Universe at their fingertips and the potential to make breathtaking new discoveries. Virtual observatories signal a new era, where data collected by a multitude of sophisticated telescopes can be used globally and repeatedly to achieve substantial progress in the quest for knowledge. The AVO project, funded by the European Commission, is a three-year study of the design and implementation of a virtual observatory for European astronomy. A virtual observatory is a collection of connected data archives and software tools that utilise the Internet to form a scientific research environment in which new multi-wavelength astronomical research programs can be conducted. In much the same way as a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the virtual observatory consists of a collection of data centres each with unique collections of astronomical data, software systems and processing capabilities. The programme will implement and test a prototype virtual observatory , focussing on the key areas of scientific requirements, interoperability and new technologies such as the GRID, needed to link powerful computers to the newly formed large data repositories. The GRID and the Future of the Internet The technical problems astronomers have to solve are similar to those being worked on by particle physicists, by biologists, and by commercial companies who want to search and fill customer databases across the world. The emerging idea is that of the GRID where computers collaborate across the Internet. The World Wide Web made words and pictures available to anybody at the click of a mouse. The GRID will do the same for data, and for computer processing power. Anybody can have the power of a supercomputer sitting on their desktop. The Astrophysical Virtual Observatory, and GRID projects like the ASTROGRID project in the United Kingdom (funding 5 million UK Pounds or 8 million Euro), are closely linked to these developments.
ODS/Mir hatch opening during STS-89 mission
2009-09-22
STS089-349-021 (22-31 Jan 1998) --- Cosmonaut Pavel Vinogradov, flight engineer for the Mir-24 crew, peers through the hatch, from the inside of the Russia?s Mir Space Station, at arriving Space Shuttle Endeavour members of the STS-89 crew prior to hatch opening. STS-89/Mir-24 marked the eighth of nine Shuttle/Mir dockings.
Jim, Antonia, and the Wolves: Displacement in Cather's "My Antonia"
ERIC Educational Resources Information Center
Cohen, Robin
2009-01-01
In one of the most frequently noted incidents in Willa Cather's "My Antonia", Russian immigrant Pavel reveals on his deathbed that, when driving his friend's wedding party sledge, he saved his own life and companion Peter's by throwing the bride and groom to the attacking wolves. Antonia and Jim are fascinated by this story, and readers…
NASA Astrophysics Data System (ADS)
Girina, O.; Neal, Ch.
2012-04-01
The Kamchatkan Volcanic Eruption Response Team (KVERT) has been a collaborative project of scientists from the Institute of Volcanology and Seismology, the Kamchatka Branch of Geophysical Surveys, and the Alaska Volcano Observatory (IVS, KB GS and AVO). The purpose of KVERT is to reduce the risk of costly, damaging, and possibly deadly encounters of aircraft with volcanic ash clouds. To reduce this risk, KVERT collects all possible volcanic information and issues eruption alerts to aviation and other emergency officials. KVERT was founded by Institute of Volcanic Geology and Geochemistry FED RAS in 1993 (in 2004, IVGG merged with the Institute of Volcanology to become IVS). KVERT analyzes volcano monitoring data (seismic, satellite, visual and video, and pilot reports), assigns the Aviation Color Code, and issues reports on eruptive activity and unrest at Kamchatkan (since 1993) and Northern Kurile (since 2003) volcanoes. KVERT receives seismic monitoring data from KB GS (the Laboratory for Seismic and Volcanic Activity). KB GS maintains telemetered seismic stations to investigate 11 of the most active volcanoes in Kamchatka. Data are received around the clock and analysts evaluate data each day for every monitored volcano. Satellite data are provided from several sources to KVERT. AVO conducts satellite analysis of the Kuriles, Kamchatka, and Alaska as part of it daily monitoring and sends the interpretation to KVERT staff. KVERT interprets MODIS and MTSAT images and processes AVHRR data to look for evidence of volcanic ash and thermal anomalies. KVERT obtains visual volcanic information from volcanologist's field trips, web-cameras that monitor Klyuchevskoy (established in 2000), Sheveluch (2002), Bezymianny (2003), Koryaksky (2009), Avachinsky (2009), Kizimen (2011), and Gorely (2011) volcanoes, and pilots. KVERT staff work closely with staff of AVO, AMC (Airport Meteorological Center) at Yelizovo Airport and the Tokyo Volcanic Ash Advisory Center (VAAC), the Anchorage VAAC, the Washington VAAC, the Montreal VAAC, and the Darwin VAAC to release timely eruption warnings. Urgent information is sent by email to government agencies, aviation services, and scientists (>300 users) located throughout the North Pacific region. KVERT staff also notify AMC and other emergency agencies in Kamchatka by telephone. VONA/KVERT Information Releases (VONA - Volcano Observatory Notice for Aviation) are formal written notifications that are sent by email to these same users to announce Aviation Color Code changes and significant changes in activity. These statements are posted on the KVERT (http://www.kscnet.ru/ivs/kvert/) and the AVO (http://www.avo.alaska.edu) web site. During the period of 2009-2011, eruptions of 6 of Kamchatkan volcanoes were potentially dangerous for aviation: three significant events occurred at Bezymianny (2009, 2010 and 2011), one protracted eruption at Klyuchevskoy (from 2009 till 2010), three short events at Koryaksky (2009) and an ongoing explosive-effusive eruption at Kizimen (2010-2012). Eruptions of Karymsky and Sheveluch volcanoes have continued essentially uninterrupted throughout the period 2009-2011 and have also posed a hazard to aviation intermittently. Very strong explosive eruption of Sheveluch occurred on October 27-28, 2010.
2013-03-28
Expedition 35 Soyuz Commander Pavel Vinogradov and Russian Flight Engineer Alexander Misurkin share a laugh after having their Sokol suits pressure checked, Thursday, March 28, 2013, at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket will send Vinogradov, Misurkin and NASA Flight Engineer Chris Cassidy on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
Translations on Eastern Europe, Scientific Affairs, Number 535
1977-02-08
1976) 1 Bulgarian Scientific Instruments Used in Space Research ( Kiril Serefimov; VECHERNI NOVENI, 8 Jan 77) 7 New Nuclear...Dimitur Gavrilov; KOOPERATIVNO SELO, 13 Jan 77) 12 Development in Wheat Varieties Reviewed (Pavel Popov, Dimitur Dimitrov ; RABOTNICHESKO DELO...BULGARIA BULGARIAN SCIENTIFIC INSTRUMENTS USED IN SPACE RESEARCH Sofia VECHERNI NOVINI in Bulgarian 8 Jan 77 P ^ [Article by Professor Doctor Kiril
Mobilizing Compatriots: Russia’s Strategy, Tactics and Influence in the Former Soviet Union
2015-11-01
CIA project. And this is the way it is developing.”110 These laws have also affected social media: Pavel Durov, the CEO of VKontakte , a Russian...version of Facebook, was “elbowed” out of the company and fled to the Caribbean. VKontakte is now under the control of Alisher Usmanov, a strong ally of
Roltsch, M H; Brown, M D; Hand, B D; Kostek, M C; Phares, D A; Huberty, A; Douglass, L W; Ferrell, R E; Hagberg, J M
2005-10-01
The ACE I/D polymorphism has been shown to interact with habitual physical activity levels in postmenopausal women to associate with submaximal and with maximal exercise hemodynamics. This investigation was designed to assess the potential relationships between ACE genotype and oxygen consumption (VO2), cardiac output (Q), stroke volume (SV), heart rate (HR), blood pressure (BP), total peripheral resistance (TPR), and arteriovenous oxygen difference ([a-v]O2 diff) during submaximal and maximal exercise in young sedentary and endurance-trained women. Seventy-seven 18-35-yr-old women underwent a maximal exercise test and a number of cardiac output tests on a treadmill using the acetylene rebreathing technique. ACE genotype was not significantly associated with VO2max (II 41.4+/-1.2, ID 39.8+/-0.9, DD 39.8+/-1.1 ml/kg/min, p=ns) or maximal HR (II 191+/-2, ID 191+/-1, DD 193+/-2 bpm, p=ns). In addition, systolic and diastolic BP, (a-v)O2 diff, TPR, SV, and Q during maximal exercise were not significantly associated with ACE genotype. During submaximal exercise, SBP, Q, SV, HR, TPR, and (a-v)O2 diff were not significantly associated with ACE genotype. However, the association between diastolic BP during submaximal exercise and ACE genotype approached significance (p=0.08). In addition, there were no statistically significant interactions between ACE genotype and habitual physical activity (PA) levels for any of the submaximal or the maximal exercise hemodynamic variables. We conclude that the ACE I/D polymorphism was not associated, independently or interacting with habitual PA levels, submaximal, or maximal cardiovascular hemodynamics in young women.
The economics of potential reduction of the rural road system in Kansas.
DOT National Transportation Integrated Search
2011-11-01
Benefitcost analysis was used to examine the question of road closure in the three counties. The cost of road : closure is the additional travel cost of rural residents due to more circuitous routing to their destinations. The benefit is : the avo...
Publications - AR 2011-A | Alaska Division of Geological & Geophysical
Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-A main
Publications - AR 2010-B | Alaska Division of Geological & Geophysical
Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-B main
Sections | Alaska Division of Geological & Geophysical Surveys
State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP
Publications - DDS 5 | Alaska Division of Geological & Geophysical Surveys
Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications DDS 5 main content
Publications - MP 146 | Alaska Division of Geological & Geophysical Surveys
Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 146 main content
Publications - MP 159 | Alaska Division of Geological & Geophysical Surveys
Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 159 main content
Publications - AR 2011-B | Alaska Division of Geological & Geophysical
Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-B main
2013-06-21
ISS036-E-009793 (21 June 2013) --- Russian cosmonauts Fyodor Yurchikhin (left) and Alexander Misurkin, both Expedition 36 flight engineers, participate in a suited exercise dry run in preparation for a spacewalk in their Russian Orlan spacesuits, which is scheduled for June 24 from the International Space Station’s Pirs docking compartment. Russian cosmonaut Pavel Vinogradov (mostly out of frame at right), Expedition 36 commander, assists Yurchikhin and Misurkin.
Deterrence and Reassurance in Lithuanian-Russian Relations
2004-06-01
institute staff Suggests Russia Oppose NATO and the USA ,” October 1995, ADVAB 1017 (Sandhurst, England: Conflict Studies Research Center, Royal...However, Lithuania’s National Defense Minister, Audrius Butkiavichius, refuted Russian claims that the withdrawal was impossible due to lack of...signed in Moscow by Lithuania’s and Russia’s Ministers of Defense, Audrius Butkiavicius and Pavel Grachev, enforced a schedule. In conformity with this
Emergy analysis of a silvo-pastoral system, a case study in southern Portugal
The Mediterranean silvo-pastoral system known as Montado, in Portugal, is a complex land use system composed of an open tree stratum in various densities and an herbaceous layer, used for livestock grazing. Livestock also profit from the acorns, and the grazing contributes to avo...
78 FR 16864 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... eruptions Description of Respondents: Individuals affected by a volcanic ash fall events each year (if an...: 1028-NEW Abstract: The USGS provides warnings and notification to the public of volcanic activity in.... Users browsing the AVO Web site during eruptions will be directed towards a web form allowing them to...
2013-03-26
Russia security forces and their dog walk along the train track to the Soyuz launch pad, Tuesday, March 26, 2013 at the Baikonur Cosmodrome in Kazakhstan. Launch of the Soyuz rocket is scheduled for March 29 and will send Expedition 35 Soyuz Commander Pavel Vinogradov, and Flight Engineers Chris Cassidy of NASA and Alexander Misurkin of Russia on a five and a half-month mission aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)
The Russian Navy and the Future of Russian Power in the Western Pacific
2001-12-01
34 16 Oleg (flag) 1903 6,650 3 3 12 6" 23 Avrora 1900 6,630 2 1/2 8 6" 23 Monomakh 1880 5,593 2 5 6" 6 4.7" 15 1/2 Dmitry 1885 6,200 2......FTS200000508000176, p. 2. 102 Pavel Felgenhauer, Russian Military Reform: Ten Years of Failure 103 Oleg Falichev, “Progress Noted in Military Reforms
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Expedition 36 Flight Engineer Chris Cassidy waves hello after he and, Commander Pavel Vinogradov of Russian Federal Space Agency (Roscosmos), and Flight Engineer Alexander Misurkin of Roscosmos landed their Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy returned to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Crew poses near the Node 1/Unity insignia collection during Expedition 13
2006-09-04
ISS013-E-75815 (4 Sept. 2006) --- Astronaut Jeffrey N. Williams (left), Expedition 13 NASA space station science officer and flight engineer; European Space Agency (ESA) astronaut Thomas Reiter, flight engineer; and cosmonaut Pavel V. Vinogradov, commander representing Russia's Federal Space Agency, pose for a photo near the Unity node's growing collection of insignias representing crews who have lived and worked on the International Space Station.
Strategic Stability in the Cold War: Lessons for Continuing Challenges
2011-01-01
Moltz, Daniel Moran, Thomas Parker, Joseph Pilat , Pavel Podvig, Brad Roberts, Michael Rühle, Diego Ruiz Palmer, Thomas Scheber, Mark Schneider, Paul...differ. As Joseph Pilat has observed, terrorist organizations “have historically mimicked states in key areas and are thus subject to constraints and...Press, 2008, p. 60. 62 Joseph F. Pilat , “Dissuasion of Terrorists and Other Non-State Actors”, Strategic Insights, Vol.III, Issue 10, October
Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys
Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a
Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of
Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem
Presentations - Wypych, Alicja and others, 2015 | Alaska Division of
Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem
Alaska - Russian Far East connection in volcano research and monitoring
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.
2012-12-01
The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program is the continuous series of international volcanological field schools organized in partnership with the Kamchatka State University. Each year more than 40 students and young scientists participate in our annual field trips to Katmai, Alaska and Mutnovsky, Kamchatka.
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
A Russian search and rescue helicopter departs the Zhezkazgan airport in Kazakhstan to support the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy, Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2013-03-07
At the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 35-36 Flight Engineer Chris Cassidy of NASA (right) signs a ceremonial book March 7 during traditional pre-launch activities as his crewmate, Soyuz Commander Pavel Vinogradov (left) looks on. Cassidy, Vinogradov and Flight Engineer Alexander Misurkin will launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosomodrome in Kazakhstan. NASA / Stephanie Stoll
2013-03-21
Behind their Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 35-36 Flight Engineer Alexander Misurkin (left), Soyuz Commander Pavel Vinogradov (center) and Flight Engineer Chris Cassidy of NASA (right) pose for pictures March 21 by a replica of a Russian Proton rocket as they train for launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission. NASA/Victor Zelentsov
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
...: Medical Examination Forms for Immigrant or Refugee Applicants ACTION: Notice of request for public comment... Examination for Immigrant or Refugee Applicant. OMB Control Number: 1405-0113. Type of Request: Revision of a.../VO). Form Number: DS-2053, DS-2054, DS-3030, DS-3024, DS-3025, DS-3026. Respondents: Immigrant visa...
Submarine and Autonomous Vessel Proliferation: Implications for Future Strategic Stability at Sea
2012-12-01
missile.4 These important details of the legacy of the Cold War at sea are too often forgotten in today’s retelling of the story . Yet, as CDR (USN...vented deadly fumes. The damaged and still-burning vessel was scuttled with its nuclear weapons and reactors aboard. 8 Pavel Podvig, ed., Russian ...exception of China in the 1950s,13 the Russians generally did not provide production technology and refrained from offering sophisticated offensive systems
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
A Russian search and rescue helicopter and crew wait to depart the Zhezkazgan airport in Kazakhstan to support the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy, Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Expedition 13 Crew in the U.S. Laboratory
2006-08-10
ISS013-E-65695 (10 Aug. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter (left), Expedition 13 flight engineer; cosmonaut Pavel V. Vinogradov, commander representing Russia's Federal Space Agency; and astronaut Jeffrey N. Williams, NASA space station science officer and flight engineer, join Chef Emeril Lagasse during a special call in the Destiny laboratory of the International Space Station. Earlier the crew tasted several of his gourmet creations, delivered to the station by the Space Shuttle Discovery in July.
2016-03-31
Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip -scale, highly-reconfigurable transmitter and...the technology has been used in a chip -scale, reconfigurable receiver demonstration and ongoing efforts to increase the level of performance and...circuit (RF-FPGA). It consists of a heterogeneous assembly of a SiGe BiCMOS chip with multiple 3D-integrated, low-loss, phase-change switch chiplets
Vinogradov at TORU control system in Zvezda
2006-06-26
ISS013-E-42209 (26 June 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 22 spacecraft. Vinogradov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system.
A new 28Si single crystal: counting the atoms for the new kilogram definition
NASA Astrophysics Data System (ADS)
Bartl, G.; Becker, P.; Beckhoff, B.; Bettin, H.; Beyer, E.; Borys, M.; Busch, I.; Cibik, L.; D'Agostino, G.; Darlatt, E.; Di Luzio, M.; Fujii, K.; Fujimoto, H.; Fujita, K.; Kolbe, M.; Krumrey, M.; Kuramoto, N.; Massa, E.; Mecke, M.; Mizushima, S.; Müller, M.; Narukawa, T.; Nicolaus, A.; Pramann, A.; Rauch, D.; Rienitz, O.; Sasso, C. P.; Stopic, A.; Stosch, R.; Waseda, A.; Wundrack, S.; Zhang, L.; Zhang, X. W.
2017-10-01
A new single crystal from isotopically enriched silicon was used to determine the Avogadro constant N A by the x-ray-crystal density method. The new crystal, named Si28-23Pr11, has a higher enrichment than the former ‘AVO28’ crystal allowing a smaller uncertainty of the molar mass determination. Again, two 1 kg spheres were manufactured from this crystal. The crystal and the spheres were measured with improved and new methods. One sphere, Si28kg01a, was measured at NMIJ and PTB with very consistent results. The other sphere, Si28kg01b, was measured only at PTB and yielded nearly the same Avogadro constant value. The mean result for both 1 kg spheres is N A = 6.022 140 526(70) × 1023 mol-1 with a relative standard uncertainty of 1.2 × 10-8. This value deviates from the Avogadro value published in 2015 for the AVO28 crystal by about 3.9(2.1) × 10-8. Possible reasons for this difference are discussed and additional measurements are proposed.
Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien
2015-03-01
Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®
The development of efficient numerical time-domain modeling methods for geophysical wave propagation
NASA Astrophysics Data System (ADS)
Zhu, Lieyuan
This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The numerical AVO study reveals that the normalized residual polarization (NRP) variation with offset does not respond to subsurface NAPL existence when the offset is close to or larger than its critical value (which corresponds to critical incident angle) because the air and head waves dominate the recorded wave field and severely interfere with reflected waves in the TEz wave field. Thus it can be concluded that the NRP AVO/GPR method is invalid when source-receiver angle offset is close to or greater than its critical value due to incomplete and severely distorted reflection information. In other words, AVO is not a promising technique for detection of the subsurface NAPL, as claimed by some researchers. In addition, the robustness of the newly developed numerical algorithms is also verified by the AVO study for randomly-arranged layered media. Meanwhile, this case study also demonstrates again that the full-wave numerical modeling algorithms are superior to ray tracing method. The second case study focuses on the effect of the existence of a near-surface fault on the vertically incident P- and S- plane waves. The modeling results show that both P-wave vertical incidence and S-wave vertical incidence cases are qualified fault indicators. For the plane S-wave vertical incidence case, the horizontal location of the upper tip of the fault (the footwall side) can be identified without much effort, because all the recorded parameters on the surface including the maximum velocities and the maximum accelerations, and even their ratios H/V, have shown dramatic changes when crossing the upper tip of the fault. The centers of the transition zone of the all the curves of parameters are almost directly above the fault tip (roughly the horizontal center of the model). Compared with the case of the vertically incident P-wave source, it has been found that the S-wave vertical source is a better indicator for fault location, because the horizontal location of the tip of that fault cannot be clearly identified with the ratio of the horizontal to vertical velocity for the P-wave incident case.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John
2003-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes. This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to an EARTHWORM detection system. AVO located 7430 earthquakes during 2002 in the vicinity of the monitored volcanoes.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2002; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2002.
Expedition 13 Crew during a teleconference in the U.S. Laboratory during Expedition 13
2006-08-31
ISS013-E-75727 (31 Aug. 2006) --- Astronaut Jeffrey N. Williams (foreground), Expedition 13 NASA space station science officer and flight engineer; cosmonaut Pavel V. Vinogradov (center), commander representing Russia's Federal Space Agency; and European Space Agency (ESA) astronaut Thomas Reiter, flight engineer, conduct a teleconference in the Destiny laboratory of the International Space Station, via Ku- and S-band, with audio and video relayed to the Mission Control Center (MCC) at Johnson Space Center.
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Russian search and rescue MI-8 helicopters are seen through the window of another helicopter at the landing site of the Soyuz TMA-08M spacecraft near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. The Soyuz landed with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Russian search and rescue MI-8 helicopters are seen at the landing site of the Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. The Soyuz landed with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Russian search and rescue personnel arrive within seconds after the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy of NASA aboard, in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy returned to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
The CINCS (Commanders-in-Chief) and the Acquisition Process
1988-09-01
ELEMENT I PROJECT NO. TASK NO. ACCESSION NO. Washington, DC 20301 T -AO-461 WORK UNIT 11. TITLE (Inokde Seoewhly Clasifloetlon) THE CINCS AND THE ACQUISITION...Herschel Kanter Leonard Wainstein Rachel Kaganoff Barry Pavel September 1988 IDA INSTITUTE FOR DEFENSE ANALYSES Contract MDA 903 84 C 0031 Task T -AO-461...3 PREFACE This task was undertaken as part of Task T -AO-461, "Special Studies of Critical Defense Issues," Contract Number MDA 903 84 C 0031. Its
2008-09-18
molecular oxygen – singlet oxygen (SO). According to the quantum theory , the spin configuration of the lowest energy state with unpaired electrons in...in applications spanning from environmental and health monitoring to security. Lectures on advanced theories and modeling of the sensing mechanisms...10:15 Marie-Isabelle BARATON and Pavel KASHKAROV Welcome address Introduction to the Advanced Study Institute 10:15 – 10:30 Welcome address by
1992-06-01
of CTD data; J. Boyd for collecting AXBT data; Steve Piacsek from SACLANTCEN for GDEM data and help in arrangement of Planet Cruise; P. Minnett from...FCTE ft OCT -992 00 "Orgsnrdl oontot4ns color platgs: All DTIC reproduot- Ions Will be In blaok and white* Pavel Pistek Ocean Sensing and Prediction...temperature-depth and thermistor chain data collected by the West German ship WFS Planet , airborne expendable bathythermograph data deployed by P-3
2013-03-07
With a picture of the Russian great designer Sergei Korolev over his right shoulder, Expedition 35-36 Flight Engineer Chris Cassidy (right) poses for pictures March 7 with his crewmates, Flight Engineer Alexander Misurkin (left) and Soyuz Commander Pavel Vinogradov (center) at the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia. The three crewmembers are training for their launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosmodrome in Kazkahstan. NASA / Stephanie Stoll
2013-03-22
At the Integration Facility at the Baikonur Cosmodrome in Kazakhstan, engineers swarm over the Soyuz TMA-08M spacecraft March 22 as they prepare the vehicle for its encapsulation into the third stage of a Soyuz booster rocket. The operation was part of the preparation for the Soyuz’ launch March 29, Kazakh time, to carry Expedition 35/36 Flight Engineer Chris Cassidy of NASA, Soyuz Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin to the International Space Station for a 5 ½ month mission. NASA/Victor Zelentsov
Mobilizing Compatriots: Russia’s Strategy, Tactics, and Influence in the Former Soviet Union
2015-11-01
troll army.102 Another report indicates that at one “troll factory” in St. Petersburg, employees receive over $500 a month to pose as internet users ...internet companies operating webpages within Russia must house their user data so that those data are available to Russian security services.109...social media: Pavel Durov, the CEO of VKontakte , a Russian version of Facebook, was “elbowed” out of the company and fled to the Caribbean. VKontakte
Vinogradov practices docking procedures of the Progress 21 in the SM during Expedition 13
2006-04-26
ISS013-E-10225 (26 April 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, practices docking procedures with the TORU teleoperated control system in the Zvezda Service Module of the International Space Station in preparation for the docking of the Progress 21 spacecraft. Vinogradov, using the Simvol-TS screen and hand controllers, could manually dock the Progress to the station in the event of a failure of the Kurs automated docking system.
Geologic data management at AVO: building authoritative coverage with radical availability (Invited)
NASA Astrophysics Data System (ADS)
Cameron, C.; Snedigar, S. F.; Nye, C. J.
2009-12-01
In 2002, the Alaska Volcano Observatory (AVO) began creating the Geologic Database of Information on Volcanoes in Alaska (GeoDIVA) to create a system that contains complete, flexible, timely, and accurate geologic and geographic information on Pleistocene and younger volcanoes in Alaska. This system was primarily intended to be a tool for scientific investigation, crisis response, and public information - delivered in a dynamic, digital format to both internal and external users. It is now the back-end of the AVO public website. GeoDIVA does not interface with our daily monitoring activities, however -- seismic and satellite data are handled by different database efforts. GeoDIVA also doesn’t store volcanic unrest data, although we hope WOVOdat will. GeoDIVA does include modules for the following datasets: bibliography (every subsequent piece of data in GeoDIVA is tied to a reference), basic volcano information (~137 edifices), historical eruption history information (~550 events), images (~17,000), sample information (~4400), geochemistry (~1500; population in progress), petrography (very early stages of data creation), sample storage (~14,000), and Quaternary vent information (~1200 vents). Modules in progress include GIS data, tephra data, and geochronologic data. In recent years, we have been doing maintenance work on older modules (for example, adding new references to the bibliography, and creating new queries and data fields in response to user feedback) as well as developing, designing, and populating new modules. Population can be quite time consuming, as there are no pre-compiled comprehensive existing sources for most information on Alaskan volcanoes, and we carefully reference each item. Newer modules also require more complex data arrangements than older modules. To meet the needs of a diverse group of users on widely varying computer platforms, GeoDIVA data is primarily stored in a MySQL DBMS; PostGIS/PostgreSQL are currently used to store and search spatial point data such as sample and volcano location. The spatial data storage system is evolving rapidly, and may change to a different DBMS in the future. Data upload is done via a web browser (one-record-at-a-time, tedious), or through automated .csv upload. Because we use open-source software and provide access through web browsers, AVO staff can view and update information from anywhere. In the future, we hope GeoDIVA will be a complete site for all geologic information about Alaskan volcanoes; because all data points are linked together (by references, sample IDs, volcanoes, geologists, etc.) we’ll be able to draw a box on a map and retrieve information on edifices, vents, samples, and all associated metadata, images, references, analytical data, and accompanying GIS files. As we look toward our goals, remaining challenges include: linking our data with other national and international efforts, creating easier ways for all to upload data, GIS development, and balancing the speed of new module development with the need for older module maintenance.
Li, Xiang; Li, Xiang; Wang, Jiaxiong; Ye, Zaiyuan; Li, Ji-Cheng
2012-01-01
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood. Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS. Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy. Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer. PMID:22745580
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John
2004-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2003; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2003.
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
Countermeasures to Hazardous Chemicals,
1989-04-01
Chemical Engineers (AIChE), 3. Hazardous Materials Advisery, Council (HMAC), (not the same as the Memphis/Shelby County HMAC), 4. American Petroleum...retired chemical engineers , will volunteer to avos t the I wcal communities in their pl. ining efforts. S1i !NSTITrTE OF HAZARDOUS MATERIALS MANAGEMENT The... chemicals may be considered to be a man-made wind. Such large gas volumes can be produced by blowcr equipment incorporating surplus jet engines . Such blowers
Evaluating geophysical lithology determination methods in the central offshore Nile Delta, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nada, H.; Shrallow, J.
1994-12-31
Two post stack and one prestack geophysical techniques were used to extract lithology and fluid information from seismic data. The purpose of this work was to evaluate the effectiveness of such methods in helping to find more hydrocarbons and reduce exploration risk in Egypt`s Nile Delta. Amplitude Variations with Offset (AVO) was used as a direct hydrocarbon indicator. CDP gathers were sorted into common angle gathers. The angle traces from 0--10 degrees were stacked to form a near angle stack and those from 30--40 degrees were stacked to form a far angle stack. Comparison of the far and near anglemore » stacks indicate areas which have seismic responses that match gas bearing sand models in the Pliocene and Messinian. Seismic Sequence Attribute mapping was used to measure the reflectivity of a seismic sequence. The specific sequence attribute measured in this study was the Maximum Absolute Amplitude of the seismic reflections within a sequence. Post stack seismic inversion was used to convert zero phase final migrated data to pseudo acoustic impedance data to interpret lithology from seismic data. All three methods are useful in the Nile Delta for identifying sand prone areas, but only AVO can be used to detect fluid content.« less
The time-lapse AVO difference inversion for changes in reservoir parameters
NASA Astrophysics Data System (ADS)
Longxiao, Zhi; Hanming, Gu; Yan, Li
2016-12-01
The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
A Russian search and rescue all-terrain vehicle (ATV) and helicopter are seen at the landing site of the Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. The Soyuz landed with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Schaefer, Jochen; Lohff, Brigitte; Dittmer, Janke Jörn
2014-08-01
Respiratory interactions with the heart have remained a challenging physiological phenomenon since their discovery more than two hundred and fifty years ago. In the course of translating the seminal publications of Carl Ludwig and his disciple Pavel Petrovich Einbrodt into English, we became aware of some under-appreciated aspects of their work that contain useful insights into the history of the phenomenon now called respiratory arrhythmia. Ludwig observed arrhythmic effects of respiratory movements in experiments on dogs and horses and published his findings in 1847. He subsequently undertook further work on this problem, together with Einbrodt. Already in 1847 Ludwig had mentioned an exciting observation on the possible role of mechanical factors of the respiratory movements on the action of the heart in a dog in whom he had artificially induced bouts of coughing. Einbrodt decided to systematically develop methods to increase or decrease the pressure of the air the animal had to breathe. He observed that this procedure led to a greater or lesser degree of compression or decompression of all the organs in the thoracic cavity without apparently causing harmful consequences during the time of its application. How the mechanical influence of breathing affects cardiac activity during respiratory arrhythmia has been the subject of scientific discussions and controversies over a period of more than 150 years and is still unresolved. Recent publications suggest that cardiac mechano-electrical coupling plays an important role in the emergence of cardio-respiratory interdependence. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leopoldino, Andréia M; Squarize, Cristiane H; Garcia, Cristiana B; Almeida, Luciana O; Pestana, Cezar R; Sobral, Lays M; Uyemura, Sérgio A; Tajara, Eloiza H; Silvio Gutkind, J; Curti, Carlos
2012-11-01
Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.
2002-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; (2) a description of instruments deployed in the field and their locations; (3) a description of earthquake detection, recording, analysis, and data archival systems; (4) station parameters and velocity models used for earthquake locations; (5) a summary of daily station usage throughout the catalog period; and (6) all HYPOELLIPSE files used to determine the earthquake locations presented in this report.
1993-01-01
On 27 June, 1992, the Crater Peak vent on the south side of Mt. Spurr awoke from 39 years of dormancy and burst into sub-plinian eruption after 10 months of elevated seismicity. Two more eruptions followed in August and September. The volcano lies 125 km west of Anchorage, Alaska's largest city and an important international hub for air travel. The Alaska Volcano Observatory (AVO) was able to warn communities and the aviation industry well in advance of these eruptions.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2011
Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl K.
2012-01-01
Between January 1 and December 31, 2011, the Alaska Volcano Observatory (AVO) located 4,364 earthquakes, of which 3,651 occurred within 20 kilometers of the 33 volcanoes with seismograph subnetworks. There was no significant seismic activity above background levels in 2011 at these instrumented volcanic centers. This catalog includes locations, magnitudes, and statistics of the earthquakes located in 2011 with the station parameters, velocity models, and other files used to locate these earthquakes.
The induction of apoptosis and autophagy by Wasabia japonica extract in colon cancer.
Hsuan, Shu-Wen; Chyau, Charng-Cherng; Hung, Hsiao-Yu; Chen, Jing-Hsien; Chou, Fen-Pi
2016-03-01
Wasabia japonica (wasabi) has been shown to exhibit properties of detoxification, anti-inflammation and the induction of apoptosis in cancer cells. This study aimed to investigate the molecular mechanism of the cytotoxicity of wasabi extract (WE) in colon cancer cells to evaluate the potential of wasabi as a functional food for chemoprevention. Colo 205 cells were treated with different doses of WE, and the cytotoxicity was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Apoptosis and autophagy were detected by 4',6-diamidino-2-phenylindole, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbo-yanine iodide and staining for acidic vascular organelles (AVOs), along with Western blotting. The results demonstrated that WE induced the extrinsic pathway and mitochondrial death machinery through the activation of TNF-α, Fas-L, caspases, truncated Bid and cytochrome C. WE also induced autophagy by decreasing the phosphorylation of Akt and mTOR and promoting the expression of microtubule-associated protein 1 light chain 3-II and AVO formation. An in vivo xenograft model verified that tumor growth was delayed by WE treatment. Our studies revealed that WE exhibits anti-colon cancer properties through the induction of apoptosis and autophagy. These results provide support for the application of WE as a chemopreventive functional food and as a prospective treatment of colon cancer.
