Sample records for payload safety program

  1. Enhancing the NASA Expendable Launch Vehicle Payload Safety Review Process Through Program Activities

    NASA Technical Reports Server (NTRS)

    Palo, Thomas E.

    2007-01-01

    The safety review process for NASA spacecraft flown on Expendable Launch Vehicles (ELVs) has been guided by NASA-STD 8719.8, Expendable Launch Vehicle Payload Safety Review Process Standard. The standard focused primarily on the safety approval required to begin pre-launch processing at the launch site. Subsequent changes in the contractual, technical, and operational aspects of payload processing, combined with lessons-learned supported a need for the reassessment of the standard. This has resulted in the formation of a NASA ELV Payload Safety Program. This program has been working to address the programmatic issues that will enhance and supplement the existing process, while continuing to ensure the safety of ELV payload activities.

  2. NASA ELV Payload Safety Program Information Exchange

    NASA Technical Reports Server (NTRS)

    Staubus, Cal; Palo, Tom; Dook, Mike; Donovan, Shawn

    2007-01-01

    This presentation details the Expendable Launch Vehicle (ELV) Payload Safety Program in its development and plan for implementation. It is an overview of the program's policies, process and requirements.

  3. NASA Expendable Launch Vehicle (ELV) Payload Safety Review Process

    NASA Technical Reports Server (NTRS)

    Starbus, Calvert S.; Donovan, Shawn; Dook, Mike; Palo, Tom

    2007-01-01

    Issues addressed by this program: (1) Complicated roles and responsibilities associated with multi-partner projects (2) Working relationships and communications between all organizations involved in the payload safety process (3) Consistent interpretation and implementation of safety requirements from one project to the rest (4) Consistent implementation of the Tailoring Process (5) Clearly defined NASA decision-making-authority (6) Bring Agency-wide perspective to each ElV payload project. Current process requires a Payload Safety Working Group (PSWG) for eac payload with representatives from all involved organizations.

  4. Quo Vadis Payload Safety?

    NASA Technical Reports Server (NTRS)

    Fodroci, Michael P.; Schwartz, MaryBeth

    2008-01-01

    As we complete the preparations for the fourth Hubble Space Telescope (HST) servicing mission, we note an anniversary approaching: it was 30 years ago in July that the first HST payload safety review panel meeting was held. This, in turn, was just over a year after the very first payload safety review, a Phase 0 review for the Tracking and Data Relay Satellite and its Inertial Upper Stage, held in June of 1977. In adapting a process that had been used in the review and certification of earlier Skylab payloads, National Aeronautics and Space Administration (NASA) engineers sought to preserve the lessons learned in the development of technical payload safety requirements, while creating a new process that would serve the very different needs of the new space shuttle program. Their success in this undertaking is substantiated by the fact that this process and these requirements have proven to be remarkably robust, flexible, and adaptable. Furthermore, the payload safety process has, to date, served us well in the critical mission of safeguarding our astronauts, cosmonauts, and spaceflight participants. Both the technical requirements and their interpretation, as well as the associated process requirements have grown, evolved, been streamlined, and have been adapted to fit multiple programs, including the International Space Station (ISS) program, the Shuttle/Mir program, and most recently the United States Constellation program. From its earliest days, it was anticipated that the payload safety process would be international in scope, and so it has been. European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), German Space Agency (DLR), Canadian Space Agency (CSA), Russian Space Agency (RSA), and many additional countries have flown payloads on both the space shuttle and on the ISS. Our close cooperation and long-term working relationships have culminated in the franchising of the payload safety review process itself to our partners in ESA, which in turn will serve as a roadmap for extending the franchise to other Partners.

  5. System cost performance analysis (study 2.3). Volume 1: Executive summary. [unmanned automated payload programs and program planning

    NASA Technical Reports Server (NTRS)

    Campbell, B. H.

    1974-01-01

    A study is described which was initiated to identify and quantify the interrelationships between and within the performance, safety, cost, and schedule parameters for unmanned, automated payload programs. The result of the investigation was a systems cost/performance model which was implemented as a digital computer program and could be used to perform initial program planning, cost/performance tradeoffs, and sensitivity analyses for mission model and advanced payload studies. Program objectives and results are described briefly.

  6. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    NASA Astrophysics Data System (ADS)

    Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.

    2005-12-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  7. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    NASA Technical Reports Server (NTRS)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  8. Evaluation philosophy for shuttle launched payloads

    NASA Technical Reports Server (NTRS)

    Heuser, R. E.

    1975-01-01

    Some approaches to space-shuttle payload evaluation are examined. Issues considered include subsystem replacement in low-cost modular spacecraft (LCMS), validation of spacelab payloads, the use of standard components in shuttle-era spacecraft, effects of shuttle-induced environments on payloads, and crew safety. The LCMS is described, and goals are discussed for its evaluation program. Concepts regarding how the evaluation should proceed are considered.

  9. Rocket propulsion hazard summary: Safety classification, handling experience and application to space shuttle payload

    NASA Technical Reports Server (NTRS)

    Pennington, D. F.; Man, T.; Persons, B.

    1977-01-01

    The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.

  10. Commonalities and Differences in Functional Safety Systems Between ISS Payloads and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail; Kreimer, Johannes

    2013-09-01

    Safety analyses for electrical, electronic and/or programmable electronic (E/E/EP) safety-related systems used in payload applications on-board the International Space Station (ISS) are often based on failure modes, effects and criticality analysis (FMECA). For industrial applications of E/E/EP safety-related systems, comparable strategies exist and are defined in the IEC-61508 standard. This standard defines some quantitative criteria based on potential failure modes (for example, Safe Failure Fraction). These criteria can be calculated for an E/E/EP system or components to assess their compliance to requirements of a particular Safety Integrity Level (SIL). The standard defines several SILs depending on how much risk has to be mitigated by a safety-critical system. When a FMECA is available for an ISS payload or its subsystem, it may be possible to calculate the same or similar parameters as defined in the 61508 standard. One example of a payload that has a dedicated functional safety subsystem is the Electromagnetic Levitator (EML). This payload for the ISS is planned to be operated on-board starting 2014. The EML is a high-temperature materials processing facility. The dedicated subsystem "Hazard Control Electronics" (HCE) is implemented to ensure compliance to failure tolerance in limiting samples processing parameters to maintain generation of the potentially toxic by-products to safe limits in line with the requirements applied to the payloads by the ISS Program. The objective of this paper is to assess the implementation of the HCE in the EML against criteria for functional safety systems in the IEC-61508 standard and to evaluate commonalities and differences with respect to safety requirements levied on ISS Payloads. An attempt is made to assess a possibility of using commercially available components and systems certified for compliance to industrial functional safety standards in ISS payloads.

  11. Manned space flight nuclear system safety. Voluem 5: Nuclear system safety guidelines. Part 2: Space shuttle/nuclear payloads safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  12. Safety in earth orbit study. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A summary of the technical results and conclusions is presented of the hazards analyses of earth orbital operations in conjunction with the space shuttle program. The space shuttle orbiter and a variety of manned and unmanned payloads delivered to orbit by the shuttle are considered. The specific safety areas examined are hazardous payloads, docking, on-orbit survivability, tumbling spacecraft, and escape and rescue.

  13. Safety Concept for a Modern Get Away Special Power Supply

    NASA Astrophysics Data System (ADS)

    Rieger, T.

    2002-01-01

    orbiter, providing their own power supply, experiment controls etc. In order to offer a low-cost flight opportunity, the GAS safety review process has been developed, which is not so stringent as the shuttle safety certification process. As a consequence, mainly approved standard components are used in a GAS experiment to ensure safety. This is particularly true for the battery systems of GAS payloads. Many of the modern high power batteries have exhibited hazards. Especially, NASA recommends against the use of Lithium cells in GAS Payloads, which shortens the prospects of extensive experiments due to their power consumption. Considering an experiment with a power consumption of about 100 W, an e.g. standard silver-zinc battery system provides an operating time of typically below 20 h during the complete shuttle mission. Therefore, to take better advantage of the shuttle capabilities, the need for a certified standard Lithium based battery system in the GAS program is given. During the development of the GAS payload G-146, a safe Lithium based battery system has been constructed. This system could be a potential candidate to become such a safe standard component for GAS payloads. Its modular assembly could support various payload designs. The paper states the boundary conditions of the G-146 payload, that led to the design and the safety concept of the Lithium battery system for GAS payloads. The construction is described, considering the influences of safety aspects on the design of the system. The resulting variation possibilities for different GAS- Payloads are described against the background of the retention of the achieved safety level. A further emphasis of the paper is the chosen safety concept during qualification, integration and test of the battery system. Finally, a suggestion for a simple quality assurance concept and an outline of the future applications of the battery system is given.

  14. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    NASA Astrophysics Data System (ADS)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  15. Atmospheric, Magnetospheric and plasmas in Space (AMPS) spacelab payload definition study; Volume 4: Part 3, Labcraft instrument systems general specification

    NASA Technical Reports Server (NTRS)

    Keeley, J. T.

    1976-01-01

    Guidelines and general requirements applicable to the development of instrument flight hardware intended for use on the GSFC Shuttle Scientific Payloads Program are given. Criteria, guidelines, and an organized approach to specifying the appropriate level of requirements for each instrument in order to permit its development at minimum cost while still assuring crew safety, are included. It is recognized that the instruments for these payloads will encompass wide ranges of complexity, cost, development risk, and safety hazards. The flexibility required to adapt the controls, documentation, and verification requirements in accord with the specific instrument is provided.

  16. Safety in earth orbit study. Volume 5: Space shuttle payloads: Safety requirements and guidelines on-orbit phase

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Safety requirements and guidelines are listed for the sortie module, upper stage vehicle, and space station for the earth orbit operations of the space shuttle program. The requirements and guidelines are for vehicle design, safety devices, warning devices, operational procedures, and residual hazards.

  17. Safety in earth orbit study. Volume 2: Analysis of hazardous payloads, docking, on-board survivability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.

  18. Expert panel answers questions for Super Safety and Health Day at KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safety- and health-related concerns in front of an audience of KSC employees, as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space-related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.

  19. Expert panel answers questions for Super Safety and Health Day at KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safety- and health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space- related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.

  20. Ensuring Payload Safety in Missions with Special Partnerships

    NASA Technical Reports Server (NTRS)

    Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.

  1. KSC-99pp0696

    NASA Image and Video Library

    1999-06-17

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safetyand health-related concerns in front of an audience of KSC employees, as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, "Safety and Health Go Hand in Hand," emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space-related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television

  2. Automation of Space Processing Applications Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Crosmer, W. E.; Neau, O. T.; Poe, J.

    1975-01-01

    The Space Processing Applications Program is examining the effect of weightlessness on key industrial materials processes, such as crystal growth, fine-grain casting of metals, and production of unique and ultra-pure glasses. Because of safety and in order to obtain optimum performance, some of these processes lend themselves to automation. Automation can increase the number of potential Space Shuttle flight opportunities and increase the overall productivity of the program. Five automated facility design concepts and overall payload combinations incorporating these facilities are presented.

  3. The Implementation of Payload Safety in an Operational Environment

    NASA Technical Reports Server (NTRS)

    Cissom, R. D.; Horvath, Tim J.; Watson, Kristi S.; Rogers, Mark N. (Technical Monitor); Vanhooser, T. (Technical Monitor)

    2002-01-01

    The objective of this paper is to define the safety life-cycle process for a payload beginning with the output of the Payload Safety Review Panel and continuing through the life of the payload on-orbit. It focuses on the processes and products of the operations safety implementation through the increment preparations and real-time operations processes. In addition, the paper addresses the role of the Payload Operations and Integration Center and the interfaces to the International Partner Payload Control Centers.

  4. MSFC Skylab airlock module, volume 2. [systems design and performance, systems support activity, and reliability and safety programs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.

  5. A 20k Payload Launch Vehicle Fast Track Development Concept Using an RD-180 Engine and a Centaur Upper Stage

    NASA Technical Reports Server (NTRS)

    Toelle, Ronald (Compiler)

    1995-01-01

    A launch vehicle concept to deliver 20,000 lb of payload to a 100-nmi orbit has been defined. A new liquid oxygen/kerosene booster powered by an RD-180 engine was designed while using a slightly modified Centaur upper stage. The design, development, and test program met the imposed 40-mo schedule by elimination of major structural testing by increased factors of safety and concurrent engineering concepts. A growth path to attain 65,000 lb of payload is developed.

  6. KSC-99pp0697

    NASA Image and Video Library

    1999-06-17

    A panel of NASA and contractor senior staff, plus officers from the 45th Space Wing, discuss safetyand health-related concerns in front of an audience of KSC employees as part of Super Safety and Health Day. Moderating at the podium is Loren Shriver, deputy director for Launch & Payload Processing. Seated left to right are Burt Summerfield, associate director of the Biomedical Office; Colonel William S. Swindling, commander, 45th Medical Group, Patrick Air Force Base, Fla.; Ron Dittemore, manager, Space Shuttle Programs, Johnson Space Center; Roy Bridges, Center Director; Col. Tom Deppe, vice commander, 45th Space Wing, Patrick Air Force Base; Jim Schoefield, program manager, Payload Ground Operations, Boeing; Bill Hickman, program manager, Space Gateway Support; and Ed Adamek, vice president and associate program manager for Ground Operations, United Space Alliance. Answering a question at the microphone on the floor is Dave King, director, Shuttle Processing. The panel was one of the presentations during KSC's second annual day-long dedication to safety. Most normal work activities were suspended to allow personnel to attend related activities. The theme, "Safety and Health Go Hand in Hand," emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space-related resources first and foremost. Events also included a keynote address, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television

  7. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  8. Space transportation system payload safety guidelines handbook

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This handbook provides the payload developer with a uniform description and interpretation of the potential hazards which may be caused by or associated with a payload element, operation, or interface with other payloads or with the STS. It also includes guidelines describing design or operational safety measures which suggest means of alleviating a particular hazard or group of hazards, thereby improving payload safety.

  9. Safety policy and requirements for payloads using the Space Transportation System (STS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Transportation Operations (STO) safety policy is to minimize STO involvement in the payload and its GSE (ground support equipment) design process while maintaining the assurance of a safe operation. Requirements for assuring payload mission success are the responsibility of the payload organization and are beyond the scope of this document. The intent is to provide the overall safety policies and requirements while allowing for negotiation between the payload organization and the STO operator in the method of implementation of payload safety. This revision provides for a relaxation in the monitoring requirements for inhibits, allows the payload organization to pursue design options and reflects, additionally, some new requirements. As of the issue date of this NHB, payloads which have completed the formal safety assessment reviews of their preliminary design on the basis of the May 1979 issue will be reassessed for compliance with the above changes.

  10. Safety policy and requirements for payloads using the space transportation system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The safety policy and requirements are established applicable to the Space Transportation System (STS) payloads and their ground support equipment (GSE). The requirements are intended to protect flight and ground personnel, the STS, other payloads, GSE, the general public, public-private property, and the environment from payload-related hazards. The technical and system safety requirements applicable to STS payloads (including payload-provided ground and flight supports systems) during ground and flight operations are contained.

  11. Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2004-01-01

    Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.

  12. Real Time Maintenance Approval and Required IMMT Coordination

    NASA Technical Reports Server (NTRS)

    Burchell, S.

    2016-01-01

    Payloads are assessed for nominal operations. Payload Developers have the option of performing a maintenance hazard assessment (MHA) for potential maintenance activities. When POIC (Payload Operations and Integration Center) Safety reviews an OCR calling for a maintenance procedure, we cannot approve it without a MHA. If no MHA exists, we contact MER (Mission Evaluation Room) Safety. Depending on the nature of the problem, MER Safety has the option to: Analyze and grant approval themselves; Direct the payload back to the ISRP (Integrated Safety Review Panel); Direct the payload to the IMMT (Increment Mission Management Team).

  13. International Cooperation of Payload Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  14. Implementation Procedure for STS Payloads, System Safety Requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines and instructions for the implementation of the SP&R system safety requirements applicable to STS payloads are provided. The initial contact meeting with the payload organization and the subsequent safety reviews necessary to comply with the system safety requirements of the SP&R document are described. Waiver instructions are included for the cases in which a safety requirement cannot be met.

  15. Proposal for Ground Safety Review Coordination at ISS Launch Sites

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.

    2010-01-01

    As the transportation of ISS payloads and cargo shifts from KSC to other launch sites, close coordination of ground safety review processes would be of benefit to all parties. The benefit would have the launch sites receiving consistent data that would require less effort to review while still meeting their needs. Until recently, ground safety focus for the ISS program has been almost exclusively for prelaunch processing at KSC/post-landing processing at KSC/DFRC Each launch site, used by the ISS Program, has a ground safety review process. Ground safety viewed as local prerogative. Up till now, ground processing has consisted of low risk/low hazard items; but this will not always be the case. Recent coordination issues associated with the ground safety review of ORU's to be processed at Tanegashima for HTV-2, illustrate that IP ground safety review processes are not well understood by the ISS community at large. Confusion for data providers (US only?). Lack of internal review process for data being submitted to launch sites can lead to inconsistent submittals. NCRs/HRs. Majority of IP ground safety requirements are based upon old KHB 1700.7 (now KNPR 8715.3, Chapter 20). Proposals include: Establish a ground safety working group as part of the MS&MAP. Search for efficiencies in requirements and data submittal processes. Document processes in NSTS 13830/SSP 30599. Each launch site report out its payload ground safety status at the F2F (Monthly's as required). Completions/due dates/NCRs/issues/changes. Establish internal processes for review of ground safety submittals.

  16. Manned space flight nuclear system safety. Volume 4: Space shuttle nuclear system transportation. Part 1: Space shuttle nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the nuclear safety aspects (design and operational considerations) in the transport of nuclear payloads to and from earth orbit by the space shuttle is presented. Three representative nuclear payloads used in the study were: (1) the zirconium hydride reactor Brayton power module, (2) the large isotope Brayton power system and (3) small isotopic heat sources which can be a part of an upper stage or part of a logistics module. Reference data on the space shuttle and nuclear payloads are presented in an appendix. Safety oriented design and operational requirements were identified to integrate the nuclear payloads in the shuttle mission. Contingency situations were discussed and operations and design features were recommended to minimize the nuclear hazards. The study indicates the safety, design and operational advantages in the use of a nuclear payload transfer module. The transfer module can provide many of the safety related support functions (blast and fragmentation protection, environmental control, payload ejection) minimizing the direct impact on the shuttle.

  17. STS safety approval process for small self-contained payloads

    NASA Technical Reports Server (NTRS)

    Gum, Mary A.

    1988-01-01

    The safety approval process established by the National Aeronautics and Space Administration for Get Away Special (GAS) payloads is described. Although the designing organization is ultimately responsible for the safe operation of its payload, the Get Away Special team at the Goddard Space Flight Center will act as advisors while iterative safety analyses are performed and the Safety Data Package inputs are submitted. This four phase communications process will ultimately give NASA confidence that the GAS payload is safe, and successful completion of the Phase 3 package and review will clear the way for flight aboard the Space Transportation System orbiter.

  18. Challenges of assuring crew safety in space shuttle missions with international cargoes.

    PubMed

    Vongsouthy, C; Stenger-Nguyen, P A; Nguyen, H V; Nguyen, P H; Huang, M C; Alexander, R G

    2004-02-01

    The top priority in America's manned space flight program is the assurance of crew and vehicle safety. This priority gained greater focus during and after the Space Shuttle return-to-flight mission (STS-26). One of the interesting challenges has been to assure crew safety and adequate protection of the Space Shuttle, as a national resource, from increasingly diverse cargoes and operations. The control of hazards associated with the deployment of complex payloads and cargoes has involved many international participants. These challenges are examined in some detail along with examples of how crew safety has evolved in the manned space program and how the international partners have addressed various scenarios involving control and mitigation of potential hazards to crew and vehicle safety. c2003 Published by Elsevier Ltd.