Expedition 36 Soyuz TMA-08M Landing
2013-09-11
Russian search and rescue crews wave farewell to a departing helicopter as an all-terrain vehicle (ATV) with Expedition 36 Flight Engineer Chris Cassidy of NASA drops Cassidy off to from the Soyuz TMA-08M landing zone in a remote area near the town of Zhezkazgan, Kazakhstan to Karaganda on Wednesday, Sept. 11, 2013. Cassidy, Commander Pavel Vinogradov of Russian Federal Space Agency (Roscosmos), and Flight Engineer Alexander Misurkin of Roscosmos returned to Earth in a Soyuz TMA-08M capsule after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2006-03-28
The Soyuz TMA-8 spacecraft and its booster rolled out to the launch pad on Tuesday, March 28, 2006 at the Baikonur Cosmodrome in Baikonur, Kazakhstan for final pre-launch preparations. The Soyuz will blast off on March 30, 2006 to carry Expedition 13 Commander Pavel V. Vinogradov and Science Officer and Flight Engineer Jeffrey N. Williams to the International Space Station for a six-month mission. The spacecraft will also be carrying Brazilian Space Agency Soyuz crew member Marcos Pontes, who will spend 10 days aboard the International Space Station under an agreement with the Russian Federal Space Agency. Photo Credit: (NASA/Bill Ingalls)
2012-09-27
Expedition 33/34 Flight Engineer Kevin Ford of NASA plants a flower at the Kremlin Wall in Moscow where Russian space icons are interred September 25, 2012 as he, Flight Engineer Evgeny Tarelkin and Soyuz Commander Oleg Novitskiy participated in traditional ceremonies leading to their launch to the International Space Station October 23 in the Soyuz TMA-06M spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission. In the background, the backup crew, Pavel Vinogradov, Chris Cassidy of NASA and Alexander Misurkin also planted flowers at the Wall, where Russian space icons are interred. NASA/Stephanie Stoll
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Waddell; William J. Domoracki; Jerome Eyer
2003-01-01
The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1,more » 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.« less
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999
Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.
2001-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic swarm at Akutan volcano in March and April 1996 (Lu and others, 2000); 2) an eruption at Pavlof Volcano in fall 1996 (Garces and others, 2000; McNutt and others, 2000); 3) an earthquake swarm at Iliamna volcano between September and December 1996; 4) an earthquake swarm at Mount Mageik in October 1996 (Jolly and McNutt, 1999); 5) an earthquake swarm located at shallow depth near Strandline Lake; 6) a strong swarm of earthquakes near Becharof Lake; 7) precursory seismicity and an eruption at Shishaldin Volcano in April 1999 that included a 5.2 ML earthquake and aftershock sequence (Moran and others, in press; Thompson and others, in press). The 1996 calendar year is also notable as the seismicity rate was very high, especially in the fall when 3 separate areas (Strandline Lake, Iliamna Volcano, and several of the Katmai volcanoes) experienced high rates of located earthquakes.This catalog covers the period from January 1, 1994, through December 31,1999, and includes: 1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; 2) a description of instruments deployed in the field and their locations and magnifications; 3) a description of earthquake detection, recording, analysis, and data archival; 4) velocity models used for earthquake locations; 5) phase arrival times recorded at individual stations; and 6) a summary of daily station usage from throughout the report period. We have made calculated hypocenters, station locations, system magnifications, velocity models, and phase arrival information available for download via computer network as a compressed Unix tar file.
Conventional Weapons Effects on Reinforced Soil Walls.
1995-03-01
parametric study of the influence of specific design variables on wall panel response. D. METHODOLOGY A single degree of freedom model was modified to...t. dAev AVoF design methodologies for reinforced soil subjected o bl...at lad, LM, r..s.o.s. of these systems to such loading must be established...for many years and then on short notice be shipped to a location for use. The design for this shelter would be done as needed, although some non -site
Brunswick NAS, Maine. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1982-06-02
23.’f .a. .3 2,.- .fl .i rOTAL NUEE Of ONATIONS 913 C (- porn USAPETAC Poe" 04.5 (OLA) avo. n ,,,inm oI tis pow Am iounnln AI. 6 GLOBAL CLIMATOLOGY...N U 29-20 31 D.. Boy lb Wet i61wb POWn.S ,16/-IT9, F ( " - --21--,,10 -22/-23-- 5 -24/-25 2 r OTAL 2*lZD40*O0. T .I .3 h 01 *1 821811 821 _ 821 (j1
Pesicek, Jeremy; Thurber, Clifford H.; DeShon, Heather R.; Prejean, Stephanie G.; Zhang, Haijiang
2008-01-01
Waveform cross-correlation with bispectrum verification is combined with double-difference tomography to increase the precision of earthquake locations and constrain regional 3D P-wave velocity heterogeneity at Great Sitkin volcano, Alaska. From 1999 through 2005, the Alaska Volcano Observatory (AVO) recorded ∼1700 earthquakes in the vicinity of Great Sitkin, including two ML 4.3 earthquakes that are among the largest events in the AVO catalog. The majority of earthquakes occurred during 2002 and formed two temporally and spatially separate event sequences. The first sequence began on 17 March 2002 and was centered ∼20 km west of the volcano. The second sequence occurred on the southeast flank of Great Sitkin and began 28 May 2002. It was preceded by two episodes of volcanic tremor. Earthquake relocations of this activity on the southeast flank define a vertical planar feature oriented radially from the summit and in the direction of the assumed regional maximum compressive stress due to convergence along the Alaska subduction zone. This swarm may have been caused or accompanied by the emplacement of a dike. Relocations of the mainshock–aftershock sequence occurring west of Great Sitkin are consistent with rupture on a strike-slip fault. Tomographic images support the presence of a vertically dipping fault striking parallel to the direction of convergence in this region. The remaining catalog hypocenters relocate along discrete features beneath the volcano summit; here, low P-wave velocities possibly indicate the presence of magma beneath the volcano.
DTO 1118 - Survey of the Mir Space Station
1998-01-29
STS089-714-072 (22-31 Jan. 1998) --- A series of 70mm still shots was recorded of Russia's Mir Space Station from the Earth-orbiting space shuttle Endeavour following undocking of the two spacecraft. Onboard the Mir at this point were cosmonaut Anatoly Y. Solovyev, commander; Pavel V. Vinogradov, flight engineer; and Andrew S. W. Thomas, cosmonaut guest researcher. Onboard Endeavour were Terrence W. (Terry) Wilcutt, commander; Joe F. Edwards Jr., pilot; Bonnie J. Dunbar, payload commander; mission specialists David A. Wolf (former cosmonaut guest researcher), Michael P. Anderson, James F. Reilly, and Salizhan S. Sharipov, representing Russian Space Agency (RSA). Photo credit: NASA
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010340 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010263 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010207 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010313 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010333 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010317 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Soyuz TMA-08M/34S Launch seen from ISS
2013-03-28
ISS035-E-010345 (28 March 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station took this photo which was part of a series documenting the launch of the "other half" of the Expedition 35 crew. The Soyuz TMA-08M rocket launched from the Baikonur Cosmodrome in Kazakhstan on March 29, 2013 (Kazakh time) carrying Expedition 35 Soyuz Commander Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Russian Flight Engineer Alexander Misurkin to the International Space Station. Their Soyuz rocket launched at 2:43 a.m., March 29, local time, while it was still March 28 in GMT and USA time zones.
Parsons, Thomas E.; Howie, John M.; Thompson, George A.
1992-01-01
We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that most xenoliths in eruptive basalts of the Transition Zone are of mafic igneous composition, (2) indications that a pulse of magmatic activity crossed the Transition Zone in the late Tertiary period, and (3) the high regional heat flow observed in the Transition Zone. The apparent presence of fluids near the base of the reflective zone may indicate a partially molten intrusion. We present a mechanism by which magma can be trapped and be induced to intrude horizontally at rheologic contrasts in extending crust.
Application of a Hybrid Detection and Location Scheme to Volcanic Systems
NASA Astrophysics Data System (ADS)
Thurber, C. H.; Lanza, F.; Roecker, S. W.
2017-12-01
We are using a hybrid method for automated detection and onset estimation, called REST, that combines a modified version of the nearest-neighbor similarity scheme of Rawles and Thurber (2015; RT15) with the regression approach of Kushnir et al. (1990; K90). This approach incorporates some of the windowing ideas proposed by RT15 into the regression techniques described in K90. The K90 and RT15 algorithms both define an onset as that sample where a segment of noise at earlier times is most "unlike" a segment of data at later times; the main difference between the approaches is how one defines "likeness." Hence, it is fairly straightforward to adapt the RT15 ideas to a K90 approach. We also incorporated the running mean normalization scheme of Bensen et al. (2007), used in ambient noise pre-processing, to reduce the effects of coherent signals (such as earthquakes) in defining noise segments. This is especially useful for aftershock sequences, when the persistent high amplitudes due to many earthquakes biases the true noise level. We use the fall-off of the K90 estimation function to assign uncertainties and the asymmetry of the function as a causality constraint. The detection and onset estimation stage is followed by iterative pick association and event location using a grid-search method. Some fine-tuning of some parameters is generally required for optimal results. We present 2 applications of this scheme to data from volcanic systems: Makushin volcano, Alaska, and Laguna del Maule (LdM), Chile. In both cases, there are permanent seismic networks, operated by the Alaska Volcano Observatory (AVO) and Observatorio Volcanológico de Los Andes del Sur (OVDAS), respectively, and temporary seismic arrays were deployed for a year or more. For Makushin, we have analyzed a year of data, from summer 2015 to summer 2016. The AVO catalog has 691 events in our study volume; REST processing yields 1784 more events. After quality control, the event numbers are 151 AVO events and 344 additional REST events. For LdM, we have analyzed 3 months of data from the beginning of 2017. The OVDAS catalog contains only 6 events. In contrast, REST processing yields over 100 events. We will show both the grid search locations and relocations obtained as part of tomographic inversions, and discuss some of the advantages and weaknesses of the REST processing scheme.
Satellite monitoring of remote volcanoes improves study efforts in Alaska
NASA Astrophysics Data System (ADS)
Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.
Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.
NASA Astrophysics Data System (ADS)
Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.
2015-02-01
Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.
Guffanti, Marianne C.; Miller, Thomas
2013-01-01
An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.
Guffanti, Marianne; Miller, Thomas P.
2013-01-01
An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.
NASA Astrophysics Data System (ADS)
Hirokawa, Masao; Møller, Jacob S.; Sasaki, Itaru
2017-05-01
We consider the generalized quantum Rabi model with the so-called A 2-term in the light of the Hepp-Lieb-Preparata quantum phase transition. We investigate the dressed photon in its ground state when the atom-light coupling strength is in the deep-strong coupling regime. This regime is introduced by Casanova et al (2010 Phys. Rev. Lett. 105 263603) as the coupling regime exceeding the ultra-strong one. We show how the dressed photon appears in the ground state. We dedicate this paper to Pavel Exner and Herbert Spohn on the occasion of their 70th birthdays, and Klaus Hepp on the occasion of his 80th birthday.
2013-03-21
At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 35-36 Flight Engineer Chris Cassidy of NASA (left) displays a flight data file book titled “Fast Rendezvous” March 21 as he, Soyuz Commander Pavel Vinogradov (center) and Flight Engineer Alexander Misurkin (right) train for launch to the International Space Station March 29, Kazakh time, in their Soyuz TMA-08M spacecraft from the Baikonur Cosmodrome for a 5 ½ month mission. The “fast rendezvous” refers to the expedited four-orbit, six-hour trip from the launch pad to reach the International Space Station March 29 through an accelerated rendezvous burn plan, the first time this approach will be used for crews flying to the international complex. NASA/Victor Zelentsov
Into the Wind, Against the Tide: Change and the Operational Commander
1994-02-08
j~y ~LY T.C&.C4C SAV "RE 0 DOCUMENTATION AD-A279 635 * -~l; .,Ec*. Ty~’ CA/S5;; CA7:GS Ab RZESiR.CT;Vd A - 27 3 * tUNCLASSIFIED D C.. * -...... €v...Z ;U -C -DISTRIBUTION STATEMENT A : APPROVED FOR . DECLASS CAT:Cr. . PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. E.NAMY -FPRO~N RAN ZA- ON NAME...this .... . e~efsc~ ..... ,71 p .... ,,--’ a -1 .b --,r,,,-t n ecessarily a ,.-. d ’-,y ’-,e .=avo.=* ,,at 1;. COSATI CODES 18. SU ECt TERIMS (Continue
1994-07-21
InforMation Systems Agency, Center for Information Management DECLARATION OF CONFORMANCE The following declaration of conformance was supplied by the...services such as resource allocation, scheduling, inp•t/outp-it control, and data management. Usually, operating systems are predominantly software...Ada programming language. 1-4 CHAPTER 2 IMPLEMMTION DEPENDENC IES 2.1 WITHDRAWN TESTS The f3llowing tests have been withdrawn by the AVO. The
Analysis of Truss Frames by Method of the Stiffness Matrix
1990-12-01
of the web members of the truss. There also are variations in the truss frame given by the geometric shape of the frame, also referred to in some...at the elastic center, 0 (Figure .3.2), are: R AX = Wix - Hot RBX W2x -Ho, RAY =WIY + Vo, (1) RBy WLy - Vo, MAB =- Mo + CH. + aVo + CMA, MBA =M - CH...o Co Ce Substituting the results of Equation (7) into Equations (1), x c D x RAY = Wix + + -- (eA - GO - D (8)C x C x C cx x cx AY a D RAY
1988-05-19
System for the Ada Language System, Version 1.1.0, 1.% International Business Machines Corporation, Wright-Patterson AFB. IBM 4381 under VM/SP CMS...THIS PAGE (When Data Enre’ed) AVF Control Number: AVF-VSR-82.1087 87-03-10-TEL ! Ada® COMPILER VALIDATION SUMMARY REPORT: International Business Machines...Organization (AVO). On-site testing was conducted from !8 May 1987 through 19 May 1987 at International Business Machines -orporation, San Diego CA. 1.2
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004
Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John
2005-01-01
The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and October; (5) an earthquake swarm at Akutan in July; and (6) low-level tremor at Okmok Caldera throughout the year (Table 2). Instrumentation and data acquisition highlights in 2004 were the installation of subnetworks on Mount Peulik and Korovin Volcano and the installation of broadband stations to augment the Katmai and Spurr subnetworks.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a description of earthquake detection, recording, analysis, and data archival systems; (3) a description of velocity models used for earthquake locations; (4) a summary of earthquakes located in 2004; and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, and location quality statistics; daily station usage statistics; and all HYPOELLIPSE files used to determine the earthquake locations in 2004.
Peak Oxygen Uptake during and after Long-duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Downs, Meghan E.; Lee, Stuart M. C.; Feiveson, Alan H.; Knudsen, Poul; Evetts, Simon N.; Ploutz-Snyder, Lori
2014-01-01
Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests 90 days before spaceflight, 15 d (FD15) after launch and every 30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.
NASA Astrophysics Data System (ADS)
Toth, J.; Svoren, J.
2012-01-01
The glare of the bolide on the night of February 28, 2010, illuminated streets and interiors of apartments at some location in eastern Slovakia and northern Hungary. In addition, cannon-like bursts or series of low frequency blasts were heard. Due to bad weather, cloudy skies, and scattered showers, the Central European Fireball Network (operated by Dr. Pavel Spurny of the Czech Academy of Sciences) did not take direct optical records of the bolide and the Slovak Video Meteor Network (operated by the first author) was not operational that night. So, at first sight, it seemed that there were no scientific records of this event. Fortunately, fast photoelectric sensors on seven automated fireball stations in the Czech Republic (6) and Austria (1) detected the illumination of the sky caused by the bolide, which made it possible to determine exact time and duration of the bolide and estimate its brightness. The bolide reached its maximum brightness of at least magnitude -18 in one huge flare. Later on, several surveillance camera data were published showing the moment when the night turned into day for a second, but only two videos from Hungary (Orkeny village, Fazzi Daniella and Vass Gabor; Telki village, contact persons Sarneczky Krisztian, and Kiss Laszlo) actually captured the fireball itself. Thanks to calibration of videos by several members of the Hungarian Astronomical Association (MCSE, http://www.mcse.hu) contributing (in particular, Antal Igaz) and a trajectory analysis by Dr. Jiri Borovicka of the Czech Academy of Sciences gave the hope that significant numbers of meteorite fragments reached the surface. He also calculated the impact area, near the town of Kosice in eastern Slovakia. The data from the Local Seismic Network of Eastern Slovakia (project led by Professor Moczo of Comenius University) confirmed the atmospheric trajectory as well. The expedition consisting of scientists and graduate students of the Astronomical Institute of the Slovak Academy of Sciences (under the leadership of the second author), Comenius University in Bratislava (under the leadership of the first author), and the Czech Academy of Sciences (under the leadership of Pavel Spurny) started to sweep meadows and forests at the calculated area. The first meteorite was discovered by Juraj Toth on March 20th. By October 6th, 77 meteorite fragments were found. The heaviest fragment weighs 2.17 kg and was found by Tereza Krejcova; the smallest pieces were only about 0.5 g (finder Julius Koza). The total mass recovered is 4.3 kg. There were 28 finders: Juraj Toth, Diana Buzova, Marek Husarik, Tereza Krejcova, Jan Svoren, Julius Koza, David Capek, Pavel Spurny, Stanislav Kaniansky, Eva Schunova, Marcel Skreka, Dusan Tomko, Pavol Zigo, Miroslav Seben, Jiri Silha, Leonard Kornos, Marcela Bodnarova, Peter Veres, Jozef Nedoroscik, Zuzana Mimovicova, Zuzana Krisandova, Jaromir Petrzala, Stefan Gajdos, Tomas Dobrovodsky, Peter Delincak, Zdenko Bartos, Ales Kucera, and Jozef Vilagi. Preliminary as well as complex mineralogic analysis implies that the recovered meteorite is classified as an ordinary H5 chondrite (Dr. J. Haloda, Czech Geological Survey, D. Ozdin, and P. Uher, Comenius University in Bratislava). The authors are grateful to all collaborators mentioned above. More details about the meteorite will be published in the near future.
Meet Your Future: An Interactive Panel on Industry Careers
NASA Astrophysics Data System (ADS)
Lambert, Steven
There will be a brief presentation showing some statistics about careers in physics followed by a panel discussion. The panelists are: Pavel Kornilovich, HP Inc., Senior Technologist Erik Lucero, Google Santa Barbara, Hardware Engineer Raja Rajasekaran, Toptica-USA, Western Regional Sales & Application Manager Tiffany Santos, Western Digital, Principal Research Engineer Krysta Svore, Microsoft, Principal Researcher & Research Manager Each panelist will introduce themselves and give a brief overview of their career path. We'll then open it up to audience participation. Bring your questions about working in the private sector: daily responsibilities, work environment, how to prepare for this path, making contacts, and anything else you'd like to hear about. We look forward to an interactive and lively session.
DTO 1118 - Survey of the Mir Space Station
1998-01-29
STS089-716-019 (22-31 Jan. 1998) --- A series of 70mm still shots was recorded of Russia's Mir Space Station from the Earth-orbiting space shuttle Endeavour following undocking of the two spacecraft. Among the medium close-ups of Mir, this survey view was provided during a "fly-around" by Endeavour. Onboard the Mir at this point were cosmonaut Anatoly Y. Solovyev, commander; Pavel V. Vinogradov, flight engineer; and Andrew S. W. Thomas, cosmonaut guest researcher. Onboard Endeavour were Terrence W. (Terry) Wilcutt, commander; Joe F. Edwards Jr., pilot; Bonnie J. Dunbar, payload commander; mission specialists David A. Wolf (former cosmonaut guest researcher), Michael P. Anderson, James F. Reilly, and Salizhan S. Sharipov representing Russian Space Agency (RSA). Photo credit: NASA
DTO 1118 - Survey of the Mir Space Station
1998-01-29
STS089-714-066 (22-31 Jan. 1998) --- A series of 70mm still shots was recorded of Russia's Mir Space Station from the Earth-orbiting space shuttle Endeavour following undocking of the two spacecraft. A large blanket of white clouds cover thousands of square miles in this oblique panorama. Onboard the Mir at this point were cosmonaut Anatoly Y. Solovyev, commander; Pavel V. Vinogradov, flight engineer; and Andrew S. W. Thomas, cosmonaut guest researcher. Onboard Endeavour were Terrence W. (Terry) Wilcutt, commander; Joe F. Edwards Jr., pilot; Bonnie J. Dunbar, payload commander; mission specialists David A. Wolf (former cosmonaut guest researcher), Michael P. Anderson, James F. Reilly, and Salizhan S. Sharipov representing Russian Space Agency (RSA). Photo credit: NASA
NASA Astrophysics Data System (ADS)
Roman, D.; Plank, T. A.; Hauri, E. H.; Rasmussen, D. J.; Power, J. A.; Lyons, J. J.; Haney, M. M.; Werner, C. A.; Kern, C.; Lopez, T. M.; Izbekov, P. E.; Stelling, P. L.
2016-12-01
We present initial results from an integrated geochemical-geophysical study of the Unimak-Cleveland corridor of the Aleutian volcanic arc, which encompasses six volcanoes spanning 450 km of the arc that have erupted in the past 25 years with a wide range of magmatic water contents. This relatively small corridor also exhibits a range of deep and upper-crustal seismicity, apparent magma storage depths, and depths to the subducting tectonic plate. The ultimate goal of this study is to link two normally disconnected big-picture problems: 1) the deep origin of magmas and volatiles, and 2) the formation and eruption of crustal magma reservoirs, which we will do by establishing the depth(s) of crustal magma reservoirs and pre-eruptive volatile contents throughout the corridor. Our preliminary work focuses on the geographic end members Shishaldin Volcano, which last erupted in 2014-2015, and Cleveland Volcano, which last erupted in April-May of this year (2016). Both systems are persistently degassing, open-vent volcanoes whose frequent eruptions are typically characterized by minimal precursory seismicity, making eruption forecasting challenging. At Cleveland, we analyze data from a 12-station broadband seismic network deployed from August 2015-July 2016, which is complemented by two permanent seismo-acoustic stations operated by the Alaska Volcano Observatory (AVO). We also analyze tephras from recent eruptions (including 2016) and conducted ground- and helicopter-based gas emission surveys. At Shishaldin, we analyze data from the permanent AVO network, which is comprised of mainly short-period, single-component seismic stations. We also present preliminary analyses of samples of recent eruptive deposits and gas emission data. Through integration of these various datasets we present preliminary interpretations related to the origin, storage, ascent and eruption of volatile-bearing magmas at Cleveland and Shishaldin volcanoes.
NOS3 gene polymorphisms and exercise hemodynamics in postmenopausal women.
Hand, B D; McCole, S D; Brown, M D; Park, J J; Ferrell, R E; Huberty, A; Douglass, L W; Hagberg, J M
2006-12-01
We tested whether the G894T and T-786C NOS3 polymorphisms were associated with exercise cardiovascular (CV) hemodynamics in sedentary, physically active, and endurance-trained postmenopausal women. CV hemodynamic parameters including heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressures and cardiac output (Q), as determined by acetylene rebreathing, stroke volume (SV), arteriovenous oxygen difference (a-vO2 diff), and total peripheral resistance (TPR) were measured during submaximal (40, 60, 80 %) and maximal (approximately 100 % VO2max) exercise. NOS3 G894T genotype was not significantly associated, either independently or interactively with habitual physical activity (PA) level, with SBP, Q, TPR, or a-vO2 diff during submaximal or maximal exercise. However, NOS3 894T non-carriers had a higher submaximal exercise HR than NOS3 894T allele carriers (120 +/- 2 vs. 112 +/- 2 beats/min, p = 0.007). NOS3 894T allele carriers had a higher SV than 894T non-carriers (78 +/- 2 vs. 72 +/- 2 ml/beat, p = 0.03) during submaximal exercise. NOS3 894T non-carriers also had a higher maximal exercise HR averaged across habitual PA groups than T allele carrier women (165 +/- 2 vs. 158 +/- 2 beats/min, p = 0.04). NOS3 894T allele carriers also tended to have a higher SV during maximal exercise than 894T non-carriers (70 +/- 2 vs. 64 +/- 2 ml/beat, p = 0.08). NOS3 T-786C genotype was not significantly associated, either independently or interactively, with any of the CV hemodynamic measures during submaximal or maximal exercise. These results suggest an association of NOS3 G894T genotype with submaximal and maximal exercise CV hemodynamic responses, especially HR, in postmenopausal women.
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Graham, B.; Haga, L.; Watney, L.
2017-12-01
The Mississippian in Kansas and Oklahoma is a highly heterogeneous, fractured, oil producing reservoir with thickness typically below seismic resolution. At Wellington field in south-central Kansas CO2 was injected in the Mississippian reservoir for enhanced oil recovery. This study examines the utility of active source surface seismic for characterization of Mississippian reservoir properties and monitoring CO2. Analysis of post-stack 3D seismic data showed the expected response of a gradational transition (ramp velocity) where thicker reservoir units corresponded with lower reflection amplitudes, lower frequency and a 90o phase change. Reflection amplitude could be correlated to reservoir thickness. Pre-stack gather analysis showed that porosity zones of the Mississippian reservoir exhibit characteristic AVO response. Simultaneous AVO inversion estimated P- and S-Impedances, which along with formation porosity logs and post-stack seismic data attributes were incorporated in multi-attribute linear-regression analysis and predicted reservoir porosity with an overall correlation of 0.90 to well data. The 3D survey gather azimuthal anisotropy analysis (AVAZ) provided information on the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of the CO2 in monitoring wells. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Future work includes the assessment of time-lapse seismic, acquired after the injection of CO2. This work demonstrates that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and monitoring of CO2.
Poroelastic Seismic Wave Propagation Modeling of CO2 Sequestration Effects
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Bartel, L. C.
2009-12-01
Long term geologic sequestration of carbon dioxide (CO2) is considered a viable approach for removing large amounts of excess carbon from the earth’s surface environment. As CO2 is injected into a subsurface porous formation, it displaces (or mixes with) in situ pore fluids. Seismic reflection and transmission responses of the formation depend on the degree of CO2 substitution. Additionally, geochemical reactions involving CO2 and mineral grains alter the bulk and shear moduli of the solid constituent and/or the matrix of the porous medium. We examine full waveform, wide-angle, amplitude vs. offset (AVO) responses of sandstone and carbonate layers. Synthetic seismic data are calculated with a 3D poroelastic wave propagation algorithm that solves Biot’s system of thirteen coupled partial differential equations via an explicit, time-domain, finite-difference method. All common seismological phases (primary and multiple reflections, mode conversions, head waves, surface and interface waves) are generated with fidelity, provided spatial and temporal gridding intervals are sufficiently fine. Initial calculations indicate that full or partial replacement of H2O by CO2 is readily detected by the AVO recording configuration, particularly with long offset events. Difference seismogram amplitudes of surface-recorded particle velocities range up to ~25%. Equivalent elastic medium responses, with elastic parameters assigned by Gassmann formulae, are inadequate at higher frequencies. Finally, these sensitivity modeling experiments are being extended to vertical seismic profiling geometries. Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, a Lockheed-Martin company, for the US Department of Energy’s National Nuclear Security Administration, under contract DE-AC04-94AL85000.
Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L
2017-09-01
Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.
Blood flow regulation and oxygen uptake during high-intensity forearm exercise.
Nyberg, S K; Berg, O K; Helgerud, J; Wang, E
2017-04-01
The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.
Porphyry of Russian Empires in Paris
NASA Astrophysics Data System (ADS)
Bulakh, Andrey
2014-05-01
Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.
Monitoring volcanic threats using ASTER satellite data
Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.
2008-01-01
This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.
NEESPI focus issues in Environmental Research Letters
NASA Astrophysics Data System (ADS)
Norman, Julian; Groisman, Pavel; Soja, Amber J.
2010-05-01
In 2007 and 2009 Environmental Research Letters published focus issues (edited by Pavel Groisman and Amber J Soja) made up of work carried out by NEESPI participants. Here, we present the content of those focus issues as an invaluable resource for researchers working in the NEESPI study area. The first of the two issues, published in 2007 with title 'Northern Hemisphere High Latitude Climate and Environmental Change', presents a diverse collection of articles that are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions. The second issue, published in 2009, with title 'Climatic and Environmental Change in Northern Eurasia' presents diverse, assorted studies of different aspects of contemporary change, representing the diversity of climates and ecosystems across Northern Eurasia.
Vincent, Laure-Anais; Attaoua, Chaker; Bellis, Michel; Rozkydalova, Lucie; Hadj-Kaddour, Kamel; Vian, Laurence; Cuq, Pierre
2015-04-01
On account of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) remains a therapeutic challenge. This study focuses on acquired resistance to vinca alkaloids (VAs) using VA-resistant MM cell lines (CAL1R-VCR, CAL1R-VDS, and CAL1R-VRB), established by long-term continuous exposure of parental CAL1-wt cells to vincristine (VCR), vindesine (VDS), or vinorelbine (VRB), respectively. Transcriptomic profiling using rma and rdam methods led to distinguish two cell groups: CAL1R-VCR and CAL1R-VDS, CAL1R-VRB, and CAL1-wt. mgsa of the specifically altered genes in the first group evidenced the GO terms 'lysosomal lumen' and 'vacuolar lumen' linked to underexpressed genes, and 'endoplasmic reticulum (ER) stress response' associated with overexpressed genes. A specific reduction of lysosomal enzymes, independent of acidic vacuole organelle (AVO) turnover, was observed (LTG probe) in CAL1R-VCR and CAL1R-VDS cells. It was associated with the specific lowering of cathepsin B and L, known to be involved in the lysosomal pathway of apoptosis. Confirming gene profiling, the same groups (CAL1R-VCR and CAL1R-VDS, CAL1-wt and CAL1R-VRB) could be distinguished regarding the VA-mediated changes on mean size areas and on acidic compartment volumes. These two parameters were reduced in CAL1R-VCR and CAL1R-VDS cells, suggesting a smaller AVO accumulation and thus a reduced sensitivity to lysosomal membrane permeabilization-mediated apoptosis. In addition, 'ER stress response' inhibition by tauroursodeoxycholic acid induced a higher VA sensitization of the first cell group. In conclusion, lysosomes and unfolded protein response could be key determinants of the differential resistance of MM to VAs. © 2015 Société Française de Pharmacologie et de Thérapeutique.
EarthScope's Transportable Array in Alaska and Western Canada
NASA Astrophysics Data System (ADS)
Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.
2015-12-01
EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.
Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.
2012-01-01
Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338
Renewed unrest at Mount Spurr Volcano, Alaska
Power, John A.
2004-01-01
The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2006-04-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2009-08-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
PREFACE: Northern Eurasia Earth Science Partnership Initiative
NASA Astrophysics Data System (ADS)
Groisman, Pavel; Soja, Amber J.
2009-12-01
The Northern Eurasia Earth Science Partnership Initiative (NEESPI) was launched five years ago with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects and launched in the European Union, Russia, United States, Canada, Japan, and China. Currently, serving as an umbrella for more than 130 individual research projects (always with international participation) and with a 15M annual budget, this highly diverse initiative is in full swing. Since the first NEESPI focus issue (Pavel Groisman et al 2007 Environ. Res. Lett. 2 045008 (1pp)) in December 2007, several NEESPI Workshops and Sessions at International Meetings have been held that strengthen the NEESPI grasp on biogeochemical cycle and cryosphere studies, climatic and hydrological modeling, and regional NEESPI components in the Arctic, non- boreal Eastern Europe, Central Asia, northern Siberia, and mountainous regions of the NEESPI domain. In May 2009, an overview NEESPI paper was published in the Bulletin of the American Meteorological Society (BAMS) (Pavel Groisman et al 2009 Bull. Am. Met. Soc. 90 671). This paper also formulated a requirement to the next generation of NEESPI studies to work towards attaining a higher level of integration of observation programs, process studies, and modeling, across disciplines. Three books devoted to studies in different regions of Northern Eurasia prepared by the members of the NEESPI team have appeared and/or are scheduled to appear in 2009. This (second) ERL focus issue dedicated to climatic and environmental studies in Northern Eurasia is composed mostly from the papers that were presented at two NEESPI Open Science Sessions at the Annual Fall Meeting of the American Geophysical Union (December 2008, San Francisco, CA) and at the General Assembly of the European Geosciences Union (April 2009, Vienna, Austria), as well as at the specialty NEESPI Workshops convened in Jena, Helsinki, Odessa, Urumqi, Krasnoyarsk, St Petersburg, and Bishkek during the past two years. As in the first NEESPI focus issue, papers that make up this second issue can be divided into five major topics: climate and hydrology; land cover and land use; the biogeochemical cycle and its feedbacks; cryosphere; human dimension. However, this partitioning is less rigid compared to the partitioning in the first Issue. Following the requirement of a higher level of integration outlined in the BAMS paper, many papers in this issue respond to two or even three of the topics listed above.