  19. Cargo systems manual: Heat Pipe Performance (HPP) STS-66

    NASA Technical Reports Server (NTRS)

    Napp, Robert

    1994-01-01

    The purpose of the cargo systems manual (CSM) is to provide a payload reference document for payload and shuttle flight operations personnel during shuttle mission planning, training, and flight operations. It includes orbiter-to-payload interface information and payload system information (including operationally pertinent payload safety data) that is directly applicable to the Mission Operations Directorate (MOD) role in the payload mission. The primary objectives of the heat pipe performance (HPP) are to obtain quantitative data on the thermal performance of heat pipes in a microgravity environment. This information will increase understanding of the behavior of heat pipes in space and be useful for application to design improvements in heat pipes and associated systems. The purpose of HPP-2 is to establish a complete one-g and zero-g data base for axial groove heat pipes. This data will be used to update and correlate data generated from a heat pipe design computer program called Grooved Analysis Program (GAP). The HPP-2 objectives are to: determine heat transport capacity and conductance for open/closed grooved heat pipes and different Freon volumes (nominal, under, and overcharged) using a uniform heat load; determine heat transport capacity and conductance for single/multiple evaporators using asymmetric heat loads; obtain precise static, spin, and rewicking data points for undercharged pipes; investigate heat flux limits (asymmetric heat loads); and determine effects of positive body force on thermal performance.

  20. International Cooperation in the Field of International Space Station Payload Safety: Overcoming Differences and Working for Future

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuhiro; Ozawa, Masayuki; Takeyasu, Yoshioka; Griffith, Gerald; Goto, Katsuhito; Mitsui, Masami

    2010-09-01

    The importance of international cooperation among the International Space Station(ISS) Program participants is ever increasing as the ISS nears assembly complete. In the field of payload safety assurance, NASA and JAXA have enhanced their cooperation level. The authors describe the evolution of cooperation between the two agencies and the challenges encountered and overcame. NASA and JAXA have been working toward development of a NASA Payload Safety Review Panel(PSRP) franchise panel at JAXA for several years. When the JAXA Safety Review Panel(SRP) becomes a fully franchised panel of the NASA PSRP, the JAXA SRP will have the authority review and approve all JAXA ISS payloads operated on USOS and JEM, although NASA and JAXA joint reviews may be conducted as necessary. A NASA PSRP franchised panel at JAXA will streamline the conventional review process. Japanese payload organizations will not have to go through both JAXA and NASA payload safety reviews, while NASA will be relieved of a certain amount of review activities. The persistent efforts have recently born fruit. For the past two years, NASA and JAXA have increased emphasis on efforts to develop a NASA PSRP Franchised Panel at JAXA with concrete results. In 2009, NASA and JAXA signed Charter and Joint Development Plan. At the end of 2009, NASA PSRP transferred some review responsibility to the JAXA SRP under the franchising charter. Although JAXA had long history of reviewing payloads by their own panel prior to NASA PSRP reviews, it took several years for JAXA to receive NASA PSRP approval for delegation of franchised review authority to JAXA. This paper discusses challenges JAXA and NAXA faced. Considerations were required in developing a franchise at JAXA for history and experiences of the JAXA SRP as well as language and cultural differences. The JAXA panel, not only had its own well-established processes and supporting organizational structures which had some differences from its NASA PSRP counterparts, but the JAXA SRP also had a practice of emphasizing pre-coordination instead of addressing issues in formal reviews, reflecting Japanese cultural influences. These points are illustrated in the paper. The authors will also discuss how NASA and JAXA overcame these issues by providing specific examples including review responsibilities of NASA and JAXA panels, panel and supporting positions, and accommodation of language differences. In conclusion, the current status and future plan for NASA PSRP franchise efforts at JAXA are described and significance of having a NASA PSRP franchise panel at JAXA will be reviewed.

  1. Panel Resource Management (PRM) Implementation and Effects within Safety Review Panel Settings and Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Robert W.; Nash, Sally K.

    2007-01-01

    While technical training and advanced degree's assure proficiency at specific tasks within engineering disciplines, they fail to address the potential for communication breakdown and decision making errors familiar to multicultural environments where language barriers, intimidating personalities and interdisciplinary misconceptions exist. In an effort to minimize these pitfalls to effective panel review, NASA's lead safety engineers to the ISS Safety Review Panel (SRP), and Payload Safety Review Panel (PSRP) initiated training with their engineers, in conjunction with the panel chairs, and began a Panel Resource Management (PRM) program. The intent of this program focuses on the ability to reduce the barriers inhibiting effective participation from all panel attendees by bolstering participants confidence levels through increased communication skills, situational awareness, debriefing, and a better technical understanding of requirements and systems.

  2. Requirements for significant problem reporting and trend analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This handbook supplements policies, requirements, and procedures of NMI 8070.3 to ensure that NASA management at each organizational level is: fully aware of trends affecting both the level of safety and the potential for mission success established for both NASA manned space programs and its supporting institutions; fully and independently informed of problems that represent significant risk to the safety of all personnel (including the general populace) and to the success of a mission or operation through a program mechanism herein defined as Significant Problem Reporting; and in full agreement with the level of elimination of these problems through the closed-loop accounting of corrective actions. The requirements of this handbook are supportive of the agency's safety, reliability, maintainability, and quality assurance (SRM&QA) program objectives and are applicable to all organizational elements of NASA connected with or supporting developmental or operational manned space program/projects (including associated payloads) and the related institutional facilities.

  3. Selection of wires and circuit protective devices for STS Orbiter vehicle payload electrical circuits

    NASA Technical Reports Server (NTRS)

    Gaston, Darilyn M.

    1991-01-01

    Electrical designers of Orbiter payloads face the challenge of determining proper circuit protection/wire size parameters to satisfy Orbiter engineering and safety requirements. This document is the result of a program undertaken to review test data from all available aerospace sources and perform additional testing to eliminate extrapolation errors. The resulting compilation of data was used to develop guidelines for the selection of wire sizes and circuit protection ratings. The purpose is to provide guidance to the engineering to ensure a design which meets Orbiter standards and which should be applicable to any aerospace design.

  4. D-X Payload Ready For Flight

    NASA Image and Video Library

    2017-12-08

    Matthew Mullin and Bobby Meazell, Orbital ATK/Columbia Scientific Balloon Facility technicians, conduct compatibility testing on NASA Langley Research Center’s Radiation Dosimetry Experiment payload Wednesday, Sept. 9, at Fort Sumner, N.M. The successful compatibility test was a key milestone in ensuring the flight readiness of RaD-X, which is scheduled to launch on an 11-million-cubic-foot NASA scientific balloon no earlier than Friday, Sept. 11, from the agency’s balloon launching facility in Fort Sumner. RaD-X will measure cosmic ray energy at two separate altitude regions in the stratosphere—above 110,000 feet and between 69,000 to 88,500 feet. The data is key to confirming Langley’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which is a physics-based model that determines solar radiation and galactic cosmic ray exposure globally in real-time. The NAIRAS modeling tool will be used to help enhance aircraft safety as well as safety procedures for the International Space Station. In addition to the primary payload, 100 small student experiments will fly on the RaD-X mission as part of the Cubes in Space program. The program provides 11- to 18-year-old middle and high school students a no-cost opportunity to design and compete to launch an experiment into space or into the near-space environment. The cubes measure just 4 centimeters by 4 centimeters. NASA’s scientific balloons offer low-cost, near-space access for scientific payloads weighing up to 8,000 pounds for conducting scientific investigations in fields such as astrophysics, heliophysics and atmospheric research. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon program with 10 to 15 flights each year from launch sites worldwide. Orbital ATK provides program management, mission planning, engineering services and field operations for NASA’s scientific balloon program. The program is executed from the Columbia Scientific Balloon Facility in Palestine, Texas. The Columbia team has launched more than 1,700 scientific balloons in over 35 years of operation. Anyone may track the progress of the Fort Sumner flights, which includes a map showing the balloon’s real-time location, at: towerfts.csbf.nasa.gov/ For more information on the balloon program, see: www.nasa.gov/scientificballoons NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. GRC Payload Hazard Assessment: Supporting the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Schoren, William R.; Zampino, Edward J.

    2004-01-01

    A hazard assessment was conducted on the GRC managed payloads in support of a NASA Headquarters Code Q request to examine STS-107 payloads and determine if they were credible contributors to the Columbia accident. This assessment utilized each payload's Final Flight Safety Data Package for hazard identification. An applicability assessment was performed and most of the hazards were eliminated because they dealt with payload operations or crew interactions. A Fault Tree was developed for all the hazards deemed applicable and the safety verification documentation was reviewed for these applicable hazards. At the completion of this hazard assessment, it was concluded that none of the GRC managed payloads were credible contributors to the Columbia accident.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  8. System safety checklist Skylab program report

    NASA Technical Reports Server (NTRS)

    Mcnail, E. M.

    1974-01-01

    Design criteria statement applicable to a wide variety of flight systems, experiments and other payloads, associated ground support equipment and facility support systems are presented. The document reflects a composite of experience gained throughout the aerospace industry prior to Skylab and additional experience gained during the Skylab Program. It has been prepared to provide current and future program organizations with a broad source of safety-related design criteria and to suggest methods for systematic and progressive application of the criteria beginning with preliminary development of design requirements and specifications. Recognizing the users obligation to shape the checklist to his particular needs, a summary of the historical background, rationale, objectives, development and implementation approach, and benefits based on Skylab experience has been included.

  9. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  10. Commercially Hosted Government Payloads: Lessons from Recent Programs

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen

    2011-01-01

    In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future hosted payload programs, whether they are technology demonstrations, communications systems, or operational sensors. Additionally, we present a basic cost model for commercial access to space for hosted payloads as a function of payload mass

  11. Research, planning, design and development of selected components, subsystems and systems for the Students for the Exploration and Development of Space Satellite (SEDSAT)

    NASA Technical Reports Server (NTRS)

    Wingo, Dennis

    1997-01-01

    The work proposed in this task order was successfully accomplished. This is reflected in the approval by three NASA centers of the SEDSAT satellite to fly as a payload on the shuttle. All documentation necessary for evaluation of the satellite as a Shuttle payload was submitted and approved by the appropriate safety boards. The SEASIS instrument was demonstrated to work and its inclusion as a SEDSAT payload was accomplished in the task period. Finally, the SEDSAT interface to the NASA GSFC PES was approved by MSFC and GSFC with no substantive issues outstanding. As of the end of the contract date all milestones were met. However the NASA MSFC SEDS program was cancelled by the center. Since that time SEDSAT has gone on to be manifested on a Delta vehicle.

  12. Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task.

  13. Unmanned Aerial Vehicles

    DTIC Science & Technology

    1994-05-31

    Project , which is part of the trol, Communications and Intelligence In response to congressional...direction in Program Executive Office, Cruise Mis- (C31), the working group includes repre- FY88 to consolidate the management of siles Project and Unmanned...34* Support test and evaluation of ated with the draw down of the Pioneer Invest selectively in safety potential UAV payloads system as it is replaced by the

  14. LERC power system autonomy program 1990 demonstration

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Sundberg, Gale R.; Bercaw, Robert R.; Weeks, David J.

    1987-01-01

    The NASA Lewis Research Center has undertaken a program for the development of space systems automation, with a view to increased reliability, safety, payload capability, and decreased operational costs. The NASA Space Station is a primary area of application for the techniques thus developed. Attention is presently given to the activities associated with the Power Systems Autonomy Demonstration Project, which has a projected demonstration date in 1990 and will integrate knowledge-based systems into a real-time environment. Two coordinated systems under expert system control will be demonstrated.

  15. NASA's Space Launch System Program Update

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2015-01-01

    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in the past year, including firing tests of both main propulsion elements, manufacturing of flight hardware, and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons (t) (154,000 pounds) of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 t (286,000 pounds) to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware, including flight hardware for Exploration Mission 1 (EM-1). This paper will provide an overview of the progress made over the past year and provide a glimpse of upcoming milestones on the way to a 2018 launch readiness date.

  16. Systems cost/performance analysis (study 2.3). Volume 2: Systems cost/performance model. [unmanned automated payload programs and program planning

    NASA Technical Reports Server (NTRS)

    Campbell, B. H.

    1974-01-01

    A methodology which was developed for balanced designing of spacecraft subsystems and interrelates cost, performance, safety, and schedule considerations was refined. The methodology consists of a two-step process: the first step is one of selecting all hardware designs which satisfy the given performance and safety requirements, the second step is one of estimating the cost and schedule required to design, build, and operate each spacecraft design. Using this methodology to develop a systems cost/performance model allows the user of such a model to establish specific designs and the related costs and schedule. The user is able to determine the sensitivity of design, costs, and schedules to changes in requirements. The resulting systems cost performance model is described and implemented as a digital computer program.

  17. Data Requirement (DR) MA-03: Payload missions integration. [Spacelab payloads

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Project management and payload integration requirements definition activities are reported. Mission peculiar equipment; systems integration; ground operations analysis and requirement definition; safety and quality assurance; and support systems development are examined for payloads planned for the following missions: EOM-1; SL-2; Sl-3 Astro-1; MSL-2; EASE/ACCESS; MPESS; and the middeck ADSF flight.

  18. Design guide for low cost standardized payloads, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Concept point designs of low cost and refurbishable spacecraft, subsystems, and modules revealed payload program savings up to 50 percent. The general relationship of payload approaches to program costs; cost reductions from low cost standardized payloads; cost effective application of payload reliability, MMD, repair, and refurbishment; and implementation of standardization for future spacecraft are discussed. Shuttle interfaces and support equipment for future payloads are also considered

  19. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  20. Building on the Past - Looking to the Future: A Focus on Payload Safety

    NASA Technical Reports Server (NTRS)

    Nash, Sally K.; Rehm, Raymond B.; Samtoagp. Darren M.; Wong, Teresa K.; Wolf, Scott L.

    2008-01-01

    The history of the space industry stretches far and above lunar landings to the construction of the International Space Station. For years, humans have sought to understand the nature of the universe. As society grows in knowledge and curiosity of space, the focus of maintaining the safety of the crew and vehicle habitability is of utmost importance to the National Aeronautics and Space Administration (NASA) community. Through the years, Payload Safety has developed not only as a Panel, but also as part of the NASA community, striving to enhance the efficiency and understanding of how business should be conducted as more International Partners become involved. This is the first in a series of papers and presentations in what is hoped to be an annual update that provides continuous challenges and lessons learned in the areas of communication, safety requirements and processes and other areas which have been vital to the Payload Safety Review Panel (PSRP).

  1. Integrated operations/payloads/fleet analysis. Volume 2: Payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.

  2. Payload training methodology study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results of the Payload Training Methodology Study (PTMS) are documented. Methods and procedures are defined for the development of payload training programs to be conducted at the Marshall Space Flight Center Payload Training Complex (PCT) for the Space Station Freedom program. The study outlines the overall training program concept as well as the six methodologies associated with the program implementation. The program concept outlines the entire payload training program from initial identification of training requirements to the development of detailed design specifications for simulators and instructional material. The following six methodologies are defined: (1) The Training and Simulation Needs Assessment Methodology; (2) The Simulation Approach Methodology; (3) The Simulation Definition Analysis Methodology; (4) The Simulator Requirements Standardization Methodology; (5) The Simulator Development Verification Methodology; and (6) The Simulator Validation Methodology.

  3. ELV Payload Safety Program Workshop Green Propulsion Update

    NASA Technical Reports Server (NTRS)

    Robinson, Joel

    2014-01-01

    MSFC is engaged on the system solution: thrusters and power units; GRC is working plume diagnostics/modeling and independent thruster testing on GPIM.; GSFC is working slosh characteristics on GPIM tank.; JPL and ARC continually interested to infuse green propellant as potential replacement to hydrazine.; Mike Gazarik, AA of STMD, has requested MSFC lead the development of an Agency-level green propellant roadmap involving multiple Centers., Tentatively planned for August 2015 in Huntsville.

  4. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 3: Booster vehicle modifications and ground systems definition

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.

  5. Approaches to environmental verification of STS free-flier and pallet payloads

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1982-01-01

    This paper presents an overview of the environmental verification programs followed on an STS-launched free-flier payload, using the Tracking and Data Relay Satellite (TDRS) as an example, and a pallet payload, using the Office of Space Sciences-1 (OSS-1) as an example. Differences are assessed and rationale given as to why the differing programs were used on the two example payloads. It is concluded that the differences between the programs are due to inherent differences in the payload configuration, their respective mission performance objectives and their operational scenarios rather than to any generic distinctions that differentiate between a free-flier and a pallet payload.

  6. Impact of low gravity on water electrolysis operation

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  7. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  8. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  9. TMA Chemical Release Payloads for Stratospheric Wind Measurements Auroral E Program and Related Programs

    DTIC Science & Technology

    1982-03-15

    this work was to provide a piston tank filled with trimethyl aluminum for release as a trail in the upper atmosphere. This payload was launched from the...trail payloads. II. PAYLOAD DESCRIPTION The payload consists of a programmer section with plumbing and a piston tank section. The outer shell of the...payload is the wall of the piston tank . The liquid side of the piston tank is filled with 20 pounds of tri- methyl- aluminum (TMA). After filling the

  10. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  11. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 2: Mission payloads subsystem description

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) is presented. Two major subsystems are included: The mission payloads program; and the set covering program. Formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.

  12. Space program payload costs and their possible reduction

    NASA Technical Reports Server (NTRS)

    Vanvleck, E. M.; Deerwester, J. M.; Norman, S. M.; Alton, L. R.

    1973-01-01

    The possible ways by which NASA payload costs might be reduced in the future were studied. The major historical reasons for payload costs being as they were, and if there are technologies (hard and soft), or criteria for technology advances, that could significantly reduce total costs of payloads were examined. Payload costs are placed in historical context. Some historical cost breakdowns for unmanned NASA payloads are presented to suggest where future cost reductions could be most significant. Space programs of NOAA, DoD and COMSAT are then examined to ascertain if payload reductions have been brought about by the operational (as opposed to developmental) nature of such programs, economies of scale, the ability to rely on previously developed technology, or by differing management structures and attitudes. The potential impact was investigated of NASA aircraft-type management on spacecraft program costs, and some examples relating previous costs associated with aircraft costs on the one hand and manned and unmanned costs on the other are included.

  13. PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.

    PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.

  14. Space Shuttle utilization characteristics with special emphasis on payload design, economy of operation and effective space exploitation

    NASA Technical Reports Server (NTRS)

    Turner, D. N.

    1981-01-01

    The reusable manned Space Shuttle has made new and innovative payload planning a reality and opened the door to a variety of payload concepts formerly unavailable in routine space operations. In order to define the payload characteristics and program strategies, current Shuttle-oriented programs are presented: NASA's Space Telescope, the Long Duration Exposure Facility, the West German Shuttle Pallet Satellite, and the Goddard Space Flight Center's Multimission Modular Spacecraft. Commonality of spacecraft design and adaptation for specific mission roles minimizes payload program development and STS integration costs. Commonality of airborne support equipment assures the possibility of multiple program space operations with the Shuttle. On-orbit maintenance and repair was suggested for the module and system levels. Program savings from 13 to over 50% were found obtainable by the Shuttle over expendable launch systems, and savings from 17 to 45% were achievable by introducing reuse into the Shuttle-oriented programs.

  15. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 3: The GREEDY algorithm

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    The functional specifications, functional design and flow, and the program logic of the GREEDY computer program are described. The GREEDY program is a submodule of the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) program and has been designed as a continuation of the shuttle Mission Payloads (MPLS) program. The MPLS uses input payload data to form a set of feasible payload combinations; from these, GREEDY selects a subset of combinations (a traffic model) so all payloads can be included without redundancy. The program also provides the user a tutorial option so that he can choose an alternate traffic model in case a particular traffic model is unacceptable.

  16. Operations analysis (study 2.1). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Subjects related to future STS operations concepts were investigated. The majority of effort was directed at assessing the benefits of automated space servicing concepts as related to improvements in payload procurement and shuttle utilization. Another subject was directed at understanding shuttle upper stage software development and recurring costs relative to total program projections. Space serving of automated payloads is addressed by examining the broad spectrum of payload applications with the belief that shared logistic operations will be a major contributor to reduction of future program costs. However, there are certain requirements for support of payload operations, such as availability of the payload, that may place demands upon the shuttle fleet. Because future projections of the NASA Mission Model are only representative of the payload traffic, it is important to recognize that it is the general character of operations that is significant rather than service to any single payload program.

  17. A Human Factors Framework for Payload Display Design

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Hutchinson, Sonya L.

    1998-01-01

    During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.

  18. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  19. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  20. 14 CFR 1214.608 - Safety requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...

  1. 14 CFR 1214.608 - Safety requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...

  2. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks.

  3. Ground Robotic Hand Applications for the Space Program study (GRASP)

    NASA Astrophysics Data System (ADS)

    Grissom, William A.; Rafla, Nader I.

    1992-04-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  4. Ground Robotic Hand Applications for the Space Program study (GRASP)

    NASA Technical Reports Server (NTRS)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  5. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  6. Streamlining Payload Integration

    NASA Technical Reports Server (NTRS)

    Lufkin, Susan N.

    2010-01-01

    Payload integration onto space transport vehicles and the International Space Station (ISS) is a complex process. Yet, cargo transport is the sole reason for any space mission, be it for ferrying humans, science, or hardware. As the largest such effort in history, the ISS offers a wide variety of payload experience. However, for any payload to reach the Space Station under the current process, Payload Developers face a list of daunting tasks that go well beyond just designing the payload to the constraints of the transport vehicle and its stowage topology. Payload customers are required to prove their payload s functionality, structural integrity, and safe integration - including under less than nominal situations. They must also plan for or provide training, procedures, hardware labeling, ground support, and communications. In addition, they must deal with negotiating shared consumables, integrating software, obtaining video, and coordinating the return of data and hardware. All the while, they must meet export laws, launch schedules, budget limits, and the consensus of more than 12 panel and board reviews. Despite the cost and infrastructure overhead, payload proposals have increased. Just in the span from FY08 to FY09, the NASA Payload Space Station Support Office budget rose from $78M to $96M in attempt to manage the growing manifest, but the potential number of payloads still exceeds available Payload Integration Management manpower. The growth has also increased management difficulties due to the fact that payloads are more frequently added to a flight schedule late in the flow. The current standard ISS template for payload integration from concept to payload turn-over is 36 months, or 18 months if the payload already has a preliminary design. Customers are increasingly requiring a turn-around of 3 to 6-months to meet market needs. The following paper suggests options for streamlining the current payload integration process in order to meet customer schedule needs and reduce costs for both the integration support teams and the developers, without reducing quality or compromising safety. Issues for the key integration areas of planning, training, verification, and safety are presented in a Root-Cause Analysis study, with plausible solutions provided that involve technology and tools already available to the ISS community. Although based upon the ISS process, the payload integration techniques outlined herein also offer an integration template for any space transport endeavor.

  7. Detecting Payload Attacks on Programmable Logic Controllers (PLCs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan

    Programmable logic controllers (PLCs) play critical roles in industrial control systems (ICS). Providing hardware peripherals and firmware support for control programs (i.e., a PLC’s “payload”) written in languages such as ladder logic, PLCs directly receive sensor readings and control ICS physical processes. An attacker with access to PLC development software (e.g., by compromising an engineering workstation) can modify the payload program and cause severe physical damages to the ICS. To protect critical ICS infrastructure, we propose to model runtime behaviors of legitimate PLC payload program and use runtime behavior monitoring in PLC firmware to detect payload attacks. By monitoring themore » I/O access patterns, network access patterns, as well as payload program timing characteristics, our proposed firmware-level detection mechanism can detect abnormal runtime behaviors of malicious PLC payload. Using our proof-of-concept implementation, we evaluate the memory and execution time overhead of implementing our proposed method and find that it is feasible to incorporate our method into existing PLC firmware. In addition, our evaluation results show that a wide variety of payload attacks can be effectively detected by our proposed approach. The proposed firmware-level payload attack detection scheme complements existing bumpin- the-wire solutions (e.g., external temporal-logic-based model checkers) in that it can detect payload attacks that violate realtime requirements of ICS operations and does not require any additional apparatus.« less

  8. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  9. The post Challenger era Get Away Special program January 1992

    NASA Technical Reports Server (NTRS)

    Prouty, Clarke

    1992-01-01

    The Get Away Special (GAS) program is described in terms of the changes that have taken place in both NASA and the GAS itself. Attention is given to the relationships developed between NASA and GAS customers in the context of programmatic and technical issues. The background of the GAS program is outlined with reference given to policy publications, the design of the Flight Verification Payload, and the first GAS payload launched. A review process is described that facilitates the management of the payloads through flight certification. The GAS Bridge was developed to carry up to 12 payloads simultaneously, and the recent period of GAS inactivity is explained. A price increase is introduced for future GAS payloads with negotiable access to optional services, and the ease and accessibility of the GAS programs for private experiments is emphasized.

  10. A review of Spacelab mission management approach

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  11. Design guide for space shuttle low-cost payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A handbook is presented which delineates the principles of the new low-cost design methodology for designers of unmanned payloads to be carried by the space shuttle. The basic relationships between payload designs and program cost effects are discussed, and some concepts for designing low-cost payloads and implementing low-cost programs are given. The data are summarized from a payloads effects study of three unmanned earth satellites (OAO, a syneq orbiter, and a small research satellite), and the earth satellite design is emphasized. Brief summaries of space shuttle and space tug performance, environmental, and interface data pertinent to low-cost payload concepts are included.

  12. 14 CFR § 1214.608 - Safety requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aboard Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using...

  13. The 15th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.

  14. A Year of Progress: NASA's Space Launch System Approaches Critical Design Review

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2015-01-01

    NASA's Space Launch System (SLS) made significant progress on the manufacturing floor and on the test stand in 2014 and positioned itself for a successful Critical Design Review in mid-2015. SLS, the world's only exploration-class heavy lift rocket, has the capability to dramatically increase the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique high-value national payloads. Development now is focused on configuration with 70 metric tons (t) of payload to low Earth orbit (LEO), more than double the payload of the retired Space Shuttle program or current operational vehicles. This "Block 1" design will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the Moon and back and the first crewed flight around the Moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has successfully completed its Critical Design Review and now has hardware in production or testing. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. The SLS Program is currently working toward vehicle Critical Design Review in mid-2015. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  15. Software for Remote Monitoring of Space-Station Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James

    2003-01-01

    Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.

  16. KSC-06pd0857

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd0858

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads nears the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  18. KSC-06pd0856

    NASA Image and Video Library

    2006-05-17

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B at NASA's Kennedy Space Center, the payload canister holding Space Shuttle Discovery's payloads is lifted toward the payload changeout room on the rotating service structure. The red umbilical lines are still attached. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payloads, which include the multi-purpose logistics module and integrated cargo carrier, will then be transferred from the changeout room into Discovery's payload bay. Discovery's launch to the International Space Station on mission STS-121 is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, crew members will test new hardware and techniques to improve shuttle safety. Photo credit: NASA/Kim Shiflett

  19. The 1973 NASA payload model: Space opportunities 1973 - 1991. [characteristics of payloads and requirements of user community

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The tables of schedules and descriptions which portray the 1973 NASA Payload Model are presented. The schedules cover all NASA programs and the anticipated requirements of the user community, not including the Department of Defense, for the 1973 to 1991 period. The descriptions give an indication of what the payload is expected to accomplish, its characteristics, and where it is going. The payload flight schedules shown for each of the discipline areas indicate the time frame in which individual payloads will be launched, serviced, or retrieved. These do not necessarily constitute shuttle flights, however, since more than one payload can be flown on a single shuttle flight depending on size, weight, orbital destination, and the suitability of combining them. The weight, dimension, and destination data represent approximations of the payload characteristics as estimated by the Program Offices. Payload codes are provided for easy correlation between the schedules and descriptions of the Payload Model and subsequent documentation which may reference this model.

  20. Structural design, analysis, and modal testing of the petite amateur navy satellite (PANSAT)

    NASA Astrophysics Data System (ADS)

    Sakoda, Daniel J.

    1992-09-01

    The Naval Postgraduate School's (NPS) Space Systems Academic Group is developing the Petite Amateur Navy Satellite (PANSAT), a small satellite for digital store-and-forward communication in the amateur frequency band. PANSAT is intended to be a payload of opportunity amendable to a number of launch vehicles. The Shuttle Small Self-Contained Payload (SSCP) program was chosen as a design baseline because of its high margins of safety as a manned system. The PANSAT structure design is presented for the launch requirements of a Shuttle SSCP. A finite element model was developed and studied for the design loads of a SSCP. The results showed the structure to be very robust and likely to accommodate the requirements of other launch vehicles. The finite element analysis was verified by model testing, correlating the fundamental mode of the finite element model with that of an engineering test structure.

  1. Innovative approach for low-cost quick-access small payload missions

    NASA Astrophysics Data System (ADS)

    Friis, Jan W., Jr.

    2000-11-01

    A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be accommodated on up to thirty-eight separate satellites. Since the secondary payloads will fly on satellites designed for global wireless data services, each user can utilize low cost communication system already in place for sending and retrieving digital information from its payload.

  2. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.

  3. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    PubMed

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 2008 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Lamoreaux, Richard W.

    2008-01-01

    Welcome to the 2008 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. This year, along with full length articles concerning various subject areas, we have provided updates to standard subjects with links back to the 2007 original article. Additionally, we present summaries from the various NASA Range Safety Program activities that took place throughout the year, as well as information on several special projects that may have a profound impact on the way we will do business in the future. The sections include a program overview and 2008 highlights of Range Safety Training; Range Safety Policy; Independent Assessments and Common Risk Analysis Tools Development; Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging Range Safety-related technologies; Special Interests Items that include recent changes in the ELV Payload Safety Program and the VAS explosive siting study; and status reports from all of the NASA Centers that have Range Safety responsibilities. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. We have made a great effort to include the most current information available. We recommend that this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. This is the third year we have utilized this web-based format for the annual report. We continually receive positive feedback on the web-based edition, and we hope you enjoy this year's product as well. It has been a very busy and productive year on many fronts as you will note as you review this report. Thank you to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the years to come.

  5. Building on the Past- Looking to the Future: Part 2: A Focus on Expanding Horizons

    NASA Astrophysics Data System (ADS)

    Nash, Sally K.; Rehm, Raymond B.; Wong, Teresa K.; Guidry, Richard W.; Wolf, Scott L.

    2010-09-01

    The history of space endeavors stretches far from the first liquid-fueled rocket created by the father of modern rocketry, Robert Goddard, in 1926 and will certainly extend far beyond the construction of the International Space Station(ISS) scheduled to be complete with the addition of the Permanent Multipurpose Module on STS-133/ULF5. National Aeronautics and Space Administration(NASA) and the ISS International Partners(IPs) will be the unrelenting venue used to satisfy the curiosities of man as we seek an understanding of space through various experiments(also referred to as payloads) conducted in microgravity. The NASA Payload Safety Review Panel(PSRP) continues to serve as the lead for the review and assessment of payload hardware to assure facility and crew safety. This is the second in a series of papers and presentations that illustrate challenges and lessons learned in the areas of communication, safety requirements, and processes which have been vital to the PSRP.

  6. Building on the Past - Looking to the Future. Part 2: A Focus on Expanding Horizons

    NASA Technical Reports Server (NTRS)

    Nash, Sally K.; Rehm, Raymond; Wong, Teresa K.; Guidry, Richard; Wolf, Scott L.

    2010-01-01

    The history of space endeavors stretches far from the first liquid-fueled rocket created by the father of modern rocketry, Robert Goddard, in 1926 and will certainly extend far beyond the construction of the International Space Station (ISS) scheduled to be complete with the addition of the Permanent Multipurpose Module on STS-133/ULF5. National Aeronautics and Space Administration (NASA) and the ISS International Partners (IPs) will be the unrelenting venue used to satisfy the curiosities of man as we seek an understanding of space through various experiments (also referred to as payloads) conducted in microgravity. The NASA Payload Safety Review Panel (PSRP) continues to serve as the lead for the review and assessment of payload hardware to assure facility and crew safety. This is the second in a series of papers and presentations that illustrate challenges and lessons learned in the areas of communication, safety requirements, and processes which have been vital to the PSRP.

  7. 14 CFR 435.41 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...

  8. 14 CFR 435.41 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...

  9. 14 CFR 435.41 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...

  10. 14 CFR 435.41 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...

  11. 14 CFR 435.41 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false General. 435.41 Section 435.41 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... policy and safety issues related to the proposed reentry of a payload, except a U.S. Government payload...

  12. Accommodations for earth-viewing payloads on the international space station

    NASA Astrophysics Data System (ADS)

    Park, B.; Eppler, D. B.

    The design of the International Space Station (ISS) includes payload locations that are external to the pressurized environment. These external or attached payload accommodation locations will allow direct access to the space environment at the ISS orbit and direct viewing of the earth and space. NASA sponsored payloads will have access to several different types of standard external locations; the S3 Truss Sites, the Columbus External Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). As the ISS Program develops, it may also be possible to locate external payloads at the P3 Truss Sites or at non-standard locations similar to the handrail-attached payloads that were flown during the MIR Program. Earth-viewing payloads may also be located within the pressurized volume of the US Lab in the Window Observational Research Facility (WORF). Payload accommodations at each of the locations will be described, as well as transport to and retrieval from the site.

  13. ISS Payload Operations: The Need for and Benefit of Responsive Planning

    NASA Technical Reports Server (NTRS)

    Nahay, Ed; Boster, Mandee

    2000-01-01

    International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of science programs and the crew desire for flexibility; the means by which responsive plans readily accommodate ISS communications constraints; manpower efficiencies to be achieved through use of responsive plans; and the implications of responsive planning relative to resource utilization efficiency.

  14. Rapid prototyping and AI programming environments applied to payload modeling

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Mendler, Andrew P.

    1987-01-01

    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.

  15. 14 CFR 1214.608 - Safety requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Safety requirements. 1214.608 Section 1214... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...

  16. 14 CFR 1214.608 - Safety requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Safety requirements. 1214.608 Section 1214... Space Shuttle Flights § 1214.608 Safety requirements. The contents of OFK's and PPK's must meet the requirements set forth in NASA Handbook 1700.7, “Safety Policy and Requirements for Payloads Using the Space...

  17. Sasquatch Footprint Tool

    NASA Technical Reports Server (NTRS)

    Bledsoe, Kristin

    2013-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.

  18. Payload Documentation Enhancement Project

    NASA Technical Reports Server (NTRS)

    Brown, Betty G.

    1999-01-01

    In late 1998, the Space Shuttle Program recognized a need to revitalize its payload accommodations documentation. As a result a payload documentation enhancement project was initiated to review and update payload documentation and improve the accessibility to that documentation by the Space Shuttle user community.

  19. Orbiter/payload contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Strange, D. A.; Hetrick, M. A.

    1978-01-01

    The development and integration of 16 payload bay liner filters into the existing shuttle/payload contamination evaluation (SPACE) computer program is discussed as well as an initial mission profile model. As part of the mission profile model, a thermal conversion program, a temperature cycling routine, a flexible plot routine and a mission simulation of orbital flight test 3 are presented.

  20. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  1. Small Payload Integration and Testing Project Development

    NASA Technical Reports Server (NTRS)

    Sorenson, Tait R.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has mainly focused on large payloads for space flight beginning with the Apollo program to the assembly and resupply of the International Space Station using the Space Shuttle. NASA KSC is currently working on contracting manned Low Earth Orbit (LEO) to commercial providers, developing Space Launch System, the Orion program, deep space manned programs which could reach Mars, and providing technical expertise for the Launch Services Program for science mission payloads/satellites. KSC has always supported secondary payloads and smaller satellites as the launch provider; however, they are beginning to take a more active role in integrating and testing secondary payloads into future flight opportunities. A new line of business, the Small Payload Integration and Testing Services (SPLITS), has been established to provide a one stop shop that can integrate and test payloads. SPLITS will assist high schools, universities, companies and consortiums interested in testing or launching small payloads. The goal of SPLITS is to simplify and facilitate access to KSC's expertise and capabilities for small payloads integration and testing and to help grow the space industry. An effort exists at Kennedy Space Center to improve the external KSC website. External services has partnered with SPLITS as a content test bed for attracting prospective customers. SPLITS is an emerging effort that coincides with the relaunch of the website and has a goal of attracting external partnerships. This website will be a "front door" access point for all potential partners as it will contain an overview of KSC's services, expertise and includes the pertinent contact information.

  2. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  3. Proceedings of the 14th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technological areas covered include aviation propulsion, aerodynamic devices, and crew safety; space vehicle propulsion, guidance and control; spacecraft deployment, positioning, and pointing; spacecraft bearings, gimbals, and lubricants; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activity on the space shuttle orbiter are also described.

  4. OPEX: (Olympus Propagation EXperiment)

    NASA Technical Reports Server (NTRS)

    Brussaard, Gert

    1988-01-01

    The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.

  5. Predicting the payload capability of cable logging systems including the effect of partial suspension

    Treesearch

    Gary D. Falk

    1981-01-01

    A systematic procedure for predicting the payload capability of running, live, and standing skylines is presented. Three hand-held calculator programs are used to predict payload capability that includes the effect of partial suspension. The programs allow for predictions for downhill yarding and for yarding away from the yarder. The equations and basic principles...

  6. HP-9810A calculator programs for plotting the 2-dimensional motion of cyclindrical payloads relative to the shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1976-01-01

    The HP-9810A calculator programs described provide the capability to generate HP-9862A plotter displays which depict the apparent motion of a free-flying cyclindrical payload relative to the shuttle orbiter body axes by projecting the payload geometry into the orbiter plane of symmetry at regular time intervals.

  7. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  8. Payload crew training scheduler (PACTS) user's manual

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1980-01-01

    The operation of the payload specialist training scheduler (PACTS) is discussed in this user's manual which is used to schedule payload specialists for mission training on the Spacelab experiments. The PACTS program is a fully automated interactive, computerized scheduling program equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The PACTS program is designed to operate on the UNIVAC 1108 computer system, and has the capability to load output into a PDP 11/45 Interactive Graphics Display System for printing schedules. The program has the capacity to handle up to three overlapping Spacelab missions.

  9. Manned Systems Utilization Analysis. Study 2.1: Space Servicing Pilot Program Study. [for automated payloads

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Space servicing automated payloads was studied for potential cost benefits for future payload operations. Background information is provided on space servicing in general, and on a pilot flight test program in particular. An fight test is recommended to demonstrate space servicing. An overall program plan is provided which builds upon the pilot program through an interim servicing capability. A multipayload servicing concept for the time when the full capability tug becomes operational is presented. The space test program is specifically designed to provide low-cost booster vehicles and a flight test platform for several experiments on a single flight.

  10. 14 CFR 417.117 - Reviews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... information: (i) Readiness of launch vehicle and payload. (ii) Readiness of any flight safety system and... of a launch safety review must ensure satisfaction of the following criteria: (i) A launch operator... operator must resolve all safety related action items. (ii) A launch operator must assign and certify...

  11. Lessons learned from evaluating launch-site processing problems of Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Flores, Carlos A.; Heuser, Robert E.; Sales, Johnny R.; Smith, Anthony M.

    1992-01-01

    The authors discuss a trend analysis program that is being conducted on the problem reports written during the processing of Space Shuttle payloads at Kennedy Space Center. The program is aimed at developing lessons learned that can both improve the effectiveness of the current payload processing cycles as well as help to guide the processing strategies for Space Station Freedom. The payload processing reports from STS 26R and STS 41 are used. A two-tier evaluation activity is described, and some typical results from the tier one analyses are presented.

  12. Space station payload operations scheduling with ESP2

    NASA Technical Reports Server (NTRS)

    Stacy, Kenneth L.; Jaap, John P.

    1988-01-01

    The Mission Analysis Division of the Systems Analysis and Integration Laboratory at the Marshall Space Flight Center is developing a system of programs to handle all aspects of scheduling payload operations for Space Station. The Expert Scheduling Program (ESP2) is the heart of this system. The task of payload operations scheduling can be simply stated as positioning the payload activities in a mission so that they collect their desired data without interfering with other activities or violating mission constraints. ESP2 is an advanced version of the Experiment Scheduling Program (ESP) which was developed by the Mission Integration Branch beginning in 1979 to schedule Spacelab payload activities. The automatic scheduler in ESP2 is an expert system that embodies the rules that expert planners would use to schedule payload operations by hand. This scheduler uses depth-first searching, backtracking, and forward chaining techniques to place an activity so that constraints (such as crew, resources, and orbit opportunities) are not violated. It has an explanation facility to show why an activity was or was not scheduled at a certain time. The ESP2 user can also place the activities in the schedule manually. The program offers graphical assistance to the user and will advise when constraints are being violated. ESP2 also has an option to identify conflict introduced into an existing schedule by changes to payload requirements, mission constraints, and orbit opportunities.