1990-01-12
NIST89USN555 7 1.10 DATE VSR CPIIED BEFORE ON-SITE: 08-11-89 DATE VSR COMPI=E AFTER ON-SITE: 12-04-89 DATE VSR MODIFIED PER AVO COMMENS: 12-29-89 DATE...AD-A223 579I I Final 12 Jan 89 to 12 Jan 90 4WPUASS1TTL Ada Compler Validation Summary Report: U.S. Navy.~ Gaithersburg, E1D A USA 7 . PEXNX&M...0Rl3Wfl4 NUADACAMSO) R. A flff om4oN National Institute of Standards and Technology = & National Computer Systew± !.boratory N/S T U W6- 7 /0 Bldg. 255, Em
Geolocation Via Satellite: A Methodology and Error Analysis
1988-05-01
o - sing cow0o sinoo (4.449) acoso = in a... ! (4.44b) asin1 _ acos = 0 (4.45) ax0 No0 2!!LO- = -cso sinI sinvo (4.46a) 89coso = io5s (4.46b) avo...CS6 av0 asinO = o (4.47a) acoso snocs (4.47b) asina = siflA acoso (4.48a) a9cosA - i + COS sin - sinqS0 asino aoo O-So COSOO c s sb aoo -COSA a9coso...4.48b) asinb __ cosa= 0 (4.49) ax0 ax0 asinA =_ sifl cosv - sinA acoso (4.50a) av0 cos OS v aCoSA CSflOO OS fl4o COSA ao ~ (4.50b) (9os acs a 0 * o4
NASA Astrophysics Data System (ADS)
Molnia, B. F.; Angeli, K.
2012-12-01
Alaska's Mt. Steller, a 3,236 m Chugach Mountains peak, is one of the target areas of the Bering Glacier Global Fiducials Program (GFP) site. On September 14, 2005, a large mass of rock, glacier ice, and snow, with a volume of ~50 million cubic meters, fell from just below Mt. Steller's south-facing summit and landed on the surface of a tributary to Bering Glacier, nearly 2,500 m below. The slide, which extended ~8 km down-glacier, was actually an ice-rock avalanche. The impact generated a seismic signal recorded with a magnitude of up to 5.2. Oblique aerial photography of the mountain, the head scarp, and the slide mass was collected for the U.S. Geological Survey's Alaska Volcano Observatory (AVO) on September 15, 2005. The photography delineated the morphology of the failed south-facing slope of the mountain and showed details of the sheared, near-summit hanging glacier and snow mass. Based on the photography, the AVO calculated the slide volume and length. Several weeks later, the AVO provided the first author with digital copies of the September 15 photography. These images were enhanced and examined in order to determine properties of the slide and to evaluate if the cause of the event could be determined. A number of features observed led to the conclusion that meltwater was probably responsible for destabilizing the glacier ice-bedrock contact and triggering the landslide. Specifically, a 10-15 m diameter englacial stream channel was seen in the truncated glacier ice that comprised the east wall of the landslide scarp and a water-polished channel opening was noted on the west wall scarp. Additionally, several depressions were noted that might have temporarily stored water. To confirm these observations, new cloud-free GFP imagery was obtained on October 24 and 28, 2005. Analysis of both sets of imagery documented that: (1) more than a month after the event, meltwater was exiting the east wall scarp channel and flowing down the face of the mountain; (2) the roof of the west wall channel tunnel had collapsed and its path could be discerned in the remaining ice and snow; (3) several near-summit depressions remained that suggested liquid water may have existed and been temporarily stored; (4) the surface on which the slide occurred had a slope that was >50 degrees; (5) the slide mass had many unique components suggesting a complex series of related failures; and (6) there was an absence of large rock bodies in the slide debris, suggesting that much of the failed material may have previously been fractured by freeze-thaw processes. The timely collection of GFP imagery confirmed the continued presence of meltwater near the point of origin of this slide. Coupled with the September 15 oblique photography, interpretation of these images suggests that a large volume of water had recently been flowing on Steller's east summit ridge and that the water might have had a role in triggering the landslide. The presence of a large volume of water close to the summit raises questions about climate change and its role in the future generation of high elevation landslides. Although Mt. Steller is tens of kilometers from the closest human infrastructure, there are numerous other settings around the world where mountains with similar elevations, hanging glaciers, and sun-facing orientations are in close proximity to human infrastructure.
Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska
NASA Astrophysics Data System (ADS)
Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.
2017-12-01
Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high-resolution tomographic image of Makushin Volcano as well as better-constrained earthquake locations, thus enhancing AVO's monitoring and forecasting efforts.
Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L
2015-10-01
Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to be considered in future research concerning Manganism therapies. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Harbert, W.; Delaney, D.; Mur, A. J.; Purcell, C.; Zorn, E.; Soong, Y.; Crandall, D.; Haljasmaa, I.
2016-12-01
To better understand the petrophysical response at ultrasonic frequencies in rhyolite and carbonate (relevant to CO2 storage and CO2 enhanced oil recovery) lithologies we conducted core analysis incorporating variation in temperature, effective pressure and pore filling fluid. Ultrasonic compressive and shear wave (VP, VS1 and VS2) velocities were measured allowing calculation of the Bulk modulus (K), Young's modulus (E), Lamè's first parameter (λ), Shear modulus (G), Poisson's ratio (ν), and P-wave modulus (M). In addition, from the ultrasonic waveform data collected, we employed the spectral ratio method to estimate the quality factor. Carbonate samples were tested dry, using atmospheric gas as the pore phase, and with deionized water, oil, and supercritical CO2. We observed that Qp was directly proportional to effective pressure in our rhyolite samples. In addition, we observed effects of core anisotropy on Qp, however this was not apparent in higher porosity samples. Increasing effective pressure seems to decrease the effects of ultrasonic P-wave anisotropy. Qp was inversely proportional to temperature, however this was not observed for higher porosity samples. Qp was highly dependent on the rock porosity. Higher porosity samples displayed significantly lower values of Qp. In our experiments we observed that ultrasonic wave scattering due to heterogeneities in the carbonate samples was dominant. Although we observed lower μρ values, trends in our data strongly agreed with the model proposed workers interpreting AVO trends in a LMR cross plot space. We found that μρ was proportional to temperature while λρ was temperature independent and that λρ-μρ trends were extremely dependent on porosity. Higher porosity results in lower values for both λρ and μρ. The presence of fluids causes a distinct shift in λρ values, an observation which could provide insight into subsurface exploration using amplitude variation with offset (AVO) classification. We present approaches to incorporate these laboratory results into well log calibrated MATLAB based Gassmann-Biot fluid substitution models incorporating compliant porosity, Thomsen parameters models that utilize orthorhombic velocity anisotropy to predict seismic responses.
New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Burgy, M.; Bolton, D. K.
2006-12-01
Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island which then transmits the data to a base station in Homer, Alaska. Sea level data values are transmitted every 15 seconds and displayed at the tsunami warning center in Palmer, Alaska.
Seismic amplitude anomalies at Mestena Grande field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, R.
1989-09-01
Mestena Grande field is located in northeast Jim Hogg County, Texas. Gas and condensate are produced from the middle lobe of the middle Eocene Queen City Formation. The Queen City is approximately 100 ft thick and the middle lobe, the main reservoir, is only 30 ft thick, which is well below tuning thickness. Porosities in the producing sands are generally 15-25% and permeabilities are usually 15-25 md, the maximum being about 80 md. The most recent seismic data exhibit amplitude anomalies that have some correspondence with the production. The strongest amplitudes are from the vicinity of the better wells andmore » increase with offset. Most of the dry holes are on weak amplitudes that decrease with offset. Modeling the AVO response of a productive well, however, has predicted an amplitude decrease with offset. This disagreement is attributed to the lack of accurate shear wave velocities and the very thinly laminated sands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-11-16
This VSR documents the results of the validation testing performed on an Ada compiler. Testing was carried out for the following purposes: To attempt to identify any language constructs supported by the compiler that do not conform to the Ada Standard; To attempt to identify any language constructs not supported by the compiler but required by the Ada Standard; and To determine that the implementation-dependent behavior is allowed by the Ada Standard. Testing of this compiler was conducted by SofTech, Inc. under the direction of he AVF according to procedures established by the Ada Joint Program Office and administered bymore » the Ada Validation Organization (AVO). On-side testing was completed 16 November 1989 at Aloha OR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, W.C.; Suwarlan, W.
1989-03-01
Huffco's Badak and Nilam fields are giant gas fields that together currently produce more than 1.0 bcf of gas per day from sandstones within the Miocene Balikpapan beds. The reservoir sandstones were deposited within a thick regressive deltaic sequence that includes coals, shales, and occasional limestones. Wells typically encounter multiple stacked pay sandstones at depths ranging from about 5500 ft to more than 13,000 ft. Individual sandstone thicknesses can vary from several feet to more than 20 ft. Abrupt lateral stratigraphic variations in sandstone thickness are the rule rather than the exception. Sandstone reservoir interpretations are based on an integratedmore » approach by incorporating the study of well logs, cores, seismic sections, normal moveout-corrected gathers, amplitude variations with offset (AVO) graphs, and pressure and reservoir performance data.« less
NASA Astrophysics Data System (ADS)
Iacopini, David; Maestrelli, Daniele; Jihad, Ali; Bond, Clare; Bonini, Marco
2017-04-01
In recent years enormous attention has been paid to the understanding of the process and mechanism controlling the gas seepage and more generally the fluid expulsion affecting the earth system from onshore to offshore environment. This is because of their demonstrated impact to our environment, climate change and during subsea drilling operation. Several example from active and paleo system has been so far characterized and proposed using subsurface exploration, geophysical and geochemical monitoring technology approaches with the aims to explore what trigger and drive the overpressure necessary maintain the fluid/gas/material expulsion and what are the structure that act as a gateway for gaseous fluid and unconsolidated rock. In this contribution we explore a series of fluid escape structure (ranging from seepage pipes to large blowout pipes structure of km length) using 3D and partial stack seismic data from two distinctive passive margin from the north sea (Loyal field, West Shetland) and the Equatorial Brazil (Ceara' Basin). We will focuses on the characterization of the plumbing system internal architecture and, for selected example, exploring the AVO response (using partial stack) of the internal fluid/unconsolidated rock. The detailed seismic mapping and seismic attributes analysis of the conduit system helped us to recover some detail from the signal response of the chimney internal structures. We observed: (1) small to medium seeps and pipes following structural or sedimentary discontinuities (2) large pipes (probably incipient mud volcanoes) and blowup structures propagating upward irrespective of pre-existing fault by hydraulic fracturing and assisted by the buoyancy of a fluidised and mobilised mud-hydrocarbon mixture. The reflector termination observed inside the main conduits, the distribution of stacked bright reflectors and the AVO analysis suggests an evolution of mechanisms (involving mixture of gas, fluid and probably mud) during pipe birth and development, cycling through classical fluid escape pipes evoking non-Darcy flow to Darcy flow exploiting surrounding permeable bodies (during low fluid recharge period). Limit and uncertainty of the seismic data imaging the internal structure are still controlled by illumination factor, the lateral and vertical resolution (Fresnel. Tuning thickness) and scattering/noise effect of seismic wave when they interact with the plumbing system.
Augustine Volcano, Cook Inlet, Alaska (January 31, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 54 by 51.9 km (33.5 by 32.1 miles) Location: 59.3 deg. North latitude, 153.4 deg. West longitude Orientation: north to top Resolution: 90 m ASTER Date Acquired: January 31, 2006NASA Astrophysics Data System (ADS)
Pramann, Axel; Narukawa, Tomohiro; Rienitz, Olaf
2017-10-01
The molar mass M and isotopic composition (expressed in amount-of-substance fractions x( i Si) of the silicon isotopes 28Si, 29Si, and 30Si) of a new silicon crystal (notation: Si28-23Pr11) highly enriched in the 28Si isotope have been determined independently at PTB and NMIJ by measuring exactly the same sample solutions using both a high resolution multicollector-inductively coupled plasma mass spectrometer (MC-ICP-MS). This crystal will be used for the complementary determination of the Avogadro constant N A and thus providing one of many key parameters in the planned redefinition of the SI units kilogram and mole, using fundamental constants. Samples from three different axial positions in the crystal ingot, each divided into several radial positions were measured in order to probe possible variations of the molar mass and isotopic composition. Results obtained at PTB and NMIJ agreed within the limits of uncertainty. The application of the latest improved measurement techniques as well as an improved determination of the calibration factors (K) required to correct for mass bias effects resulted in an averaged M = 27.976 942 666(40) g mol-1 with a relative combined uncertainty u c,rel(M) = 1.4 × 10-9. The course of M as a function of the origin of the measured samples suggests no significant inhomogeneity within the limits of the claimed uncertainty throughout the crystal supporting its applicability for the determination of a new N A. This extends to x(28Si) and x(29Si). Variations in x(30Si) as a function of the sample location were observed, but a systematic relation to physical origins cannot be claimed. Compared to the previous silicon crystal (‘AVO28’, notation: Si28-10Pr11) used for the latest determination of N A, the enrichment increases from x(28Si) = 0.999 957 52(12) mol mol-1 (‘AVO28’) to x(28Si) = 0.999 984 470(39) mol mol-1 (Si28-23Pr11, discussed in this paper) which is at least in part responsible for a reduction of the associated measurement uncertainty u(M).
View of Commemorative plaque left on moon at Hadley-Apennine landing site
1971-08-01
AS15-88-11894 (31 July-2 Aug. 1971) --- A close-up view of a commemorative plaque left on the moon at the Hadley-Apennine landing site in memory of 14 NASA astronauts and USSR cosmonauts, now deceased. Their names are inscribed in alphabetical order on the plaque. The plaque was stuck in the lunar soil by astronauts David R. Scott, commander, and James B. Irwin, lunar module pilot, during their Apollo 15 lunar surface extravehicular activity (EVA). The names on the plaque are Charles A. Bassett II, Pavel I. Belyayev, Roger B. Chaffee, Georgi Dobrovolsky, Theodore C. Freeman, Yuri A. Gagarin, Edward G. Givens Jr., Virgil I. Grissom, Vladimir Komarov, Viktor Patsayev, Elliot M. See Jr., Vladislav Volkov, Edward H. White II, and Clifton C. Williams Jr. The tiny, man-like object represents the figure of a fallen astronaut/cosmonaut. While astronauts Scott and Irwin descended in the Lunar Module (LM) "Falcon" to explore the Hadley-Apennine area of the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
NASA Technical Reports Server (NTRS)
1997-01-01
On this eighth day of the STS-85 mission, the flight crew, Cmdr. Curtis L. Brown, Jr., Pilot Kent V. Rominger, Payload Cmdr. N. Jan Davis (Ph.D.), Mission Specialists Robert L. Curbeam, Jr. and Stephen K. Robinson (Ph.D.), and Payload Specialist Bjarni V. Tryggvason entered the final portion of its flight. The new Mir 24 crew of Commander Anatoly Solovyev and Flight Engineer Pavel Vinogradov, who arrived on the station the same day Discovery was launched, bid farewell to Mir 23 Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin who are returning home after 185 days in space. The Soyuz vehicle carrying the Mir 23 crew home undocked from the station. Robinson again used the Southwest Ultraviolet Imaging System (SWUIS), a 7-inch imaging telescope that is pointed out of the orbiter's middeck hatch window, to observe the Hale-Bopp comet. Curbeam continued his work with the Bioreactor Demonstration System designed to perform cell biology experiments under controlled conditions. Tryggvason spent part of his time troubleshooting a computer hard drive system that supports the Microgravity Vibration Isolation Mount experiment.
The Kosice meteorite fall: atmospheric trajectory and fragmentation from videos and radiometers
NASA Astrophysics Data System (ADS)
Borovicka, J.
2012-01-01
On 28 February 2010, 22h24m46s UT, a huge bolide of absolute magnitude -18 appeared over eastern Slovakia. Although this country is covered by the European Fireball Network (EN) and the Slovak Video Network, bad weather prevented direct imaging of the bolide by dedicated meteor cameras. Fortunately, three surveillance video cameras in Hungary recorded, at least partly, the event. These recordings allowed us to reconstruct the trajectory of the bolide and recover the meteorites. In addition, the light curve of the bolide was recorded by several EN camera radiometers, and sonic booms were registered by seismic stations in the region. The meteorites were classified as ordinary chondrites of type H5 (see Meteoritical Bulletin 100). I developed a model of atmospheric meteoroid fragmentation to fit the observed light curve. The model is based on the fact that meteoroid fragmentation leads to a sudden increase of a bolide's brightness, because the total meteoroid surface area increases after the fragmentation. A bright flare is produced if large numbers of small fragments or dust particles are released. I tried to model the whole light curve rigorously by setting up the mass distribution of fragments and/or dust particles released at each fragmentation point. The dust particles were allowed to be released either instantaneously or gradually. The ablation and radiation of individual particles were computed independently, and the summary light curve was computed. The deceleration at the end of the trajectory was taken into account as well. Based on the approximate calibration of the light curve, the initial mass of the meteoroid was estimated to 3500 kg (corresponding to diameter of 1.2 m). The major fragmentation occurred at a height of 39 km. Only few (probably three) large compact fragments of masses 20-100 kg survived this disruption. All of them fragmented again at lower heights below 30 km, producing minor flares on the light curve. In summary, Kosice was a weak meteoroid which fragmented heavily in the atmosphere and produced large numbers of small (under 10 g) meteorites. Nevertheless, some parts of the meteoroid were strong enough, so that a few relatively large (over 1 kg) meteorites exist as well. We were lucky that the three videos and the radiometric curves enabled us to reconstruct the trajectory and atmospheric fragmentation of the Kosice bolide, although the precision is, of course, lower than it would have been from regular meteor cameras. Full details will be published in the paper cited below. I am grateful to many people who collaborated in this work, especially Antal Igaz, Pavel Spurny, Juraj Toth, Pavel Kalenda, Jakub Haloda and Jan Svoren.
Comparative Analysis of ACAS-Xu and DAIDALUS Detect-and-Avoid Systems
NASA Technical Reports Server (NTRS)
Davies, Jason T.; Wu, Minghong G.
2018-01-01
The Detect and Avoid (DAA) capability of a recent version (Run 3) of the Airborne Collision Avoidance System-Xu (ACAS-Xu) is measured against that of the Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS), a reference algorithm for the Phase 1 Minimum Operational Performance Standards (MOPS) for DAA. This comparative analysis of the two systems' alerting and horizontal guidance outcomes is conducted through the lens of the Detect and Avoid mission using flight data of scripted encounters from a recent flight test. Results indicate comparable timelines and outcomes between ACAS-Xu's Remain Well Clear alert and guidance and DAIDALUS's corrective alert and guidance, although ACAS-Xu's guidance appears to be more conservative. ACAS-Xu's Collision Avoidance alert and guidance occurs later than DAIDALUS's warning alert and guidance, and overlaps with DAIDALUS's timeline of maneuver to remain Well Clear. Interesting discrepancies between ACAS-Xu's directive guidance and DAIDALUS's "Regain Well Clear" guidance occur in some scenarios.
Subglacial conditions at a sticky spot along Kamb Ice Stream, West Antarctica
Peters, L.E.; Anandakrishnan, S.
2007-01-01
We present the results of a seismic reflection experiment performed transverse to flow a few tens of kilometers above the main trunk of Kamb Ice Stream, West Antarctica, where we image a basal high surrounded by variable subglacial conditions. This high rises as much as 200 m above the surrounding bed, acting as a major sticking point that resists fast flow. Application of the amplitude variation with offset (AVO) seismic technique has highlighted regions of frozen sediments along our profile, suggesting that the ice stream is experiencing basal freeze-on in the region. The bedrock high appears to be at least partially draped in sediment cover, with a concentrated area of weak, dilatant till flanking one edge. This dilatant till is further dispersed along our profile, though it does not possess enough continuity to maintain streaming ice conditions. These results support the hypothesis that the ongoing shutdown of Kamb Ice Stream is due to a loss in continuous basal lubrication.
Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006
Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl
2008-01-01
Between January 1 and December 31, 2006, AVO located 8,666 earthquakes of which 7,783 occurred on or near the 33 volcanoes monitored within Alaska. Monitoring highlights in 2006 include: an eruption of Augustine Volcano, a volcanic-tectonic earthquake swarm at Mount Martin, elevated seismicity and volcanic unrest at Fourpeaked Mountain, and elevated seismicity and low-level tremor at Mount Veniaminof and Korovin Volcano. A new seismic subnetwork was installed on Fourpeaked Mountain. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field during 2006, (2) a description of earthquake detection, recording, analysis, and data archival systems, (3) a description of seismic velocity models used for earthquake locations, (4) a summary of earthquakes located in 2006, and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2006.
Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.
Su, Zhenzhong; Wang, Ke; Li, Ranwei; Yin, Jinzhi; Hao, Yuqiu; Lv, Xuejiao; Li, Junyao; Zhao, Lijing; Du, Yanwei; Li, Ping; Zhang, Jie
2016-02-29
Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells. Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts. Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and chemosensitivity in A549 cells. Furthermore, we successfully established the lung adenocarcinoma animal model using A549 cells. Overexpression of RBM5 enhanced the LC-3, LAMP1, and Beclin1 expression in the A549 xenografts. Our findings showed for the first time that RBM5 overexpression induced autophagy in human lung adenocarcinoma cells, which might be driven by upregulation of Beclin1, NF-κB/P65, and downregulation of Bcl-2. RBM5-enhanced autophagy acts in a cytoprotective way and inhibition of autophagy may improve the anti-tumor efficacy of RBM5 in lung cancer.
NASA Astrophysics Data System (ADS)
Bergmann, Peter; Yang, Can; Lüth, Stefan; Juhlin, Christopher; Cosma, Calin
2011-09-01
The Ketzin project provides an experimental pilot test site for the geological storage of CO2. Seismic monitoring of the Ketzin site comprises 2D and 3D time-lapse experiments with baseline experiments in 2005. The first repeat 2D survey was acquired in 2009 after 22 kt of CO2 had been injected into the Stuttgart Formation at approximately 630 m depth. Main objectives of the 2D seismic surveys were the imaging of geological structures, detection of injected CO2, and comparison with the 3D surveys. Time-lapse processing highlighted the importance of detailed static corrections to account for travel time delays, which are attributed to different near-surface velocities during the survey periods. Compensation for these delays has been performed using both pre-stack static corrections and post-stack static corrections. The pre-stack method decomposes the travel time delays of baseline and repeat datasets in a surface consistent manner, while the latter cross-aligns baseline and repeat stacked sections along a reference horizon. Application of the static corrections improves the S/N ratio of the time-lapse sections significantly. Based on our results, it is recommended to apply a combination of both corrections when time-lapse processing faces considerable near-surface velocity changes. Processing of the datasets demonstrates that the decomposed solution of the pre-stack static corrections can be used for interpretation of changes in near-surface velocities. In particular, the long-wavelength part of the solution indicates an increase in soil moisture or a shallower groundwater table in the repeat survey. Comparison with the processing results of 2D and 3D surveys shows that both image the subsurface, but with local variations which are mainly associated to differences in the acquisition geometry and source types used. Interpretation of baseline and repeat stacks shows that no CO2 related time-lapse signature is observable where the 2D lines allow monitoring of the reservoir. This finding is consistent with the time-lapse results of the 3D surveys, which show an increase in reflection amplitude centered around the injection well. To further investigate any potential CO2 signature, an amplitude versus offset (AVO) analysis was performed. The time-lapse analysis of the AVO does not indicate the presence of CO2, as expected, but shows signs of a pressure response in the repeat data.
KNBD: A Remote Kernel Block Server for Linux
NASA Technical Reports Server (NTRS)
Becker, Jeff
1999-01-01
I am developing a prototype of a Linux remote disk block server whose purpose is to serve as a lower level component of a parallel file system. Parallel file systems are an important component of high performance supercomputers and clusters. Although supercomputer vendors such as SGI and IBM have their own custom solutions, there has been a void and hence a demand for such a system on Beowulf-type PC Clusters. Recently, the Parallel Virtual File System (PVFS) project at Clemson University has begun to address this need (1). Although their system provides much of the functionality of (and indeed was inspired by) the equivalent file systems in the commercial supercomputer market, their system is all in user-space. Migrating their 10 services to the kernel could provide a performance boost, by obviating the need for expensive system calls. Thanks to Pavel Machek, the Linux kernel has provided the network block device (2) with kernels 2.1.101 and later. You can configure this block device to redirect reads and writes to a remote machine's disk. This can be used as a building block for constructing a striped file system across several nodes.
Evolution and Advances in Satellite Analysis of Volcanoes
NASA Astrophysics Data System (ADS)
Dean, K. G.; Dehn, J.; Webley, P.; Bailey, J.
2008-12-01
Over the past 20 years satellite data used for monitoring and analysis of volcanic eruptions has evolved in terms of timeliness, access, distribution, resolution and understanding of volcanic processes. Initially satellite data was used for retrospective analysis but has evolved to proactive monitoring systems. Timely acquisition of data and the capability to distribute large data files paralleled advances in computer technology and was a critical component for near real-time monitoring. The sharing of these data and resulting discussions has improved our understanding of eruption processes and, even more importantly, their impact on society. To illustrate this evolution, critical scientific discoveries will be highlighted, including detection of airborne ash and sulfur dioxide, cloud-height estimates, prediction of ash cloud movement, and detection of thermal anomalies as precursor-signals to eruptions. AVO has been a leader in implementing many of these advances into an operational setting such as, automated eruption detection, database analysis systems, and remotely accessible web-based analysis systems. Finally, limitations resulting from trade-offs between resolution and how they impact some weakness in detection techniques and hazard assessments will be presented.
Periodic solutions for one dimensional wave equation with bounded nonlinearity
NASA Astrophysics Data System (ADS)
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Park, Seul-Ki; Choi, Hyeun-Deok; Ji, Jae-Hoon; Ahn, Soon-Cheol
Silibinin is a major bioactive component of silymarin and has anticancer effects on cancer cell line and has been used as a supportive therapy for chronic inflammatory liver condition. These anticancer effects of silibinin have been demonstrated both in vitro and in vivo cancer models. Although various evidences showed apoptosis signaling pathways by silibinin, there is no report to address the clearly mechanism of silibinin-induced autophagy in prostate cancer PC-3 cells. Our study showed that silibinin triggered autophagy through up-regulation of microtubule-associated protein 1 light chain 3 (LC3)-II, formation of acidic vesicular organelles (AVO) and punctuate of GFP-LC3, which was inhibited by 3-methyladenine (3-MA), an inhibitor of specific autophagy. In addition, silibinin induced autophagy through production of reactive oxygen species (ROS). Inhibition of ROS with diphenyleneiodonium (DPI), a ROS inhibitor, attenuated silibinin-triggered autophagy. Inhibition of autophagy with 3-MA enhanced the silibinin-induced apoptosis through the regulation of caspase-3 and PARP. These results suggested that silibinin induced autophagy by regulating ROS and its mechanism played a protective role against apoptosis in PC-3 cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha
2017-05-01
Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.
A Summary of the History and Achievements of the Alaska Volcano Observatory.
NASA Astrophysics Data System (ADS)
Smith, R. W.
2008-12-01
Volcanoes of the Aleutian Islands, Kamchatka and the Kurile Islands present a serious threat to aviation on routes from North America to the Far East. On March 27, 1986, an eruption of Augustine Volcano deposited ash over Anchorage and disrupted air traffic in south-central Alaska. The consequences of the colocation of an active volcano and the largest city in Alaska were clearly evident. That event led to a three-way partnership between the US Geological Survey, the University of Alaska Geophysical Institute and the Alaska State Division of Geological and Geophysical Surveys that now maintains a continuous watch through ground instrumentation and satellite imagery providing data from which warnings of eruptions can be issued to airline operators and pilots. The eruption of Redoubt Volcano in December 1989 was AVO's first big test. It spewed volcanic ash to a height of 14,000 m (45,000 feet) and managed to catch KLM 867, a Boeing 747 aircraft in its plume under dark conditions while approaching Anchorage Airport. Further details of the early days of the Alaska Volcano Observatory will be described, along with its recent successes and challenges.
Detection and Tracking of Volcanic Ash and SO2 and its Impact to Aviation
NASA Astrophysics Data System (ADS)
Osiensky, J.; Hall, T.
2008-12-01
The eruptions of Okmok and Kasatochi Volcanoes in August 2008 produced a combination of volcanic ash and SO2 (sulfur dioxide) that impacted aviation across Alaska and the North Pacific Region. The Anchorage Volcanic Ash Advisory Center (A-VAAC) worked closely with the Alaska Volcano Observatory (AVO) and Federal Aviation Administration (FAA) Air Route Traffic Control Center (ARTCC) to ensure that accurate and timely detection and forecast of the ash plume occurred. Volcanic ash poses a hazard to all forms of transportation, but has been shown to be especially dangerous to aviation. Even a small eruption with limited vertical extent to the ash cloud impacts aviation traffic. A significant eruption where the ash cloud penetrates the jet airways (greater than 20,000 feet) requires major re-routing of air traffic, or even the cancellation of flights to ensure the safety of the airways. The AAWU and the AVO have demonstrated substantial experience successfully tracking volcanic ash clouds during the past 15 years. The AAWU issues special aviation warnings for volcanic ash (Volcanic Ash SIGMETs (Significant Meteorological Information)) to warn aircraft of impending ash hazards. However, an additional potential hazard to aviation associated with volcanic eruptions is being examined. A Sulfur Dioxide (SO2) cloud was identified and tracked across the Aleutians, Gulf of Alaska, and eventually into the Lower 48 states. The size and coverage of the SO2 clouds from the Okmok and Kasatochi eruptions may be unprecedented. There are currently no requirements to advise, or warn for SO2 as a hazard to aviation. However, SO2 has been demonstrated as a marker for potential areas of lower concentration volcanic ash. Dispersion models, such as NOAAs HYSPLIT, that are used to track volcanic ash are currently not tuned to track gases such as SO2. SO2 may not be a direct hazard to aviation per se; However, SO2 mixed with water produces H2SO4 (sulfuric acid), and long term exposure to even low concentrations of sulfuric acid may lead to deterioration of airframe paint and acrylic aircraft windows as well as sulfate deposits in the engines. Airlines typically avoid SO2 clouds because these clouds often contain small amounts of ash as well. Relatively new OMI (Ozone Monitoring Instrument) data from the EOS-Aura satellite provides a much higher resolution depiction of the SO2 cloud; However, a major drawback to this capability is that the OMI sensor is located on a Polar Orbiter satellite (where the frequency of this data is sparse). Forecasters in Alaska typically receive only one pass per day from the OMI due to its orbital path. Additional research is needed to better define thresholds and impacts of volcanic ash and SO2 as it relates to aviation. More importantly this research must be transferred rapidly from the research community into forecast operations.
Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: Roughly 25 km (15 miles) across; scale varies in this perspective view Location: 59.3 deg. North latitude, 153.4 deg. West longitude Orientation: View from southwest towards the northeast Vertical Exaggeration: 2 Eruption plume and Elevation: 30 m ASTER, (1-arcsecond) Image Data: Landsat bands 7, 4 and 2 Ground Topography Data: SRTM 90 m data, acquired January 2000 Date Acquired: ASTER: January 12, 2006; Landsat: September 17, 2000Introduction to Augustine Volcano and Overview of the 2006 Eruption
NASA Astrophysics Data System (ADS)
Nye, C. J.
2006-12-01
This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week in March there was a marked increase in extrusion, resulting in two short, steep lava flows dominantly composed of low-silica andesite. Effusion slowly waned through March and deformation ceased. Previous eruptions have had months-long repose followed be renewed effusion, but this has not yet happened during this eruption. Our ability to describe this eruption is based on a richness of data. The volcano was well instrumented with AVO seismometers and Earthscope/PBO continuous GPS instruments. Additional instruments were added as unrest increased, and substitutes for stations destroyed during initial explosions were deployed. As many as two-dozen AVHRR satellite passes were analyzed each day, providing thermal monitoring and ash-plume tracking. Overflights collected both visual and quantitative IR imagery on a regular basis. Georeferenced imagery acquired by satellite (ASTER) and repeated conventional aerial photography permitted detailed, accurate, mapping of many deposits as an aid to (but not substitute for) field mapping. Web cameras (both visual and near-IR) and conventional time-lapse cameras aided understanding of ongoing processes. Data sets less common to volcano monitoring (infrasound, lightning detection) extended our understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Waddell; William J. Domoracki; Tom J. Temples
2001-05-01
This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navymore » Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.« less
Geologic map of Mount Gareloi, Gareloi Island, Alaska
Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.