  13. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  14. An intelligent position-specific training system for mission operations

    NASA Technical Reports Server (NTRS)

    Schneider, M. P.

    1992-01-01

    Marshall Space Flight Center's (MSFC's) payload ground controller training program provides very good generic training; however, ground controller position-specific training can be improved by including position-specific training systems in the training program. This report explains why MSFC needs to improve payload ground controller position-specific training. The report describes a generic syllabus for position-specific training systems, a range of system designs for position-specific training systems, and a generic development process for developing position-specific training systems. The report also describes a position-specific training system prototype that was developed for the crew interface coordinator payload operations control center ground controller position. The report concludes that MSFC can improve the payload ground controller training program by incorporating position-specific training systems for each ground controller position; however, MSFC should not develop position-specific training systems unless payload ground controller position experts will be available to participate in the development process.

  15. Payload IVA training and simulation

    NASA Technical Reports Server (NTRS)

    Monsees, J. H.

    1982-01-01

    The development of a training program for the intravehicular operation of space shuttle payloads is discussed. The priorities for the program are compliance with established training standards, and accommodating changes. Simulation devices are also reviewed.

  16. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  17. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  18. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  19. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  20. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  1. Space Station Freedom altitude strategy

    NASA Technical Reports Server (NTRS)

    Mcdonald, Brian M.; Teplitz, Scott B.

    1990-01-01

    The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed.

  2. Verification approach for the Shuttle/Payload Contamination Evaluation computer program - Spacelab induced environment

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.

    1978-01-01

    The paper presents a compilation of the results of a systems level Shuttle/payload contamination analysis and related computer modeling activities. The current technical assessment of the contamination problems anticipated during the Spacelab program are discussed and recommendations are presented on contamination abatement designs and operational procedures based on experience gained in the field of contamination analysis and assessment, dating back to the pre-Skylab era. The ultimate test of the Shuttle/Payload Contamination Evaluation program will be through comparison of predictions with measured levels of contamination during actual flight.

  3. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  4. 14 CFR § 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  5. Norton-Thevenin Receptance Coupling (NTRC) as a Payload Design Tool

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Dan; Majed, Arya

    2017-01-01

    The NASA Engineering and Safety Center (NESC) is funding a study to develop an alternate method for performing coupled loads analysis called Norton-Thevenin Receptance Coupling (NTRC). NTRC combines Receptance Coupling (RC), a frequency-domain synthesis method and Norton-Thevenin (NT) theory, an impedance based approach for simulating the interaction between dynamic systems. The goal of developing the NTRC method is to provide a tool that payload developers can use to reduce the conservatism in defining preliminary design loads, assess the impact of design changes between formal load cycles, and to perform trade studies for design optimization with a minimum amount of data required from the launch vehicle (LV) provider. NTRC also has the ability to perform parametric loads analysis where many different design configurations can be evaluated. This will result in cost and schedule benefits to the payload developer that are currently not possible under the standard coupled loads analysis (CLA) flow where typically only 2-3 official load cycles are performed by the LV provider over the life of a payload program. NTRC is not envisioned as a replacement for the official load cycles performed by the LV provider but rather as a means to address the types of design issues faced by the payload developer before and between official load cycles.The presentation provides an overview of the NTRC methodology and discusses how NTRC can be used to replicate the results from a standard LV CLA. The presentation covers the benchmarking that has been performed as part of the NESC study to demonstrate the accuracy of the technique for both frequency and time domain dynamic analyses. Future plans for benchmarking the NTRC approach against CLA results for NASAs Space Launch System (SLS) and commercial launch vehicles are discussed and the role that NTRC is envisioned to play in the payload development cycle.

  6. The October 1973 NASA mission model analysis and economic assessment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of the 1973 NASA Mission Model Analysis. The purpose was to obtain an economic assessment of using the Shuttle to accommodate the payloads and requirements as identified by the NASA Program Offices and the DoD. The 1973 Payload Model represents a baseline candidate set of future payloads which can be used as a reference base for planning purposes. The cost of implementing these payload programs utilizing the capabilities of the shuttle system is analyzed and compared with the cost of conducting the same payload effort using expendable launch vehicles. There is a net benefit of 14.1 billion dollars as a result of using the shuttle during the 12-year period as compared to using an expendable launch vehicle fleet.

  7. Normal mode analysis of the IUS/TDRS payload in a payload canister/transporter environment

    NASA Technical Reports Server (NTRS)

    Meyer, K. A.

    1980-01-01

    Special modeling techniques were developed to simulate an accurate mathematical model of the transporter/canister/payload system during ground transport of the Inertial Upper Stage/Tracking and Data Relay Satellite (IUS/TDRS) payload. The three finite element models - the transporter, the canister, and the IUS/TDRS payload - were merged into one model and used along with the NASTRAN normal mode analysis. Deficiencies were found in the NASTRAN program that make a total analysis using modal transient response impractical. It was also discovered that inaccuracies may exist for NASTRAN rigid body modes on large models when Given's method for eigenvalue extraction is employed. The deficiencies as well as recommendations for improving the NASTRAN program are discussed.

  8. Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.

  9. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  10. Integrated operations payloads/fleet analysis study extension report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An analysis of the factors affecting the cost effectiveness of space shuttle operations is presented. The subjects discussed are: (1)payload data bank, (2) program risk analysis, (3)navigation satellite program, and (4) reusable launch systems.

  11. Guidelines for Design and Analysis of Large, Brittle Spacecraft Components

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1993-01-01

    There were two related parts to this work. The first, conducted at The Aerospace Corporation was to develop and define methods for integrating the statistical theory of brittle strength with conventional finite element stress analysis, and to carry out a limited laboratory test program to illustrate the methods. The second part, separately funded at Aerojet Electronic Systems Division, was to create the finite element postprocessing program for integrating the statistical strength analysis with the structural analysis. The second part was monitored by Capt. Jeff McCann of USAF/SMC, as Special Study No.11, which authorized Aerojet to support Aerospace on this work requested by NASA. This second part is documented in Appendix A. The activity at Aerojet was guided by the Aerospace methods developed in the first part of this work. This joint work of Aerospace and Aerojet stemmed from prior related work for the Defense Support Program (DSP) Program Office, to qualify the DSP sensor main mirror and corrector lens for flight as part of a shuttle payload. These large brittle components of the DSP sensor are provided by Aerojet. This document defines rational methods for addressing the structural integrity and safety of large, brittle, payload components, which have low and variable tensile strength and can suddenly break or shatter. The methods are applicable to the evaluation and validation of such components, which, because of size and configuration restrictions, cannot be validated by direct proof test.

  12. First Spacelab flight - A status report of the joint ESA/NASA mission

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.; Sanfourche, J.-P.

    1978-01-01

    A general overview of the first Spacelab flight is presented and a table is given listing the payload composition. An accommodation study is presented with emphasis on the configuration, mass status, timeline, and experiment interface specifications. Also considered are flight and ground operations, safety factors, and payload specialists training for the first flight.

  13. Payload test philosophy. [to provide confidence in Shuttle structural math models

    NASA Technical Reports Server (NTRS)

    Mayhew, D.

    1979-01-01

    Shuttle payload test philosophy is discussed with reference to testing to provide confidence in Shuttle structural math models. Particular attention is given the Shuttle quarter-scale program and the Mated Vertical Ground Vibration Test Program.

  14. Mission management - Lessons learned from early Spacelab missions

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1980-01-01

    The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.

  15. Historical data and analysis for the first five years of KSC STS payload processing

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1986-01-01

    General and specific quantitative and qualitative results were identified from a study of actual operational experience while processing 186 science, applications, and commercial payloads for the first 5 years of Space Transportation System (STS) operations at the National Aeronautics and Space Administration's (NASA) John F. Kennedy Space Center (KSC). All non-Department of Defense payloads from STS-2 through STS-33 were part of the study. Historical data and cumulative program experiences from key personnel were used extensively. Emphasis was placed on various program planning and events that affected KSC processing, payload experiences and improvements, payload hardware condition after arrival, services to customers, and the impact of STS operations and delays. From these initial considerations, operational drivers were identified, data for selected processing parameters collected and analyzed, processing criteria and options determined, and STS payload results and conclusions reached. The study showed a significant reduction in time and effort needed by STS customers and KSC to process a wide variety of payload configurations. Also of significance is the fact that even the simplest payloads required more processing resources than were initially assumed. The success to date of payload integration, testing, and mission operations, however, indicates the soundness of the approach taken and the methods used.

  16. The 1993 Shuttle Small Payloads Symposium

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence R. (Editor); Mosier, Frances L. (Editor)

    1993-01-01

    The 1993 Shuttle Small Payloads Symposium is a combined symposia of the Get Away Special (GAS), Hitchhiker, and Complex Autonomous Payloads (CAP) programs, and is proposed to continue as an annual conference. The focus of this conference is to educate potential Space Shuttle Payload Bay users as to the types of carrier systems provided and for current users to share experiment concepts.

  17. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    NASA Technical Reports Server (NTRS)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  18. International Space Station Payload Training Overview

    NASA Technical Reports Server (NTRS)

    Underwood, Deborah B.; Noneman, Steven R.; Sanchez, Julie N.

    2001-01-01

    This paper describes payload crew training-related activities performed by NASA and the U.S. Payload Developer (PD) community for the International Space Station (ISS) Program. It describes how payloads will be trained and the overall training planning and integration process. The overall concept, definition, and template for payload training are described. The roles and responsibilities of individuals, organizations, and groups involved are discussed. The facilities utilized during payload training and the primary processes and activities performed to plan, develop, implement, and administer payload training for ISS crews are briefly described. Areas of improvement to crew training processes that have been achieved or are currently being worked are identified.

  19. A NASA Strategy for Leveraging Emerging Launch Vehicles for Routine, Small Payload Missions

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.

    2005-01-01

    Orbital flight opportunities for small payloads have always been few and far between, and then on February 1, 2002, the situation got worse. In the wake of the loss of the Columbia during STS- 107, changing NASA missions and priorities led to the termination of the Shuttle Small Payloads Projects, including Get-Away Special, Hitcbker, and Space Experiment Module. In spite of the limited opportunities, long queue, and restrictions associated with flying experiments on a man-rated transportation system; the carriers provided a sustained, high quality experiment services for education, science, and technology payloads, and was one of the few games in town. Attempts to establish routine opportunities aboard existing ELVs have been unsuccessful, as the cost-per-pound on small ELVs and conflicts with primary spacecraft on larger vehicles have proven prohibitive. Ths has led to a backlog of existing NASA-sponsored payloads and no prospects or plans for fbture opportunities within the NASA community. The prospects for breaking out of this paradigm appear promising as a result of NASA s partnership with DARPA in pursuit of low-cost, responsive small ELVs under the Falcon Program. Through this partnership several new small ELVs, providing 1000 lbs. to LEO will be demonstrated in less than two years that promise costs that are reasonable enough that NASA, DoD, and other sponsors can once again invest in small payload opportunities. Within NASA, planning has already begun. NASA will be populating one or more of the Falcon demonstration flights with small payloads that are already under development. To accommodate these experiments, Goddard s Wallops Flight Facility has been tasked to develop a multi-payload ejector (MPE) to accommodate the needs of these payloads. The MPE capabilities and design is described in detail in a separately submitted abstract. Beyond use of the demonstration flights however, Goddard has already begun developing strategies to leverage these new ELVs as elements of a larger system designed to provide routine, low-cost end-to-end services for small science, Exploration, and education payloads. The plan leverages the management approaches of the successful Sounding Rocket Program and Shuttle Small Payloads Projects. The strategy consists of using a systems implementation approach of elements, including 1) Falcon ELVs, 2) advanced launch site technologies and processes, 3) suite of experiment carriers accommodating different mission requirements, 4) streamlined integration and test operations, 5 ) experiment brokering and management, and 6) standardized, distributed payload operations. The envisioned suite of carriers includes the MPE, a standard interface experiment carrier, and potentially a reentry fieeflyer experiment carrier. Key to the success of this strategy is standard experiment interfaces within the carriers to limit mission- unique tasks, establishmg and managing a program of scheduled reoccurring flights rather than discrete missions, and streamlined, centralized implementation of the elements. These individual elements are each under development and Goddard will demonstrate the overall system strategy low-cost small payload missions on the initial Falcon demonstration launches from Wallops. goal is to show that this model should be converted to a sustained NASA program supporting science, technology, and education, with annual flight opportunities. The paper will define in detail the various elements of the overall program, as well as provide status, philosophy, and strategy for the program that will hopefully once-and-for-all provide low-cost, routine access to space for the small payloads community.

  20. STS-107 Payload Specialist Ilan Ramon arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (the first Israeli astronaut) arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  1. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  2. Considerations in STS payload environmental verification

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1978-01-01

    Considerations regarding the Space Transportation System (STS) payload environmental verification are reviewed. It is noted that emphasis is placed on testing at the subassembly level and that the basic objective of structural dynamic payload verification is to ensure reliability in a cost-effective manner. Structural analyses consist of: (1) stress analysis for critical loading conditions, (2) model analysis for launch and orbital configurations, (3) flight loads analysis, (4) test simulation analysis to verify models, (5) kinematic analysis of deployment/retraction sequences, and (6) structural-thermal-optical program analysis. In addition to these approaches, payload verification programs are being developed in the thermal-vacuum area. These include the exposure to extreme temperatures, temperature cycling, thermal-balance testing and thermal-vacuum testing.

  3. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Calvert, John; Freas, George, II

    2017-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.

  4. The design of a commercial space infrastructure

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space Services and Logistics, Inc. represents the complete engineering design of a technically and financially viable commercial space company. The final proposal offers an economically sound program of space vehicles and systems designed to substantially affect a variety of space markets and produce a vertically integrated structure within the next 20 years. Throughout this design process, particular stress has been placed on attaining the highest possible levels of safety and reliability. The final program financial design requires a considerable initial outlay, but promises a relatively quick return on invested capital, culminating in large annual profits by the end of the 20-year scope of the cost outlook. The overall design has been extensively researched and was primarily driven by the present and near-term projected market demands for services uniquely or competitively offered only by space-oriented operations. Heretofore, available capabilities, rather than these market demands, have determined the degree and type of commercial market access. Removing this limitation through extensive use of modularity and reconfigurability allows the company to gear itself to the market, while still remaining extremely competitive with existing systems. The markets identified as lucrative, and that have governed much of the design requirements, are: low-cost launch services to LEO over a wide range of payload masses and inclinations; upper stage payload delivery from LEO to GEO; manned space operations and human transport to and from orbit; EVA assembly and maintenance of large space structures; satellite servicing and repair by both humans and telerobotic operations; a line of customized satellites designed for extended life and capable of reconfiguration or technology upgrade on orbit; small-scale microgravity experimentation and manufacturing supported by spacecraft retrieval capabilities for experimental specimens and manufactured goods; and a full-range of payload integration, testing, design, and support services before launch and once in orbit.

  5. 'Secret' Shuttle payloads revealed

    NASA Astrophysics Data System (ADS)

    Powell, Joel W.

    1993-05-01

    A secret military payload carried by the orbiter Discovery launched on January 24 1985 is discussed. Secondary payloads on the military Shuttle flights are briefly reviewed. Most of the military middeck experiments were sponsored by the Space Test Program established at the Pentagon to oversee all Defense Department space research projects.

  6. Development of a Remote Sensing and Microgravity Student GAS Payload

    NASA Technical Reports Server (NTRS)

    Branly, Rolando; Ritter, Joe; Friedfeld, Robert; Ackerman, Eric; Carruthers, Carl; Faranda, Jon

    1999-01-01

    The G-781 Terrestrial and Atmospheric Multi-Spectral Explorer payload (TAMSE) is the result of an educational partnership between Broward and Brevard Community Colleges with the Association of Small Payload Researchers (ASPR) and the Florida Space Institute, University of Central Florida. The effort focuses on flying nine experiments, including three earth viewing remote sensing experiments, three microgravity experiments involving crystal growth, and three radiation measurement experiments. The G-781 science team, composed of both student and faculty members, has been working on this payload since 1995. The dream of flying the first Florida educational GAS experiment led to the flight of a passive Radiation dosimetry experiment on STS-91 (ASPR-GraDEx-I), which will be reflown as part of TAMSE. This project has lead to the development of a mature space science program within the schools. Many students have been positively touched by direct involvement with NASA and the GAS program as well as with other flight programs e.g. the KC-135 flight program. Several students have changed majors, and selected physics, engineering, and other science career paths as a result of the experience. The importance of interdisciplinary training is fundamental to this payload and to the teaching of the natural sciences. These innovative student oriented projects will payoff not only in new science data, but also in accomplishing training for the next generation of environmental and space scientists. The details the TAMSE payload design are presented in this paper.

  7. The LEAN Payload Integration Process

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.; Young, Yancy; Rice, Amanda

    2011-01-01

    It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.

  8. The use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 2

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Martinez-Sanchez, M.; Arnold, D.

    1982-01-01

    The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.

  9. Future payload technology requirements study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.

  10. The cyclotron energization through auroral wave experiments (CENTAUR 2B)

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.

    1992-01-01

    The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.

  11. 10. PAYLOAD CONTROL CONSOLE NEAR SOUTH WALL OF SLC3W CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PAYLOAD CONTROL CONSOLE NEAR SOUTH WALL OF SLC-3W CONTROL ROOM. DECALS ON CONSOLE IN FOREGROUND INDICATE PAYLOAD PROGRAMS LAUNCHED FROM SLC-3W. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. SRMS History, Evolution and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Jorgensen, Glenn; Bains, Elizabeth

    2011-01-01

    Early in the development of the Space Shuttle, it became clear that NASA needed a method of deploying and retrieving payloads from the payload bay. The Shuttle Remote Manipulator System (SRMS) was developed to fill this need. The 50 foot long robotic arm is an anthropomorphic design consisting of three electromechanical joints, six degrees of freedom, and two boom segments. Its composite boom construction provided a light weight solution needed for space operations. Additionally, a method of capturing payloads with the arm was required and a unique End Effector was developed using an electromechanical snare mechanism. The SRMS is operated using a Displays and Controls Panel and hand controllers located within the aft crew compartment of the shuttle. Although the SRMS was originally conceived to deploy and retrieve payloads, its generic capabilities allowed it to perform many other functions not originally conceived of. Over the years it has been used for deploying and retrieving constrained and free flying payloads, maneuvering and supporting EVA astronauts, satellite repair, International Space Station construction, and as a viewing aid for on-orbit International Space Station operations. After the Columbia accident, a robotically compatible Orbiter Boom Sensor System (OBSS) was developed and used in conjunction with the SRMS to scan the Thermal Protection System (TPS) of the shuttle. These scans ensure there is not a breach of the TPS prior to shuttle re-entry. Ground operations and pre mission simulation, analysis and planning played a major role in the success of the SRMS program. A Systems Engineering Simulator (SES) was developed to provide a utility complimentary to open loop engineering simulations. This system provided a closed-loop real-time pilot-driven simulation giving visual feedback, display and control panel interaction, and integration with other vehicle systems, such as GN&C. It has been useful for many more applications than traditional training. Evolution of the simulations, guided by the Math Model Working Group, showed the utility of input from multiple modeling groups with a structured forum for discussion.There were many unique development challenges in the areas of hardware, software, certification, modeling and simulation. Over the years, upgrades and enhancements were implemented to increase the capability, performance and safety of the SRMS. The history and evolution of the SRMS program provided many lessons learned that can be used for future space robotic systems.

  13. A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    NASA Technical Reports Server (NTRS)

    Tamir, David

    1992-01-01

    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.

  14. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Spacelab payload definition study. Volume 7, book 2: AMPS phase C/D analysis and planning document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results are presented of the AMPS Phase C/D (Design, Development, and Operations) program analysis and planning effort. Cost and schedule estimates are included. Although the AMPS program has been specifically addressed, these task descriptions are basically adaptable to a broader-based program incorporating additional or different Spacelab/orbiter payloads.

  15. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  16. Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform

    NASA Astrophysics Data System (ADS)

    Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.

    2009-03-01

    The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.

  17. Designing an Alternate Mission Operations Control Room

    NASA Technical Reports Server (NTRS)

    Montgomery, Patty; Reeves, A. Scott

    2014-01-01

    The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a serviceoriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building. This paper presents the HPOC architecture and lessons learned during testing and the planned maiden operational commissioning. Additionally, this paper documents the necessity of an HPOC capability given the unplanned HOSC Facility power outage on April 27th, 2011, as a result of the tornado outbreak that damaged the electrical grid to such a degree that significantly inhibited the Tennessee Valley Authority's ability to transmit electricity throughout the North Alabama region.

  18. Considerations in STS payload environmental verification

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1978-01-01

    The current philosophy of the GSFS regarding environmental verification of Shuttle payloads is reviewed. In the structures area, increased emphasis will be placed on the use of analysis for design verification, with selective testing performed as necessary. Furthermore, as a result of recent cost optimization analysis, the multitier test program will presumably give way to a comprehensive test program at the major payload subassembly level after adequate workmanship at the component level has been verified. In the thermal vacuum area, thought is being given to modifying the approaches used for conventional spacecraft.

  19. The Living With a Star Space Environment Testbed Experiments

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  20. Communication Platform Payload Definition (CPPD) study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 2 (Technical Report) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  1. Communication Platform Payload Definition (CPPD) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.

    1986-01-01

    This is Volume 1 (Executive Summary) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  2. Near Space Environments: Tethering Systems

    NASA Technical Reports Server (NTRS)

    Lucht, Nolan R.

    2013-01-01

    Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.

  3. Communication Platform Payload Definition (CPPD) study. Volume 3: Addendum

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 3 (Addendum) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study Program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  4. Test report dot7A type A liquid packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E. T.; Brandjes, C.; Benoit, T. J.

    2017-09-19

    This section presents a general description of the DOT Specification 7A Type A liquid content packaging (HVYTAL), the liquid content evaluated as its payload, acceptable payload shipping configurations and features special to its use. This test report documents compliance with the regulatory safety requirements of 49 CFR Parts 173.24, 173.24a, 173.27, 173.410, 173.412, 173.461 – 173.466 and 178.350.

  5. Payload Operations Control Center (POCC). [spacelab flight operations

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.; Noneman, S. R.; Terry, E. S.

    1981-01-01

    The Spacelab payload operations control center (POCC) timeline analysis program which is used to provide POCC activity and resource information as a function of mission time is described. This program is fully automated and interactive, and is equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The POCC timeline analysis program is designed to operate on the VAX/VMS version V2.1 computer system.

  6. The Get Away Special Program: Year 2000 and Beyond

    NASA Technical Reports Server (NTRS)

    Wilcox, David A.

    1999-01-01

    The Get Away Special (GAS) Program flew its first payload in 1982. Since then, 157 payloads have flown on the STS. As the GAS program approaches the new millennium, interest in flying the low-cost access to space continues. Many changes are in store, or are already underway, that will impact the GAS user community in the coming years. This presentation will briefly outline some of those changes and other external impacts to the GAS Program.

  7. EVAL system concept definition. Partial spacelab payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The preliminary design of an earth-viewing spacelab payload, with accommodations shared by both NASA and ESA is addressed. Mission parameters for this flight include a launch date of September 1981, an inclination of 57 deg, and an orbital altitude of 325 km. A seven-day mission is planned. The NASA portion of this payload is assigned to the EVAL (Earth Viewing Applications Laboratory) program. The ESA complement is designed as a multiuser payload.

  8. STS-99 crew look over safety equipment during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, members of the STS-99 crew and others look over part of the safety equipment. Standing left to right (in uniform) are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  9. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  10. International utilization and operations

    NASA Technical Reports Server (NTRS)

    Goldberg, Stanley R.

    1989-01-01

    The international framework of the Space Station Freedom Program is described. The discussion covers the U.S. space policy, international agreements, international Station elements, overall program management structure, and utilization and operations management. Consideration is also given to Freedom's user community, Freedom's crew, pressurized payload and attached payload accommodations, utilization and operations planning, user integration, and user operations.

  11. STS-34 Cargo Configuration drawing with payload bay location of Galileo/IUS

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Visual aid entitled NATIONAL STS PROGRAM STS-34 CARGO CONFIGURATION is a line drawing of Atlantis, Orbiter Vehicle (OV) 104, orbiting the Earth with its payload bay doors (PLBDs) open. A label identifies the Galileo spacecraft on an inertial upper stage (IUS) and its location in the payload bay (PLB).

  12. Twenty-Second Annual NASA Supply and Equipment Management Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The status of actions from the 1988 conference is reviewed. Environmental safety issues, definitions, and regulations; contract transition, payload logistics transition, and safety and support equipment; supply products and services, bar code technology, and inventory accuracy; equipment management workshop topics; and contract property workshop topics are outlined.

  13. Payload analysis for space shuttle applications (study 2.2). Volume 3: Payload system operations analysis (task 2.2.1). [payload system operations analysis for shuttles and space tugs

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The technical and cost analysis that was performed for the payload system operations analysis is presented. The technical analysis consists of the operations for the payload/shuttle and payload/tug, and the spacecraft analysis which includes sortie, automated, and large observatory type payloads. The cost analysis includes the costing tradeoffs of the various payload design concepts and traffic models. The overall objectives of this effort were to identify payload design and operational concepts for the shuttle which will result in low cost design, and to examine the low cost design concepts to identify applicable design guidelines. The operations analysis examined several past and current NASA and DoD satellite programs to establish a shuttle operations model. From this model the analysis examined the payload/shuttle flow and determined facility concepts necessary for effective payload/shuttle ground operations. The study of the payload/tug operations was an examination of the various flight timelines for missions requiring the tug.

  14. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  15. Analytical Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    A preliminary analysis tool has been created in Microsoft Excel to determine deliverable payload mass, total system mass, and performance of spacecraft systems using various types of propellant feed systems. These mass estimates are conducted by inserting into the user interface the basic mission parameters (e.g., thrust, burn time, specific impulse, mixture ratio, etc.), system architecture (e.g., propulsion system type and characteristics, propellants, pressurization system type, etc.), and design properties (e.g., material properties, safety factors, etc.). Different propellant feed and pressurization systems are available for comparison in the program. This gives the user the ability to compare conventional pressure fed, reciprocating feed system (RFS), autogenous pressurization thrust augmentation (APTA RFS), and turbopump systems with the deliverable payload, inert mass, and total system mass being the primary comparison metrics. Analyses of several types of missions and spacecraft were conducted and it was found that the RFS offers a performance improvement, especially in terms of delivered payload, over conventional pressure fed systems. Furthermore, it is competitive with a turbopump system at low to moderate chamber pressures, up to approximately 1,500 psi. Various example cases estimating the system mass and deliverable payload of several types of spacecraft are presented that illustrate the potential system performance advantages of the RFS. In addition, a reliability assessment of the RFS was conducted, comparing it to simplified conventional pressure fed and turbopump systems, based on MIL-STD 756B; these results showed that the RFS offers higher reliability, and thus substantially longer periods between system refurbishment, than turbopump systems, and is competitive with conventional pressure fed systems. This is primarily the result of the intrinsic RFS fail-operational capability with three run tanks, since the system can operate with just two run tanks.

  16. Bantam System Technology Project Ground System Operations Concept and Plan

    NASA Technical Reports Server (NTRS)

    Moon, Jesse M.; Beveridge, James R.

    1997-01-01

    The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.

  17. Catalog of lunar and Mars science payloads

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann (Editor)

    1994-01-01

    This catalog collects and describes science payloads considered for future robotic and human exploration missions to the Moon and Mars. The science disciplines included are geosciences, meteorology, space physics, astronomy and astrophysics, life sciences, in-situ resource utilization, and robotic science. Science payload data is helpful for mission scientists and engineers developing reference architectures and detailed descriptions of mission organizations. One early step in advanced planning is formulating the science questions for each mission and identifying the instrumentation required to address these questions. The next critical element is to establish and quantify the supporting infrastructure required to deliver, emplace, operate, and maintain the science experiments with human crews or robots. This requires a comprehensive collection of up-to-date science payload information--hence the birth of this catalog. Divided into lunar and Mars sections, the catalog describes the physical characteristics of science instruments in terms of mass, volume, power and data requirements, mode of deployment and operation, maintenance needs, and technological readiness. It includes descriptions of science payloads for specific missions that have been studied in the last two years: the Scout Program, the Artemis Program, the First Lunar Outpost, and the Mars Exploration Program.

  18. Program Manager: Journal of the Defense Management College. Volume 16, Number 4, July-August 1987,

    DTIC Science & Technology

    1987-08-01

    Payload as:Review and flight customer. This sets the stage for the -Annex 1: Payload Physical Data elinked next activity in the Integration process are...REQUIREMENTS is held approximately 10 months Ebefore flight to ensure that the payload(s) selected to make up the *cargo can be physically and...EXECUTIVE outlining physical characteristics of the OFFICE item. Now, the procurement specialist solicits industry and if a satisfactory STAFF offer is

  19. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA's unmanned missions since 1964, the building has been renovated to house the ELV Program. Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield.

  20. KSC-00pp1668

    NASA Image and Video Library

    2000-11-08

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA’s unmanned missions since 1964, the building has been renovated to house the ELV Program.; Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield

  1. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  2. Study of orbiter/payload interface communications configuration control board directive from an operational perspective

    NASA Technical Reports Server (NTRS)

    Addis, A. W.; Tatosian, C. G.; Lidsey, J. F.

    1974-01-01

    Orbiter/payload data and communications interface was examined. It was found that the Configuration Control Board Directive (CCBD) greatly increases the capability of the orbiter to communicate with a wide variety of projected shuttle payloads. Rather than being derived from individual payload communication requirements, the CCBD appears to be based on an operational philosophy that requires the orbiter to duplicate or augment the ground network/payload communication links. It is suggested that the implementation of the CCBD be reviewed and compared with the Level 1 Program Requirements Document, differences reconciled, and interface characteristics defined.

  3. The 1995 Shuttle Small Payloads Symposium

    NASA Technical Reports Server (NTRS)

    Goldsmith, Frann (Editor); Mosier, Frances L. (Editor)

    1995-01-01

    The 1995 Shuttle Small Payloads Symposium is a combined symposia of the Get Away Special (GAS) and Hitchhiker programs, and is proposed to continue as an annual conference. The focus of this conference is to educate potential Space Shuttle Payload Bay users as to the types of carrier systems provided and for current users to share experiment concepts.

  4. 1999 Shuttle Small Payloads Symposium

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerard (Editor); Mosier, Frances L. (Editor)

    1999-01-01

    The 1999 Shuttle Small Payloads Symposium is a combined symposia of the Get Away Special (GAS), Space Experiment Module (SEM), and Hitchhiker programs, and is proposed to continue as an annual conference. The focus of this conference is to educate potential Space Shuttle Payload Bay users as to the types of carrier systems provided and for current users to share experiment concepts.

  5. Advanced space program studies: Overall executive summary

    NASA Technical Reports Server (NTRS)

    Sitney, L. R.

    1974-01-01

    Studies were conducted to provide NASA with advanced planning analyses which relate integrated space program goals and options to credible technical capabilities, applications potential, and funding resources. The studies concentrated on the following subjects: (1) upper stage options for the space transportation system based on payload considerations, (2) space servicing and standardization of payloads, (3) payload operations, and (4) space transportation system economic analyses related to user charges and new space applications. A systems cost/performance model was developed to synthesize automated, unmanned spacecraft configurations based on the system requirements and a list of equipments at the assembly level.

  6. STS-39 AFP-675 and STP-1 MPESS in OV-103's payload bay (PLB)

    NASA Image and Video Library

    1991-05-06

    STS039-10-019 (28 April-6 May 1991) --- This 35mm frame, taken from inside the crew cabin, shows some of the cargo in Discovery's payload bay. Seen are the tops of canisters on the STP-1 payload, configured on the STS 39 Hitchhiker carrier; and the Air Force Program (AFP) 675 package. AFP-675 consists of the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS)-1A; Far Ultraviolet Camera (FAR-UV) Experiment; Horizon Ultraviolet Program (HUP); Quadruple Ion Neutral Mass Spectrometer (QINMS); and the Uniformly Redundant Array (URA).

  7. Integrated payload and mission planning, phase 3. Volume 2: Logic/Methodology for preliminary grouping of spacelab and mixed cargo payloads

    NASA Technical Reports Server (NTRS)

    Rodgers, T. E.; Johnson, J. F.

    1977-01-01

    The logic and methodology for a preliminary grouping of Spacelab and mixed-cargo payloads is proposed in a form that can be readily coded into a computer program by NASA. The logic developed for this preliminary cargo grouping analysis is summarized. Principal input data include the NASA Payload Model, payload descriptive data, Orbiter and Spacelab capabilities, and NASA guidelines and constraints. The first step in the process is a launch interval selection in which the time interval for payload grouping is identified. Logic flow steps are then taken to group payloads and define flight configurations based on criteria that includes dedication, volume, area, orbital parameters, pointing, g-level, mass, center of gravity, energy, power, and crew time.

  8. A Simplified Shuttle Payload Thermal Analyzer /SSPTA/ program

    NASA Technical Reports Server (NTRS)

    Bartoszek, J. T.; Huckins, B.; Coyle, M.

    1979-01-01

    A simple thermal analysis program for Space Shuttle payloads has been developed to accommodate the user who requires an easily understood but dependable analytical tool. The thermal analysis program includes several thermal subprograms traditionally employed in spacecraft thermal studies, a data management system for data generated by the subprograms, and a master program to coordinate the data files and thermal subprograms. The language and logic used to run the thermal analysis program are designed for the small user. In addition, analytical and storage techniques which conserve computer time and minimize core requirements are incorporated into the program.

  9. NASA LeRC's Acoustic Fill Effect Test Program and Results

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Mcnelis, Mark E.; Manning, Jerome E.

    1994-01-01

    NASA Lewis Research Center, in conjunction with General Dynamics Space Systems Division, has performed a test program to investigate the acoustic fill effect for an unblanketed payload fairing for a variety of payload simulators. This paper will discuss this test program and fill factor test data, and make comparisons with theoretical predictions. This paper will also address the NASA acoustic fill effect standard which was verified from the test data analysis.

  10. STS-59 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.

  11. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  12. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  13. Constellation Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve

    2009-01-01

    This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.

  14. Bantam: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    McNeal, Curtis I., Jr.

    2004-01-01

    This viewgraph presentation reviews the history of the Bantam program that was cancelled in 1999 due to the decision that the focus on the small payloads was unsustainable and that there would be no return on investment. The comparison is made between NASA's Bantam program, and DARPA's (Defense Advanced Research Projects Agency) two similar projects (Falcon and Rascal). The Bantam Program was to be a small launch vehicle, aimed at launching small payloads (i.e., of 150-300 kg) into space.

  15. STS-107 Payload Specialist Ilan Ramon during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, participates in Terminal Countdown Demonstration Test activities, a standard part of Shuttle launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  16. Amine Swingbed Payload Project Management

    NASA Technical Reports Server (NTRS)

    Hayley, Elizabeth; Curley, Su; Walsh, Mary

    2011-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the ORION Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the ORION vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6-person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload the swingbed unit itself launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open-loop ORION application as well as the closed-loop ISS application.

  17. Amine Swingbed Payload Project Management

    NASA Technical Reports Server (NTRS)

    Walsch, Mary; Curley, Su

    2013-01-01

    The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.

  18. Impact of low cost refurbishable and standard spacecraft upon future NASA space programs. Payload effects follow-on study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study has concluded that there are very large space program cost savings to be obtained by use of low cost, refurbishable, and standard spacecraft in conjunction with the shuttle transportation system. The range of space program cost savings for three different groups of programs are shown in quantitative terms. The total savings for the 91 programs will range from $13.4 billion to $18.0 billion depending on the degree of hardware standardization. These savings, principally resulting from payload cost reductions, tangibly support the development costs of the shuttle system.

  19. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  20. Payload accommodation and development planning tools - A Desktop Resource Leveling Model (DRLM)

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Ledbetter, Bobby; Williams, Richard C.

    1989-01-01

    The Desktop Resource Leveling Model (DRLM) has been developed as a tool to rapidly structure and manipulate accommodation, schedule, and funding profiles for any kind of experiments, payloads, facilities, and flight systems or other project hardware. The model creates detailed databases describing 'end item' parameters, such as mass, volume, power requirements or costs and schedules for payload, subsystem, or flight system elements. It automatically spreads costs by calendar quarters and sums costs or accommodation parameters by total project, payload, facility, payload launch, or program phase. Final results can be saved or printed out, automatically documenting all assumptions, inputs, and defaults.

  1. Ammonia Release on ISS

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2009-01-01

    Crew: Approximately 53% metabolic load Product of protein metabolism Limit production of ammonia by external regulation NOT possbile Payloads Potential source Scientific experiments Thorough safety review ensures sufficient levels of containment

  2. Get away special the low-cost route to orbit

    NASA Technical Reports Server (NTRS)

    Prouty, C.

    1986-01-01

    NASA has established the Get Away Special (GAS) program as a means for providing anyone who wishes the opportunity to place a small self-contained experimental payload aboard a Space Shuttle mission for a very low cost. The GAS program is now well established, and has a respectable history with 53 payloads flown to date. The GAS experimenters are a diverse group who have demonstrated that people from all walks of life, and from many nations, are interested in working in space. This paper traces the history of the program from its concept through the development phase to the present time, and takes a brief look at the future. It also addresses the steps involved in making a payload reservation and the programmatic and technical relationships that are established between NASA and GAS customers.

  3. Pegaso: Long durations balloons from polar regions

    NASA Astrophysics Data System (ADS)

    Romeo, G. R.; di Stefano, G. D. S.; di Felice, F. D. F.; Masi, S. M.; Cardillo, A. C.; Musso, I. M.; Ibba, R. I.; Palangio, P. P.; Caprara, F. C.; Peterzen, S. P.; Pegaso Group

    Launched from the Mario Zuccelli Station Baia Terra Nova in Antarctica during the 2005 06 austral summer the PEGASO-D payload lifted into the stratospheric anticyclone over the southern polar region This effort marks the first Long Duration Scientific payload to be launched from this location and is the fourth such payload launched in the polar regions Performing in the framework of the NOBILE AMUNDSEN collaborative LDB development between ASI-ARR The Italian Institute of Geophysics and Volcanology INGV with the sponsorship of the Italian Antarctic Program PNRA and the Italian Space Agency ASI designed and built the Ultra-Light system together with three Universities in Italy The Pegaso program has been created to investigate the Earth magnetic field and provide a precursor series of small payload launches for the bigger LDB program such as OLIMPO BOOMERanG and BArSPOrt through this collaboration between ASI and ARR The Italian scientific community aware of the big advantages that LDB balloons can offer to their experiments proposed to extend the LDB program to Southern polar regions besides performing launches from the newly initiated Nobile Amundsen Stratospheric Balloon Center in Svalbard Norway Three PEGASO Polar Explorer for Geomagnetics And other Scientific Observations payloads have been launched from the Svalbard No in collaboration with Andoya Rocket Range ASI and ISTAR Operations and logistics during the past two northern summers These stratospheric altitude m 35000 small 10kmc balloons have floated in the stratosphere between 14 to

  4. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  5. Preparing safety data packages for experimenters using the Get Away Special (GAS) carrier system

    NASA Technical Reports Server (NTRS)

    Kosko, Jerome

    1992-01-01

    The implementation of NSTS 1700.7B and more forceful scruntiny of data packages by the Johnson Space Flight Center (JSC) lead to the development of a classification policy for GAS/CAP payloads. The purpose of this policy is to classify experiments using the carrier system so that they receive an appropriate level of JSC review (i.e., one or multiphase reviews). This policy is based on energy containment to show inherent payload safety. It impacts the approach to performing hazard analyses and the nature of the data package. This paper endeavors to explain the impact of this policy as well as the impact of recent JSC as well as Kennedy Space Flight Center (KSC) 'interpretations' of existing requirements. The GAS canister does adequately contain most experiments when flown in the sealed configuration (however this must be shown, not merely stated). This paper also includes data package preparation guidelines for those experiments that require an opening door which often present unique safety issues.