2012-01-01
As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.
NASA Astrophysics Data System (ADS)
Gross, L.; Shaw, S.
2016-04-01
Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.
New insights into the North Taranaki Basin from New Zealand's first broadband 3D survey
NASA Astrophysics Data System (ADS)
Uzcategui, Marjosbet; Francis, Malcolm; Kong, Wai Tin Vincent; Patenall, Richard; Fell, Dominic; Paxton, Andrea; Allen, Tristan
2016-06-01
The Taranaki Basin is the only hydrocarbon producing basin in New Zealand. The North Taranaki Basin has widespread two-dimensional (2D) seismic coverage and numerous wells that have not encountered commercial accumulations. This is attributed to the structural complexity in the central graben and the absence of necessary information to help understand the basin's evolution. An active petroleum system has been confirmed by hydrocarbon shows and non-commercial oil and gas discoveries (Karewa-1 and Kora-1). A broadband long offset three-dimensional (3D) seismic survey was acquired and processed by Schlumberger in 2013 to evaluate the hydrocarbon potential of the North Taranaki Basin. Innovative acquisition techniques were combined with advanced processing and imaging methods. Raypath distortions and depth uncertainty were significantly reduced by processing through tilted transverse isotropy (TTI) anisotropic Kirchhoff prestack depth migration with a geologically constrained velocity model. The survey provided the necessary information to understand the petroleum system and provide evidence for material hydrocarbon accumulations. In this investigation, we assessed the hydrocarbon potential of the North Taranaki Basin using the newly acquired data. 3D seismic interpretation and amplitude-versus-offset (AVO) analysis support the renewed potential of the basin and demonstrate effectiveness of these technologies that together can achieve encouraging results for hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2016-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi volcano in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs differential SAR techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The interferograms created from the SAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in a Mogi model in order to define the three-dimensional location and volume change required for a source at Semisopochnoi to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. While no direct conclusions as to the relationship of these seismic events and the observed surface deformation can be made at this time, these techniques are both complimentary and efficient forms of remotely monitoring volcanic activity that provide much deeper insights into the processes involved without having to risk hazardous or costly field work.
Seismic attribute analysis for reservoir and fluid prediction, Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansor, M.N.; Rudolph, K.W.; Richards, F.B.
1994-07-01
The Malay Basin is characterized by excellent seismic data quality, but complex clastic reservoir architecture. With these characteristics, seismic attribute analysis is a very important tool in exploration and development geoscience and is routinely used for mapping fluids and reservoir, recognizing and risking traps, assessment, depth conversion, well placement, and field development planning. Attribute analysis can be successfully applied to both 2-D and 3-D data as demonstrated by comparisons of 2-D and 3-D amplitude maps of the same area. There are many different methods of extracting amplitude information from seismic data, including amplitude mapping, horizon slice, summed horizon slice, isochronmore » slice, and horizon slice from AVO (amplitude versus offset) cube. Within the Malay Basin, horizon/isochron slice techniques have several advantages over simply extracting amplitudes from a picked horizon: they are much faster, permit examination of the amplitude structure of the entire cube, yield better results for weak/variable signatures, and aid summation of amplitudes. Summation in itself often yields improved results because it incorporates the signature from the entire reservoir interval, reducing any effects due to noise, mispicking, or waveform variations. Dip and azimuth attributes have been widely applied by industry for fault identification. In addition, these attributes can also be used to map signature variations associated with hydrocarbon contacts or stratigraphic changes, and this must be considered when using these attributes for structural interpretation.« less
Operational Monitoring of Volcanoes Using Keyhole Markup Language
NASA Astrophysics Data System (ADS)
Dehn, J.; Bailey, J. E.; Webley, P.
2007-12-01
Volcanoes are some of the most geologically powerful, dynamic, visually appealing structures on the Earth's landscape. Volcanic eruptions are hard to predict, difficult to quantify and impossible to prevent, making effective monitoring a difficult proposition. In Alaska, volcanoes are an intrinsic part of the culture, with over 100 volcanoes and volcanic fields that have been active in historic time monitored by the Alaska Volcano Observatory (AVO). Observations and research are performed using a suite of methods and tools in the fields of remote sensing, seismology, geodesy and geology, producing large volumes of geospatial data. Keyhole Markup Language (KML) offers a context in which these different, and in the past disparate, data can be displayed simultaneously. Dynamic links keep these data current, allowing it to be used in an operational capacity. KML is used to display information from the aviation color codes and activity alert levels for volcanoes to locations of thermal anomalies, earthquake locations and ash plume modeling. The dynamic refresh and time primitive are used to display volcano webcam and satellite image overlays in near real-time. In addition a virtual globe browser using KML, such as Google Earth, provides an interface to further information using the hyperlink, rich- text and flash-embedding abilities supported within object description balloons. By merging these data sets in an easy to use interface, a virtual globe browser provides a better tool for scientists and emergency managers alike to mitigate volcanic crises.
The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska
NASA Astrophysics Data System (ADS)
Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.
2013-12-01
Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10-km summit caldera. Subtle pulsating tremor also signaled unrest at Veniaminof on June 7, a week prior to satellite observations of elevated surface temperatures within the caldera that indicated the presence of lava at the surface. Eruptive activity consisted of lava fountaining and effusion, and numerous explosive events that produced small ash clouds that typically reached only several hundred meters above the vent, and rarely were observed extending beyond the summit caldera. Seismicity was characterized by energetic tremor, and accompanied at times by numerous explosions that were heard by local residents at distances of 20-50 km, and detected as ground coupled airwaves at distant seismic stations (up to 200 km) and by an infrasound array (350 km distance). Because infrasound can propagate over great distances with little signal degradation or distortion, it was possible to correlate the ground-coupled airwaves between seismometers separated by 100's of km and thus identify their source. A helicopter fly over in July found that lava flows erupted from the intracaldera cone consist of 3-5 small lobes of rubbly spatter-rich lava up to 800 m in length on the southwest flank of the cone. The distal ends of the flows melted snow and ice adjacent to the cone to produce a water-rich plume, but there was no evidence for outflow of water from the caldera. Volcanic unrest has continued through early August, 2013.
NASA Astrophysics Data System (ADS)
Dutta, Tanima
This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.
List of Organizing Committees and Conference Programme
NASA Astrophysics Data System (ADS)
2012-03-01
Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.
List of participants at SIDE IV meeting, Tokyo, 27 November--1 December 2000
NASA Astrophysics Data System (ADS)
2001-12-01
Mark J Ablowitz, Vsevolod Adler, Mark Alber, Said Belmehdi, Marco Boiti, Claude Brezinski, R Bullough, Y M Chiang, Theodore Chihara, Peter A Clarkson, Robert Conte, Adam Doliwa, Vladimir Dorodnitsyn, Mitsuaki Eguchi, Claire Gilson, Basil Grammaticos, Valeri Gromak, Rod Halburd, Koji Hasegawa, Jarmo Hietarinta, Ryogo Hirota, Xing Biao Hu, M Idzumi, J Inoguchi, Hiroya Ishikara, Mourad Ismail, Shin Isojima, Kenichi Ito, Yoshiaki Itoh, Masashi Iwasaki, Klara Janglajew, Michio Jimbo, Nalini Joshi, Kenji Kajiwara, Saburo Kakei, Masaru Kamata, Satoshi Kamei, Rinat Kashaev, Shingo Kawai, Taeko Kimijima, K Kimura, Anatol Kirillov, Koichi Kondo, Boris Konopelchenko, Martin Kruskal, Atsuo Kuniba, Wataru Kunishima, Franklin Lambert, Serguei Leble, Decio Levi, Shigeru Maeda, Manuel Manas, Ken-Ichi Maruno, Tetsu Masuda, J Matsukidaira, Atsushi Matsumiya, Shigeki Matsutani, Yukitaka Minesaki, Mikio Murata, Micheline Musette, Atsushi Nagai, Katsuya Nakagawa, Atsushi Nakamula, Akira Nakamura, Yoshimasa Nakamura, Frank Nijhoff, J J C Nimmo, Katsuhiro Nishinari, Michitomo Nishizawa, A Nobe, Masatoshi Noumi, Yaeko Ohsaki, Yasuhiro Ohta, Kazuo Okamoto, Alexandre Orlov, Naoki Osada, Flora Pempinelli, Spiro Pyrlis, Reinout Quispel, Orlando Ragnisco, Alfred Ramani, Jean-Pierre Ramis, Andreas Ruffing, Simon Ruijsenaars, Satoru Saito, Noriko Saitoh, Hidetaka Sakai, Paulo Santini, Narimasa Sasa, Ryu Sasaki, Yoshikatsu Sasaki, Junkichi Satsuma, Sergei Sergeev, Nobuhiko Shinzawa, Evgueni Sklyanin, Juris Suris, Norio Suzuki, Yukiko Tagami, Katsuaki Takahashi, Daisuke Takahashi, Tomoyuki Takenawa, Yoshiro Takeyama, K M Tamizhmani, T Tamizhmani, Kouichi Toda, Morikatsu Toda, Tetsuji Tokihiro, Takayuki Tsuchida, Yohei Tsuchiya, Teruhisa Tsuda, Satoru Tsujimoto, Walter Van Assche, Claude Viallet, Luc Vinet, Shinsuke Watanabe, Yoshihida Watanabe, Ralph Willox, Pavel Winternitz, Yasuhiko Yamada, Yuji Yamada, Jin Yoneda, Haruo Yoshida, Katsuhiko Yoshida, Daisuke Yoshihara, Fumitaka Yura, J Zagrodzinski, Alexei Zhedanov
Station corrections for the Katmai Region Seismic Network
Searcy, Cheryl K.
2003-01-01
Most procedures for routinely locating earthquake hypocenters within a local network are constrained to using laterally homogeneous velocity models to represent the Earth's crustal velocity structure. As a result, earthquake location errors may arise due to actual lateral variations in the Earth's velocity structure. Station corrections can be used to compensate for heterogeneous velocity structure near individual stations (Douglas, 1967; Pujol, 1988). The HYPOELLIPSE program (Lahr, 1999) used by the Alaska Volcano Observatory (AVO) to locate earthquakes in Cook Inlet and the Aleutian Islands is a robust and efficient program that uses one-dimensional velocity models to determine hypocenters of local and regional earthquakes. This program does have the capability of utilizing station corrections within it's earthquake location proceedure. The velocity structures of Cook Inlet and Aleutian volcanoes very likely contain laterally varying heterogeneities. For this reason, the accuracy of earthquake locations in these areas will benefit from the determination and addition of station corrections. In this study, I determine corrections for each station in the Katmai region. The Katmai region is defined to lie between latitudes 57.5 degrees North and 59.00 degrees north and longitudes -154.00 and -156.00 (see Figure 1) and includes Mount Katmai, Novarupta, Mount Martin, Mount Mageik, Snowy Mountain, Mount Trident, and Mount Griggs volcanoes. Station corrections were determined using the computer program VELEST (Kissling, 1994). VELEST inverts arrival time data for one-dimensional velocity models and station corrections using a joint hypocenter determination technique. VELEST can also be used to locate single events.
Chen, Edward S; Chen, Edward C M
2018-02-15
The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.
List of Organizing Committees and Sponsors
NASA Astrophysics Data System (ADS)
2012-03-01
Organizers DIRECTORS Maria L CalvoPresident of International Commission for Optics, Spain Aram V PapoyanDirector of Institute for Physical Research of NAS, Armenia HEADS OF PROJECT Tigran Dadalyan YSU, Armenia Artsrun MartirosyanIPR, Armenia COORDINATOR Narine GevorgyanIPR, Armenia / ICTP, Italy MANAGERS Paytsar MantashyanIPR, Armenia Karen VardanyanIPR, Armenia INTERNATIONAL ADVISORY COMMITTEE Marcis AuzinshLatvia Roland AvagyanArmenia Tapash ChakrabortyCanada Yuri ChilingaryanArmenia Eduard KazaryanArmenia Albert KirakosyanArmenia Radik KostanyanArmenia Avinash PandeyIndia Marat SoskinUkraine INTERNATIONAL PROGRAM COMMITTEE David Sarkisyan (Chair)Armenia Roman AlaverdyanArmenia Dan ApostolRomania Levon AslanyanArmenia Aranya BhattacherjeeIndia Gagik BuniatyanArmenia Vigen ChaltykyanArmenia Roldao Da RochaBrazil Miltcho DanailovItaly Vladimir GerdtRussia Samvel GevorgyanArmenia Gayane GrigoryanArmenia Rafik HakobyanArmenia Takayuki MiyaderaJapan Levon MouradianArmenia Atom MuradyanArmenia Simon RochesterUSA Hayk SarkisyanArmenia Aleksandr VardanyanArmenia LOCAL ORGANIZING COMMITTEE Narek AghekyanArmenia Anahit GogyanArmenia Melanya GrigoryanArmenia Armen HovhannisyanArmenia Lilit HovhannisyanArmenia Tatevik KhachatryanArmenia Astghik KuzanyanArmenia Satenik KuzanyanArmenia Vladimir LazarevRussia Lilit MantashyanArmenia Hripsime MkrtchyanArmenia Pavel MuzhikyanArmenia Wahi NarsisianArmenia Sahak OrdukhanyanArmenia Anna ReymersArmenia Narine TorosyanArmenia The Symposium was organized by YSU & NAS SPIE Armenian Student Chapter Institute for Physical Research (IPR) of National Academy of Sciences (NAS) Russian-Armenian (Slavonic) University (RAU) LT-PYRKAL cjsc Yerevan State University (YSU) Official Sponsors of the Symposium LT-PYRKAlRussian ArmenianSPIE LT-PYRKAL cjscRussian-Armenian UniversityYSU & NAS SPIE Student Chapter Further sponsors NFSATICTPSCSADevout Generation National Foundation of Science and Advanced TechnologiesThe Abdus Salam International Centre for Theoretical PhysicsState Committee of Science of ArmeniaDevout Generation
NASA Astrophysics Data System (ADS)
DeGrandpre, K.; Pesicek, J. D.; Lu, Z.
2017-12-01
During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.
NASA Astrophysics Data System (ADS)
Al Mamun, Mohammad; Khan, M. I.; Sarker, M. H.; Khan, K. A.; Shajahan, M.; Professor K. A. Khan Team
2017-01-01
The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) electrochemical cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter) etc. The AAS, UV-Vis and pH metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of equilibrium constant (K) implies the big change in Gibbs free energy (ΔG), revealed the additional electrical work in presence of PKL sap. This easily fabricated high performance PKL battery can show an excellent promise during the off-peak across the country-side. Dept. of Physics and Dept. of Chemistry.
Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I
2018-02-01
Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.
Eruption Forecasting in Alaska: A Retrospective and Test of the Distal VT Model
NASA Astrophysics Data System (ADS)
Prejean, S. G.; Pesicek, J. D.; Wellik, J.; Cameron, C.; White, R. A.; McCausland, W. A.; Buurman, H.
2015-12-01
United States volcano observatories have successfully forecast most significant US eruptions in the past decade. However, eruptions of some volcanoes remain stubbornly difficult to forecast effectively using seismic data alone. The Alaska Volcano Observatory (AVO) has responded to 28 eruptions from 10 volcanoes since 2005. Eruptions that were not forecast include those of frequently active volcanoes with basaltic-andesite magmas, like Pavlof, Veniaminof, and Okmok volcanoes. In this study we quantify the success rate of eruption forecasting in Alaska and explore common characteristics of eruptions not forecast. In an effort to improve future forecasts, we re-examine seismic data from eruptions and known intrusive episodes in Alaska to test the effectiveness of the distal VT model commonly employed by the USGS-USAID Volcano Disaster Assistance Program (VDAP). In the distal VT model, anomalous brittle failure or volcano-tectonic (VT) earthquake swarms in the shallow crust surrounding the volcano occur as a secondary response to crustal strain induced by magma intrusion. Because the Aleutian volcanic arc is among the most seismically active regions on Earth, distinguishing distal VT earthquake swarms for eruption forecasting purposes from tectonic seismicity unrelated to volcanic processes poses a distinct challenge. In this study, we use a modified beta-statistic to identify pre-eruptive distal VT swarms and establish their statistical significance with respect to long-term background seismicity. This analysis allows us to explore the general applicability of the distal VT model and quantify the likelihood of encountering false positives in eruption forecasting using this model alone.
The New USGS Volcano Hazards Program Web Site
NASA Astrophysics Data System (ADS)
Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.
2008-12-01
The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.
NASA Astrophysics Data System (ADS)
Goodliffe, A. M.; Harris, W.; Rutter, R. S.; Clark, P.; Pashin, J. C.; Esposito, R. A.
2011-12-01
The southeastern US is a leading producer of carbon dioxide emissions in large part due to the high number of coal-fired power plants in the region. As part of a Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded geological characterization project we have collected a number of geophysical data sets that characterize the Black Warrior Basin in the vicinity of the Alabama Power Gorgas Steam Plant in Walker County, Alabama. These geophysical data sets are important for extending the results from our 8000-foot characterization hole throughout the basin. Two 5-mile seismic reflection profiles processed through pre-stack time migration image the Cambrian through Pennsylvanian stratigraphy in the basin. The major injection targets in the saline reservoirs of the Hartselle Sandstone, Tuscumbia Limestone, Stones River Group and Knox Group. Initial examination of the data show that it is well suited for techniques such as Amplitude Versus Offset (AVO) analysis and inversion with the downhole data. Multiple offset vertical seismic profiles (VSP) image the formations close to and at multiple azimuths away from the drill hole. These VSPs also provide an important link to the seismic reflection profiles, which pass a little less than a mile to the north of the drill hole. Three shallow microseismic wells in the vicinity of the main drill hole have 3-component geophones cemented at depths of 50, 150, and 250 foot. These wells, designed to record small magnitude seismic events resulting from low-volume water injection, are important for characterizing the local fracture pathways and stress fields. Downhole gravity data complements the usual suite of downhole tools by imaging density variations deeper into the formations and ensuring that the identified saline reservoirs are not locally discontinuous.
Wavelet extractor: A Bayesian well-tie and wavelet extraction program
NASA Astrophysics Data System (ADS)
Gunning, James; Glinsky, Michael E.
2006-06-01
We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way. The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection theory. The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet stability before proceeding to more advanced inversion studies.
Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill
NASA Astrophysics Data System (ADS)
Xu, Min; Stephen, R. A.; Canales, J. Pablo
2017-12-01
Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.
Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008
Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.
2009-01-01
The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age <10,000 years) volcanoes. As our review of the record shows, 30 of these volcanoes have erupted since 1980, many repeatedly. In addition to producing eruptions, many U.S. volcanoes exhibit periods of anomalous activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.
NASA Astrophysics Data System (ADS)
Zunino, Andrea; Mosegaard, Klaus
2017-04-01
Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.
Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster
NASA Astrophysics Data System (ADS)
Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady
2015-04-01
Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.
NASA Astrophysics Data System (ADS)
Henrys, S. A.; Fraser, D. R. A.; Gorman, A. R.; Pecher, I. A.; Crutchley, G. J.
2016-12-01
The Pegasus Basin on the east coast of New Zealand's North Island in the southern part of the Hikurangi Margin is a frontier petroleum basin that is also expected to contain significant gas hydrate deposits. Extensive faulting in the basin has lead to the development of many interesting and unique focused accumulations of gas hydrates. A 2D seismic dataset acquired in 2009/2010 was reprocessed to examine the gas hydrate systems within the basin. Here, we present one of the more interesting hydrate features in the dataset: a presumed gas chimney within the regional gas hydrate stability zone at the centre of a roughly triangular (in 2D) region of low reflectivity, approximately 8 km wide, that is interpreted to be the result of acoustic blanking. Using automated high density velocity picking, the chimney structure is interpreted to be cored by a 200 m wide low-velocity zone which contains free gas and is flanked by high-velocity bands that are 200-400 m wide. The high-velocity zone is interpreted to correspond to concentrated hydrate deposits within the sedimentary pore spaces. Amplitude vs offset (AVO) and inversion techniques have been applied and the results of this work correspond well to the high-density velocity analyses. The analysis methods all indicate zones of free gas below the Bottom Simulating Reflection (BSR) and within the chimney. Areas of increased hydrate concentrations, including at the base of the gas hydrate stability zone, were also identified. A model for fluid flow and how free gas within the chimney at the centre of the blanking zone is converted to hydrate is discussed. The potential size of the gas hydrate resource present in this feature can be estimated based on the seismic velocities and physical properties determined by inversion.
Hospital communication between perception and cost savings: an Italian case study.
Pennacchini, M; Pensieri, C; Binetti, P
2012-07-01
Communication field is very much studied by Companies but not so much from the Italian NHS. We aim to study the suffering communication that patients, relatives and customers feel when they approach a hospital. The research was carried out in an Italian region: Lazio. The Objective was to take a picture of the current state of Regional Health-Care System (RHS) communication by local Visual Communication (VC), telematic, internal perception, communication propensity and perception of hospital's brand. We have sampled 7 hospitals (114 items): Web-site's analysis, Location's VC, Urp's manager interview, Focus-group, Analysis Valuator of the Hospital's Brand (AVoHB). WEB: 14% of web-sites had a positive score, 86% had an Hospital Service Guide, 43% hadn't Urp's e-mail, 29% had a ward's map, 0% was W3C. Average: -17pt. on ±74pt. VISUAL COMMUNICATION: 100% had a Help-desk at the entrance, 100% had readable signpost, 43% had a readable badge, 29% had chromatic signpost, 0% had an assistance signpost and none of them had the Toilettes signpost. Average: -10,42pt. on ±58pt. FOCUS-GROUP: Staff underline their very high interest in interpersonal communication. They report a lack of VC inside their hospitals that cannot help patients to be self-oriented. Lost users can only ask information to the first doctor they see, taking staff time, which is already lacked. AVOHB: Powergrid shows that the positioning of the Aggregated Brand (RHS) and of each hospital analyzed are in the III quadrant. By a Corporate Communication point of view we can see that almost all companies reach a good level in terms of effective communication but none of them excel in all critical areas for an effective communication.
Alexander Polonsky Global warming hiatus, ocean variability and regional climate change
NASA Astrophysics Data System (ADS)
Polonsky, A.
2016-02-01
This presentation generalizes the results concerning ocean variability, large-scale interdecadal ocean-atmosphere interaction in the Atlantic and Pacific Oceans and their impact on global and regional climate change carried out by the author and his colleagues for about 20 years. It is demonstrated once more that Atlantic Multidecadal Oscillation (AMO, which was early referred by the author as "interdecadal mode of North Atlantic Oscillation") is the crucial natural interdecadal climatic signal for the Atlantic-European and Mediterranean regions. It is characterized by amplitude which is the same order as human-induced centennial climate change and exceeds trend-like anthropogenic change at the decadal scale. Fast increasing of the global and Northern Hemisphere air temperature in the last 30 yrs of XX century (especially pronounced in the North Atlantic region and surrounded areas) is due to coincidence of human-induced positive trend and transition from the negative to the positive phase of AMO. AMO accounts for about 50% (60%) of the global (Northern Hemisphere) temperature trend in that period. Recent global warming hiatus is mostly the result of switch off the AMO phase. Typical AMO temporal scale is dictated by meridional overturning variability in the Atlantic Ocean and associated magnitude of meridional heat transport. Pacific Decadal Oscillation (PDO) is the other natural interdecadal signal which significantly impacts the global and regional climate variability. The rate of the ocean warming for different periods assessed separately for the upper mixed layer and deeper layers using data of oceanic re-analysis since 1959 confirms the principal role of the natural interdecadal oceanic modes (AMO and PDO) in observing climate change. At the same time a lack of deep-ocean long-term observing system restricts the accuracy of assessment of the heat redistribution in the World Ocean. I thanks to Pavel Sukhonos for help in the presentation preparing.
Optical satellite data volcano monitoring: a multi-sensor rapid response system
Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan
2009-01-01
In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid response program described in this chapter also improves the temporal resolution of the ASTER instrument. ASTER has been acquiring images of volcanic eruptions since soon after its launch in December 1999. An early example included the observations of the large pyroclastic flow deposit emplaced at Bezymianny volcano in Kamchatka, Russia. The first images in March 2000, just weeks after the eruption, revealed the extent, composition, and cooling history of this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results from these early datasets spurred interest in using ASTER data for expanded volcano monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile arcs. Since the formal establishment of the programs, the data have provided detailed descriptions of the eruptions of Augustine, Bezymianny, Kliuchevskoi and Sheveluch volcanoes over the past nine years (Wessels et al., in press; Carter et al., 2007, 2008; Ramsey et al., 2008; Rose and Ramsey, 2009). The initial research focus of this rapid response program was specifically on automating the ASTER sensor’s ability for targeted observational scheduling using the expedited data system. This urgent request protocol is one of the unique characteristics of ASTER. It provides a limited number of emergency observations, typically at a much-improved temporal resolution and quicker turnaround with data processing in the United States rather than in Japan. This can speed the reception of the processed data by several days to a week. The ongoing multi-agency research and operational collaboration has been highly successful. AVO serves as the primary source for status information on volcanic activity, working closely with the National Weather Service (NWS), Federal Aviation Administration (FAA), military and other state and federal emergency services. Collaboration with the Russian Institute of Volcanology and Seismology (IVS)/Kamchatka Volcanic Eruption Response Team (KVERT) is also maintained. Once a volcano is identified as having increased thermal output, ASTER is automatically tasked and the volcano is targeted at the next available opportunity. After the data are acquired, scientists at all the agencies have access to the images, with the primary science analysis carried out at the University of Pittsburgh and AVO. Results are disseminated to the responsible monitoring agencies and the global community through e-mail mailing lists.
Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field
NASA Astrophysics Data System (ADS)
Islam, Nayyer
One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when corrected for, indicate water encroachment at the base of the producing reservoir. I also identify specific sites of leakage from various unproduced reservoirs, the result of regional pressure blowdown as explained in previous studies; those earlier studies, however, were unable to identify direct evidence of fluid movement. Of particular interest is the identification of one site where oil apparently leaked from one reservoir into a "new" reservoir that did not originally contain oil, but was ideally suited as a trap for fluids leaking from the neighboring spill-point. With continued pressure drop, oil in the new reservoir increased as more oil entered into the reservoir and expanded, liberating gas from solution. Because of the limited volume available for oil and gas in that temporary trap, oil and gas also escaped from it into the surrounding formation. I also note that some of the reservoirs demonstrate time-lapse changes only in the "gas cap" and not in the oil zone, even though gas must be coming out of solution everywhere in the reservoir. This is explained by interplay between pore-fluid modulus reduction by gas saturation decrease and dry-frame modulus increase by frame stiffening. In the second part of this work, I examine various rock-physics models in an attempt to quantitatively account for frame-stiffening that results from reduced pore-fluid pressure in the producing reservoir, searching for a model that would predict the unusual AVO features observed in the time-lapse prestack and stacked data at Teal South. While several rock-physics models are successful at predicting the time-lapse response for initial production, most fail to match the observations for continued production between Phase I and Phase II. Because the reservoir was initially overpressured and unconsolidated, reservoir compaction was likely significant, and is probably accomplished largely by uniaxial strain in the vertical direction; this implies that an anisotropic model may be required. Using Walton's model for anisotropic unconsolidated sand, I successfully model the time-lapse changes for all phases of production. This observation may be of interest for application to other unconsolidated overpressured reservoirs under production.
Regional Variations in Aleutian Magma Composition
NASA Astrophysics Data System (ADS)
Nye, C. J.
2008-12-01
This study is based on sample data spanning 20 years from USGS, UAF, and DGGS geologists too numerous to list here. The 2900-km long Aleutian arc contains more than 50 active and over 90 Holocene volcanoes. The arc is built on oceanic Bering-sea floor west of 166W and quasi-continental crust east of 166W. Over the past twenty years the Alaska Volcano Observatory has conducted baseline geologic mapping (or remapping) and volcanic-hazards studies of selected volcanoes - generally those targeted for geophysical monitoring. This marks the largest sustained effort to study Aleutian volcanoes in half a century; AVO scientists have logged as many as 700 person-days per field season. Geologic studies have resulted in comprehensive suites of stratigraphically constrained samples and more than 3500 new whole-rock analyses by XRF and ICP/MS from more than 30 centers, more than doubling the number of previously published analyses. Examination of the data for regional and inter-volcano variations yields a number of first-order observations. (1) The arc can be broadly divided into an eastern segment (east of 158W) of calcalkaline andesite stratocones; a central segment dominated by large, mafic, tholeiitic shield volcanoes and stratocones; and a western segment (west of 175W) of smaller volcanoes with variable morphologies and generally more andesitic compositions. (2) There are NO significant first-order compositional signals that coincide with the transition from oceanic to continental basement. (3) Individual volcanoes are often subtly distinct from neighbors, and those distinctions persist for the lifetime of the centers. (4) All centers, notably including the large basaltic centers of the central arc, are strongly affected by open-system processes significantly more complicated than mixing among sibling-fractionates of parental mafic magmas. (5) Petrogenetic pathways are long-lived; individual batches of magma are (generally) not. (6) Calcalkaline andesites have dramatically lower REE and HFSE, yet higher Cr and Ni than tholeiitic andesites, suggesting that it is overly simplistic to consider calcalkaline andesites to be simple fractionates of basalts.
NASA Astrophysics Data System (ADS)
Ahmed, Nisar; Khalid, Perveiz; Shafi, Hafiz Muhammad Bilal; Connolly, Patrick
2017-10-01
The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli ( K sat and K sat- μ), lambda-mu-rho method ( λρ and μρ), P-to-S-wave velocity ratio ( V P/ V S), and Poisson's ratio ( σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K sat- μ, EEI, V P/ V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen
2014-08-01
DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry ofmore » γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, D Y
The abysmal state of Russia's conventional forces has caused Russia to rely on nuclear weapons to ensure its security. This reliance was formalized in Russia's military doctrine which states that nuclear weapons can be used ''in situations critical to the national security of the RF and its allies.'' In fact, most Russian security analysts believe that this dependence on nuclear weapons will remain for the foreseeable future because the economy will have to improve significantly before a conventional force build up can be contemplated. Yet, despite Russia's need to rely on nuclear weapons, even this may be problematic because itsmore » economic plight may create difficulties in maintaining its current level of nuclear forces. Thus, Russia has a keen interest in negotiating a treaty to reduce Strategic Nuclear Forces below START II levels and would prefer to go even beyond the 2,000-2,500 numbers agreed to by Presidents Yeltsin and Clinton in Helsinki in 1997. Sergei Rogov, an influential defense analyst, believes that Russia's strategic nuclear forces will fall below 1,000 warheads by 2010 irrespective of arms control agreements. Accordingly, Russia is keen to ensure rough parity with the US. To retain a credible deterrent posture at these lower levels, Russia believes that it is important to restrain US sea-launched cruise missiles (SLCM)--forces that have heretofore not been captured as strategic weapons in the START treaties. Russian officials reason that once strategic nuclear forces go to very low levels, SLCM capabilities become strategically significant. In fact, according to two well-known Russian security analysts, Anatoli Diakov and Pavel Podvig, Russia's current START III negotiating position calls for the complete elimination of all SLCMs, both nuclear and conventional. Prior to assessing Russia's position regarding cruise missiles and START III, I will examine Russia's overall view of its security position vis-a-vis the US in order to provide background for Russia's negotiating stance. I will also suggest how the US and Russia might approach START III in a manner that is equitable and focuses on creating a more stable environment.« less
Van de Velde, Stijn; Kortteisto, Tiina; Spitaels, David; Jamtvedt, Gro; Roshanov, Pavel; Kunnamo, Ilkka; Aertgeerts, Bert; Vandvik, Per Olav; Flottorp, Signe
2018-06-11
Clinical practice patterns greatly diverge from evidence-based recommendations to manage knee osteoarthritis conservatively before resorting to surgery. This study aimed to tailor a guideline-based computerized decision support (CDS) intervention that facilitates the conservative management of knee osteoarthritis. Experts with backgrounds in clinical medicine, research, implementation, or health informatics suggested the most important recommendations for implementation, how to develop an implementation strategy, and how to form the CDS algorithms. In 6 focus group sessions, 8 general practitioners and 22 patients from Norway, Belgium, and Finland discussed the suggested CDS intervention and identified factors that would be most critical for the success of the intervention. The focus group moderators used the GUideline Implementation with DEcision Support checklist, which we developed to support consideration of CDS success factors. The experts prioritized 9 out of 22 recommendations for implementation. We formed the concept for 6 CDS algorithms to support implementation of these recommendations. The focus group suggested 59 unique factors that could affect the success of the presented CDS intervention. Five factors (out of the 59) were prioritized by focus group participants in every country, including the perceived potential to address the information needs of both patients and general practitioners; the credibility of CDS information; the timing of CDS for patients; and the need for personal dialogue about CDS between the general practitioner and the patient. The focus group participants supported the CDS intervention as a tool to improve the quality of care for patients with knee osteoarthritis through shared, evidence-based decision making. We aim to develop and implement the CDS based on these study results. Future research should address optimal ways to (1) provide patient-directed CDS, (2) enable more patient-specific CDS within the context of patient complexity, and (3) maintain user engagement with CDS over time. ©Stijn Van de Velde, Tiina Kortteisto, David Spitaels, Gro Jamtvedt, Pavel Roshanov, Ilkka Kunnamo, Bert Aertgeerts, Per Olav Vandvik, Signe Flottorp. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 11.06.2018.