  6. The October 1973 expendable launch vehicle traffic model, revision 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Traffic model data for current expendable launch vehicles (assuming no space shuttle) for calendar years 1980 through 1991 are presented along with some supporting and summary data. This model was based on a payload program equivalent in scientific return to the October 1973 NASA Payload Model, the NASA estimated non NASA/non DoD Payload Model, and the 1971 DoD Mission Model.

  7. Low-cost space flight for attached payloads

    NASA Astrophysics Data System (ADS)

    Perkins, Frederick W.

    1991-07-01

    An important addition to the emerging commercial space sector is Standard Space Platforms Corporation's comprehensive low-cost flight service delivery system for small and developmental payloads. Standard provides a privately funded, proprietary, value-added transportation service which dramatically reduces cost and program duration for compliant payloads. It also provides a business-to-business service which is compatible with business investment decision timing and technology development cycles.

  8. Vibroacoustic Payload Environment Prediction System (VAPEPS): VAPEPS management center remote access guide

    NASA Technical Reports Server (NTRS)

    Fernandez, J. P.; Mills, D.

    1991-01-01

    A Vibroacoustic Payload Environment Prediction System (VAPEPS) Management Center was established at the JPL. The center utilizes the VAPEPS software package to manage a data base of Space Shuttle and expendable launch vehicle payload flight and ground test data. Remote terminal access over telephone lines to the computer system, where the program resides, was established to provide the payload community a convenient means of querying the global VAPEPS data base. This guide describes the functions of the VAPEPS Management Center and contains instructions for utilizing the resources of the center.

  9. NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services

    NASA Technical Reports Server (NTRS)

    Sierra, Albert; Beddel, Darren

    1999-01-01

    The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.

  10. Loads and low frequency dynamics - An ENVIRONET data base

    NASA Technical Reports Server (NTRS)

    Garba, John A.

    1988-01-01

    The loads and low frequency dynamics data base, part of Environet, is described with particular attention given to its development and contents. The objective of the data base is to provide the payload designer with design approaches and design data to meet STS safety requirements. Currently the data base consists of the following sections: abstract, scope, glossary, requirements, interaction with other environments, summary of the loads analysis process, design considerations, guidelines for payload design loads, information data base, and references.

  11. STS-107 Payload Specialist Ilan Ramon suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, gets help with his suitup for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  12. Guidelines for mission integration, a summary report

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines are presented for instrument/experiment developers concerning hardware design, flight verification, and operations and mission implementation requirements. Interface requirements between the STS and instruments/experiments are defined. Interface constraints and design guidelines are presented along with integrated payload requirements for Spacelab Missions 1, 2, and 3. Interim data are suggested for use during hardware development until more detailed information is developed when a complete mission and an integrated payload system are defined. Safety requirements, flight verification requirements, and operations procedures are defined.

  13. Overview of TPS Tasks

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2000-01-01

    The objectives of the project summarized in this viewgraph presentation are the following: (1) Develop a lightweight and low cost durable Thermal Protection System (TPS) for easy application to reusable launch vehicle payload launchers; (2) Develop quickly processed composite TPS processing and repair techniques; and (3) Develop higher temperature capability tile TPS. The benefits of this technology include reduced installation and operations cost, enhanced payload capability resulting from TPS weight reduction, and enhanced flight envelope and performance resulting from higher temperature capability TPS which can result in improved safety.

  14. STS-107 Payload Specialist Ilan Ramon suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, sits happily during suitup for Terminal Countdown Demonstration Test activities, which include a simulated launch countdown at the pad. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  15. STS-87 Payload Canister being raised into PCR

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A payload canister containing the primary payloads for the STS-87 mission is lifted into the Payload Changeout Room at Pad 39B at Kennedy Space Center. The STS-87 payload includes the United States Microgravity Payload-4 (USMP-4) and Spartan-201. Spartan- 201 is a small retrievable satellite involved in research to study the interaction between the Sun and its wind of charged particles. USMP-4 is one of a series of missions designed to conduct scientific research aboard the Shuttle in the unique microgravity environment for extended periods of time. In the past, USMP missions have provided invaluable experience in the design of instruments needed for the International Space Station (ISS) and microgravity programs to follow in the 21st century. STS-87 is scheduled for launch Nov. 19.

  16. KSC-07pd1811

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- The payload canister is lifted off its transporter up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd1813

    NASA Image and Video Library

    2007-07-08

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett

  18. Operational plans for life science payloads - From experiment selection through postflight reporting

    NASA Technical Reports Server (NTRS)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  19. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  20. The New Payload Handling System for the G erman On- Orbit Verification Satellite TET with the Sensor Bus as Example for Payloads

    NASA Astrophysics Data System (ADS)

    Heyer, H.-V.; Föckersperger, S.; Lattner, K.; Moldenhauer, W.; Schmolke, J.; Turk, M.; Willemsen, P.; Schlicker, M.; Westerdorff, K.

    2008-08-01

    The technology verification satellite TET (Technologie ErprobungsTräger) is the core element of the German On-Orbit-Verification (OOV) program of new technologies and techniques. The goal of this program is the support of the German space industry and research facilities for on-orbit verification of satellite technologies. The TET satellite is a small satellite developed and built in Germany under leadership of Kayser-Threde. The satellite bus is based on the successfully operated satellite BIRD and the newly developed payload platform with the new payload handling system called NVS (Nutzlastversorgungs-system). The NVS can be detailed in three major parts: the power supply the processor boards and the I/O-interfaces. The NVS is realized via several PCBs in Europe format which are connected to each other via an integrated backplane. The payloads are connected by front connectors to the NVS. This paper describes the concept, architecture, and the hard-/software of the NVS. Phase B of this project was successfully finished last year.

  1. KSC-00pp0089

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors, reflecting the surrounding light, reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  2. KSC-00pp0088

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  3. KSC-00pp0090

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors, reflecting the surrounding lights, reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  4. KSC-00pp0087

    NASA Image and Video Library

    2000-01-17

    At Launch Pad 39A, orbiter Endeavour's open payload bay doors reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  5. Project Columbiad: Reestablishment of human presence on the Moon

    NASA Technical Reports Server (NTRS)

    Shea, Joseph; Weiss, Stanley; Alexander, Harold; Belobaba, Peter; Loboda, Greg; Berry, Maresi; Bower, Mark; Bruen, Charles; Cazeau, Patrick; Clarke, Michael

    1992-01-01

    In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted missions have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mecanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.

  6. Generalized environmental control and life support system computer program (G189A) configuration control. [computer subroutine libraries for shuttle orbiter analyses

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.

    1973-01-01

    A G189A simulation of the shuttle orbiter EC/lSS was prepared and used to study payload support capabilities. Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. Several new component subroutines were added to the G189A program library and many existing subroutines were revised to improve their capabilities. A number of special analyses were performed in support of a NASA/JSC shuttle orbiter EC/LSS payload support capability study.

  7. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  8. The Living With a Star Space Environment Testbed Payload

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  9. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  10. Test plan and report for Space Shuttle launch environment testing of Bergen cable technology safety cable

    NASA Technical Reports Server (NTRS)

    Ralph, John

    1992-01-01

    Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.

  11. Recommendations of the Oligonucleotide Safety Working Group's Formulated Oligonucleotide Subcommittee for the Safety Assessment of Formulated Oligonucleotide-Based Therapeutics.

    PubMed

    Marlowe, Jennifer L; Akopian, Violetta; Karmali, Priya; Kornbrust, Douglas; Lockridge, Jennifer; Semple, Sean

    2017-08-01

    The use of lipid formulations has greatly improved the ability to effectively deliver oligonucleotides and has been instrumental in the rapid expansion of therapeutic development programs using oligonucleotide drugs. However, the development of such complex multicomponent therapeutics requires the implementation of unique, scientifically sound approaches to the nonclinical development of these drugs, based upon a hybrid of knowledge and experiences drawn from small molecule, protein, and oligonucleotide therapeutic drug development. The relative paucity of directly applicable regulatory guidance documents for oligonucleotide therapeutics in general has resulted in the generation of multiple white papers from oligonucleotide drug development experts and members of the Oligonucleotide Safety Working Group (OSWG). The members of the Formulated Oligonucleotide Subcommittee of the OSWG have utilized their collective experience working with a variety of formulations and their associated oligonucleotide payloads, as well as their insights into regulatory considerations and expectations, to generate a series of consensus recommendations for the pharmacokinetic characterization and nonclinical safety assessment of this unique class of therapeutics. It should be noted that the focus of Subcommittee discussions was on lipid nanoparticle and other types of particulate formulations of therapeutic oligonucleotides and not on conjugates or other types of modifications of oligonucleotide structure intended to facilitate delivery.

  12. Expendable solid rocket motor upper stages for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Davis, H. P.; Jones, C. M.

    1974-01-01

    A family of expendable solid rocket motor upper stages has been conceptually defined to provide the payloads for the Space Shuttle with performance capability beyond the low earth operational range of the Shuttle Orbiter. In this concept-feasibility assessment, three new solid rocket motors of fixed impulse are defined for use with payloads requiring levels of higher energy. The conceptual design of these motors is constrained to limit thrusting loads into the payloads and to conserve payload bay length. These motors are combined in various vehicle configurations with stage components derived from other programs for the performance of a broad range of upper-stage missions from spin-stabilized, single-stage transfers to three-axis stabilized, multistage insertions. Estimated payload delivery performance and combined payload mission loading configurations are provided for the upper-stage configurations.

  13. Life sciences payload definition and integration study. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  14. Small self-contained payload overview. [Space Shuttle Getaway Special project management

    NASA Technical Reports Server (NTRS)

    Miller, D. S.

    1981-01-01

    The low-cost Small Self-Contained Payload Program, also known as the Getaway Special, initiated by NASA for providing a stepping stone to larger scientific and manufacturing payloads, is presented. The steps of 'getting on board,' the conditions of use, the reimbursement policy and the procedures, and the flight scheduling mechanism for flying the Getaway Special payload are given. The terms and conditions, and the interfaces between NASA and the users for entering into an agreement with NASA for launch and associated services are described, as are the philosophy and the rationale for establishing the policy and the procedures.

  15. The North Carolina A and T State University Student Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hooker, F. D.; Ahrens, S. T.

    1987-01-01

    Inspired into being in 1979 by the late astronaut, Dr. Ronald McNair, the primary goal of this student centered program is to perform two experiments, Arthopod Development Study and Crystal Growth Study. Since 1979, 78 different students representing 12 majors have participated in every phase of development of the payload -- from coming up with the original ideas to final fabrication and testing. Students have also been involved in many extra activities such as presenting their results at annual meetings and hosting tours of our lab for local schools. The program has received extensive outside support in the form of funds, technical assistance and donated parts. The payload, made primarily out of aluminum, consists of a central column structure, a battery box, a crystal growth box, an arthropod development box, four control circuit boxes, and a thermograph box. The battery box contains 24, Eveready 6V, Alkaline batteries. The thermograph box contains 3 Ryan TempMentors. Fabrication of the payload is essentially complete and a complete testing program has been initiated.

  16. Life sciences payload definition and integration study, task C and D. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.

  17. Atmospheric, Magnetospheric and Plasmas in Space (AMPS) spacelab payload definition study; volume 4: Part 2, Labcraft payload general specification

    NASA Technical Reports Server (NTRS)

    Keeley, J. T.

    1976-01-01

    The Labcraft Payload General Specification (LPGS) amplifies those general requirements in the Labcraft Program Specification (LPS) to ensure that all hardware, software, and STS elements will successfully function as an integrated system to accomplish the objectives of the first Labcraft mission. Contract End Item Specifications (CEIS) and Procurement Drawings (PDs) prepared and implemented for all deliverable hardware and software elements are discussed.

  18. Miniature vibration isolation system for space applications

    NASA Astrophysics Data System (ADS)

    Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.

    2001-06-01

    In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.

  19. HIFiRE-1 Preliminary Aerothermodynamic Measurements (Postprint)

    DTIC Science & Technology

    2012-05-01

    surplus military ordnance used extensively in sounding rocket programs. This motor combination was chosen to minimize overall program costs and, based on...out on the forward sections of payload including a cone, a cylinder, and a flare which transitions to the diameter of the second stage motor (0.356 m...HIFiRE-1 payload was a Terrier Mk70 booster–Improved Orion sustainer 17 motor combination. The Terrier and Orion motors have been sourced from

  20. Efficient Reorientation Maneuvers for Spacecraft with Multiple Articulated Payloads

    NASA Technical Reports Server (NTRS)

    Mcclamroch, N. Harris

    1993-01-01

    A final report is provided which describes the research program during the period 3 Mar. 1992 to 3 Jun. 1993. A summary of the technical research questions that were studied and of the main results that were obtained is given. The specific outcomes of the research program, including both educational impacts as well as research publications, are listed. The research is concerned with efficient reorientation maneuvers for spacecraft with multiple articulated payloads.

  1. Design, Simulation, Software Development, and Testing of a Compact Aircraft Tracking Payload for the CanX-7 Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Bennett, Ian Graham

    Automatic Dependent Surveillance-Broadcast (ADS-B) is quickly becoming the new standard for more efficient air traffic control, but as a satellite/ground-based hybrid system it faces limitations on its usefulness over oceans and remote areas. Tracking of aircraft from space presents many challenges that if overcome will greatly increase the safety and efficiency of commercial air travel in these areas. This thesis presents work performed to develop a flight-ready ADS-B receiver payload for the CanX-7 technology demonstration satellite. Work presented includes a simulation of payload performance and coverage area, the design and testing of a single-feed circularly polarized L-band antenna, the design of software to control the payload and manage its data, and verification of the performance of the hardware prior to integration with the satellite and launch. Also included is a short overview of results from the seven-month aircraft tracking campaign conducted with the spacecraft.

  2. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  3. Opportunities for Geoscience Research Onboard Virgin Galactic's SpaceShipTwo

    NASA Astrophysics Data System (ADS)

    Pomerantz, W.; Beerer, I.; Stephens, K.; Griffith, J.; Persall, W.; Tizard, J.

    2012-12-01

    Virgin Galactic has developed a reusable spaceplane, called SpaceShipTwo (SS2), designed to make routine voyages into suborbital space. SS2 is air-launched from a jet aircraft at an altitude of 50,000 ft. before igniting its rocket motor engine. The vehicle reaches a maximum apogee as high as 110 km before gliding to a conventional runway landing. With the ability to fly multiple times per week, SS2 will be capable of providing routine access to a rarely sampled and poorly understood region of the atmosphere and ionosphere, making it a valuable platform for geoscience research. With a payload capacity up to 1300 lbs., SS2 provides access to space and the upper atmosphere for substantially larger payloads than sounding rockets and at a dramatically lower cost than orbital satellites. The main cabin provides as much as 500 cubic ft. of useable volume in a shirt-sleeve environment and payload mounting interfaces that are compatible with standard architectures, such as Middeck Lockers, Cargo Transfer Bags, and server racks. A flight test engineer will be available on board to operate payloads during flight. In the future, SS2 will also offer a variety of external payload mounting locations, enabling researchers to make frequent in situ measurements in the mesosphere (50-90 km), lower thermosphere (above 80 km), and lower ionosphere (above 60 km). SS2 may also offer optical quality windows, allowing optical investigations from main cabin payloads. Researchers will have access to their payloads until just hours before flight and within three hours post-flight. While commercial operations will begin out of Spaceport America in New Mexico, SS2 may eventually be able to launch from a variety of geographic locations. Funding to develop and fly payloads for SS2 is currently available through many NASA programs including the Flight Opportunities Program and the Game Changing Development Program. Virgin Galactic expects the SS2 research platform to enable significant progress in atmospheric chemistry and dynamics, climate science, space weather, numerical weather predictions, and many other fields of geoscience.

  4. Centaur operations at the space station

    NASA Technical Reports Server (NTRS)

    Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.

    1987-01-01

    A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.

  5. Lessons learned from and the future for NASA's Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Newton, George P.

    1991-01-01

    NASA started the Small Explorer Program to provide space scientists with an opportunity to conduct space science research in the Explorer Program using scientific payloads launched on small-class expendable launch vehicles. A series of small payload, scientific missions was envisioned that could be launched at the rate of one to two missions per year. Three missions were selected in April 1989: Solar Anomalous and Magnetospheric Particle Explorer, Fast Auroral Snapshot Explorer, and Sub-millimeter Wave Astronomy. These missions are planned for launch in June 1992, September 1994 and June 1995, respectively. At a program level, this paper presents the history, objectives, status, and lessons learned which may be applicable to similar programs, and discusses future program plans.

  6. STS users study (study 2.2). Volume 2: STS users plan (user data requirements) study

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1975-01-01

    Pre-flight scheduling and pre-flight requirements of the space transportation system are discussed. Payload safety requirements, shuttle flight manifests, and interface specifications are studied in detail.

  7. STS-107 Payload Commander Michael Anderson during TCDT M113 training activities

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- -- STS-107 Payload Commander Michael Anderson takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  8. KSC-03pd0105

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Commander Michael Anderson is happy to being suiting up for launch on mission STS-107. The mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.

  9. Hardware interface unit for control of shuttle RMS vibrations

    NASA Technical Reports Server (NTRS)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  10. External Payload Interfaces on the International Space Station

    NASA Astrophysics Data System (ADS)

    Voels, S. A.; Eppler, D. B.; Park, B.

    2000-12-01

    The International Space Station (ISS) includes multiple payload locations that are external to the pressurized environment and that are suitable for astronomical and space science observations. These external or attached payload accommodation locations allow direct access to the space environment and fields of view that include the earth and/or space. NASA sponsored payloads will have access to several different types of standard external locations; the S3/P3 Truss Sites (with an EXPRESS Pallet interface), the Columbus Exposed Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). Payload accommodations at each of the standard locations named above will be described, as well as transport to and retrieval from the site. The Office of Space Science's ISS Research Program Office has an allocation equivalent to 25% of the external space and opportunities for proposing to use this allocation will be as Missions of Opportunity through the normal Explorer (UNEX, SMEX, MIDEX) Announcements of Opportunity.

  11. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Chinn, S.; Gordon, T.; Rantanen, R.

    1987-01-01

    The results are presented from a study for the Space Station Planners Group of the Office of Space Sciences and Applications. The objectives of the study are: (1) the development of contamination protection requirements for protection of Space Station attached payloads, serviced payloads and platforms; and (2) the determination of unknowns or major impacts requiring further assessment. The nature, sources, and quantitative properties of the external contaminants to be encountered on the Station are summarized. The OSSA payload contamination protection requirements provided by the payload program managers are reviewed and the level of contamination awareness among them is discussed. Preparation of revisions to the contamination protection requirements are detailed. The comparative impact of flying the Station at constant atmospheric density rather than constant altitude is assessed. The impact of the transverse boom configuration of the Station on contamination is also assessed. The contamination protection guidelines which OSSA should enforce during their development of payloads are summarized.

  12. Interactions Measurement Payload for Shuttle (IMPS) Definition Phase Study.

    DTIC Science & Technology

    1984-12-15

    7 -AS5 222 INTERACTIONS MEASUREMENT PAYLOAD FOR SHUTTLE (IMPS) 1/3 DEFINITION PHASE STUDY(U) JET PROPULSION LAB PASADENA CA G C HILL 15 DEC 84 JPL-D...OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO NO. NO. S 11 TITLE fnciude Security Classficalion Interactions Measure 63410F 1822 01...block number, d tor Shuttle The Interactions Measurement Payload for hyttle (IMPS) project will study interactions between large space vehicles, such as

  13. Applications of Spacelab Payload Standard Modular Electronics /SPSME/

    NASA Technical Reports Server (NTRS)

    Wilkinson, D. D.; Kasulka, L. H.

    1980-01-01

    The NASA sponsored Spacelab Payload Standard Modular Electronics program has been designed with the basic objective of providing a space-qualified set of standardized modular electronics to support investigations identified for Spacelab payloads. These units are reusable, have functional, physical, and interface characteristics which allow them to be conveniently assembled in a multitude of configurations, and functionally interchangeable with their ground-based equivalents. The interfacing and control modules are described and typical hardware applications are presented.