Ash Emissions and Risk Management in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Steensen, T. S.; Webley, P. W.; Stuefer, M.
2012-12-01
Located in the 'Ring of Fire', regions and communities around the Pacific Ocean often face volcanic eruptions and subsequent ash emissions. Volcanic ash clouds pose a significant risk to aviation, especially in the highly-frequented flight corridors around active volcano zones like Indonesia or Eastern Russia and the Alaskan Aleutian Islands. To mitigate and manage such events, a detailed quantitative analysis using a range of scientific measurements, including satellite data and Volcanic Ash Transport and Dispersion (VATD) model results, needs to be conducted in real-time. For the case study of the Sarychev Peak eruption in Russia's Kurile Islands during 2009, we compare ash loading and dispersion from Weather Research and Forecast model with online Chemistry (WRF-Chem) results with satellite data of the eruption. These parameters are needed for the real-time management of volcanic crises to outline no-fly zones and to predict the areas that the ash is most likely to reach in the near future. In the early stages after the eruption, an international group with representatives from the Kamchatkan and Sachalin Volcanic Eruption Response Teams (KVERT, SVERT), the National Aeronautics and Space Administration (NASA), and the Alaska Volcano Observatory (AVO) published early research on the geological and geophysical characteristics of the eruption and the behavior of the resulting ash clouds. The study presented here is a follow-up project aimed to implement VATD model results and satellite data retrospectively to demonstrate the possibilities to develop this approach in real-time for future eruptions. Our research finds that, although meteorological cloud coverage is high in those geographical regions and, consequently, these clouds can cover most of the ash clouds and as such prevent satellites from detecting it, both approaches compare well and supplement each other to reduce the risk of volcanic eruptions. We carry out spatial extent and absolute quantitative comparisons and analyze the sensitivity of model inputs, such as eruption rate and vertical particle size distributions. Our analysis shows that comparisons between real-time satellite observations and VATD model simulations is a complex and difficult process and we present several methods that could be used to reduce the hazards and be useful in any risk assessments.
Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array
NASA Astrophysics Data System (ADS)
Busby, R. W.
2016-12-01
In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these additional strong motion, atmospheric, and soil temperature sensors may motivate the desire extend the operation of certain stations in cooperation with these organizations. The TA has always been amenable to partnerships in the research and education communities that extend the capabilities and reach of the EarthScope Transportable Array.
Zhang, Qi-cheng; Pan, Zhen-hua; Liu, Bo-ning; Meng, Zhao-wei; Wu, Xiang; Zhou, Qing-hua; Xu, Ke
2017-01-01
Isothiocyanates, such as allyl isothiocya¬nate (AITC), benzyl isothiocyanate (BITC), phenethyl isothio¬cyanate (PEITC) and sulforaphane (SFN), are natural compounds abundant in cruciferous vegetables, which have substantial chemopreventive activities against various human malignancies. However, the mechanisms underlying the inhibition of tumor cell growth by isothiocyanates are not fully understood. Since autophagy has dual functions in cancer, in the present study we investigated the effects of BITC on autophagy induction in human lung cancer cells in vitro and in vivo. BITC (1–100 μmol/L) dose-dependently inhibited the growth of 3 different human lung cancer cell lines A549 (adenocarcinoma), H661 (large cell carcinoma) and SK-MES-1 (squamous cell carcinoma) with IC50 values of 30.7±0.14, 15.9±0.22 and 23.4±0.11 μmol/L, respectively. BITC (10–40 μmol/L) induced autophagy in the lung cancer cells, evidenced by the formation of acidic vesicular organelles (AVOs), the accumulation of LC3-II, the punctate pattern of LC3, and the expression of Atg5. Pretreatment with the autophagy inhibitor 3-MA (5 mmol/L) significantly enhanced the BITC-caused growth inhibition in the lung cancer cells. Furthermore, BITC (20–40 μmol/L) activated ER stress, as shown by the increased cytosolic Ca2+ level and the phosphorylation of the ER stress marker proteins PERK and eIF2α in the lung cancer cells. Pretreatment with the ER stress inhibitor 4-PBA (5 mmol/L) attenuated the autophagy induction and potentiated the BITC-induced cell growth inhibition. In nude mice bearing A549 xenografts, administration of BITC (100 mg·kg-1·d-1, ip) for 8 weeks markedly suppressed the lung tumor growth, and significantly enhanced both autophagy and ER stress in the tumor tissues. Our results demonstrate that BITC inhibits human lung cancer cell growth in vitro and in vivo. In addition, BITC induces autophagy in the lung cancer cells, which protects the cancer cells against the inhibitory action of BITC; the autophagy induction is mediated by the ER stress response. PMID:28112178
NASA Astrophysics Data System (ADS)
Jin, J.; Wang, Y.
2017-12-01
Ecosystem-scale water-use efficiency (EWUE), defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET), is an important indicator for understanding how water couples with the carbon cycle under global change. Relationships between EWUE and abiotic environmental factors (e.g. climatic factors, atmospheric CO2concentration and nitrogen deposition) have been widely investigated, but the variations in EWUE in response to biotic controls remain little understood. Here, we argue that phenology plays an important role in the regulation of EWUE by analyzing springtime EWUE responses to variability of the GPP-based vegetation activity onset (VAO) in temperate and boreal ecosystems using both satellite and flux-tower observations. Based on MODIS productions during 2000-2014, we found that spring EWUE widely significantly increased with the earlier VAO mainly in the mid- and high latitudes (over 50°N), southwestern China and mid-western North America. When AVO advanced a 10-day, the spring EWUE would increase on average by 0.17±0.09 g C kg-1 H2O in temperate and continental climates after removing the effect of environmental factors. The main response patterns of EWUE to phenology suggest that an increase in spring EWUE with an earlier VAO are mainly because the increase in GPP is relatively larger in magnitude compared to that of ET, or due to an increase in GPP accompanied by a decrease in ET, resulting from an advanced VAO. The credibility of the results is also supported by the local-scale observations. By analyzing 66 site-years of flux and meteorological data obtained from 8 temperate deciduous broadleaf forest sites across North America and Europe, spring EWUE increased 0.42±0.08 g C kg-1 H2O with a 10-day advance of VAO across all sites after controlling for environmental factors, mainly because an earlier VAO could lead to a steeper increase in GPP than in ET. Our results and conclusions highlight that phenological factors cannot be ignored in relation to the regulation of coupled carbon-water cycling, especially at the beginning of the growing season.
Shallow gas in Cenozoic sediments of the Southern North Sea
NASA Astrophysics Data System (ADS)
Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar
2013-04-01
Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting the underground emphasize the need for detailed knowledge on the underground for sound decisions on the future use of this area.
The Unconventional Revolution in Exploration Geophysics
NASA Astrophysics Data System (ADS)
House, N. J.
2014-12-01
During the last 25 years, 3D seismic imaging has revolutionized hydrocarbon exploration by delivering an accurate 3 dimensional picture of the subsurface. The image is capable of detecting fluids within the reservoir, and has significantly reduced the risk of locating and developing hydrocarbon deposits. In late 1990s, deregulation of natural gas prices allowed long recognized deposits of natural gas locked in tight rocks be economic. It sparked factory drilling (repeatable high density evenly spaced) wells and hydraulic fracturing that would help unlock the reservoirs. All that was needed was a geologist to determine depths and limits of the reservoir and engineers to drill and complete the wells. If 3D seismic data was available, it might have been used to define both the limits of the field and drilling hazards. Generally the cost and time required to process and interpret 3D Seismic was considered too high to affect the perceived geologic risk of the Factory approach. Completion costs in unconventional reservoirs account for over 50% of the well costs. It's therefore critical to understand the geometry of how the rock is fracturing and determine optimum well spacing to balance the cost of development with the value of the gas or oil being produced. By extending AVO to the pre-stack domain, it's possible to simultaneously invert for Vp, Vs and density. Armed with these three fundamental rock properties that dictate elastic and inelastic rock response, researchers were able to combine those properties to tie directly to how well a rock will respond to hydraulic fracturing, or which rocks contain a higher TOC, or other rock properties that control how a rock responds to seismic waves or hydraulic fracturing. Combining these results allows interpreters to map areas of higher productivity, and identify bypassed reserves. Currently hundreds of different seismic attributes that are generated from 3D seismic data are used to identify the highest productive areas and how to develop them. MicroSeismic mapping has made completion more efficient and safe. While the geophysics involved in unconventional resource development may not be the first thought in the board room, thier data has become an accepted early development tool of successful oil and gas companies.
NASA Astrophysics Data System (ADS)
Potylitsyn, Alexander; Karataev, Pavel; Mkrtchyan, Alpik
2014-05-01
These Proceedings are published as a recollection of contributions presented at the X International Symposium on "Radiation from Relativistic Electrons in Periodic Structures" (RREPS-13) merged with III International Conference "Electron, Positron, Neutron and X-ray Scattering under External Influences" (Meghri-13), which was held at Lake Sevan, 23-28 September, 2013, Armenia. RREPS-13 and Meghri-13 were co-organized by Tomsk Polytechnic University (Russia) and Institute of Applied Problems of Physics (Armenia). The main goal of the symposium was to bring together the scientists from around the world who work on designs of new radiation sources and their applications. There were 89 participants from 12 countries. The website of the symposium is available at http://rreps.tpu.ru/ The scientific program of the symposium consisted of 8 sections and a satellite Workshop on Terahertz Radiation generation. All papers in these Proceedings refer to one from the following topics: Section 1: General Properties of Radiation from Relativistic Particles Section 2: Transition Radiation Section 3: Parametric X-Radiation Section 4: Diffraction Radiation and Smith-Purcell Effect Section 5: Coherent Bremsstrahlung and Channeling Radiation Section 6: X-Ray Scattering without and by Acoustic Superlattices Section 7: Interaction of Particles Beams with Artificial Structures (Acoustic Superlattices, Metamaterials, etc.) Section 8: Application of Radiation Beams The published papers cover nearly all "hot" topics of current interest on investigations of monochromatic and broadband radiation sources based on accelerators and X-ray tubes. Different mechanisms of radiation emission such as Compton backscattering, Cherenkov radiation, transition radiation, diffraction radiation, Smith-Purcell effect, parametric X-ray were considered in Sections 1, 2, 3, 4 and 5. The problem of control of radiation parameters by external acoustic fields is discussed in Section 6. Several applications of electron, proton, gamma and X-ray beams are proposed in Sections 7 and 8. Conference photograph We are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. We are looking forward to welcoming all colleagues at the next Symposium of the biennial series RREPS-15, which will be hosted by Saint Petersburg State University in 2015. We invite all researchers interested in the field including the authors of these Proceedings. Professor Alexander Potylitsyn Tomsk Polytechnic University, Tomsk, Russia Dr Pavel Karataev Royal Holloway, University of London, Egham, United Kingdom Professor Alpik Mkrtchyan Institute of Applied Problems of Physics, Yerevan, Armenia
(S)TEM analysis of functional transition metal oxides
NASA Astrophysics Data System (ADS)
Chi, Miaofang
Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4+ ratio in fassaite and the presence of osbornite indicate that the Comet refractory minerals formed in the inner solar nebula and were later transported to the outer solar system where the comet formed. This implies a much more dynamic and perhaps more violent solar nebula than was previously suspected.
Real-time Volcanic Cloud Products and Predictions for Aviation Alerts
NASA Astrophysics Data System (ADS)
Krotkov, N. A.; Hughes, E. J.; da Silva, A. M., Jr.; Seftor, C. J.; Brentzel, K. W.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.; Hoffman, R.; Myers, T.; Flynn, L. E.; Niu, J.; Theys, N.; Brenot, H. H.
2016-12-01
We will discuss progress of the NASA ASP project, which promotes the use of satellite volcanic SO2 (VSO2) and Ash (VA) data, and forecasting tools that enhance VA Decision Support Systems (DSS) at the VA Advisory Centers (VAACs) for prompt aviation warnings. The goals are: (1) transition NASA algorithms to NOAA for global NRT processing and integration into DSS at Washington VAAC for operational users and public dissemination; (2) Utilize Direct Broadcast capability of the Aura and SNPP satellites to process Direct Readout (DR) data at two high latitude locations in Finland and Fairbanks, Alaska to enhance VA DSS in Europe and at USGS's Alaska Volcano Observatory (AVO) and Alaska-VAAC; (3) Improve global Eulerian model-based VA/VSO2 forecasting and risk/cost assessments with Metron Aviation. Our global NRT OMI and OMPS data have been fully integrated into European Support to Aviation Control Service and NOAA operational web sites. We are transitioning OMPS processing to our partners at NOAA/NESDIS to integrate into operational processing environment. NASA's Suomi NPP Ozone Science Team, in conjunction with GSFC's Direct Readout Laboratory (DRL), have implemented Version 2 of the OMPS real-time DR processing package to generate VSO2 and VA products at the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI). The system provides real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world. The OMPS real time capability is now publicly available via DRL's IPOPP package. We use satellite observations to define volcanic source term estimates in the NASA GOES-5 model, which was updated allowing for the simulation of VA and VSO2 clouds. Column SO2 observations from SNPP/OMPS provide an initial estimate of the total cloud SO2 mass, and are used with backward transport analysis to make an initial cloud height estimate. Later VSO2 observations are used to "nudge" the SO2 mass within the model. The GEOS-5 simulations provide qualitative forecasts, which locate the extent of regions hazardous to aviation. Air traffic flow algorithms have been developed by Metron Aviation to use GEOS-5 volcanic simulations to determine the most cost-effective rerouting paths around hazardous volcanic clouds.
NASA Astrophysics Data System (ADS)
Rose, Shellie; Ramsey, Michael
2009-07-01
Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.
Romanian MRE Rocket Engines Program - An Early Endeavor
NASA Astrophysics Data System (ADS)
Rugescu, R. E.
2002-01-01
(MRE) was initiated in the years '60 of the past century at the Chair of Aerospace Sciences "Elie Carafoli" from the "Politehnica" University in Bucharest (PUB). Consisting of theoretical and experimental investigations in the form of computational methods and technological solutions for small size MRE-s and the concept of the test stand for these engines, the program ended in the construction of the first Romanian liquid rocket motors. Hermann Oberth and Dorin Pavel, were known from 1923, no experimental practice was yet tempted, at the time level of 1960. It was the intention of the developers at PUB to cover this gap and initiate a feasible, low-cost, demonstrative program of designing and testing experimental models of MRE. The research program was oriented towards future development of small size space carrier vehicles for scientific applications only, as an independent program with no connection to other defense programs imagined by the authorities in Bucharest, at that time. Consequently the entire financial support was assured by "Politehnica" university. computerized methods in the thermochemistry of heterogeneous combustion, for both steady and unsteady flows with chemical reactions and two phase flows. The research was gradually extended to the production of a professional CAD program for steady-state heat transfer simulations and the loading capacity analyses of the double wall, cooled thrust chamber. The resulting computer codes were run on a 360-30 IMB machine, beginning in 1968. Some of the computational methods were first exposed at the 9th International Conference on Applied Mechanics, held in Bucharest between June 23-27, 1969. hot testing of a series of storable propellant, variable thrust, variable geometry, liquid rocket motors, with a maximal thrust of 200N. A remotely controlled, portable test bad, actuated either automatically or manually and consisting of a 6-modules construction was built for this motor series, with a simple 8 analog-channel and 5 digital-channel data measuring and recording system. The first hot test firing of the MRE-1B motor took place successfully on April 9th, 1969 in Bucharest, at the "Elie Carafoli" Chair of UPB. The research program continued with the development of a series of solid, double base propellant rocket and ram-rocket motors, with emphasize on the optimization of the gasdynamic contour of the engine, in order to increase the flight performances. Increments of up to 8% in specific thrust were measured on the test stand, with mass savings and no extra costs. The test firing of the first Romanian, air-breathing ram-rocket engine took place successfully in august 1987 at the Chemical Works in Fagaras, Romania. Astronautics", founded in Bucharest. The principles and history of the "MRE" research program are presented in the proposed paper.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Kasatkin, A. V.; Zubkova, N. V.; Britvin, S. N.; Pautov, L. A.; Pekov, I. V.; Varlamov, D. A.; Bychkova, Ya. V.; Loskutov, A. B.; Novgorodova, E. A.
2016-12-01
A new mineral, tatarinovite, ideally Ca3Al(SO4)[B(OH)4](OH)6 · 12H2O, has been found in cavities of rhodingites at the Bazhenovskoe chrysotile asbestos deposit, Middle Urals, Russia. It occurs (1) colorless, with vitreous luster, bipyramidal crystals up to 1 mm across in cavities within massive diopside, in association with xonotlite, clinochlore, pectolite and calcite, and (2) as white granular aggregates up to 5 mm in size on grossular with pectolite, diopside, calcite, and xonotlite. The Mohs hardness is 3; perfect cleavage on (100) is observed. D meas = 1.79(1), D calc = 1.777 g/cm3. Tatarinovite is optically uniaxial (+), ω = 1.475(2), ɛ = 1.496(2). The IR spectrum contains characteristic bands of SO4 2-, CO3 2-, B(OH)4 -, B(OH)3, Al(OH)6 3-, Si(OH)6 2-, OH-, and H2O. The chemical composition of tatarinovite (wt %; ICP-AES; H2O was determined by the Alimarin method; CO2 was determined by selective sorption on askarite) is as follows: 27.40 CaO, 4.06 B2O3, 6.34 A12O3, 0.03 Fe2O3, 2.43 SiO2, 8.48 SO3, 4.2 CO2, 46.1 H2O, total is 99.04. The empirical formula (calculated on the basis of 3Ca apfu) is H31.41Ca3.00(Al0.76Si0.25)Σ1.01 · (B0.72S0.65C0.59)Σ1.96O24.55. Tatarinovite is hexagonal, space gr. P63, a = 11.1110(4) Å, c = 10.6294(6) Å, V = 1136.44(9) A3, Z = 2. Its crystal chemical formula is Ca3(Al0.70Si0.30) · {[SO4]0.34[B(OH)4]0.33[CO3]0.24}{[SO4]0.30[B(OH)4]0.34[CO3]0.30[B(OH)3]0.06}(OH5·73O0.27) · 12H2O. The strongest reflections of the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are 9.63 (100) (100), 5.556 (30) (110), 4.654 (14) (102), 3.841 (21) (112), 3.441 (12) (211), 2.746 (10) (302), 2.538 (12) (213). Tatarinovite was named in memory of the Russian geologist and petrologist Pavel Mikhailovich Tatarinov (1895-1976), a well-known specialist in chrysotile asbestos deposits. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.
LPHYS'14: 23rd International Laser Physics Workshop (Sofia, Bulgaria, 14-18 July 2014)
NASA Astrophysics Data System (ADS)
Yevseyev, Alexander V.
2014-04-01
The 23rd annual International Laser Physics Workshop (LPHYS14) will be held from 14 July to 18 July 2014 in the city of Sofia, Bulgaria, at the Ramada Sofia Hotel hosted this year by the Institute of Electronics, Bulgarian Academy of Sciences. LPHYS14 continues a series of workshops that took place in Dubna,1992; Dubna/Volga river tour, 1993; New York, 1994; Moscow/Volga river tour (jointly with NATO SILAP Workshop), 1995; Moscow, 1996; Prague, 1997; Berlin, 1998; Budapest, 1999; Bordeaux, 2000; Moscow, 2001; Bratislava, 2002; Hamburg, 2003; Trieste, 2004; Kyoto, 2005; Lausanne, 2006; Len, 2007; Trondheim, 2008; Barcelona, 2009; Foz do Iguau, 2010; Sarajevo, 2011; Calgary, 2012 and Prague, 2013. The total number of participants this year is expected to be about 400. In the past, annual participation was typically from over 30 countries. 2014 Chairpersons Sanka Gateva (Bulgaria), Pavel Pashinin (Russia) LPHYS14 will offer eight scientific section seminars and one general symposium: Seminar 1 Modern Trends in Laser Physics Seminar 2 Strong Field and Attosecond Physics Seminar 3 Biophotonics Seminar 4 Physics of Lasers Seminar 5 Nonlinear Optics and Spectroscopy Seminar 6 Physics of Cold Trapped Atoms Seminar 7 Quantum Information Science Seminar 8 Fiber Optics Symposium Extreme Light Technologies, Science and Applications Abstract of your presentation A one-page abstract should contain: title; list of all co-authors (the name of the speaker underlined); affiliations; correspondence addresses including phone numbers, fax numbers, e-mail addresses; and the text of the abstract. Abstracts should be sent to the following co-chairs of the scientific seminars and the symposium: Kirill A Prokhorov (Seminar 1) E-mail: cyrpro@gpi.ru Mikhail V Fedorov (Seminar 2) E-mail: fedorov@ran.gpi.ru Sergey A Gonchukov (Seminar 3) E-mail: gonchukov@mephi.ru Ivan A Shcherbakov (Seminar 4) E-mail: gbufetova@lsk.gpi.ru Vladimir A Makarov (Seminar 5) E-mail: makarov@msu.ilc.edu.ru Vyacheslav I Yukalov (Seminar 6) E-mail: yukalov@theor.jinr.ru Sergei P Kulik (Seminar 7) E-mail: sergei.kulik@gmail.com Sergey A Babin (Seminar 8) E-mail: babin@iae.nsk.su Nikolay B Narozhny (Symposium) E-mail: narozhny@theor.mephi.ru Deadlines Sending an entry visa support form, if needed: 15 April 2014 Receiving an abstract of your presentation: 15 April 2014 Sending a registration form: 15 April 2014 Workshop early payment fee: 15 April 2014 Workshop full payment fee: 1 July 2014 Workshop full payment fee at the conference site: on arrival Accommodation reservation (recommended): 15 May 2014 Sending a manuscript to be published in the Workshop Proceedings: 15 December 2014 Additional information for LPHYS14 can be found at www.lasphys.com
LPHYS'13: 22nd International Laser Physics Workshop (Prague, 15-19 July 2013)
NASA Astrophysics Data System (ADS)
Yevseyev, Alexander V.
2013-04-01
The 22nd annual International Laser Physics Workshop (LPHYS'13) will be held from 15-19 July 2013 in the city of Prague, Czech Republic, at the Hotel Krystal and Czech Technical University hosted this year by the Institute of Physics ASCR and Czech Technical University in Prague. LPHYS'13 continues a series of workshops that took place in Dubna, 1992; Dubna/Volga river tour, 1993; New York, 1994; Moscow/Volga river tour (jointly with NATO SILAP Workshop), 1995; Moscow, 1996; Prague, 1997; Berlin, 1998; Budapest, 1999; Bordeaux, 2000; Moscow, 2001; Bratislava, 2002; Hamburg, 2003; Trieste, 2004; Kyoto, 2005; Lausanne, 2006; León, 2007; Trondheim, 2008; Barcelona, 2009; Foz do Iguaçu, 2010; Sarajevo, 2011; and Calgary, 2012. The total number of participants this year is expected to be about 400. In the past, annual participation was typically from over 30 countries. 2013 Chairmen: Miroslav Jelinek (Czech Republic) and Pavel P Pashinin (Russia) LPHYS'13 will offer eight scientific section seminars and one general symposium: Seminar 1 Modern Trends in Laser Physics Seminar 2 Strong Field & Attosecond Physics Seminar 3 Biophotonics Seminar 4 Physics of Lasers Seminar 5 Nonlinear Optics & Spectroscopy Seminar 6 Physics of Cold Trapped Atoms Seminar 7 Quantum Information Science Seminar 8 Fiber Optics Symposium Extreme Light Technologies, Science and Applications Abstract of your presentation A one-page abstract should contain: title; list of all co-authors (the name of the speaker underlined); affiliations; correspondence addresses including phone numbers, fax numbers, e-mail addresses; and the text of the abstract. Abstracts should be sent to the following co-chairs of the scientific seminars and the symposium: Kirill A Prokhorov (Seminar 1) E-mail: cyrpro@gpi.ru Mikhail V Fedorov (Seminar 2) E-mail: fedorov@ran.gpi.ru Sergey A Gonchukov (Seminar 3) E-mail: gonchukov@mephi.ru Ivan A Shcherbakov (Seminar 4) E-mail: gbufetova@lsk.gpi.ru Vladimir A Makarov (Seminar 5) E-mail: makarov@msu.ilc.edu.ru Vyacheslav I Yukalov (Seminar 6) E-mail: yukalov@theor.jinr.ru Sergei P Kulik (Seminar 7) E-mail: sergei.kulik@gmail.com Sergey A Babin (Seminar 8) E-mail: babin@iae.nsk.su Nikolay B Narozhny (Symposium) E-mail: narozhny@theor.mephi.ru Deadlines Sending an entry visa support form, if needed: 15 April 2013 Receiving an abstract of your presentation: 15 April 2013 Sending a registration form: 15 April 2013 Workshop early payment fee: 15 April 2013 Workshop full payment fee: 1 July 2013 Workshop full payment fee at the conference site: on arrival On-campus accommodation reservation (recommended): 15 May 2013 Manuscript to be published in the Workshop proceedings: 15 December 2013 Additional information for LPHYS'13 can be found at www.lasphys.com
NASA Astrophysics Data System (ADS)
Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.
2013-12-01
Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of multiple observation geometries in change detection procedures. Additionally, it will be shown how SAR-based hazard information can be integrated with data from optical satellites, thermal sensors, webcams and models to create near-real time volcano hazard information. We will introduce a prototype monitoring system that integrates SAR-based hazard information into the near real-time volcano hazard monitoring system of the Alaska Volcano Observatory. This prototype system was applied to historic eruptions of the volcanoes Okmok and Augustine, both located in the North Pacific. We will show that for these historic eruptions, the addition of SAR data lead to a significant improvement in activity detection and eruption monitoring, and improved the accuracy and timeliness of eruption alerts.
NASA Astrophysics Data System (ADS)
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-11-01
The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first meeting with the name `Symmetries and Integrability of Discrete Equations (SIDE)' was held in Estérel, Québec, Canada. This was organized by D Levi, P Winternitz and L Vinet. After the success of the first meeting the scientific community decided to hold bi-annual SIDE meetings. They were held in 1996 at the University of Kent (UK), 1998 in Sabaudia (Italy), 2000 at the University of Tokyo (Japan), 2002 in Giens (France), 2004 in Helsinki (Finland) and in 2006 at the University of Melbourne (Australia). In 2008 the SIDE 8 meeting was again organized near Montreal, in Ste-Adèle, Québec, Canada. The SIDE 8 International Advisory Committee (also the SIDE steering committee) consisted of Frank Nijhoff, Alexander Bobenko, Basil Grammaticos, Jarmo Hietarinta, Nalini Joshi, Decio Levi, Vassilis Papageorgiou, Junkichi Satsuma, Yuri Suris, Claude Vialet and Pavel Winternitz. The local organizing committee consisted of Pavel Winternitz, John Harnad, Véronique Hussin, Decio Levi, Peter Olver and Luc Vinet. Financial support came from the Centre de Recherches Mathématiques in Montreal and the National Science Foundation (through the University of Minnesota). Proceedings of the first three SIDE meetings were published in the LMS Lecture Note series. Since 2000 the emphasis has been on publishing selected refereed articles in response to a general call for papers issued after the conference. This allows for a wider author base, since the call for papers is not restricted to conference participants. The SIDE topics thus are represented in special issues of Journal of Physics A: Mathematical and General 34 (48) and Journal of Physics A: Mathematical and Theoretical, 40 (42) (SIDE 4 and SIDE 7, respectively), Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2) (SIDE 5 and SIDE 6 respectively). The SIDE 8 meeting was organized around several topics and the contributions to this special issue reflect the diversity presented during the meeting. The papers presented at the SIDE 8 meeting were organized into the following special sessions: geometry of discrete and continuous Painlevé equations; continuous symmetries of discrete equations—theory and computational applications; algebraic aspects of discrete equations; singularity confinement, algebraic entropy and Nevanlinna theory; discrete differential geometry; discrete integrable systems and isomonodromy transformations; special functions as solutions of difference and q-difference equations. This special issue of the journal is organized along similar lines. The first three articles are topical review articles appearing in alphabetical order (by first author). The article by Doliwa and Nieszporski describes the Darboux transformations in a discrete setting, namely for the discrete second order linear problem. The article by Grammaticos, Halburd, Ramani and Viallet concentrates on the integrability of the discrete systems, in particular they describe integrability tests for difference equations such as singularity confinement, algebraic entropy (growth and complexity), and analytic and arithmetic approaches. The topical review by Konopelchenko explores the relationship between the discrete integrable systems and deformations of associative algebras. All other articles are presented in alphabetical order (by first author). The contributions were solicited from all participants as well as from the general scientific community. The contributions published in this special issue can be loosely grouped into several overlapping topics, namely: •Geometry of discrete and continuous Painlevé equations (articles by Spicer and Nijhoff and by Lobb and Nijhoff). •Continuous symmetries of discrete equations—theory and applications (articles by Dorodnitsyn and Kozlov; Levi, Petrera and Scimiterna; Scimiterna; Ste-Marie and Tremblay; Levi and Yamilov; Rebelo and Winternitz). •Yang--Baxter maps (article by Xenitidis and Papageorgiou). •Algebraic aspects of discrete equations (articles by Doliwa and Nieszporski; Konopelchenko; Tsarev and Wolf). •Singularity confinement, algebraic entropy and Nevanlinna theory (articles by Grammaticos, Halburd, Ramani and Viallet; Grammaticos, Ramani and Tamizhmani). •Discrete integrable systems and isomonodromy transformations (article by Dzhamay). •Special functions as solutions of difference and q-difference equations (articles by Atakishiyeva, Atakishiyev and Koornwinder; Bertola, Gekhtman and Szmigielski; Vinet and Zhedanov). •Other topics (articles by Atkinson; Grünbaum Nagai, Kametaka and Watanabe; Nagiyev, Guliyeva and Jafarov; Sahadevan and Uma Maheswari; Svinin; Tian and Hu; Yao, Liu and Zeng). This issue is the result of the collaboration of many individuals. We would like to thank the authors who contributed and everyone else involved in the preparation of this special issue.
FOREWORD: Radio and Antenna Days of the Indian Ocean (RADIO 2012)
NASA Astrophysics Data System (ADS)
Monebhurrun, Vikass; Lesselier, Dominique
2013-04-01
It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the 'Radio and Antenna Days of the Indian Ocean' (RADIO 2012) international conference that was held from 24th to 27th September 2012 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2012 is the first of a series of conferences that is to be regularly organized in the Indian Ocean region. The aim is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. Following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world, a need was felt for the organization of such an international event in this region. The Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, provided an excellent environment for the organization of the 1st RADIO international conference. The Local Organizing Committee consisted of scientists from SUPELEC, the University of Mauritius, and the University of Technology, Mauritius. Various members of staff of the University of Mauritius provided help for the organization of the conference. The International Union of Radio Science (URSI) made available technical and financial sponsorship for partial support of young scientists. A number of companies also supported RADIO 2012 ('Platinum': GSMA, ICTA & MMF, 'Gold': CST & FEKO). The event itself was organized in a premier hotel on Mauritius. In this foreword, we would like to take the opportunity again to thank all the people, institutions and companies that made the event such a success. More than 120 abstracts were submitted to the conference and were peer-reviewed by an international scientific committee. RADIO 2012 overall featured six oral sessions, one poster session and two workshops. Three internationally recognized scientists delivered keynote speeches during the conference. The two workshops consisted of both regular and invited papers. A call to extended contributions for publication as a volume in the IOP Conference Series: Materials Science and Engineering (MSE) both on-line and in print, was made. Following the call, we received thirty-three full papers and all submitted contributions were then peer-reviewed by the co-editors with considerable help from the editorial board. Following this procedure, twenty-seven of them were accepted for publication in this volume. We believe that this volume will be both an excellent source of pertinant and long-lasting scientific material in the fast evolving fields that are covered by RADIO 2012 as well as good proof of its relevance to the scientific Indian Ocean community and far beyond. Editors Vikass Monebhurrun Dominique Lesselier Editorial Board Members Subramaniam Ananthakrishnan Pavel Belov Michael Gaylard Stephen Gedney Yashwant Gupta Sheshakamal Jayaram Wout Joseph Per-Simon Kildal Dominique Lesselier Jean-Daniel Lan Sun Luk André de Lustrac Vikass Monebhurrun Russel Taylor Lok C Lew Yan Voon
NASA Astrophysics Data System (ADS)
Ratchkovski, N. A.; Hansen, R. A.; Christensen, D.; Kore, K.