  14. USMP-3 satellite moves into CITE stand

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The United States Microgravity Payload-3 (USMP-3) is readied by KSC workers for its move from the Cargo Interface Test Equipment (CITE) stand in the Operations and Checkout (O&C) Building and installation into a payload canister along with the Tethered Satellite System-1R (TSS-1R). Once in the canister, both payloads were transported to Launch Pad 39B to be integrated into the payload bay of the Space Shuttle Orbiter Columbia during final preparations for the STS-75 mission. During the 12-day, 16-hour space flight, the 5-foot (1.6 meter)-in-diameter TSS-1R satellite will be deployed from its pallet in Columbia's payload bay to a distance of 12.4 miles (20.7) kilometers) above the orbiter as an attached, electrically-conductive tether the diameter of a wooden matchstick unwinds from a motorized reel. The objectives of the TSS program are to demonstrate the ability to deploy and control satellites on long tethers in space and to conduct space plasma experiments that include the generation of electrical power. The USMP-3 is a continuation of NASA's microgravity research program to provide advances in the fields of materials science and condensed matter physics. Four major USMP-3 experiment packages are in Columbia's payload bay, while three combustion experimetns will be conducted by the crew in a Glovebox facility located in the orbiter's middeck area.

  15. 2015 Annual Report for the Flight Opportunities Program

    NASA Technical Reports Server (NTRS)

    Van Dijk, Alexander

    2015-01-01

    Welcome to this third edition of the Flight Opportunities program annual report. In this edition, we continue our story of pathfinding NASA's role in the partnership with the U.S. commercial space and space technology R&D communities to advance national space interests and develop technologies critical to NASA's future missions. 2015 was the year in which a planned change to our payload solicitation strategy saw its first tangible result. As you might remember from our 2014 annual report, in 2015 we set out to facilitate a more direct interaction between flight providers and technology developers by providing fixed funding awards to researchers to directly purchase the flight service(s) that best meet their needs. The selection and award of the first six REDDI-F1 flight grants to non-U.S. government researchers was an important milestone in this regard. From now on, using the REDDI-F1 solicitation appendix, the program will enable non-U.S. government researchers to directly purchase flight services on the emerging suborbital market. The same (or similar) commercial flight services will be available to NASA and other U.S. government agencies (OGA) through commercial contracts that NASA has established through our program. For the latter, our program is available to provide campaign management services, similar to the role we play(ed) for technology payloads remaining in our pool from earlier selections. The full impact of this broader strategic change will likely become more visible in the years ahead as our legacy pool gets depleted and we have implemented a new NASA- and OGA-specific call for proposals. One observation that can already be made after two rounds of REDDI-F1 solicitations is that through this change, the list of commercial flight service providers of interest to non-U.S. government researchers has grown from five in 2014 to nine in 2015. On the industry development front, our Announcement of Collaborative Opportunities (ACO) solicitation was promoted to an STMD-wide solicitation and released in 2015 in combination with the Tipping Point solicitation. A total of 22 awards was announced in November 2015, 12 of which are ACO awards, and six of these are funded by Flight Opportunities. Through these ACO awards, the program funds NASA technical expertise and NASA test facilities to aid industry partners in maturing key space technologies, in our case focusing on small launch vehicle technology development. Flight test activity in 2015 saw a steady 13 campaigns with 31 payload-flights (29 unique payloads). Thirteen new payloads were selected into the program in FY2015, and 14 payloads completed flight testing, bringing the total number of completed technology demonstration payloads to 69. Overall, we are pleased with the evolution and growth of the Flight Opportunities program and look forward to continued success in our partnership with the technology R&D community and the commercial space sector.

  16. An evaluation of Space Shuttle STS-2 payload bay acoustic data and comparison with predictions

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Piersol, A. G.; Wilby, E. G.

    1982-01-01

    Space average sound pressure levels computed from measurements at 18 locations in the payload bay of the Space Shuttle orbiter vehicle during the STS-2 launch were compared with predicted levels obtained using the PACES computer program. The comparisons were performed over the frequency range 12.5 Hz to 1000 Hz, since the test data at higher frequencies are contaminated by instrumentation background noise. In general the PACES computer program tends to overpredict the space average sound levels in the payload bay, although the magnitude of the discrepancy is usually small. Furthermore the discrepancy depends to some extent on the manner in which the payload is modeled analytically, and the method used to determine the "measured' space average sound pressure levels. Thus the difference between predicted and measured sound levels, averaged over the 20 one third octave bands from 12.5 Hz to 1000 Hz, varies from 1 dB to 3.5 dB.

  17. Automated path planning of the Payload Inspection and Processing System

    NASA Technical Reports Server (NTRS)

    Byers, Robert M.

    1994-01-01

    The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redundant manipulator intended for performing tasks in the crowded and sensitive environment of the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end effector in a workspace populated with obstacles. A method is described by which the end effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability function. A cost function is constructed which represents the distance from the manipulator links to obstacles. Obstacles are avoided by causing the vector of joint parameters to move orthogonally to the gradient of the workspace cost function. A C language program implements the algorithm to generate a joint history. The resulting motion is graphically displayed using the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics. The graphical simulation has the potential to be a useful tool in path planning for the PIPS in the Shuttle Payload Bay environment.

  18. Integrated operations/payloads/fleet analysis. Volume 3: System costs. Appendix A: Program direct costs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.

  19. Marshall Space Flight Center Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.

  20. Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992

    NASA Technical Reports Server (NTRS)

    Perry, A. T.; Cagle, J. A.; Newman, S. C.

    1993-01-01

    Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.

  1. High Pressure Earth Storable Rocket Technology Program: Basic Program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.

    1995-01-01

    The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.

  2. Materials experiment carrier concepts definition study. Volume 1: Executive summary, part 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The materials experiment carrier (MEC) is an optimized carrier for near term and advanced materials processing in space (MPS) research and commercial payloads. When coupled with the space platform (SP), the MEC can provide the extended duration, high power and low acceleration environment the MPS payload typically requires. The lowest cost, technically reasonable first step MEC that meets the MPS program missions objectives with minimum programmatic risks is defined. The effectiveness of the initial MEC/space platform idea for accommodating high priority, multidiscipline, R&D and commercial MPS payloads, and conducting MPS payload oprations at affordable funding and acceptable productivity levels is demonstrated.

  3. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  4. Shuttle on-orbit contamination and environmental effects

    NASA Technical Reports Server (NTRS)

    Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.

    1985-01-01

    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.

  5. Spaceflight Safety on the North Coast of America

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Havenhill, Maria T.; Terlep, Judith A.

    1996-01-01

    Spaceflight Safety (SFS) engineers at NASA Lewis Research Center (LeRC) are responsible for evaluating the microgravity fluids and combustion experiments, payloads and facilities developed at NASA LeRC which are manifested for spaceflight on the Space Shuttle, the Russian space station Mir, and/or the International Space Station (ISS). An ongoing activity at NASA LeRC is the comprehensive training of its SFS engineers through the creation and use of safety tools and processes. Teams of SFS engineers worked on the development of an Internet website (containing a spaceflight safety knowledge database and electronic templates of safety products) and the establishment of a technical peer review process (known as the Safety Assurance for Lewis Spaceflight Activities (SALSA) review).

  6. Research and Applications Modules (RAM). Phase B study: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, and characteristics of the Research and Applications Module (RAM) system is discussed. The RAM system is a family of payload carriers that can be delivered to and retrieved from low earth orbit by the space shuttle. The RAM payload carriers are used to support diverse technological and scientific investigations. The NASA study objectives, the relationship of the RAM payload carriers to other systems in the orbital space program, and recommendations for additional effort are presented.

  7. Space Launch System (SLS) Mission Planner's Guide

    NASA Technical Reports Server (NTRS)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  8. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  9. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  10. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  11. Low energy stage study. Volume 5: Program study cost elements and appendices. [orbital launching of space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methodology and rationale used in the development of costs for engineering, manufacturing, testing and operating a low thrust system for placing automated shuttle payloads into earth orbits are described. Cost related information for the recommended propulsion approach is included.

  12. KSC-04pd1397

    NASA Image and Video Library

    2004-06-30

    KENNEDY SPACE CENTER, FLA. - Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  13. KSC-04PD-1397

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Kimberly Beck, a college trainee in Controlled Biological Systems in the Spaceflight and Life Sciences Training Program, is helping with growth studies supporting payload development. Behind her is part of the WONDER (Water Offset Nutrient Delivery Experiment) flight payload that is investigating hydroponic plant crop production in microgravity.

  14. Feasibility of Helicopter Support Seek Frost.

    DTIC Science & Technology

    1980-05-01

    the allowable maximum weight can be used as the payload. The payload is a variable. Small helicopters with full fuel and auxillary tanks can fly...equipment, that the program to obtain icing approval on the S-76 will be finalized for management evaluation, and a decision can be made at that time to

  15. User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs

    NASA Technical Reports Server (NTRS)

    Archer, J. L.; Beauchamp, N. A.; Day, C. F.

    1975-01-01

    The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

  16. Project Explorer - Student experiments aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.

    1979-01-01

    Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.

  17. KSC-98pc280

    NASA Image and Video Library

    1998-02-06

    The STS-90 Neurolab payload is honored with a ceremony after being lowered into its payload canister in KSC's Operations and Checkout Building for the last time. This phase of the Shuttle program is winding down as the second phase of the International Space Station (ISS) program gets under way. Microgravity and life science research that formerly was conducted in Spacelab modules, such as Neurolab, will eventually be conducted inside the completed ISS. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  18. NASA Manufacturing and Test Requirements for Normally Closed Pyrovalves for Hazardous Flight Systems Applications

    NASA Technical Reports Server (NTRS)

    McDougle, Stephen H.

    2015-01-01

    Pyrovalves (figure 1, Basic Pyrovalve Design and Features,) are typically lighter, more reliable, and in most cases less expensive than other types of valves. They also consume less electrical power. They are single-use devices that are used in propulsion systems to isolate propellants or pressurant gases. These fluids may be hazardous because of their toxicity, reactivity, temperature, or high pressure. Note that in the simplified block diagram below not all detail features are shown so that those of major interest are more prominent. The diagram is provided to point out the various features that are discussed in this Specification. Features of some NC parent metal valve designs may differ. In 2013, the NESC concluded an extensive study of the reliability and safety of NC parent metal valves used in payloads carried aboard ELVs. The assessment successfully evaluated technical data to determine the risk of NC parent metal valve leakage or inadvertent activation in ELV payloads. The study resulted in numerous recommendations to ensure personnel and hardware/facility safety during ground processing of ELV payloads. One of those recommendations was to establish a NASA specification for NC parent metal valves. This Specification is a result of that recommendation, which is documented in NESC-RP-10-00614.

  19. KSC-00pp0047

    NASA Image and Video Library

    2000-01-13

    At Launch Pad 39A, members of the STS-99 crew and others look over part of the safety equipment. Standing left to right (in uniform) are Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Janice Voss (Ph.D.), Janet Lynn Kavandi (Ph.D.), Gerhard Thiele and Mamoru Mohri. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  20. A hazard control system for robot manipulators

    NASA Technical Reports Server (NTRS)

    Carter, Ruth Chiang; Rad, Adrian

    1991-01-01

    A robot for space applications will be required to complete a variety of tasks in an uncertain, harsh environment. This fact presents unusual and highly difficult challenges to ensuring the safety of astronauts and keeping the equipment they depend on from becoming damaged. The systematic approach being taken to control hazards that could result from introducing robotics technology in the space environment is described. First, system safety management and engineering principles, techniques, and requirements are discussed as they relate to Shuttle payload design and operation in general. The concepts of hazard, hazard category, and hazard control, as defined by the Shuttle payload safety requirements, is explained. Next, it is shown how these general safety management and engineering principles are being implemented on an actual project. An example is presented of a hazard control system for controlling one of the hazards identified for the Development Test Flight (DTF-1) of NASA's Flight Telerobotic Servicer, a teleoperated space robot. How these schemes can be applied to terrestrial robots is discussed as well. The same software monitoring and control approach will insure the safe operation of a slave manipulator under teleoperated or autonomous control in undersea, nuclear, or manufacturing applications where the manipulator is working in the vicinity of humans or critical hardware.

  1. Containment challenges in HPAPI manufacture for ADC generation.

    PubMed

    Dunny, Elizabeth; O'Connor, Imelda; Bones, Jonathan

    2017-06-01

    Antibody-drug conjugates (ADCs) are emerging as an impactful class of therapeutics for the treatment of cancer because of their ability to harness the specificity of an antibody and the cytotoxic potential of the payload to target and destroy cancer cells. However, the potent nature of the cytotoxic payload creates associated manufacturing challenges for active pharmaceutical ingredient (API) manufacturers, because huge investment in containment technology is required to ensure the protection of operators and the environment. Here, we examine the differing attitudes to high-potency categorisation and levels of containment control. We also provide an overview of the most widely used containment strategies for facility design, powder handling, purification, analysis, and cleaning. Finally, we briefly consider the health and safety regulatory challenges associated with the manufacture of cytotoxic payloads for use in antibody-drug conjugates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Lessons Learned From the Development, Operation, and Review of Mechanical Systems on the Space Shuttle, International Space Station, and Payloads

    NASA Technical Reports Server (NTRS)

    Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan

    2006-01-01

    The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.

  3. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  4. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  5. Space Operations Training Concepts Benchmark Study (Training in a Continuous Operations Environment)

    NASA Technical Reports Server (NTRS)

    Johnston, Alan E.; Gilchrist, Michael; Underwood, Debrah (Technical Monitor)

    2002-01-01

    The NASA/USAF Benchmark Space Operations Training Concepts Study will perform a comparative analysis of the space operations training programs utilized by the United States Air Force Space Command with those utilized by the National Aeronautics and Space Administration. The concentration of the study will be focused on Ground Controller/Flight Controller Training for the International Space Station Payload Program. The duration of the study is expected to be five months with report completion by 30 June 2002. The U.S. Air Force Space Command was chosen as the most likely candidate for this benchmark study because their experience in payload operations controller training and user interfaces compares favorably with the Payload Operations Integration Center's training and user interfaces. These similarities can be seen in the dynamics of missions/payloads, controller on-console requirements, and currency/proficiency challenges to name a few. It is expected that the report will look at the respective programs and investigate goals of each training program, unique training challenges posed by space operations ground controller environments, processes of setting up controller training programs, phases of controller training, methods of controller training, techniques to evaluate adequacy of controller knowledge and the training received, and approaches to training administration. The report will provide recommendations to the respective agencies based on the findings. Attached is a preliminary outline of the study. Following selection of participants and an approval to proceed, initial contact will be made with U.S. Air Force Space Command Directorate of Training to discuss steps to accomplish the study.

  6. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2014-01-01

    EXPRESS Racks provide capability for payload access to ISS resources. The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come. EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM. Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient. Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers. EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight. NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.

  7. Technology for increased human productivity and safety on orbit

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith; Gartrell, Charles F.

    1991-01-01

    Technologies are addressed that can facilitate the efficient performance of station operations on the Space Station Freedom (SSF) and thereby optimize the utilization of SSF for scientific research. The dedication of SSF capabilities to scientific study and to the payload-user community is a key goal of the program. Robotics applications are discussed in terms of automating the processing of experiment materials on-orbit by transferring ampules to a furnace system or by handling plant-tissue cultures. Noncontact temperature measurement and medical support technology are considered important technologies for maximizing time for scientific purposes. Detailed examinations are conducted of other technologies including advanced data systems and furnace designs. The addition of the listed technologies can provide an environment in which scientific research is more efficient and accurate.

  8. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  9. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.

  10. Technical draft study report for TOPEX satellite options study, volume 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of two spacecraft for adaptation to the TOPEX mission, namely the P80-1 and the GPS phase 2 are considered. The mission involved three mission options, each option varying in payload definition, payload weight, orbital altitude and payload power requirements. The P80-1 spacecraft is an Air Force Space Test Program satellite which carries a number of payloads to an orbital altitude of 400 n.mi. at a minimum inclination of 72.5 deg, and which has an orbital life capability of three years. The GPS phase 2 spacecraft is the operational satellite for the Global Positioning NAVSTAR navigation constellation provided for all service (and commercial) use.

  11. Intelligent systems for KSC ground processing

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  12. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  13. Natural Atmospheric Environment Model Development for the National Aeronautics and Space Administration's Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank; Overbey, Glenn; Batts, Glen W.; Parker, Nelson (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) recently began development of a new reusable launch vehicle. The program office is located at Marshall Space Flight Center (MSFC) and is called the Second Generation Reusable Launch Vehicle (2GRLV). The purpose of the program is to improve upon the safety and reliability of the first generation reusable launch vehicle, the Space Shuttle. Specifically, the goals are to reduce the risk of crew loss to less than 1-in-10,000 missions and decreased costs by a factor of 10 to approximately $1,000 per pound of payload launched to low Earth orbit. The program is currently in the very early stages of development and many two-stage vehicle concepts will be evaluated. Risk reduction activities are also taking place. These activities include developing new technologies and advancing current technologies to be used by the vehicle. The Environments Group at MSFC is tasked by the 2GRLV Program to develop and maintain an extensive series of analytical tools and environmental databases which enable it to provide detailed atmospheric studies in support of structural, guidance, navigation and control, and operation of the 2GRLV.

  14. Project Columbiad: Mission to the Moon. Book 1: Executive Summary. Volume 1: Mission trade studies and requirements. Volume 2: Subsystem trade studies and selection

    NASA Technical Reports Server (NTRS)

    Clarke, Michael; Denecke, Johan; Garber, Suzanne; Kader, Beth; Liu, Celia; Weintraub, Ben; Cazeau, Patrick; Goetz, John; Haughwout, James; Larson, Erik

    1992-01-01

    In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted mission have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mechanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.

  15. SPHINX Satellite Testing in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1973-12-21

    Researchers examine the Space Plasma-High Voltage Interaction Experiment (SPHINX) satellite in the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Spacecraft Technology Division designed SPHINX to study the electrical interaction of its experimental surfaces with space plasma. They sought to determine if higher orbits would improve the transmission quality of communications satellites. Robert Lovell, the Project Manager, oversaw vibrational and plasma simulation testing of the satellite in the Electric Propulsion Laboratory, seen here. SPHINX was an add-on payload for the first Titan/Centaur proof launch in early 1974. Lewis successfully managed the Centaur Program since 1962, but this would be the first Centaur launch with a Titan booster. Since the proof test did not have a scheduled payload, the Lewis-designed SPHINX received a free ride. The February 11, 1974 launch, however, proved to be one of the Launch Vehicle Division’s lowest days. Twelve minutes after the vehicle departed the launch pad, the booster and Centaur separated as designed, but Centaur’s two RL-10 engines failed to ignite. The launch pad safety officer destroyed the vehicle, and SPHINX never made it into orbit. Overall Centaur has an excellent success rate, but the failed SPHINX launch attempt caused deep disappointment across the center.

  16. The NASA Sounding Rocket Program and space sciences.

    PubMed

    Gurkin, L W

    1992-10-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  17. The NASA Sounding Rocket Program and space sciences

    NASA Technical Reports Server (NTRS)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  18. STS-107 Mission Specialist David Brown arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist David Brown arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  19. STS-107 Mission Specialist Laurel Clark arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Mission Specialist Laurel Clark arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla and David Brown, and Payload Specialist Ilan Ramon, the first Israeli astronaut. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  20. STS-107 Mission Specialist Kalpana Chawla arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla arrives at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Commander Michael Anderson, Mission Specialists David Brown and Laurel Clark and Payload Specialist Ilan Ramon (the first Israeli astronaut). STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  1. STS-107 Payload Specialist Ilan Ramon takes a break during TCDT M113 training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, the first Israeli astronaut, takes a break during training on the operation of an M113 armored personnel carrier during Terminal Countdown Demonstration Test activities, a standard part of launch preparations. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  2. Automated documentation generator for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. This software system, 'Automated Payload Experiment Tool,' seeks to provide a knowledge-based, hypertext environment for the development of NASA documentation. Once developed, the final system should be able to guide a Principal Investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer. The current system is designed for the development of the Science Requirements Document (SRD), the Experiment Requirements Document (ERD), the Project Plan, and the Safety Requirements Document.