2002-12-01
The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 foreshock on October 23. This earlier earthquake and its zone of aftershocks were located slightly to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. Near Mentasta Lake, a village that experienced some of the worst damage in the quake, the surface rupture scar turns from the Denali fault to the adjacent Totschunda fault, which trends toward more southeasterly toward the Canadian border. Overall, the geologists found that measurable scarps indicate that the north side of the Denali fault moved to the east and vertically up relative to the south. Maximum offsets on the Denali fault were 8.8 meters at the Tok Highway cutoff, and were 2.2 meters on the Totschunda fault. The Alaska regional seismic network consists of over 250 station sites, operated by the Alaska Earthquake Information Center (AEIC), the Alaska Volcano Observatory (AVO), and the Pacific Tsunami Warning Center (PTWC). Over 25 sites are equipped with the broad-band sensors, some of which have in addition the strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary network with over 20 instruments following the 6.7 Nenana Mountain and the 7.9 events. Prior to the M 7.9 Denali Fault event, the automatic earthquake detection system at AEIC was locating between 15 and 30 events per day. After the event, the system had over 200-400 automatic locations per day for at least 10 days following the 7.9 event. The processing of the data is ongoing with the priority given to the larger events. The cumulative length of the 6.7 and 7.9 aftershock locations along the Denali and Totschunda faults is about 300 km. We will present the aftershock locations, first motion focal mechanisms for M4+ events and regional moment tensors for M4.5+ events. The first motion focal mechanism for the main event indicates thrusting on the NE-trending plane with a dip of 48 degrees. We will present results of the double difference relocation of the aftershocks of the M7.9 event. The relocated aftershocks indicate a NW-dipping fault plane in the epicentral area of the event and a vertical plane along the rest of the rupture length.
Evaluation of Redoubt Volcano's sulfur dioxide emissions by the Ozone Monitoring Instrument
Lopez, Taryn; Carn, Simon A.; Werner, Cynthia A.; Fee, David; Kelly, Peter; Doukas, Michael P.; Pfeffer, Melissa; Webley, Peter; Cahill, Catherine F.; Schneider, David
2013-01-01
The 2009 eruption of Redoubt Volcano, Alaska, provided a rare opportunity to compare satellite measurements of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) with airborne SO2 measurements by the Alaska Volcano Observatory (AVO). Herein we: (1) compare OMI and airborne SO2 column density values for Redoubt's tropospheric plume, (2) calculate daily SO2 masses from Mount Redoubt for the first three months of the eruption, (3) develop simple methods to convert daily measured SO2 masses into emission rates to allow satellite data to be directly integrated with the airborne SO2 emissions dataset, (4) calculate cumulative SO2 emissions from the eruption, and (5) evaluate OMI as a monitoring tool for high-latitude degassing volcanoes. A linear correlation (R2 ~ 0.75) is observed between OMI and airborne SO2 column densities. OMI daily SO2 masses for the sample period ranged from ~ 60.1 kt on 24 March to below detection limit, with an average daily SO2 mass of ~ 6.7 kt. The highest SO2 emissions were observed during the initial part of the explosive phase and the emissions exhibited an overall decreasing trend with time. OMI SO2 emission rates were derived using three methods and compared to airborne measurements. This comparison yields a linear correlation (R2 ~ 0.82) with OMI-derived emission rates consistently lower than airborne measurements. The comparison results suggest that OMI's detection limit for high latitude, springtime conditions varies from ~ 2000 to 4000 t/d. Cumulative SO2 masses calculated from daily OMI data for the sample period are estimated to range from 542 to 615 kt, with approximately half of this SO2 produced during the explosive phase of the eruption. These cumulative masses are similar in magnitude to those estimated for the 1989–90 Redoubt eruption. Strong correlations between daily OMI SO2 mass and both tephra mass and acoustic energy during the explosive phase of the eruption suggest that OMI data may be used to infer relative eruption size and explosivity. Further, when used in conjunction with complementary datasets, OMI daily SO2 masses may be used to help distinguish explosive from effusive activity and identify changes in lava extrusion rates. The results of this study suggest that OMI is a useful volcano monitoring tool to complement airborne measurements, capture explosive SO2 emissions, and provide high temporal resolution SO2 emissions data that can be used with interdisciplinary datasets to illuminate volcanic processes.
Seismic Anisotropy of Soft Sands, Offshore Western AUstralia
NASA Astrophysics Data System (ADS)
Urosevic, M.; Gurevich, B.
2007-05-01
Seismic anisotropy is commonly measured in sand shale environment. Intrinsic polar anisotropy of the shale and its effect on seismic data processing and analysis is well established and reasonably well understood. In sandstone, azimuthal anisotropy is often detected and is typically connected to an in situ stress regime and the brittleness of the rock. This type of anisotropy, commonly referred to as fractured induced anisotropy, has been widely and extensively studied as it directly affects both permeability and the strength of the rock. Hence fracture induced anisotropy is not only important for hydrocarbon exploration but also for geotechnical studies, underground mining, etc. Interestingly, in the last few years azimuthal anisotropy has also been detected in soft, poorly consolidated clean sands, mainly by cross-dipole sonic log measurements. This is somewhat surprising as in such soft, typically highly porous and permeable rocks stress induced fractures are unlikely to be abundant. In this study we analyse the anisotropy in such sand class using well-log measurements, three-component VSP data, as well as 2D and 3D surface seismic (reflection) data. High-quality cross-dipole sonic log measurements showed significant shear wave splitting over unconsolidated, highly porous and permeable sand interval. The shear wave anisotropy was computed to be around 10-15%. This is commonly seen as an indication that the rock is fractured and that the fractures are likely to be open. However, image log data over the same sand section suggested dilute most likely non-conductive fractures. Analysis of the shear wave splitting in VSP data also suggested low fracture density. The frequency content of the direct fast and slow shear waves on the VSP data was very similar, not supporting the presence of open fluid saturated fractures. Unfortunately, the evidence from the VSP data is not very compelling because the reservoir is thin compared to the wavelength and sampling interval of the VSP data. Further analysis of the soft sand anisotropy was conducted on surface seismic data. Magnitude of the overlain shale anisotropy was first established by measurements in the dominant horizontal stress direction. Subsequently pre-stack reflection amplitudes measured along several azimuths were matched to expected amplitudes from anisotropic AVO modelling. The results indicate that the anisotropy of the reservoir sands is high (more than 10%) at sonic frequencies but weak (about 2-3%), at seismic frequencies. We think this anisotropy is caused by the preferential closure of compliant inter-granular contacts oriented perpendicular to the principal horizontal stress. The effect is weaker at seismic frequencies since the wavelength in this case involves shales as well as sand. Furthermore, sonic anisotropy could have also been affected by the local stress conditions around the wellbore.
Finite-difference time-domain simulation of GPR data
NASA Astrophysics Data System (ADS)
Chen, How-Wei; Huang, Tai-Min
1998-10-01
Simulation of digital ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) media is developed, tested, implemented, and applied using a time-domain staggered-grid finite-difference (FD) numerical method. Three types of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell's curl equations. In addition, the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme. By combining paraxial approximation of the one-way wave equation ( A2) and the damping mechanisms (sponge filter), we propose a new composite absorbing boundary conditions (ABC) algorithm that effectively absorb both incoming and outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist's A2 condition. Moreover, a fixed and a floating A2 ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves from reflecting back into the grid. The frequency-dependent characteristic of the damping mechanism can be used to adjust the width of the absorbing zone around the computational domain. By applying any combination of absorbing mechanism, non-physical reflections from the computation domain boundary can be effectively minimized. The algorithm enables us to use very thin absorbing boundaries. The model can be parameterized through velocity, relative electrical permittivity (dielectric constants), electrical conductivity, magnetic permeability, loss tangent, Q values, and attenuation. According to this scheme, widely varying electrical properties of near-surface earth materials can be modeled. The capability of simulating common-source, constant-offset and zero-offset gathers is also demonstrated through various synthetic examples. The synthetic cases for typical GPR applications include buried objects such as pipes of different materials, AVO analysis for ground water exploration, archaeological site investigation, and stratigraphy studies. The algorithms are also applied to iterative modeling of GPR data acquired over a gymnasium construction site on the NCCU campus.
[The origins of the Czech Society of Cardiology and of Czech cardiology].
Widimský, J
2013-06-01
The paper presents the origins of the Czech Society of Cardiology on the one hand, and the origins of Czech cardiology on the other. The Czech Society of Cardiology is the third oldest in the world (after the American and German Societies). It was founded in 1929 by Prof. Libenský. As early as in 1933, the Society organised the first international congress of cardiologists in Prague, which was attended by 200 doctors, out of which 50 were from abroad. The most participants came from France and Poland. Other participants came from England, Argentina, Belgium, the Netherlands, Italy, Romania, Spain and Switzerland. The worldwide importance of this congress is apparent from the fact that both the World Society of Cardiology and the European Society of Cardiology (EKS) were founded after World War II in the years 1950 and 1952, i.e. almost 20 years after the first international congress of cardiology in Prague. In 1964, the Fourth Congress of European Society of Cardiology was held in Prague with the participation of 1,500 specialists from 31 countries and chaired by Prof. Pavel Lukl, the later president of EKS (1964- 1968). The paper also presents the work of our specialists in WHO and the history of the international journal Cor et Vasa issued by the Avicenum publishing house in Prague in English and Russian in the years 1958- 1992. An important role in the development of our cardiology was played by certain departments and clinics. In 1951, the Institute for Cardiovascular Research (ÚCHOK) was founded in PrahaKrč, thanks to the initiative of MU Dr. František Kriegl, the Deputy Minister of Health. Its first director was Klement Weber, who published, as early as in 1929, a monograph on arrhythmias - 50 years earlier than arrhythmias started to be at the centre of attention of cardiologists. Klement Weber was one of the doctors of President T. G. Masaryk during his serious disease towards the end of his life. Jan Brod was the deputy of Klement Weber in the Institute and the chair of its Scientific Council. The Institute for Cardiovascular Research was the third institute for cardiovascular diseases in the world. The origins of Czech cardiology are documented in three most important areas - the treatment of hypertension, the development of cardiothoracic surgery and the development of treatment of acute myocardial infarction. Hradec Králové became, thanks to Academician Bedrna, the first centre of cardiac surgery in this country. The development of hypertension treatment was stormy, thanks to the discovery of an effective pharmacotherapy, from the originally incurable malignant hypertension to the well curable benign hypertension. The effective treatment of acute infarction was based on the development of heart defibrillation enabling the establishment of coronary units, and later on the thrombolytic and antiplatelet therapies up to the contemporary PCI as the treatment of choice. During that time, AIM mortality decreased from the original 30% to the present 4- 5%.
NASA Astrophysics Data System (ADS)
Jorgenson, Terra A.
This research project identified three distinct groups of individuals the Federal Aviation Administration (FAA) utilizes when filling the employee ranks of Air Traffic Controllers (ATC). After a nationwide strike, President Reagan fired the entire ATC workforce in 1981 (Pavel, 2012). Since then the FAA has worked very diligently in filling the vacant positions. Now three decades later the impending retirements and attrition of those hired earlier is estimated at nearly 14,000 controllers over the next 10 years (FAA CWP, 2012). In response to this shortage it would be advantageous for the FAA to minimize the time lapsed in the selection, hiring and training processes. If the hiring process time was decreased, it would save the FAA money in terms of a reduction in the initial cost of training Air Traffic Controllers (GAO, 2012; IRP, 2011). Traditionally the FAA hires from three distinct groups of people. The first is those with prior ATC experience which was usually obtained through the military. Second the general public with no experience and third the Air Traffic Collegiate Training Initiative (AT-CTI) candidates. The AT-CTI program is a valued partner with the FAA that helps educate the next generation of Air Traffic Controllers; however in the past the program has had difficulty producing the total number of replacement controllers needed. Due to the delay some CTI graduates may choose other career paths rather than wait and be hired to go to the FAA Academy which will further reduce the number of candidates for the FAA to hire. To date, no public research has been done pertaining to the time delay in the hiring process of AT-CTI candidates and the impact on training success at the FAA Academy and at the CTI's first FAA facility. This study used a survey tool to gather information on how long AT-CTI graduates wait to be hired to attend the FAA Academy. Information was gathered on the factors that may affect the time lapse between graduation and the time they arrive at the FAA Academy. In addition, the effect of the wait on the success rate of training at the FAA Academy and at the candidate's first facility was examined. Data was collected to examine the relationship between a CTI graduate's performance in the CTI program and the individual's performance during FAA training at the FAA Academy and assignment to their first facility. Through correlation analysis of the Air Traffic Basics (AT-Basic), Air Traffic Selection and Training (AT-SAT) and Performance Verification (PV) scores there was significant correlation between the AT-Basic and PV scores. As the AT-Basic score increases so does the PV scores. There needs to be future research on GPA's, PV's, AT-SAT and AT-Basics scores to determine if any of them are predictors of CTI's success in training. If the FAA can better predict if an applicant will be successful in training, it can save the FAA money in the selection, hiring and training process.
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Dondurur, D.; Seeber, L.; Steckler, M. S.; Sorlien, C. C.; Diebold, J. B.; Cifci, G.; Gurcay, S.; Okay, S.; Imren, C.; Kurt, H.; Timur, D.; Demirbag, E.
2009-12-01
The Marmara Sea comprises a series of active transtensional basins forming along the North Anatolian Fault (NAF). Both deformation and sedimentation are punctuated by large, destructive earthquakes. Slumping and gas migration also appear to be coupled with these seismotectonic processes. Sediment cores, water column measurements, ROV observations and Chirp data acquired in the Marmara Sea over the last 10 years indicate numerous fluid/gas seeps along active faults, particularly the NAF. Furthermore, some authors infer fluidization and collapse of gas-charged sediments occurred during the 1999 Gulf of Izmit earthquake (farther east along the NAF) based on the presence of mudvolcanoes and slumps after the earthquake. These studies hint at interesting interactions between tectonics, slumping and fluid/gas migration. However, they comprise detailed observations focused on the fault and the upper 20 m of sediments and thus do not provide a complete picture. Here we use a new high-resolution multi-channel seismic (MCS) reflection dataset acquired in the Marmara Sea in July 2008 to elucidate the spatial relationships between gas, slumps and tectonic elements, particularly faults and progressively tilted sediments. The Turkish-American MAmara Multichannel (TAMAM) project involved the acquisition of >2600 km of MCS data throughout the Marmara Sea aboard the R/V K. Piri Reis using a GI gun and a ~450-m-long streamer. We employ several techniques to extract information on the distribution of gas from these data: 1) visual identification of attributes associated with gas (wipe-out zones, high amplitudes, polarity reversals, etc) using a seismic interpretation package, 2) instantaneous attribute analysis (particularly frequency and amplitude), and 3) AVO on select data in shallow water. Many TAMAM profiles exhibit abundant seismic signatures associated with gas. Likewise, many structures are apparent in TAMAM data that may be related to gravitational collapse, and they cover a wide range of sizes, forms, and ages. Possible slumps are observed in our data in the southern portions of the Tekirdag and Cinarcik basins, on both flanks of the Central High, and north of Kumburgaz Basin. Some are clearly non-tectonic, but others may be, and their significance is controversial. Preliminary results from our work suggest that shallow subsurface gas is particularly prevalent in sediments on the Central and Western Highs and in the North Imrali Basin. It occurs in gravitational structures as amplitude anomalies at the apices of waves or blocks. Furthermore, our initial results show abundant gas north of the Imrali Fault and along thrusts associated with the Central and Western highs. Gas is also observed near the NAF. However, gas also occurs away from faults and possible slumps. Our new constraints on the spatial distribution of gas, slumps and shallow faulting from MCS and Chirp data will be used to test competing models for the relationship between these features.
Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.
1994-01-01
Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in pressurization of the shallow magma system and an increase in earthquake activity. Unlike the short-term SO2 decrease in March 1990, the long-term decrease of sulfur dioxide emission rates from March 1990 through May 1991 was coincident with low rates of seismic energy release and was interpreted to reflect gradual depressurization of the shallow magma reservoir. The long-term declines in seismic energy release and in SO2 emission rates led AVO scientists to conclude on April 19, 1991 that the potential for further eruptive activity from Redoubt Volcano had diminished, and on this basis, the level of concern color code for the volcano was changed from code yellow (Volcano is restless; earthquake activity is elevated; activity may include extrusion of lava) to code green (Volcano is in its normal 'dormant' state). ?? 1994.
Ramzaev, V; Nikitin, A; Sevastyanov, A; Artemiev, G; Bruk, G; Ivanov, S
2014-09-01
A total of 88 seawater samples were collected during two Russian research expeditions (April-May 2011 and August-September 2012) to the Sea of Japan, the Oyashio Current region near Kuril Islands and the Kuroshio-Oyashio transition area in the western North Pacific Ocean. The observations were made aboard the R/V Pavel Gordienko and Akademik Shokalsky in order to study the impact of the Fukushima accident on radioactive contamination of the marine environment. On the board of a ship, the water samples were passed through filters to retain particles with the size of >1 micron. Cesium was extracted from the large volumes (100-3000 L) of the filtrated water using a selective fiber chemisorbent impregnated with copper ferrocyanide. Measurements of (134)Cs and (137)Cs activities in 83 samples of sorbents and 21 samples of filters were performed in the ship-based laboratory with a semiconductor HP-Ge detector. The quantified activity concentrations of dissolved radiocesium ranged from 1 Bq m(-3) to 34 Bq m(-3) for (137)Cs and from 0.2 Bq m(-3) to 29 Bq m(-3) for (134)Cs. Activity concentrations of (137)Cs and (134)Cs were strongly correlated with each other (r = 0.993, n = 59). The (137)Cs/(134)Cs activities ratio in the Fukushima-derived radiocesium inventory for the study areas was deduced to be 0.99 ± 0.03 (on 15 March 2011) and the pre-Fukushima background level of (137)Cs in seawater was estimated as 1.3 ± 0.3 Bq m(-3). The lowest activities of both isotopes were determined in the western part of the Sea of Japan near the Russian coast, while the maximal levels were observed in the open Pacific Ocean, some 500-800 km offshore the Fukushima Dai-ichi Nuclear Power Plant. Contamination with (134)Cs at a level of 0.3-2.6 Bq m(-3) was registered in seawater samples collected in 2011 near the Kuril Islands and Kamchatka in the Oyashio Current region. During the period from April-May 2011 to August-September 2012, activity concentrations of (137)Cs and (134)Cs in surface waters had decreased for all seven stations repeatedly sampled in the study. A detailed observation of radiocesium distribution within the water column down to the depth of 200 m at nine stations from the Kuroshio-Oyashio Interfrontal Zone and Kuroshio Extension in 2012 revealed maximal activity concentrations of both cesium radionuclides in the 100-200 m depth layer. The average inventory of Fukushima-derived (137)Cs in the top 200 m of the water column for the nine stations was estimated as 1.19 kBq m(-2) (decay corrected to 15 March 2011) which is 4.6 times higher than the background value of 0.26 kBq m(-2) expected for this depth. The monitoring results obtained in the study and relevant data published by others show that following the Fukushima accident, the Oyashio current acts as a provider of low-contaminated subarctic waters to the heavily contaminated Kuroshio-Oyashio mixed water region. Copyright © 2014 Elsevier Ltd. All rights reserved.
High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac
NASA Astrophysics Data System (ADS)
Corso, Juan; Garcia-Almirall, Pilar; Marco, Adria
2017-10-01
This article intends to explore the limits of scanning with the technology of 3D Laser Scanner and the 3D printing, as an approximation to its application for the survey and the study of singular elements of the architectural heritage. The case study we developed is the Porta del Drac, in the Pavelló Güell, designed by Antoni Gaudí. We divided the process in two parts, one about how to scan and optimize the survey with the Laser Scanner Technology, made with a Faro Forus3D x330 scanner. The second one, about the optimization of the survey as a high-resolution mesh to have a scaled 3D model to be printed in 3D, for the musealization of the Verdaguer House of Literature in Vil.la Joana (Barcelona), a project developed by the Museum of History of Barcelona, in tribute to Jacint Verdaguer. In the first place, we propose a methodology for the survey of this atypical model, which is of special interest for several factors: the geometric complexity in relation to the occlusions, the thickness of the metallic surfaces, the hidden internal structure partially seen from the outside, the produced noise in its interior, and the instrumental errors. These factors make the survey process complex from the data collection, having to perform several scans from different positions to cover the entire sculpture, which has a geometry composed of a variety of folds that cause occlusions. Also, the union of the positions and the average of the surfaces is of great relevance, since the elements of the sculpture are constructed by a metal plate of 2mm, therefore, the error in the union of all these many positions must be smaller than this. Moreover, optimization of the cloud has a great difficulty because of the noise created by the instrumental error as it is a metal sculpture and because of noise point clouds that are generated inside the internal folds of the wings, which are made with a welded wire mesh with little spaces between them. Finally, the added difficulty that there is an internal structure between elements of the parts of the Drac that are partially hidden and therefore cannot be recorded. Secondly, we expose the procedures performed to move from a point cloud to an optimal high-resolution mesh to be printed in 3D, adapting it to all the limitations that this printing technique entails. On the one hand, for the meshing process, a previous classification of the point cloud by pieces (wings, chains, mosaics, head …) is made and an internal structure is re-assembled to avoid floating parts. On the other hand, the selection of the 3D printing technique, in this case FDM (Fused Deposition Modelling), limits the size of the model so it needs to be cut by determined maximum dimension, and also it limits the minimum thickness of the model’s surface, that is to say, the model cannot be directly scaled to the desired size because the 2mm surfaces would be too thin to be printed. This research intends to advance the knowledge of data acquisition, optimization, modelling and 3D printing, with a case study of great complexity. A process that can be systematized and applied to other models.
EDITORIAL: The 28th International Conference on Phenomena in Ionized Gases
NASA Astrophysics Data System (ADS)
Simek, Milan; Sunka, Pavel
2008-05-01
The 28th International Conference on Phenomena in Ionized Gases (ICPIG) was held in Prague, the capital of the Czech Republic, on 15--20 July 2007, under the sponsorship of the International Union of Pure and Applied Physics (IUPAP). The ICPIG, a traditional international conference with a remarkably long history, is held every two years and covers the fundamental physical aspects of ionized gases. It emphasizes interdisciplinary research and fosters exchange between the different communities. The 28th ICPIG was organized by the Institute of Plasma Physics, Academy Sciences of the Czech Republic with the participation of the Faculty of Electrical Engineering, Czech Technical University, and the Faculty of Mathematics and Physics of Charles University, all in Prague. The conference was attended by 619 scientists from 50 countries (537 participants from outside the host country) and, compared with preceding meetings, ICPIG in Prague came with several changes. The pocket program and CD proceedings have been replaced by the book of abstracts, pocket program and CD containing full-length contributions. The International Scientific Committee also decided to update substantially the list of ICPIG topics. These topics have been grouped into four major sections: A. Fundamentals; B. Modelling, Simulation and Diagnostics; C. Plasma Sources and Discharge Regimes; D. Applications, with each major section structured into several sub-topics. Last but not least, on the occasion of ICPIG 2007, the IUPAP Early Career Award in Plasma Physics was bestowed for the first time. Complete 28th ICPIG conference records include the von Engel Prize Lecture, 10 general and 26 topical invited lectures, 18 workshop lectures and the contributed papers (http://icpig2007.ipp.cas.cz/). All 718 submitted full-length contributed papers were reviewed and 608 contributions were accepted for poster presentation. It is worth noting that 98 of the total of 608 poster contributions belong to the topic 'Non-equilibrium Plasmas and Micro-plasmas at High Pressures', reflecting new trends in the field. Important parts of the conference were two workshops focused on specific themes. The workshop 'Pulsed electrical discharges in water: fundamentals and applications', organized by Professor Pavel Sunka, reviewed the scientific challenges related to fundamentals of pulsed discharges initiated in slightly conductive liquid water solutions. The workshop 'Physics and applications of pulsed high-current capillary discharges', organized by Dr Karel Kolácek, addressed scientific challenges and technological applications of high-current capillary discharges pinching into a nearly uni-dimensional dense plasma column composed of a quasi-neutral mixture of very hot electrons and multiply charged ions. All ICPIG speakers were invited to prepare peer-reviewed articles based on their conference lectures for the journal Plasma Sources Sciences and Technology (PSST) in the form of either reviews or original works. A selection of invited papers is published in this special issue. We would like to thank all authors for their effort in preparing interesting articles for the readers of PSST. We would like to thank once more all members of the International Scientific Committee chaired by Professor Jerzy Mizeraczyk as well as the members of the Local Organizing Committee and the National Advisory Board for their considerable contributions to the success of the conference. We are particularly grateful to the Editorial Board of Plasma Sources Science and Technology for the opportunity to bring the 28th ICPIG to a wider audience.
Multi-physics and multi-scale characterization of shale anisotropy
NASA Astrophysics Data System (ADS)
Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.
2012-12-01
Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<μm scale). For each of the above properties, leading-edge experimental techniques have been associated with novel interpretation tools. In this contribution, these experimental and interpretation methods are described. Relationships between the measured properties and the corresponding micro-/meso-structural features are discussed. For example, P-wave velocity was measured along 100 different propagation paths on a single cylindrical shale specimen using miniature ultrasonic transducers. Assuming that (i) the elastic tensor of this shale is transversely isotropic; and (i) the sample has been cored perfectly perpendicular to the bedding plane (symmetry plane is horizontal), Thomsen's anisotropy parameters inverted from the measured velocities are: - P-wave velocity along the symmetry axis (perpendicular to the bedding plane) αo=3.45km/s; - P-wave anisotropy ɛ=0.12; - Parameter controlling the wave front geometry δ=0.058. A novel inversion algorithm allows for recovering these parameters without assuming a priori a horizontal bedding (symmetry) plane. The inversion of the same data set using this algorithm yields (i) αo=3.23km/s, ɛ=0.25 and δ=0.18, and (ii) the elastic symmetry axis is inclined of ω=30° with respect to the specimen's axis. Such difference can have strong impact on field applications (AVO, ray tracing, tomography).
Explosions of andesitic volcanoes in Kamchatka and danger of volcanic ash clouds to aviation
NASA Astrophysics Data System (ADS)
Gordeev, E. I.; Girina, O. A.; Neal, C. A.
2010-12-01
There are 30 active volcanoes in Kamchatka and 4 of them continuously active. The explosions of andesitic volcanoes (Bezymianny and Sheveluch) produce strong and fast ash plumes, which can rich high altitude (up to 15 km) in short time. Bezymianny and Sheveluch are the most active volcanoes of Kamchatka. A growth of the lava dome of Bezymianny into the explosive crater continues from 1956 till present. Nine strong explosive eruptions of the volcano associated with the dome-building activity occurred for last 5 years in: 2005, January 11 and November 30; 2006, May 09 and December 24; 2007, May 11 and October 14-15; 2008, August 19; 2009, December 16-17 and 2010, May 31. Since 1980, a lava dome of Sheveluch has being growing at the bottom of the explosive crater, which has formed as the result of the catastrophic eruption in 1964. Strong explosive eruptions of the volcano associated with the dome-building activity occurred in: 1993, April 22; 2001, May 19-21; 2004, May 09; 2005, February 27 and September 22; 2006, December 25-26; 2007, March 29 and December 19; 2009, April 26-28 and September 10-11. Strong explosive eruption of andesitic volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Volcanic ash is an extremely abrasive, as it consists of acute-angled rock fragments and volcanic glass. Due to the high specific surface of andesitic ash particles are capable of retaining an electrostatic charge and absorb droplets of water and corrosive acids. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. To reduce the risk of collision of aircraft with ash clouds of Kamchatkan volcanoes, was created the International KVERT Project, uniting scientists IVS FEB RAS, KB GS RAS and AVO USGS. To solve this problem and provide early warning of air services on the volcanic hazard, scientists analyze the data of seismic, video, visual and satellite monitoring of volcanoes of Kamchatka. In case of ash explosion, cloud or plume detection, information is sending via e-mail operatively to all interested users. Scientists collect all the information (research data, descriptions of eruptions from the literature, observations of tourists, etc.) of the active volcanoes. Based on analysis of historical activity Bezymianny, as well as its continuous monitoring data, scientists of KVERT Project repeatedly predicted the eruption of this volcano. It allowed notifying in time air services of the impending danger of aircraft. For example, in 2001-2010, were predicted 9 of its eruptions (December 16, 2001; December 25, 2002; January 11, 2005; May 9, 2006; May 11, 2007; October 14-15, 2007; August 19, 2008; December 16, 2009; May 31, 2010).
EDITORIAL: Ongoing climatic change in Northern Eurasia: justification for expedient research
NASA Astrophysics Data System (ADS)
Groisman, Pavel; Soja, Amber J.
2009-12-01
A brief overview of the ongoing climatic and environmental changes in Northern Eurasia serves as an editorial introduction to this, the second, special Northern Eurasia Earth Science Partnership Initiative (NEESPI) focus issue of Environmental Research Letters. Climatic changes in Northern Eurasia over the last hundred years are reflected in numerous atmospheric and terrestrial variables. Many of these are noticeably significant above the confidence level for 'weather' or other (fire regime, ecosystem change) noise and thus should be further investigated in order to adapt to their impacts. In this focus issue, we introduce assorted studies of different aspects of contemporary change in Northern Eurasia. Most of these have been presented at one of the NEESPI workshops (for more information see neespi.org) and/or American Geophysical Union and European Geosciences Union NEESPI open sessions during the past year. These studies are diverse, representing the diversity of climates and ecosystems across Northern Eurasia. Some of these are focused on smaller spatial scales and/or address only specific aspects of the global change implications across the subcontinent. But the feeling (and observational evidence) that these changes have already been quite rapid and can have global implications inspires us to bring this suite of papers to the readers' attention. See the PDF for the full text of the editorial. Focus on Climatic and Environmental Change in Northern Eurasia Contents Preface Northern Eurasia Earth Science Partnership Initiative Pavel Groisman and Amber J Soja Editorial Siberia integrated regional study: Multidisciplinary investigations of interrelation between Siberia environment dynamics and global climate change E P Gordov and E A Vaganov Studies of the energy and water cycles in Northern Eurasia Comparison and evaluation of gridded radiation products across northern Eurasia T J Troy and E F Wood Reanalysis data underestimate significant changes in growing season weather in Kazakhstan C K Wright, K M de Beurs, Z K Akhmadieva, P Y Groisman and G M Henebry Climate change in Inner Mongolia from 1955 to 2005—trends at regional, biome and local scales N Lu, B Wilske, J Ni, R John and J Chen Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images M V Georgievsky Record Russian river discharge in 2007 and the limits of analysis A I Shiklomanov and R B Lammers Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming E Novenko, A Olchev, O Desherevskaya and I Zuganova Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007 Michael A Rawlins, Mark C Serreze, Ronny Schroeder, Xiangdong Zhang and Kyle C McDonald Studies of the cryosphere in Northern Eurasia Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements Reginald R Muskett and Vladimir E Romanovsky Changes in snow cover over Northern Eurasia in the last few decades O N Bulygina, V N Razuvaev and N N Korshunova Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait D Nicolsky and N Shakhova Snow cover basal ice layer changes over Northern Eurasia since 1966 Olga N Bulygina, Pavel Ya Groisman, Vyacheslav N Razuvaev and Vladimir F Radionov Snow cover and permafrost evolution in Siberia as simulated by the MGO regional climate model in the 20th and 21st centuries I M Shkolnik, E D Nadyozhina, T V Pavlova, E K Molkentin and A A Semioshina Studies of the biosphere in Northern Eurasia The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites A Bartsch, H Balzter and C George Change and persistence in land surface phenologies of the Don and Dnieper river basins V Kovalskyy and G M Henebry Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia A Olchev, E Novenko, O Desherevskaya, K Krasnorutskaya and J Kurbatova The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate N M Tchebakova, E Parfenova and A J Soja An image-based inventory of the spatial structure of West Siberian wetlands A Peregon, S Maksyutov and Y Yamagata Modeling of the carbon dioxide fluxes in European Russia peat bogs J Kurbatova, C Li, F Tatarinov, A Varlagin, N Shalukhina and A Olchev Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate O Panferov, C Doering, E Rauch, A Sogachev and B Ahrends Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai-Sayan mountains, Central Asia N M Tchebakova, T A Blyakharchuk and E I Parfenova Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia Qin Yu, Howard Epstein and Donald Walker Possible decline of the carbon sink in the Mongolian Plateau during the 21st century Y Lu, Q Zhuang, G Zhou, A Sirin, J Melillo and D Kicklighter The frequency of forest fires in Scots pine stands of Tuva, Russia G A Ivanova, V A Ivanov, E A Kukavskaya and A J Soja Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia A Peregon, M Uchida and Y Yamagata Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model J K Shuman and H H Shugart Studies of socioeconomic processes in Northern Eurasia Comparing patterns of ecosystem service consumption and perceptions of range management between ethnic herders in Inner Mongolia and Mongolia L Zhen, B Ochirbat, Y Lv, Y J Wei, X L Liu, J Q Chen, Z J Yao and F Li Land cover/land use change in semi-arid Inner Mongolia: 1992-2004 Ranjeet John, Jiquan Chen, Nan Lu and Burkhard Wilske Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index D A Walker, M O Leibman, H E Epstein, B C Forbes, U S Bhatt, M K Raynolds, J C Comiso, A A Gubarkov, A V Khomutov, G J Jia, E Kaarlejarvi, J O Kaplan, T Kumpula, P Kuss, G Matyshak, N G Moskalenko, P Orekhov, V E Romanovsky, N G Ukraientseva and Q Yu Methods of surface monitoring from space A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters Anatoly A Gitelson, Daniela Gurlin, Wesley J Moses and Tadd Barrow Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges W J Moses, A A Gitelson, S Berdnikov and V Povazhnyy Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan K M de Beurs, C K Wright and G M Henebry Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data R Schroeder, M A Rawlins, K C McDonald, E Podest, R Zimmermann and M Kueppers
Astronomical virtual observatory and the place and role of Bulgarian one
NASA Astrophysics Data System (ADS)
Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen
2009-07-01
Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports, publications, news and so on. This large growth of astronomical data and the necessity of an easy access to those data led to the foundation of the International Virtual Observatory Alliance (IVOA). IVOA was formed in June 2002. By January 2005, the IVOA has grown to include 15 funded VO projects from Australia, Canada, China, Europe, France, Germany, Hungary, India, Italy, Japan, Korea, Russia, Spain, the United Kingdom, and the United States. At the time being Bulgaria is not a member of European Astronomical Virtual Observatory and as the Bulgarian Virtual Observatory is not a legal entity, we are not members of IVOA. The main purpose of the project is Bulgarian Virtual Observatory to join the leading virtual astronomical institutions in the world. Initially the Bulgarian Virtual Observatory will include: - BG Galaxian virtual observatory; - BG Solar virtual observatory; - Department Star clusters of IA, BAS; - WFPDB group of IA, BAS. All available data will be integrated in the Bulgarian centers of astronomical data, conducted by the Wide Field Plate Archive data centre. For the above purpose POSTGRESQL or/and MySQL will be installed on the server of BG-VO and SAADA tools, ESO-MEX or/and DAL ToolKit to transform our FITS files in standard format for VO-tools. A part of the participants was acquainted with the principles of these products during the "Days of virtual observatory in Sofia" January, 2008.
Volcano-Monitoring Instrumentation in the United States, 2008
Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.
2010-01-01
The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing, ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.
NASA Astrophysics Data System (ADS)
2010-11-01
This issue is devoted to our colleague and friend Pierre Duclos who passed away suddenly and prematurely in Prague on 12 January this year. We want to honour his memory in the way he would have liked, by collecting fresh and original work from his area of interest. Pierre Duclos was born on 8 January 1948 in Paris. He started as an engineering student but also attended graduate courses at the Centre de Physique Théorique (CPT) in Marseille, which inspired him to change his path and pursue the professional career of a researcher. He joined the Mathematical Physics team at CPT and obtained a position at the University of Toulon, where he later became a full professor. He was never solitary; always being full of energy and a smart and sociable person, he started and maintained many international collaborations and organized numerous conferences and seminars. In the early eighties he had strong ties with the Free and Technical Universities of Berlin. From the beginning of the nineties, he collaborated with coleagues in Prague, Bucharest, Santiago de Chile, and more recently also in Aalborg and Dublin. His scientific interests were wide, with a focus on mathematical methods of quantum theory. He made important contributions to our understanding of multiple-well Schrödinger operators, geometrically-induced properties of quantum waveguides, spectra of Wannier-Stark systems, dynamics with time-periodic perturbations, and transport in mesoscopic systems, to name his most significant results. We choose for this issue the title `Spectral and transport properties of quantum systems' which cover the subjects of most papers to which his colleagues, and often coauthors, contributed. We have also included a few other papers with topics related to Pierre's work. We are glad we were able to gather a numerous collection of papers which in our view represent interesting new developments. A few of them are works which bear Pierre's signature and have been completed by his collaborators. Moreover, we are aware of several other works which their authors dedicated to Pierre's memory but which for some reason or another did not make it to this issue. A list of these papers can be found at the end of the preface. This multitude of memorial papers shows that Pierre was popular not only as a colleague, coauthor, and teacher, but also as a person. Those who had the good fortune to work with him will always recall his blend of hard-working habits, strong views, and human warmth, which made him so unique. He will be remembered with gratitude and admiration by all who knew him well. We will miss him a lot. Jean-Michel Combes, Université du Sud Toulon-Var and Centre de Physique Théorique, CNRS Marseille, France Pavel Exner, Doppler Institute and Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences Valentin A Zagrebnov, Université de la Mediterranée and Centre de Physique Théorique, CNRS Marseille, France Guest Editors Other works dedicated to Pierre's memory: Aschbacher W, Barbaroux J-M, Faupin J and Guillot J-C 2010 Spectral theory for a mathematical model of weak interactions: the decay of the intermediate bosons W+/-. II Annales Henri Poincaré at press Bellissard J and Palmer I 2009 The Jewett-Krieger construction for tilings arXiv:0906.2997 Gesztesy F and Zinchenko M 2010 Symmetrized perturbation determinants and applications to boundary data maps and Krein-type resolvent formulas arXiv:1007.4605 Kostrykin V, Potthoff J and Schrader R 2010 Brownian motions on metric graphs: Feller Brownian motions on intervals revisited arXiv:1008.3761 Stollmann P 2010 From uncertainty principles to Wegner estimates Math. Phys. Anal. Geom. 13 145-57
NASA Astrophysics Data System (ADS)
Potylitsyn, Alexander; Karataev, Pavel
2012-05-01
This volume contains papers presented at the IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'11) which was held at Royal Holloway, University of London on September 12-16, Egham, United Kingdom. The symposium was organized jointly by Royal Holloway, University of London and Tomsk Polytechnic University, Tomsk, Russia. RREPS is a biennial series of symposia founded in September 1993 as an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University. The intention was to strengthen the basic and applied research focused on radiation from relativistic electrons in condensed media, particularly from natural and artificial periodic structures, and to review the research activity in this area. Since then, the symposium has developed into a forum attracting young scientists from different areas of research and from many countries. Previous successful symposia were held at Tomsk, Russia (1993, 1995, 1997, 2003), Lake Baikal, Russia (1999), Lake Aiya, Altai, Russia (2001), Czech Technical University in Prague, Czech Republic (2007) and Zvenigorod, Moscow region, Russia (2009). As an outcome of the symposia the conference proceedings have been published in Nuclear Instruments and Methods in Physics Research, Section B (Vol. 145 No 1-2, October 1998; Vol. 173 No 1-2, January 2001; Vol. 201 No 1 January 2003; Vol. 227 No 1-2, January 2005; Vol. 266 No 17, September 2008) and Journal of Physics: Conference Series (Vol. 236, June 2010). The purpose of the present RREPS'11 symposium was to review the up-to-date situation in the area of electromagnetic radiation generated by relativistic charged particles in condensed media, and to discuss the research strategy for the near future. Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of the generation of various kinds of radiation and their interplay or combined effects, and to find successful applications for them. Every kind of radiation reflects specific processes of fundamental atomic physics, classical and quantum electrodynamics with a broad range of applications in accelerator physics, nuclear physics, material science and medicine. During the symposium the general properties of electromagnetic radiation were discussed. A few reports were devoted to Cherenkov radiation. Such a renewed interest in this problem is related to possible applications in wakefield accelerators and beam diagnostics. Transition radiation appeared as a well-known subject but wide use of it requires a detailed investigation of its characteristics. New prospective schemes for generating intense radiation beams were proposed. During the last few years electromagnetic radiation has been intensively studied as a potential tool for non-invasive charged particle beam diagnostics. In the symposium a few presentations were devoted to both transverse beam size measurements, using optical diffraction radiation and longitudinal beam dynamics monitoring the use of coherent diffraction and synchrotron radiation techniques. The generation of intense THz and soft x-ray beams was a very popular topic. A few presentations were devoted to the development of compact x-ray sources which might be used as an alternative to large central facilities such as third or fourth generation light sources. An application of crystal targets for radiation generation attracted the attention of all RREPS'11 participants. Parametric x-rays may be used for low-emittance beam diagnostics, and channeling radiation and coherent bremsstrahlung are being studied as a possible mechanism for an intense gamma source for positron production. Traditionally the RREPS symposium includes the following topics: General Properties of Radiation from Relativistic Particles; Cherenkov Radiation Transition Radiation Parametric X-ray Radiation Diffraction Radiation and the Smith-Purcell Effect Coherent Bremsstrahlung and Channeling Radiation Crystal Assisted Processes Applications of Monochromatic X-ray and Gamma Beams Produced at Electron Accelerators We would like to acknowledge the International Program Committee for their suggestions during the preparation of the scientific program. We acknowledge John Adams Institute for Accelerator Science for their financial support of the students, and Royal Holloway, University of London (UK) and Tomsk Polytechnic University (Russia) for their administrative and financial support. Editors Prof Alexander Potylitsyn Tomsk Polytechnic University, Tomsk, Russia Dr Pavel Karataev Royal Holloway, University of London, Egham, United Kingdom Royal Holloway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holubnyak, Yevhen Eugene; Watney, Lynn; Hollenbach, Jennifer
The objectives of this project are to understand the processes that occur when a maximum of 70,000 metric tonnes of CO2 are injected into two different formations to evaluate the response in different lithofacies and depositional environments. The evaluation will be accomplished through the use of both in situ and indirect MVA (monitoring, verification, and accounting) technologies. The project will optimize for carbon storage accounting for 99% of the CO2 using lab and field testing and comprehensive characterization and modeling techniques. Site characterization and CO2 injection should demonstrate state-of-the-art MVA tools and techniques to monitor and visualize the injected CO2more » plume and to refine geomodels developed using nearly continuous core, exhaustive wireline logs, and well tests and a multi-component 3-D seismic survey. Reservoir simulation studies will map the injected CO2 plume and estimate tonnage of CO2 stored in solution, as residual gas, and by mineralization and integrate MVA results and reservoir models shall be used to evaluate CO2 leakage. A rapid-response mitigation plan was developed to minimize CO2 leakage and provide a comprehensive risk management strategy. The CO2 was intended to be supplied from a reliable facility and have an adequate delivery and quality of CO2. However, several unforeseen circumstances complicated this plan: (1) the initially negotiated CO2 supply facility went offline and contracts associated with CO2 supply had to be renegotiated, (2) a UIC Class VI permit proved to be difficult to obtain due to the experimental nature of the project. Both subjects are detailed in separate deliverables attached to this report. The CO2 enhanced oil recovery (EOR) and geologic storage in Mississippian carbonate reservoir was sucessully deployed. Approximately 20,000 metric tons of CO2 was injected in the upper part of the Mississippian reservoir to verify CO2 EOR viability in carbonate reservoirs and evaluate a potential of transitioning to geologic CO2 storage through EOR. A total of 1,101 truckloads, 19,803 metric tons—an average of 120 tonnes per day—were delivered over the course of injection that lasted from January 9 to June 21, 2016. After cessation of CO2 injection, the KGS 2-32 well was converted to water injector and continues to operate. CO2 EOR progression in the field was monitored weekly with fluid level, temperature, and production recording and formation fluid composition sampling. It is important to note that normally, CO2 EOR pilots are less efficient than commercial operations due to lack of directional and precise well control, lack of surface facilities for CO2 recycling, and other factors. As a result of this pilot CO2 injection, the observed incremental average oil production increase was ~68% with only ~18% of injected CO2 produced back. Decline curve analysis forecasts of additional cumulative oil produced were 32.44M STB to the end of 2027. Wellington Mississippian pilot efficiency by the end of forecast calculations is 11 MCF per barrel of produced oil. Using 32M STB oil production and $1,964,063 cost of CO2, CO2 EOR cost per barrel of oil production is ~$60. Simple but robust monitoring technologies proved to be very efficient in detecting and locating CO2. High CO2 reservoir retentions with low yields within an actively producing field could help to estimate real-world risks of CO2 geological storage for future projects. The Wellington Field CO2 EOR was executed in a controlled environment with high efficiency. This case study proves that CO2 EOR could be successfully applied in Kansas carbonate reservoirs if CO2 sources and associated infrastructure are available. Recent developments in unconventional resources development in Mid-Continent USA and associated large volume disposal of backflow water and the resulting seismic activity have brought more focus and attention to the Arbuckle Group in southern Kansas. Despite the commercial interest, limited essential information about reservoir properties and structural elements has impeded the management and regulation of disposal, an issue brought to the forefront by recent seismicity in and near areas of large volumes and rates of brine disposal. The Kansas Geological Survey (KGS) collected, compiled, and analyzed available data, including well logs, core data, step rate tests, drill stem tests, 2-D and 3-D seismic data, water level measurements, and others types of data. Several exploratory wells were drilled and core was collected and modern suites of logs were analyzed. Reservoir properties were populated into several site-specific geological models. The geological models illustrate the highly heterogeneous nature of the Arbuckle Group. Vertical and horizontal variability results in several distinct hydro-stratigraphic units that are the result of both depositional and diagenetic processes. During the course of this project, it has been demonstrated that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and Arbuckle saline aquifer. Analysis of post-stack 3-D seismic data at the Mississippian reservoir showed the response of a gradational velocity transition. Pre-stack gather analysis showed that porosity zones of the Mississippian and Arbuckle reservoirs exhibit characteristic amplitude versus offset (AVO) response. Simultaneous AVO inversion estimated P- and S-impedances. The 3-D survey gather azimuthal anisotropy analysis (AVAZ) provided information about the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of injected CO2 in KGS well 2-32. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Seismicity in the United States midcontinent has increased by orders of magnitude over the past decade. Spatiotemporal correlations of seismicity to wastewater injection operations have suggested that injection-related pore fluid pressure increases are inducing the earthquakes. In this investigation, we examine earthquake occurrence in southern Kansas and northern Oklahoma and its relation to the change in pore pressure. The main source of data comes from the Wellington Array in the Wellington oil field, in Sumner County, Kansas, which has monitored for earthquakes in central Sumner County, Kansas, since early 2015. The seismometer array was established to monitor CO2 injection operations at Wellington Field. Although no seismicity was detected in association with the spring 2016 Mississippian CO2 injection, the array has recorded more than 2,500 earthquakes in the region and is providing valuable understanding to induced seismicity. A catalog of earthquakes was built from this data and was analyzed for spatial and temporal changes, stress information, and anisotropy information. The region of seismic concern has been shown to be expanding through use of the Wellington earthquake catalog, which has revealed a northward progression of earthquake activity reaching the metropolitan area of Wichita. The stress orientation was also calculated from this earthquake catalog through focal mechanism inversion. The calculated stress orientation was confirmed through comparison to other stress measurements from well data and previous earthquake studies in the region. With this knowledge of the stress orientation, the anisotropy in the basement could be understood. This allowed for the anisotropy measurements to be correlated to pore pressure increases. The increase in pore pressure was monitored through time-lapse shear-wave anisotropy analysis. Since the onset of the observation period in 2010, the orientation of the fast shear wave has rotated 90°, indicating a change associated with critical pore pressure build up. The time delay between fast and slow shear wave arrivals has increased, indicating a corresponding increase in anisotropy induced by pore pressure rise. In-situ near-basement fluid pressure measurements corroborate the continuous pore pressure increase revealed by the shear-wave anisotropy analysis over the earthquake monitoring period. This research is the first to identify a change in pore fluid pressure in the basement using seismological data and it was recently published in the AAAS journal Science Advances (Nolte et al., 2017). The shear-wave splitting analysis is a novel application of the technique, which can be used in other regions to identify an increase in pore pressure. This increasing pore fluid pressure has become more regionally extensive as earthquakes are occurring in southern Kansas, where they previously were absent. These monitoring techniques and analyses provide new insight into mitigating induced seismicity’s impact on society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Hachey
2007-09-30
The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal moundsmore » for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wells in the project area. Multivariate regressions of seismic attributes versus engineering parameters, such as porosity, were then used to guide interpolation away from well control. These formed the basis for dynamic reservoir simulations. The simulations were used to assess the potential for additional reservoir development, and to provide insight as to how well the multivariate approach worked for assigning more realistic values of internal mound reservoir properties.« less
Special issue on current research in astrophysical magnetism
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander; Lundstedt, Henrik; Brandenburg, Axel
2012-06-01
Much of what Hannes Alfvén envisaged some 70 years ago has now penetrated virtually all branches of astrophysical research. Indeed, magnetic fields can display similar properties over a large range of scales. We have therefore been able to take advantage of the transparency of galaxies and the interstellar medium to obtain measurements inside them. On the other hand, the Sun is much closer, allowing us to obtain a detailed picture of the interaction of flows and magnetic fields at the surface, and more recently in the interior by helioseismology. Moreover, the solar timescales are generally much shorter, making studies of dynamical processes more direct. This special issue on current research in astrophysical magnetism is based on work discussed during a one month Nordita program Dynamo, Dynamical Systems and Topology and comprises papers that fall into four different categories (A)-(D). (A) Papers on small-scale magnetic fields and flows in astrophysics 1. E M de Gouveia Dal Pino, M R M Leão, R Santos-Lima, G Guerrero, G Kowal and A Lazarian Magnetic flux transport by turbulent reconnection in astrophysical flows 2. Philip R Goode, Valentyna Abramenko and Vasyl Yurchyshyn New solar telescope in Big Bear: evidence for super-diffusivity and small-scale solar dynamos? 3. I N Kitiashvili, A G Kosovichev, N N Mansour, S K Lele and A A Wray Vortex tubes of turbulent solar convection The above collection of papers begins with a review of astrophysical reconnection and introduces the concept of dynamos necessary to explain the existence of contemporary magnetic fields both on galactic and solar scales (paper 1). This is complemented by observations with the new Big Bear Solar Observatory telescope, allowing us to see magnetic field amplification on small scales (paper 2). This in turn is complemented by realistic simulations of subsurface and surface flow patterns (paper 3). (B) Papers on theoretical approaches to turbulent fluctuations 4. Nathan Kleeorin and Igor Rogachevskii Growth rate of small-scale dynamo at low magnetic Prandtl numbers 5. Erico L Rempel, Abraham C-L Chian and Axel Brandenburg Lagrangian chaos in an ABC-forced nonlinear dynamo 6. J E Snellman, M Rheinhardt, P J Käpylä, M J Mantere and A Brandenburg Mean-field closure parameters for passive scalar turbulence Research in dynamo theory has been actively pursued for over half a century. It started by trying to understand the large-scale magnetic fields of the Sun and the Earth, and subsequently also in galaxies. Such large-scale fields can nowadays be understood in terms of mean-field dynamo theory that explains the possibility of large-scale field generation under anisotropic conditions lacking mirror symmetry. However, even when none of this is the case, dynamos can still work, and they are called small-scale dynamos that were referred to in paper 2. This was studied originally under the assumption that the flow is smooth compared with the magnetic field, but in the Sun the opposite is the case. This is because viscosity is much smaller than magnetic diffusivity, i.e., their ratio, which is the magnetic Prandtl number, is small. In that case the physics of small-scale dynamos changes, but dynamos still exist even then (paper 4). Tracing the flow lines in nonlinear small-scale dynamos is important for understanding their mixing properties (paper 5). Turbulent mixing is a generic concept that applies not only to magnetic field, but also to passive scalars which are often used as a prototype for studying this. Turbulence simulations have helped tremendously in quantifying the ability of turbulent flows to mix, but the more we know, the more complicated it becomes. It turns out that spatial and temporal coupling is an important consideration for allowing accurate comparison between numerical simulations and mean-field theory (paper 6). (C) The large-scale solar cycle 7. V V Pipin and D D Sokoloff The fluctuating α-effect and Waldmeier relations in the nonlinear dynamo models1 8. Radostin D Simitev and Friedrich H Busse Solar cycle properties described by simple convection-driven dynamos The mean-field concept has helped us constructing detailed models of the solar cycle and to make comparison with observed features of the solar 11-year cycle. One such feature is the Waldmeier relation between growth time and amplitude of the cycle, and there is another relation for the declining part of the cycle. These relations reflect nonlinear aspects of the model and therefore constitute an important test of the model (paper 7). While mean-field theory is a useful concept for modeling solar activity, it must eventually be tested against fully three-dimensional simulations. At present, such simulations are often quite idealized, because only the large scales of the turbulent convection of stars can be resolved. Nevertheless, numerical simulations begin to show many properties that are also seen in the Sun (paper 8). (D) Flow and dynamo properties in spherical shells 9. Maxim Reshetnyak and Pavel Hejda Kinetic energy cascades in quasi-geostrophic convection in a spherical shell 10. Radostin D Simitev and Friedrich H Busse Bistable attractors in a model of convection-driven spherical dynamos As the rotation speed is increased, the flow becomes more strongly constrained by the Coriolis force. In a spherical shell, such a flow is additionally constrained by gravity, or at least by the geometry of the domain. Such flows are called geostrophic. Only now are we beginning to learn about the subtle properties of the kinetic energy cascade in such flows (paper 9). Turbulent systems are highly nonlinear and it is in principle possible to find multiple solutions of the equations even for the same boundary and initial conditions. For turbulent systems, we can only ask about the statistical properties of the solutions, and the question of multiple solutions is then less obvious. However, in turbulent dynamos in convective shells, a nice example has been found where this is possible. A detailed account of this is given in paper 10. Most of the participants of the Nordita program were able to stay for the full month of the program, allowing them to think about new ideas that will be reflected not only in papers on the short term, but also in new projects and collaborations on a larger scale in the years to come. We therefore thank Nordita for providing a stimulating atmosphere and acknowledge the generous support. 1This paper has been published as V V Pipin and D D Sokoloff 2011 Phys. Scr. 84 065903.
PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.
2006-04-01
The formulation of a quantum theory of gravity seems to be the unavoidable endpoint of modern theoretical physics. Yet the quantum description of the gravitational field remains elusive. The year 2005 marks the tenth anniversary of the First Meeting on Constrained Dynamics and Quantum Gravity, held in Dubna (Russia) due to the efforts of Alexandre T. Filippov (JINR, Dubna) and Vittorio de Alfaro (University of Torino, Italy). At the heart of this initiative was the desire for an international forum where the status and perspectives of research in quantum gravity could be discussed from the broader viewpoint of modern gauge field theories. Since the Dubna meeting, an increasing number of scientists has joined this quest. Progress was reported in two other conferences in this series: in Santa Margherita Ligure (Italy) in 1996 and in Villasimius (Sardinia, Italy) in 1999. After a few years of ``working silence'' the time was now mature for a new gathering. The Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05) was held in Cala Gonone (Sardinia, Italy) from Monday 12th to Friday 16th September 2005. Surrounded by beautiful scenery, 100 scientists from 23 countries working in field theory, general relativity and related areas discussed the latest developments in the quantum treatment of gravitational systems. The QG05 edition covered many of the issues that had been addressed in the previous meetings and new interesting developments in the field, such as brane world models, large extra dimensions, analogue models of gravity, non-commutative techniques etc. The format of the meeting was similar to the previous ones. The programme consisted of invited plenary talks and parallel sessions on cosmology, quantum gravity, strings and phenomenology, gauge theories and quantisation and black holes. A major goal was to bring together senior scientists and younger people at the beginning of their scientific career. We were able to give financial support to both groups. In particular, help was provided to students and scientists from non-EU countries. It is our great pleasure to thank those people and institutions whose help and support was crucial to the success of the meeting. We appreciate the enthusiastic support of our colleagues of the academic community, especially those from the Istituto Nazionale di Fisica Nucleare and the Universities of Cagliari, Pisa, Torino and Mississippi. Financial support was provided by the Istituto Nazionale di Fisica Nucleare, the Universities of Cagliari, Torino, Pisa and Mississippi. This was used largely to support participants, especially younger people. Special thanks go to Pietro Menotti (University of Pisa) and Stefano Sciuto (University of Torino) for their friendship and their universities' financial contributions. It is also a pleasure to acknowledge financial support from the Regione Autonoma della Sardegna and from Tiscali, the communications and Internet company, for providing free telephone cards. Technical support and local organisation was provided by the Sezione di Cagliari of the Istituto Nazionale di Fisica Nucleare. Warmest thanks go to our administrative and technical staff - Maria Assunta Lecca and Simona Renieri, for their untiring assistance, and to Palmasera Village and Hotel Smeraldo for their splendid hospitality. And finally, our gratitude goes to all the participants and especially the many experienced scientists. Their contributions highlighted the meeting and were largely without support. The success of the meeting is due to them and to the enthusiasm of the younger participants. The Editors January 2006 COMMITTEES Organising Committee Mariano Cadoni (Università and INFN Cagliari) Marco Cavaglià (University of Mississippi) Jeanette E. Nelson (Università and INFN Torino) Advisory Committee Orfeu Bertolami (IST Lisboa, Portugal) Luca Bombelli (Univ. Mississippi) Steve Carlip (UC Davis, USA) Alessandro D'Adda (INFN Torino, Italy) Stanley Deser (Brandeis, USA) Georgi Dvali (NYU, USA) Sergio Ferrara (CERN) Gian Francesco Giudice (CERN) Roman Jackiw (MIT, USA) Edward W. Kolb (Fermilab, USA) Luca Lusanna (INFN Firenze, Italy) Roy Maartens (Univ. Portsmouth, UK) Hermann Nicolai (AEI, Potsdam, Germany) Tullio Regge (Politecnico di Torino, Italy) Augusto Sagnotti (Univ. Roma Tor Vergata, Italy) Kellogg S. Stelle (Imperial College London, UK) Ruth Williams (DAMTP, Cambridge, UK) SPONSORS Istituto Nazionale di Fisica Nucleare Università di Cagliari Università di Torino University of Mississippi Università di Pisa Regione autonoma della Sardegna Tiscali LIST OF PARTICIPANTS Eun-Joo Ahn (University of Chicago, USA) David Alba (Università di Firenze, Italy) Stanislav Alexeyev (Lomonosov Moscow State U., Russia) Damiano Anselmi (Università di Pisa, Italy) Ignatios Antoniadis (CERN, Geneva, Switzerland) Maria Da Conceicao Bento (Instituto Superior Técnico, Lisboa, Portugal) Orfeu Bertolami (Instituto Superior Técnico, Lisboa, Portugal) Massimo Bianchi (Università di Roma Tor Vergata, Italy) Mariam Bouhmadi-Lopez (University of Portsmouth, UK) Raphael Bousso (University of California at Berkeley, USA) Mariano Cadoni (Università di Cagliari, Italy) Steven Carlip (University of California at Davis, USA) Roberto Casadio (Università di Bologna, Italy) Marco Cavaglià (University of Mississippi, USA) Demian Cho (Raman Research Institute, Bangalore, India) Theodosios Christodoulakis (University of Athens, Greece) Chryssomalis Chryssomalakos (Inst. de Ciencias Nucleares - UNAM, Mexico) Diego Julio Cirilo-Lombardo (JINR, Dubna, Russia) Denis Comelli INFN, Sezione di Ferrara, Italy ) Ruben Cordero-Elizalde (Instituto Politecnico Nacional, Mexico) Lorenzo Cornalba (Università di Roma Tor Vergata, Italy) Branislav Cvetkovic (Institute of Physics, Belgrade, Serbia ) Maro Cvitan (University of Zagreb, Croatia) Alessandro D'Adda (Università di Torino, Italy) Claudio Dappiaggi (Università di Pavia, Italy) Roberto De Leo (Università di Cagliari, Italy) Roberto De Pietri (Università di Parma, Italy) Giuseppe De Risi (Università di Bari, Italy) Hans-Thomas Elze (Univ. Federal do Rio de Janeiro, Brasil) Alessandro Fabbri (Università di Bologna, Italy) Sergey Fadeev (VNIIMS, Moscow, Russia) Serena Fagnocchi (Università di Bologna, Italy) Sara Farese (Universidad de Valencia, Spain) Alessandra Feo (Università di Parma, Italy) Dario Francia (Università di Roma Tor Vergata, Italy) Francesco Fucito (Università di Roma Tor Vergata, Italy) Dmitri Fursaev (JINR, Dubna, Russia) Daniel Galehouse (University of Akron, Ohio, USA) Remo Garattini (Università di Bergamo, Italy) Florian Girelli (Perimeter Institute, Waterloo, Canada) Luca Griguolo (Università di Parma, Italy) Daniel Grumiller (Universität Leipzig, Germany) Shinichi Horata (Hayama Center of Advanced Research, Japan) Giorgio Immirzi (Università di Perugia, Italy) Roman Jackiw (MIT, Cambridge, USA) Matyas Karadi (DAMTP, University of Cambridge, UK) Mikhail Katanaev (Steklov Mathematical Institute, Moscow, Russia) Claus Kiefer (Universität Koln, Germany) John Klauder (University of Florida, Gainesville, USA) Pavel Klepac (Masaryk University, Brno, Czech Republic) Jen-Chi Lee (National Chiao-Tung University, Taiwan) Carlos Leiva (Universidad de Tarapacá, Arica, Chile) Stefano Liberati (SISSA/ISAS, Trieste, Italy) Jorma Louko (University of Nottingham, UK) Luca Lusanna (INFN, Sezione di Firenze, Italy) Roy Maartens (University of Portsmouth, UK) Fotini Markopoulou (Perimeter Institute, Waterloo, Canada) Annalisa Marzuoli (Università di Pavia, Italy) Evangelos Melas (QMW, University of London, UK) Maurizio Melis (Università di Cagliary, Italy) Vitaly Melnikov (VNIIMS, Moscow, Russia) Guillermo A. Mena Marugan (CSIC, Madrid, Spain) Pietro Menotti (Università di Pisa, Italy) Salvatore Mignemi (Università di Cagliari, Italy) Aleksandar Mikovic (Universidade Lusófona, Lisboa, Portugal) Leonardo Modesto (Université de la Mediterranée, Marseille, France) Michael Mueller (Sardinien.com, Cagliari, Italy) Mario Nadalini (Università di Trento, Italy) José Navarro-Salas (Universidad de Valencia, Spain) Jeanette E. Nelson (Università di Torino, Italy) Alexander Nesterov (Universidad de Guadalajara, Mexico) Hermann Nicolai (Albert-Einstein-Institut, Golm, Germany) Daniele Oriti (DAMTP, University of Cambridge, UK) Marcello Ortaggio (Charles University, Prague, Czech Republic) Silvio Pallua (University of Zagreb, Croatia) Matej Pavsic (Jozef Stefan Institute, Ljubljana, Slovenia) Wlodzimierz Piechocki (Soltan Inst. for Nuclear Studies, Warsaw, Poland) Nicola Pinamonti (Università di Trento, Italy) J. Brian Pitts (University of Notre Dame, Indiana, USA) Vojtech Pravda (Academy of Sciences, Praha, Czech Rep.) Gianpaolo Procopio (DAMTP, University of Cambridge, UK) Alice Rogers (King's College London, UK) Efrain Rojas (Universidad Veracruzana, Mexico) James Ryan (DAMTP, University of Cambridge, UK) Augusto Sagnotti (Università di Roma Tor Vergata, Italy) Wenceslao Santiago-German (University of California at Davis, USA) Stefano Sciuto (Università di Torino, Italy) Domenico Seminara (Università di Firenze, Italy) Lorenzo Sindoni (Università di Udine, Italy) Kellogg S. Stelle (Imperial College, London, UK) Cosimo Stornaiolo (INFN, Sezione di Napoli, Italy) Ward Struyve (Perimeter Institute, Waterloo, Canada) Makoto Tanabe (Waseda University, Tokyo, Japan) Daniel Terno (Perimeter Institute, Waterloo, Canada) Charles Wang (Lancaster University, UK) Silke Weinfurtner (Victoria University, Wellington, New Zealand) Hans Westman (Perimeter Institute, Waterloo, Canada) Ruth Williams (DAMTP, University of Cambridge, UK) Tetsuyuki Yukawa (Graduate U. for Adv. Studies, Kanagawa, Japan) Jorge Zanelli (CECS, Santiago, Chile) 
PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)
NASA Astrophysics Data System (ADS)
Akchurin, Nural
2012-12-01
The XVth International Conference on Calorimetry in High Energy Physics, CALOR2012, was held in Santa Fe, New Mexico from 4-8 June 2012. The series of conferences on calorimetry started in 1990 at Fermilab, and they have been the premier event for calorimeter aficionados, a trend that CALOR2012 upheld. This year, several presentations focused on the status of the major calorimeter systems, especially at the LHC. Discussions on new and developing techniques in calorimetry took a full day. Excellent updates on uses of calorimeters or about ideas that are deeply rooted in particle physics calorimetry in astrophysics and neutrino physics were followed by talks on algorithms and special triggers that rely on calorimeters. Finally, discussions of promising current developments and ongoing R&D work for future calorimeters capped the conference. The field of calorimetry is alive and well, as evidenced by the more than 100 attendees and the excellent quality of over 80 presentations. You will find the written contributions in this volume. The presentations can be found at calor2012.ttu.edu. The first day of the conference was dedicated to the LHC. In two invited talks, Guillaume Unal (CERN) and Tommaso Tabarelli de Fatis (Universita' & INFN Milano Bicocca) discussed the critical role electromagnetic calorimeters play in the hunt for the Standard Model Higgs boson in ATLAS and CMS, respectively. The enhanced sensitivity for light Higgs in the two-gamma decay channel renders electromagnetic calorimeters indispensible. Much of the higher mass region was already excluded for the SM Higgs by the time of this conference, and after less than a month, on 4 July, CERN announced the discovery of a new boson at 125 GeV, a particle that seems consistent with the Higgs particle so far. Once again, without the electromagnetic calorimeters, this would not have been possible. Professor Geoffrey West from the Santa Fe Institute gave the keynote address. His talk, 'Universal Scaling Laws from Cells to Cities - a Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics,' inspired many interesting questions from the audience both after the talk and throughout the week during informal conversations. Calorimetry is extremely diverse: many different techniques may be employed in building the detector and also in extracting information from it. The topics of the Calorimeter Techniques sessions included high-rate liquid argon calorimeters, SiPM sensors, highly granular digital calorimeters, new crystals, and beam test and simulation results. In these pages, you will find exciting and sometimes contradicting points of view expressed, for example about fully sampling hadronic calorimeters. A rare astronomical event, the Venus transit, coincided with the second day of the conference. The participants enjoyed viewing Venus' trail across the sun with a solar telescope (H-alpha line at 656 nm). In Santa Fe, the interior ingress was at 16:23:04 and reached center at 19:27:04. The last transit occurred in 2004, and the next one will happen in 2117. In 1627, Johannes Kepler published data about the planetary orbits that predicted that Venus would pass directly between earth and the sun in 1631. Unfortunately Kepler died in 1630 and apparently nobody recorded the 1631 transit. The first recorded observation of a transit was in 1638, which Kepler had not predicted. Later, Jeremiah Horracks, an English astronomer, realized Kepler had made an error in his calculations. It was not until the Venus transit observations of 1769 that scientists measured the distance from the earth to the sun to be 95 million miles (actually 93 million miles or 149.7 million kilometers) based on the 1716 triangulation suggestion from Edmund Halley (of comet fame). It's interesting to remember that before the 18th century, one of the most vexing scientific puzzles, not unlike today's Higgs boson quest, was 'How far away is the Sun?' Although natural media such as Mediterranean water (ANTARES), Arctic ice (ARA, ARIANNA, ANITA, and others) or Utah air (TA) would hardly be choice absorbers in accelerator-based experiments, they are nevertheless successfully exploited in searches for new phenomena, as discussed by the members of these collaborations in several talks. Philippe Bruel (LLR, Ecole Polytechnique) gave an overview of the gamma-ray sky above 20 MeV using the Fermi Gamma-ray Space Telescope and the role of the hodoscopic array of CsI(Tl) calorimeter in an invited talk. In a second invited presentation, Sylvie Rosier-Lees (LAPP-Annecy) described the ECAL design (Pb/scintillating fiber sandwich) of the Alpha Magnetic Spectrometer (AMS-02) that has been operating in the International Space Station since May 2011 and has collected over 15 billion events. The environs of Santa Fe have long been considered sacred by the first nation Americans and have been a source of inspiration for generations of artists, writers, and scientists. Robert Oppenheimer's love of this area played no small role in establishing what is now the nearby Los Alamos National Laboratory during the Second World War. On the third conference day, some participants visited the lab after an awe-inspiring trip to the Bandelier National Monument, where beautiful canyons and mesas show evidence of a human presence for over 11,000 years. Petroglyphs, dwellings carved into the soft rock cliffs, and standing masonry walls in the park mark the early days of a culture that still persists in surrounding communities. We are grateful to the International Advisory Committee for allowing us the opportunity to hold this Conference in these enchanted lands. In addition to making advances in calorimeter design, hardware, and front-end electronics, we in particle physics increasingly find ourselves inventing new algorithms to reconstruct physics objects that use the detector information to its maximum capacity. Several presentations provided details of the reconstruction and trigger of jets, missing transverse energy, electrons, photons, and taus. Pile-up, anomalous signals, and noise mitigation techniques were also discussed in the conference. On the last day, several future R&D initiatives were presented: highly granular CALICE with different technology options and plans for the dual-readout DREAM projects were the main topics. Although these approaches are quite different conceptually, future experiments will certainly benefit from their innovations. Concluding remarks by the chair of the organizing committee, Nural Akchurin (TTU), summarized the highlights of the conference and invited proposals to host the CALOR2014 conference in Europe, as the conference venue rotates between the Americas, Europe, and Asia every two years. We strived hard to keep the cost of this conference as low as possible without sacrificing the scientific mission. I am delighted to report that we were able to provide support for six junior colleagues to participate in this conference. I am also grateful to the institutions, industrial partners, and agencies that provided the support that made a lot possible: Texas Tech University, the University of New Mexico, Los Alamos National Laboratory, the US Department of Energy, CAEN, and the Wiener Plein & Baus, Corp. I also would like to thank the session conveners who organized sessions and reviewed the papers. The members of the local organizing committee were instrumental to the success of this conference: their experience and attention to detail were invaluable. Most of all, I extend my appreciation to the conference participants and to all my other colleagues who continue to enrich the field of calorimetry through their hard work and creativity. The future is bright. Nural Akchurin Chair of the Organizing Committee International Advisory Committee: Mikhail Danilov, ITEP Moscow Marcella Diemoz, INFN Roma I Antonio Ereditato, Univ. of Bern Franco L. Fabbri, INFN Frascati Tomio Kobayashi, ICEPP Tokyo Michele Livan, Pavia Univ. & INFN Pasquale Lubrano, INFN Perugia Steve Magill, ANL Amelia Maio, LIPP Lisbon Horst Oberlack, MPI Munich Adam Para, FNAL Klaus Pretzl, Univ. of Bern Yifang Wang, IHEP Beijing Richard Wigmans, TTU Ren-Yuan Zhu, Caltech Local Organizing Committee: Nural Akchurin, TTU Debra Boyce, TTU (Secretary) Xiadong Jiang, LANL Jon Kapustinsky, LANL Sung-Won Lee, TTU Sally Seidel, UNM Igor Volobouev, TTU Session Conveners: LHC I-III: David Barney (CERN) Ana Henriques (CERN) Sally Seidel (UNM) Calorimetry Techniques I-II: Francesca Tedaldi (ETH-Zurich) Tao Hu (IHEP-Beijing) Calorimetry Techniques III-IV: Craig Woody (BNL) Tohru Takeshita (Shinshu) Astrophysics and Neutrinos: Don Groom (LBNL) Steve Magill (ANL) Operating Calorimeters: Jordan Damgov (TTU) Gabriella Gaudio (INFN-Pavia) Frank Chlebana (FNAL) Algorithms and Simulations: Artur Apresyan (Caltech) Igor Volobouev (TTU) Front-end and Trigger: Chris Tully (Princeton) Kejun Zhu (IHEP-Beijing) Future Calorimetry: Michele Livan (Pavia Univ.) Frank Simon (MPI) Vishnu Zutshi (NICADD) List of Participants: ABOUZEID, Hass University of Toronto AKCHURIN, Nural Texas Tech University ANDEEN, Timothy Columbia University ANDERSON, Jake Fermilab APRESYAN, Artur California Institute of Technology AUFFRAY, Etiennette CERN BARILLARI, Teresa Max-Planck-Inst. fuer Physik BARNEY, David CERN BESSON, Dave University of Kansas BOYCE, Debra Texas Tech University BRUEL, Philippe LLR, Ecole Polytechnique, CNRS/IN2P3 BUCHANAN, Norm Colorado State University CARLOGANU, Cristina LPC Clermont Ferrand / IN2P3 / CNRS CHEFDEVILLE, Maximilien CNRS/IN2P3/LAPP CHLEBANA, Frank Fermilab CLARK, Jonathan Texas Tech University CONDE MUINO, Patricia LIP-Lisboa COWDEN, Christopher Texas Tech University DA SILVA, Cesar Luiz Los Alamos National Lab DAMGOV, Jordan Texas Tech University DAVYGORA, Yuriy University of Heidelberg DEMERS, Sarah Yale University EIGEN, Gerald University of Bergen EUSEBI, Ricardo Texas A&M University FERRI, Federico CEA/Saclay Irfu/SPP FRANCAVILLA, Paolo IFAE Barcelona GATAULLIN, Marat California Institute of Technology GATTO, Corrado INFN-Napoli GAUDIO, Gabriella INFN-Pavia GERMANI, Stefano INFN-Perugia Goldenzweig, Pablo University of Rochester GRAF, Norman SLAC National Accelerator Laboratory GROOM, Don Lawrence Berkeley Lab GUARDINCERRI, Elena Los Alamos National Laboratory HAUPTMAN, John Iowa State University HENRIQUES, Ana CERN HUANG, Jin Los Alamos National Laboratory HU, Tao IHEP-Beijing, CAS JIANG, Xiaodong Los Alamos National Laboratory JUI, Charles University of Utah KAPUSTINSKY, Jon Los Alamos National Laboratory KIBILKO, Mark SE Technical Sales, Inc. KIRSCHENMANN, Henning University of Hamburg KISTENEV, Edouard Brookhaven National Laboratory KLIMEK, Pawel Stockholm Universitet KROEGER, Robert University of Mississippi LECOQ, Paul CERN LEE, Sehwook Texas Tech University LEE, Sung-Won Texas Tech University LIVAN, Michele Pavia University LUTZ, Benjamin DESY MAGILL, Stephen Argonne National Laboratory MATHIS, Mark College of William and Mary MATTHEWS, John University of Utah MENKE, Sven Max-Planck-Institut fuer Physik MOULSON, Matthew INFN-Frascati NAGEL, Martin Max-Planck-Institut fuer Physik NAKAMURA, Isamu KEK NEMECEK, Stanislav FZU AVCR Praha NESSI-TEDALDI, Francesca ETH Zurich NOVOTNY, Rainer 2nd Physics Institute, University Giessen OREGLIA, Mark University of Chicago PERLOFF, Alexx Texas A&M University PETYT, David Rutherford Appleton Laboratory RAHMAT, Rahmat University of Mississippi RAMILLI, Marco Hamburg Universitaet ROSIER LEES, Sylvie LAPP- IN2P3-CNRS RUTHERFOORD, John University of Arizona SAKUMA, Tai Texas A&M University SANTIAGO CERQUEIRA, Augusto Federal University of Juiz de Fora SARRA, Ivano INFN-Frascati SEIDEL, Sally University of New Mexico SEIFERT, Frank TU Dresden, Germany SHAMIM, Mansoora University of Oregon SIMON, Frank Max-Planck-Institute for Physics STAFFAN, Paul Wiener Plein and Baus, Corp Dr. STAROVOITOV, Pavel DESY TABARELLI DE FATIS, Tommaso Universita' & INFN Milano-Bicocca TADEVOSYAN, Vardan AANL TAKESHITA, Tohru Shinshu University TALAGA, Richard Argonne National Laboratory TAPAN, Ilhan Uludag University TERWORT, Mark DESY TSAI, Oleg UCLA TULLY, Christopher Princeton University UNAL, Guillaume CERN VICHOU, Eirini University of Illinois at Urbana-Champaign VILASIS-CARDONA, Xavier La Salle - Universitat Ramon Llull VOLOBOUEV, Igor Texas Tech University VOLPI, Matteo The University of Melbourne WANG, Zhigang IHEP-Beijing, CAS WENZEL, Hans Fermilab WHITE, Andy University of Texas at Arlington WIGMANS, Richard Texas Tech University WINN, David Fairfield University WOODY, Craig Brookhaven National Lab YANG, Fan California Institute of Technology ZABI, Alexandre LLR-Ecole Polytechnique ZHANG, Liyuan California Institute of Technoogy ZHAO, Zhiwen University of Virginia ZHU, Kejun IHEP-Beijing, CAS ZHU, Ren-Yuan California Institute of Technology ZUTSHI, Vishnu Northern Illinois University
A Portrait of One Hundred Thousand and One Galaxies
NASA Astrophysics Data System (ADS)
2002-08-01
Rich and Inspiring Experience with NGC 300 Images from the ESO Science Data Archive Summary A series of wide-field images centred on the nearby spiral galaxy NGC 300 , obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory , have been combined into a magnificent colour photo. These images have been used by different groups of astronomers for various kinds of scientific investigations, ranging from individual stars and nebulae in NGC 300, to distant galaxies and other objects in the background. This material provides an interesting demonstration of the multiple use of astronomical data, now facilitated by the establishment of extensively documented data archives, like the ESO Science Data Archive that now is growing rapidly and already contains over 15 Terabyte. Based on the concept of Astronomical Virtual Observatories (AVOs) , the use of archival data sets is on the rise and provides a large number of scientists with excellent opportunities for front-line investigations without having to wait for precious observing time. In addition to presenting a magnificent astronomical photo, the present account also illustrates this important new tool of the modern science of astronomy and astrophysics. PR Photo 18a/02 : WFI colour image of spiral galaxy NGC 300 (full field) . PR Photo 18b/02 : Cepheid stars in NGC 300 PR Photo 18c/02 : H-alpha image of NGC 300 PR Photo 18d/02 : Distant cluster of galaxies CL0053-37 in the NGC 300 field PR Photo 18e/02 : Dark matter distribution in CL0053-37 PR Photo 18f/02 : Distant, reddened cluster of galaxies in the NGC 300 field PR Photo 18g/02 : Distant galaxies, seen through the outskirts of NGC 300 PR Photo 18h/02 : "The View Beyond" ESO PR Photo 18a/02 ESO PR Photo 18a/02 [Preview - JPEG: 400 x 412 pix - 112k] [Normal - JPEG: 1200 x 1237 pix - 1.7M] [Hi-Res - JPEG: 4000 x 4123 pix - 20.3M] Caption : PR Photo 18a/02 is a reproduction of a colour-composite image of the nearby spiral galaxy NGC 300 and the surrounding sky field, obtained in 1999 and 2000 with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. See the text for details about the many different uses of this photo. Smaller areas in this large field are shown in Photos 18b-h/02 , cf. below. The High-Res version of this image has been compressed by a factor 4 (2 x 2 pixel rebinning) to reduce it to a reasonably transportable size. Technical information about this and the other photos is available at the end of this communication. Located some 7 million light-years away, the spiral galaxy NGC 300 [1] is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of that name. NGC 300 is a big object in the sky - being so close, it extends over an angle of almost 25 arcmin, only slightly less than the size of the full moon. It is also relative bright, even a small pair of binoculars will unveil this magnificent spiral galaxy as a hazy glowing patch on a dark sky background. The comparatively small distance of NGC 300 and its face-on orientation provide astronomers with a wonderful opportunity to study in great detail its structure as well as its various stellar populations and interstellar medium. It was exactly for this purpose that some images of NGC 300 were obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. This advanced 67-million pixel digital camera has already produced many impressive pictures, some of which are displayed in the WFI Photo Gallery [2]. With its large field of view, 34 x 34 arcmin 2 , the WFI is optimally suited to show the full extent of the spiral galaxy NGC 300 and its immediate surroundings in the sky, cf. PR Photo 18a/02 . NGC 300 and "Virtual Astronomy" In addition to being a beautiful sight in its own right, the present WFI-image of NGC 300 is also a most instructive showcase of how astronomers with very different research projects nowadays can make effective use of the same observations for their programmes . The idea to exploit one and the same data set is not new, but thanks to rapid technological developments it has recently developed into a very powerful tool for the astronomers in their continued quest to understand the Universe. This kind of work has now become very efficient with the advent of a fully searchable data archive from which observational data can then - after the expiry of a nominal one-year proprietary period for the observers - be made available to other astronomers. The ESO Science Data Archive was established some years ago and now encompasses more than 15 Terabyte [3]. Normally, the identification of specific data sets in such a large archive would be a very difficult and time-consuming task. However, effective projects and software "tools" like ASTROVIRTEL and Querator now allow the users quickly to "filter" large amounts of data and extract those of their specific interest. Indeed, "Archival Astronomy" has already led to many important discoveries, cf. the ASTROVIRTEL list of publications. There is no doubt that "Virtual Astronomical Observatories" will play an increasingly important role in the future, cf. ESO PR 26/01. The present wide-field images of NGC 300 provide an impressive demonstration of the enormous potential of this innovative approach. Some of the ways they were used are explained below. Cepheids in NGC 300 and the cosmic distance scale ESO PR Photo 18b/02 ESO PR Photo 18b/02 [Preview - JPEG: 468 x 400 pix - 112k] [Full-Res - JPEG: 1258 x 1083 pix - 1.6M] Caption : PR Photo 18b/02 shows some of the Cepheid type stars in the spiral galaxy NGC 300 (at the centre of the markers), as they were identified by Wolfgang Gieren and collaborators during the research programme for which the WFI images of NGC 300 were first obtained. In this area of NGC 300, there is also a huge cloud of ionized hydrogen (a "HII shell"). It measures about 2000 light-years in diameter, thus dwarfing even the enormous Tarantula Nebula in the LMC, also photographed with the WFI (cf. ESO PR Photos 14a-g/02 ). The largest versions ("normal" or "full-res") of this and the following photos are shown with their original pixel size, demonstrating the incredible amount of detail visible on one WFI image. Technical information about this photo is available below. In 1999, Wolfgang Gieren (Universidad de Concepcion, Chile) and his colleagues started a search for Cepheid-type variable stars in NGC 300. These stars constitute a key element in the measurement of distances in the Universe. It has been known since many years that the pulsation period of a Cepheid-type star depends on its intrinsic brightness (its "luminosity"). Thus, once its period has been measured, the astronomers can calculate its luminosity. By comparing this to the star's apparent brightness in the sky, and applying the well-known diminution of light with the second power of the distance, they can obtain the distance to the star. This fundamental method has allowed some of the most reliable measurements of distances in the Universe and has been essential for all kinds of astrophysics, from the closest stars to the remotest galaxies. Previous to Gieren's new project, only about a dozen Cepheids were known in NGC 300. However, by regularly obtaining wide-field WFI exposures of NGC 300 from July 1999 through January 2000 and carefully monitoring the apparent brightness of its brighter stars during that period, the astronomers detected more than 100 additional Cepheids . The brightness variations (in astronomical terminology: "light curves") could be determined with excellent precision from the WFI data. They showed that the pulsation periods of these Cepheids range from about 5 to 115 days. Some of these Cepheids are identified on PR Photo 18b/02 , in the middle of a very crowded field in NGC 300. When fully studied, these unique observational data will yield a new and very accurate distance to NGC 300, making this galaxy a future cornerstone in the calibration of the cosmic distance scale . Moreover, they will also allow to understand in more detail how the brightness of a Cepheid-type star depends on its chemical composition, currently a major uncertainty in the application of the Cepheid method to the calibration of the extragalactic distance scale. Indeed, the effect of the abundance of different elements on the luminosity of a Cepheid can be especially well measured in NGC 300 due to the existence of large variations of these abundances in the stars located in the disk of this galaxy. Gieren and his group, in collaboration with astronomers Fabio Bresolin and Rolf Kudritzki (Institute of Astronomy, Hawaii, USA) are currently measuring the variations of these chemical abundances in stars in the disk of NGC 300, by means of spectra of about 60 blue supergiant stars, obtained with the FORS multi-mode instruments at the ESO Very Large Telescope (VLT) on Paranal. These stars, that are among the optically brightest in NGC 300, were first identified in the WFI images of this galaxy obtained in different colours - the same that were used to produce PR Photo 18a/02 . The nature of those stars was later spectroscopically confirmed at the VLT. As an important byproduct of these measurements, the luminosities of the blue supergiant stars in NGC 300 will themselves be calibrated (as a new cosmic "standard candle"), taking advantage of their stellar wind properties that can be measured from the VLT spectra. The WFI Cepheid observations in NGC 300, as well as the VLT blue supergiant star observations, form part of a large research project recently initiated by Gieren and his group that is concerned with the improvement of various stellar distance indicators in nearby galaxies (the "ARAUCARIA" project ). Clues on star formation history in NGC 300 ESO PR Photo 18c/02 ESO PR Photo 18c/02 [Preview - JPEG: 440 x 400 pix - 63k] [Normal - JPEG: 1200 x 1091 pix - 664k] [Full-Res - JPEG: 5515 x 5014 pix - 14.3M] Caption : PR Photo 18c/02 displays NGC 300, as seen through a narrow optical filter (H-alpha) in the red light of hydrogen atoms. A population of intrinsically bright and young stars turned "on" just a few million years ago. Their radiation and strong stellar winds have shaped many of the clouds of ionized hydrogen gas ("HII shells") seen in this photo. The "rings" near some of the bright stars are caused by internal reflections in the telescope. Technical information about this photo is available below.. But there is much more to discover on these WFI images of NGC 300! The WFI images obtained in several broad and narrow band filters from the ultraviolet to the near-infrared spectral region (U, B, V, R, I and H-alpha) allow a detailed study of groups of heavy, hot stars (known as "OB associations") and a large number of huge clouds of ionized hydrogen ("HII shells") in this galaxy. Corresponding studies have been carried out by Gieren's group, resulting in the discovery of an amazing number of OB associations, including a number of giant associations. These investigations, taken together with the observed distribution of the pulsation periods of the Cepheids, allow to better understand the history of star formation in NGC 300. For example, three distinct peaks in the number distribution of the pulsation periods of the Cepheids seem to indicate that there have been at least three different bursts of star formation within the past 100 million years. The large number of OB associations and HII shells ( PR Photo 18c/02 ) furthermore indicate the presence of a numerous, very young stellar population in NGC 300, aged only a few million years. Dark matter and the observed shapes of distant galaxies In early 2002, Thomas Erben and Mischa Schirmer from the "Institut für Astrophysik and extraterrestrische Forschung" ( IAEF , Universität Bonn, Germany), in the course of their ASTROVIRTEL programme, identified and retrieved all available broad-band and H-alpha images of NGC 300 available in the ESO Science Data Archive. Most of these have been observed for the project by Gieren and his colleagues, described above. However, the scientific interest of the German astronomers was very different from that of their colleagues and they were not at all concerned about the main object in the field, NGC 300. In a very different approach, they instead wanted to study those images to measure the amount of dark matter in the Universe, by means of the weak gravitational lensing effect produced by distant galaxy clusters. Various observations, ranging from the measurement of internal motions ("rotation curves") in spiral galaxies to the presence of hot X-ray gas in clusters of galaxies and the motion of galaxies in those clusters, indicate that there is about ten times more matter in the Universe than what is observed in the form of stars, gas and galaxies ("luminous matter"). As this additional matter does not emit light at any wavelengths, it is commonly referred to as "dark" matter - its true nature is yet entirely unclear. Insight into the distribution of dark matter in the Universe can be gained by looking at the shapes of images of very remote galaxies, billions of light-years away, cf. ESO PR 24/00. Light from such distant objects travels vast distances through space before arriving here on Earth, and whenever it passes heavy clusters of galaxies, it is bent a little due to the associated gravitational field. Thus, in long-exposure, high-quality images, this "weak lensing" effect can be perceived as a coherent pattern of distortion of the images of background galaxies. Gravitational lensing in the NGC 300 field ESO PR Photo 18d/02 ESO PR Photo 18d/02 [Preview - JPEG: 400 x 495 pix - 82k] [Full-Res - JPEG: 1304 x 1615 pix - 3.2M] Caption : PR Photo 18d/02 shows the distant cluster of galaxies CL0053-37 , as imaged on the WFI photo of the NGC 300 sky field. The elongated distribution of the cluster galaxies, as well as the presence of two large, early-type elliptical galaxies indicate that this cluster is still in the process of formation. Some of the galaxies appear to be merging. From the measured redshift ( z = 0.1625), a distance of about 2.1 billion light-years is deduced. Technical information about this photo is available below. ESO PR Photo 18e/02 ESO PR Photo 18e/02 [Preview - JPEG: 400 x 567 pix - 89k] [Normal - JPEG: 723 x 1024 pix - 424k] Caption : PR Photo 18e/02 is a "map" of the dark matter distribution (black contours) in the cluster of galaxies CL0053-37 (shown in PR Photo 18d/02 ), as obtained from the weak lensing effects detected in the WFI images, and the X-ray flux (green contours) taken from the All-Sky Survey carried out by the ROSAT satellite observatory. The distribution of galaxies resembles the elongated, dark-matter profile. Because of ROSAT's limited image sharpness (low "angular resolution"), it cannot be entirely ruled out that the observed X-ray emission is due to an active nucleus of a galaxy in CL0053-37, or even a foreground stellar binary system in NGC 300. The WFI NGC 300 images appeared promising for gravitational lensing research because of the exceptionally long total exposure time. Although the large foreground galaxy NGC 300 would block the light of tens of thousands of galaxies in the background, a huge number of others would still be visible in the outskirts of this sky field, making a search for clusters of galaxies and associated lensing effects quite feasible. To ensure the best possible image sharpness in the combined image, and thus to obtain the most reliable measurements of the shapes of the background objects, only red (R-band) images obtained under the best seeing conditions were combined. In order to provide additional information about the colours of these faint objects, a similar approach was adopted for images in the other bands as well. The German astronomers indeed measured a significant lensing effect for one of the galaxy clusters in the field ( CL0053-37 , see PR Photo 18d/02 ); the images of background galaxies around this cluster were noticeably distorted in the direction tangential to the cluster center. Based on the measured degree of distortion, a map of the distribution of (dark) matter in this direction was constructed ( PR Photo 18e/02 ). The separation of unlensed foreground (bluer) and lensed background galaxies (redder) greatly profited from the photometric measurements done by Gieren's group in the course of their work on the Cepheids in NGC 300. Assuming that the lensed background galaxies lie at a mean redshift of 1.0, i.e. a distance of 8 billion light-years, a mass of about 2 x 10 14 solar masses was obtained for the CL0053-37 cluster. This lensing analysis in the NGC 300 field is part of the Garching-Bonn Deep Survey (GaBoDS) , a weak gravitational lensing survey led by Peter Schneider (IAEF). GaBoDS is based on exposures made with the WFI and until now a sky area of more than 12 square degrees has been imaged during very good seeing conditions. Once complete, this investigation will allow more insight into the distribution and cosmological evolution of galaxy cluster masses, which in turn provide very useful information about the structure and history of the Universe. One hundred thousand galaxies ESO PR Photo 18f/02 ESO PR Photo 18f/02 [Preview - JPEG: 400 x 526 pix - 93k] [Full-Res - JPEG: 756 x 994 pix - 1.0M] Caption : PR Photo 18f/02 shows a group of galaxies , seen on the NGC 300 images. They are all quite red and their similar colours indicate that they must be about equally distant. They probably constitute a distant cluster, now in the stage of formation. Technical information about this photo is available below. ESO PR Photo 18g/02 ESO PR Photo 18g/02 [Preview - JPEG: 469 x 400 pix - xxk] [Full-Res - JPEG: 1055 x 899 pix - 968k] Caption : PR Photo 18g/02 shows an area in the outer regions of NGC 300. Disks of spiral galaxies are usually quite "thin" (some hundred light-years), as compared to their radial extent (tens of thousands of light-years across). In areas where only small amounts of dust are present, it is possible to see much more distant galaxies right through the disk of NGC 300 , as demonstrated by this image. Technical information about this photo is available below. ESO PR Photo 18h/02 ESO PR Photo 18h/02 [Preview - JPEG: 451 x 400 pix - 89k] [Normal - JPEG: 902 x 800 pix - 856k] [Full-Res - JPEG: 2439 x 2163 pix - 6.0M] Caption : PR Photo 18h/02 is an astronomers' joy ride to infinity. Such a rarely seen view of our universe imparts a feeling of the vast distances in space. In the upper half of the image, the outer region of NGC 300 is resolved into innumerable stars, while in the lower half, myriads of galaxies - a thousand times more distant - catch the eye. In reality, many of them are very similar to NGC 300, they are just much more remote. In addition to allowing a detailed investigation of dark matter and lensing effects in this field, the present, very "deep" colour image of NGC 300 invites to perform a closer inspection of the background galaxy population itself . No less than about 100,000 galaxies of all types are visible in this amazing image. Three known quasars ([ICS96] 005342.1-375947, [ICS96] 005236.1-374352, [ICS96] 005336.9-380354) with redshifts 2.25, 2.35 and 2.75, respectively, happen to lie inside this sky field, together with many interacting galaxies, some of which feature tidal tails. There are also several groups of highly reddened galaxies - probably distant clusters in formation, cf. PR Photo 18f/02 . Others are seen right through the outer regions of NGC 300, cf. PR Photo 18g/02 . More detailed investigations of the numerous galaxies in this field are now underway. From the nearby spiral galaxy NGC 300 to objects in the young Universe, it is all there, truly an astronomical treasure trove, cf. PR Photo 18h/02 ! Notes [1]: "NGC" means "New General Catalogue" (of nebulae and clusters) that was published in 1888 by J.L.E. Dreyer in the "Memoirs of the Royal Astronomical Society". [2]: Other colour composite images from the Wide-Field Imager at the MPG/ESO 2.2-m telescope at the La Silla Observatory are available at the ESO Outreach website at http://www.eso.org/esopia"bltxt">Tarantula Nebula in the LMC, cf. ESO PR Photos 14a-g/02. [3]: 1 Terabyte = 10 12 byte = 1000 Gigabyte = 1 million million byte. Technical information about the photos PR Photo 18a/02 and all cutouts were made from 110 WFI images obtained in the B-band (total exposure time 11.0 hours, rendered as blue), 105 images in the V-band (10.4 hours, green), 42 images in the R-band (4.2 hours, red) and 21 images through a H-alpha filter (5.1 hours, red). In total, 278 images of NGC 300 have been assembled to produce this colour image, together with about as many calibration images (biases, darks and flats). 150 GB of hard disk space were needed to store all uncompressed raw data, and about 1 TB of temporary files was produced during the extensive data reduction. Parallel processing of all data sets took about two weeks on a four-processor Sun Enterprise 450 workstation. The final colour image was assembled in Adobe Photoshop. To better show all details, the overall brightness of NGC 300 was reduced as compared to the outskirts of the field. The (red) "rings" near some of the bright stars originate from the H-alpha frames - they are caused by internal reflections in the telescope. The images were prepared by Mischa Schirmer at the Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn (IAEF) by means of a software pipeline specialised for reduction of multiple CCD wide-field imaging camera data. The raw data were extracted from the public sector of the ESO Science Data Archive. The extensive observations were performed at the ESO La Silla Observatory by Wolfgang Gieren, Pascal Fouque, Frederic Pont, Hermann Boehnhardt and La Silla staff, during 34 nights between July 1999 and January 2000. Some additional observations taken during the second half of 2000 were retrieved by Mischa Schirmer and Thomas Erben from the ESO archive. CD-ROM with full-scale NGC 300 image soon available PR Photo 18a/02 has been compressed by a factor 4 (2 x 2 rebinning). For PR Photos 18b-h/02 , the largest-size versions of the images are shown at the original scale (1 pixel = 0.238 arcsec). A full-resolution TIFF-version (approx. 8000 x 8000 pix; 200 Mb) of PR Photo 18a/02 will shortly be made available by ESO on a special CD-ROM, together with some other WFI images of the same size. An announcement will follow in due time.