  3. STS-87 Payload installation in LC 39B PCR

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A payload canister, seen here half-open, containing the primary payloads for the STS-87 mission, is moved into the Payload Changeout Room at Pad 39B at Kennedy Space Center. The STS-87 payload includes the United States Microgravity Payload-4 (USMP- 4), seen here on two Multi-Purpose Experiment Support Structures in the center of the photo, and Spartan-201, wrapped in a protective covering directly above the USMP-4 experiments. Spartan-201 is a small retrievable satellite involved in research to study the interaction between the Sun and its wind of charged particles. USMP-4 is one of a series of missions designed to conduct scientific research aboard the Shuttle in the unique microgravity environment for extended periods of time. In the past, USMP missions have provided invaluable experience in the design of instruments needed for the International Space Station (ISS) and microgravity programs to follow in the 21st century. STS-87 is scheduled for launch Nov. 19.

  4. Space Product Development (SPD)

    NASA Image and Video Library

    2003-01-12

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  5. Commercial Instrumentation Technology Associates' Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Student Marnix Aklian and ITA's Mark Bem prepare biological samples for flight as part of ITA's hands-on student outreach program on STS-95. Similar activities are a part of the CIBX-2 payload. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  6. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    NASA Technical Reports Server (NTRS)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  7. Payload test philosophy. [JPL views on qualification/acceptance testing

    NASA Technical Reports Server (NTRS)

    Gindorf, T.

    1979-01-01

    The general philosophy of how JPL views payload qualification/acceptance testing for programs that are done either in-house or by contractors is described. Particular attention is given to mission risk classifications, preliminary critical design reviews, environmental design requirements, the thermal and dynamics development tests, and the flight spacecraft system test.

  8. Preliminary analysis of an integrated logistics system for OSSA payloads. Volume 2: OSSA integrated logistics support strategy

    NASA Technical Reports Server (NTRS)

    Palguta, T.; Bradley, W.; Stockton, T.

    1988-01-01

    The purpose is to outline an Office of Space Science and Applications (OSSA) integrated logistics support strategy that will ensure effective logistics support of OSSA payloads at an affordable life-cycle cost. Program objectives, organizational relationships, and implementation of the logistics strategy are discussed.

  9. Small Satellites and the DARPA/Air Force Falcon Program

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.

    2004-01-01

    The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.

  10. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  11. Opportunities for research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.

  12. Heavy-Lift for a New Paradigm in Space Operations

    NASA Technical Reports Server (NTRS)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  13. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  14. Parametric evaluation of the cost effectiveness of Shuttle payload vibroacoustic test plans

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloff, H. R.; Keegan, W. B.; Young, J. P.

    1978-01-01

    Consideration is given to alternate vibroacoustic test plans for sortie and free flyer Shuttle payloads. Statistical decision models for nine test plans provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology is a major step toward the development of a useful tool for the quantitative tailoring of vibroacoustic test programs to sortie and free flyer payloads. A broader application of the methodology is now possible by the use of the OCTAVE computer code.

  15. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  16. NASA Enterprise Visual Analysis

    NASA Technical Reports Server (NTRS)

    Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

    2007-01-01

    NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

  17. Effects of the specular Orbiter forward radiators on a typical Spacelab payload thermal environment

    NASA Technical Reports Server (NTRS)

    Turner, L. D.; Humphries, W. R.; Littles, J. W.

    1981-01-01

    Orbiter radiators, having a specular reflection, must be considered when determining the design environment for payloads which can view the forward deployed radiators. Unlike most surfaces on the Orbiter, which reflect energy diffusely, the radiators are covered with a highly specular silverized Teflon material, with high emissivity, and have a concave contour, producing a local concentration of reflected energy towards the region of angle incidence. The combined effects of radiator specularity and geometry were analyzed using the Thermal Radiation Analysis System (TRASYS II), a specialized ray trace program, and a generalized Monte-Carlo-based thermal radiation program. Data given for a 0 deg payload inclination angle at orbital noon at 3.454 m indicate that the maximum total flux and average flux can increase 173% and 63%, respectively, when compared to diffuse radiators.

  18. ELITE Program: Electric Insertion Transfer Experiment

    NASA Technical Reports Server (NTRS)

    Vondra, Robert

    1992-01-01

    The topics are presented in viewgraph form and include the following: the Cooperative Research & Development Agreement (CRDA); spacecraft; benefits; program milestones; subsystem status; partners; and payloads.

  19. Users manual for the IMA program

    NASA Technical Reports Server (NTRS)

    Williams, D. F.

    1991-01-01

    The Impulsive Mission Analysis (IMA) computer program provides a user-friendly means of designing a complete Earth-orbital mission profile using an 80386-based microcomputer. The IMA program produces a trajectory summary, an output file for use by the new Simplex Computation of Optimum Orbital Trajectories (SCOOT) program, and several graphics, including ground tracks on a world map, altitude profiles, relative motion plots, and sunlight/communication timelines. The user can design missions using any combination of three basic types of mission segments: double co-eliptic rendezvous, payload delivery, and payload de-orbit/spacecraft recovery. Each mission segment is divided into one or more transfers, and each transfer is divided into one or more legs, each leg consisting of a coast arc followed by a burn arc.

  20. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  1. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  2. KSC00pp1657

    NASA Image and Video Library

    2000-11-07

    The STS-97 crew listens to a trainer explain use of the slidewire basket (right) for emergency egress from the Fixed Service Structure. Second from left is Mission Specialist Joe Tanner; next to him in the cap is Capt. George Hoggard, safety trainer with the KSC Fire Department; Pilot Mike Bloomfield; Mission Specialist Carlos Noriega; Commander Brent Jett; and Mission Specialist Marc Garneau. The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  3. KSC-00pp1657

    NASA Image and Video Library

    2000-11-07

    The STS-97 crew listens to a trainer explain use of the slidewire basket (right) for emergency egress from the Fixed Service Structure. Second from left is Mission Specialist Joe Tanner; next to him in the cap is Capt. George Hoggard, safety trainer with the KSC Fire Department; Pilot Mike Bloomfield; Mission Specialist Carlos Noriega; Commander Brent Jett; and Mission Specialist Marc Garneau. The training is part of Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  4. Flight qualified solid argon cooler for the BBXRT instrument. [Broad Band X Ray Telescope for ASTRO-1 payload

    NASA Technical Reports Server (NTRS)

    Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert

    1990-01-01

    A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.

  5. KSC-03pd0110

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- The STS-107 crew heads for the Astrovan and a ride to Launch Pad 39A for liftoff. From left to right are Payload Commander Michael Anderson, Mission Specialist David Brown, Payload Specialist Ilan Ramon, Mission Specialists Laurel Clark and Kalpana Chawla, Mission Commandaer Rick Husband and Pilot William "Willie" McCool. Ramon is the first astronaut from Israel to fly on a Shuttle. The 16-day mission is devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST. [Photo courtesy of Scott Andrews

  6. Space Launch System Co-Manifested Payload Options for Habitation

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2015-01-01

    The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the launch vehicle matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and its service module. The co-manifested payload is located below the Orion and its service module in a 10 m high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. Various approaches that utilize this comanifested payload capability to build up infrastructure in deep space have been explored in support of future asteroid, lunar, and Mars mission scenarios. This paper reports on the findings of the Advanced Concepts Office study team at NASA Marshall Space Flight Center (MSFC) working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume of the SLS. Findings include a set of module designs that can be developed in 10 mt increments to support these co-manifested payload missions along with a comparison of this approach to a large-module payload flight configuration for the SLS.

  7. Simulation of electrical and thermal fields in a multimode microwave oven using software written in C++

    NASA Astrophysics Data System (ADS)

    Abrudean, C.

    2017-05-01

    Due to multiple reflexions on walls, the electromagnetic field in a multimode microwave oven is difficult to estimate analytically. This paper presents a C++ program that calculates the electromagnetic field in a resonating cavity with an absorbing payload, uses the result to calculate heating in the payload taking its properties into account and then repeats. This results in a simulation of microwave heating, including phenomena like thermal runaway. The program is multithreaded to make use of today’s common multiprocessor/multicore computers.

  8. VAPEPS user's reference manual, version 5.0

    NASA Technical Reports Server (NTRS)

    Park, D. M.

    1988-01-01

    This is the reference manual for the VibroAcoustic Payload Environment Prediction System (VAPEPS). The system consists of a computer program and a vibroacoustic database. The purpose of the system is to collect measurements of vibroacoustic data taken from flight events and ground tests, and to retrieve this data and provide a means of using the data to predict future payload environments. This manual describes the operating language of the program. Topics covered include database commands, Statistical Energy Analysis (SEA) prediction commands, stress prediction command, and general computational commands.

  9. Recent sounding rocket highlights and a concept for melding sounding rocket and space shuttle activities

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Mayo, E. E.

    1980-01-01

    Highlights include launching guided vehicles into the African Solar Eclipse, initiation of development of a Three-Stage Black Brant to explore the dayside polar cusp, large payload Aries Flights at White Sands Missile Range, and an active program with the Orion vehicle family using surplus motors. Sounding rocket philosophy and experience is being applied to the shuttle in a Get Away Special and Experiments of Opportunity Payloads Programs. In addition, an orbit selection and targeting software system to support shuttle pallet mounted experiments is under development.

  10. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  11. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  12. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  13. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  14. 14 CFR 1214.1704 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  15. 14 CFR § 1214.1704 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... onboard the Space Shuttle is not required for operation of payloads or for other essential mission... opportunities for future space flight participants, consistent with safety and mission considerations. When NASA... or more Space Shuttle missions in which their participation is desired. A NASA-designated outside...

  16. Hitchhiker capabilities

    NASA Technical Reports Server (NTRS)

    Goldsmith, Theodore C.

    1988-01-01

    A carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker can accommodate up to 750 lb of customer payloads in canisters or mounted to an exposed side-mount plate, or up to 1200 lb mounted on a cross-bay structure. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. A general description of the Hitchhiker program and the Shuttle Payload of Opportunity Carrier (SPOC) is given and future enhancements are outlined.

  17. Multipurpose satellite bus (MPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Naval Postgraduate School Advanced Design Project sponsored by the Universities Space Research Association Advanced Design Program is a multipurpose satellite bus (MPS). The design was initiated from a Statement of Work (SOW) developed by the Defense Advanced Research Projects Agency (DARPA). The SOW called for a 'proposal to design a small, low-cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas.' The design project investigates two dissimilar missions, a meteorological payload and a communications payload, mated with a single spacecraft bus with minimal modifications. The MPS is designed for launch aboard the Pegasus Air Launched Vehicle (ALV) or the Taurus Standard Small Launch Vehicle (SSLV).

  18. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  19. The Geo Quick Ride (GQR) Program: Providing Inexpensive and Frequent Access to Space

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert; Baniszewski, John

    2004-01-01

    This paper examines piggybacking NASA, university, and industry payloads on commercial geosynchronous satellites. NASA's RSDO Office awarded Geo Quick Ride (GQR) study contracts in 1998 to spacecraft manufactures to examine the issues with flying secondary payloads. The study results were very promising. Commercial communication satellites have frequent flights and significant unused resources that could be used to fly secondary payloads. However, manifesting secondary payloads on a commercial revenue-generating satellite is a complex problem to solve. The solution requires multiple simultaneous approaches in order to be successful. There are business, economic, technical, schedule, and organizational issues to be resolved. This paper examines the Geo Quick Ride (GQR) concept, discusses the development issues, and describes how this concept solves many of these issues.

  20. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  1. Space Access for Small Satellites on the K-1

    NASA Astrophysics Data System (ADS)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans. With sufficient demand, Kistler can schedule regular fixed "departures" for small payloads. Kistler and Astrium, Ltd., have initiated an effort to design reusable Multiple Payload Adapter Systems (MPAS) for use on the K-1. These adapters borrow from the heritage and standard interfaces used by Astrium in the Ariane Structure for Auxiliary Payloads (ASAP). One of these dispensers may be used to deploy small satellites during K-1 flights #2-#4.

  2. Satellite services system analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.

  3. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  4. Impact of low cost refurbishable and standard spacecraft upon future NASA space programs. Payload effects follow-on study, appendix

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Mission analysis is discussed, including the consolidation and expansion of mission equipment and experiment characteristics, and determination of simplified shuttle flight schedule. Parametric analysis of standard space hardware and preliminary shuttle/payload constraints analysis are evaluated, along with the cost impact of low cost standard hardware.

  5. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  6. NASA's Space Launch System Program Update

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2015-01-01

    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software and hardware build and testing, scale model acoustic and base heating tests. Construction of the Interim Cryogenic Propulsion Stage (ICPS) began. Advanced development provided a look into the future of SLS. Shell buckling knockdown factor testing refined decades-old design margins that added thousands of pounds to rocket payloads. Adaptive manufacturing and structured light scanning development promised to cut the cost and time associated with manufacturing and testing. This paper will provide an overview of the progress made over the past year and provide a glimpse of 2015 milestones and beyond on the way to the first launch in 2018.

  7. Integrated Payload Data Handling Systems Using Software Partitioning

    NASA Astrophysics Data System (ADS)

    Taylor, Alun; Hann, Mark; Wishart, Alex

    2015-09-01

    An integrated Payload Data Handling System (I-PDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirements, as opposed to the decentralised architecture here the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processing platform [1]. This paper describes a joint program by SCISYS UK Limited, Airbus Defence and Space, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level of the centralised data processing technique by address the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Program SpaceCITI scheme. [1].

  8. KSC-05PD-1449

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Launch Pad 39B, the Orbiter Boom Sensor System (OBSS) sensor package is viewed before the orbiter's payload bay doors are closed for launch. Payload bay door closure is a significant milestone in the preparations of Discovery for the first Return to Flight mission, STS-114. This sensor package will provide surface area and depth defect inspection for all the surfaces of the orbiter. It includes an intensified television camera (ITVC) and a laser dynamic range imager, which are mounted on a pan and tilt unit, and a laser camera system (LCS) mounted on a stationary bracket. The package is part of the new safety measures added for all future Space Shuttle missions. During its 12-day mission, Discoverys seven- person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discoverys payloads include the Multi-Purpose Logistics Module Raffaello, the Lightweight Multi-Purpose Experiment Support Structure Carrier (LMC), and the External Stowage Platform-2 (ESP-2). Raffaello will deliver supplies to the International Space Station including food, clothing and research equipment. The LMC supports a replacement Control Moment Gyroscope and a tile repair sample box. The ESP-2 is outfitted with replacement parts. Launch of mission STS-114 was set for July 13 at the conclusion of the Flight Readiness Review yesterday.

  9. Radiation Belt Storm Probes (RBSP) Payload Safety Introduction Briefing

    NASA Technical Reports Server (NTRS)

    Loftin, Chuck; Lampert, Dianna; Herrburger, Eric; Smith, Clay; Hill, Stuart; VonMehlem, Judi

    2008-01-01

    Mission of the Geospace Radiation Belt Storm Probes (RBSP) is: Gain s cientific understanding (to the point of predictability) of how populations of relativistic electrons and ions in space form or change in response to changes in solar activity and the solar wind.

  10. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels, pyrotechnic devices, and high pressure gasses. Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure—roads, bridges, airframes, and buildings—necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider where and how large spacecraft are manufactured, tested, and launched could result in unforeseen cost to modify existing (or develop new) infrastructure, or incur additional risk due to increased handling operations or eliminating key verifications. Although this paper focuses on the canceled Altair spacecraft as a case study, the issues identified here have wide applicability to other large payloads, including concepts under consideration for NASA’s Evolvable Mars Campaign.

  11. Operations analysis (study 2.1): Payload designs for space servicing

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1974-01-01

    Potential modes of operating in space in the space shuttle era are documented. The October 1973 NASA Mission Model provides a definition of various NASA and non-DOD automated payload configurations when employed in an expendable mode. The model also specifies a launch schedule for initial deployment of payloads as well as for subsequent replacements at periodic cycles. This model and its associated payload definitions serve as a foundation for the data presented in this report. The reference model has been revised to reflect automated space servicing of payloads as an operational concept instead of the existing expendable approach. The indication is that the bulk of a payload's subsystems and mission equipment require no support over the lifetime of the program. However, failure of a single unit could result in loss of the mission objectives. When space servicing is employed, the approach is to replace only that unit causing the anomaly. This concept affords an opportunity to standardize space replacable units, as well as to reduce the expense of logistics support, by allowing multiple servicing on any single upper stage/shuttle flight.

  12. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    NASA Technical Reports Server (NTRS)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  13. ASK Talks with Dennis Grounds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dennis Grounds recently finished a one-year assignment at NASA Headquarters in the Office of Bioastronautics as the Acting Flight Program Manager He has returned to Johnson Space Center (JSC), where he is Director of the International Space Station Bioastronautics Research Program Office with the NASA Life Sciences Projects Division. Under his management, the Human Research Facility (HRF) was developed to support a broad range of scientific investigations pertaining to human adaptation to the spaceflight environment and issues of human space exploration. The HRF rack was developed to international standards in order to be compatible with payloads developed anywhere in the world, thereby streamlining the process of getting payloads on the Space Station. Grounds has worked with NASA for more than 15 years. Prior to joining ISS, he worked with General Electric as a manager of payloads and analysis in support of the NASA Life Science Projects Division at JSC. ASK spoke with Grounds in Washington, D.C., during his Headquarters assignment.

  14. KSC-97pc606

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- With the Space Shuttle Orbiter Columbia in the background, STS-83 Mission Commander James D. Halsell (center) gives a post-landing briefing on Runway 33 at KSC’s Shuttle Landing Facility. Columbia landed at 2:33:11 p. m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. The other flight crew members (from left) are: Payload Specialist Roger K. Crouch; Payload Commander Janice Voss; Mission Specialist Michael L. Gernhardt; Pilot Susan L. Still; Payload Specialist Gregory T. Linteris; and Mission Specialist Donald A. Thomas. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981

  15. Payload Instrument Design Rules for Safe and Efficient Flight Operations

    NASA Astrophysics Data System (ADS)

    Montagnon, E.; Ferri, P.

    2004-04-01

    Payload operations are often being neglected in favour of optimisation of scientific performance of the instrument design. This has major drawbacks in terms of cost, safety, efficiency of operations and finally science return. By taking operational aspects into account in the early phases of the instrument design, with a minimum more cultural than financial or technological additional effort, many problems can be avoided or minimized, with significant benefits to be gained in the mission execution phases. This paper presents possible improvements based on the use of the telemetry and telecommand packet standard, proper sharing of autonomy functions between instrument and platform, and enhanced interface documents.

  16. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  17. Space Tug avionics definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.

  18. MS Peterson and MS Musgrave in payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.

  19. Computer support for cooperative tasks in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Moore, Mike

    1994-01-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  20. Space operations and the human factor

    NASA Astrophysics Data System (ADS)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  1. The Pros and Cons of National Defense: A Study of the Proponents, Opponents, Issues, and the Public Affairs and Public Relations Programs Surrounding the B-1 Strategic Bomber

    DTIC Science & Technology

    1979-08-01

    it was noted that I the B-I would be faster, carry more payload, and have a smaller radar cross section than the B-52. Also, in comparison to the B-52...payload or have smaller cross section . (6) Compared to B-52, B-i will: (a) Have higher penetration speeds (b) Have larger payload capacity (c) Have... radar detection range, then S I descend to below radar detection altitudes (literally at treetop levels) and penetrate enemy airspace to within

  2. KSC01kodi072

    NASA Image and Video Library

    2001-08-08

    KODIAK ISLAND, Alaska -- The Sapphire payload is moved into position next to the Starshine 3 payload at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  3. KSC01kodi062

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload, while the payload fairing of the Athena 1 launch vehicle awaits servicing at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program

  4. NASA sounding rockets, 1958 - 1968: A historical summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1971-01-01

    The development and use of sounding rockets is traced from the Wac Corporal through the present generation of rockets. The Goddard Space Flight Center Sounding Rocket Program is discussed, and the use of sounding rockets during the IGY and the 1960's is described. Advantages of sounding rockets are identified as their simplicity and payload simplicity, low costs, payload recoverability, geographic flexibility, and temporal flexibility. The disadvantages are restricted time of observation, localized coverage, and payload limitations. Descriptions of major sounding rockets, trends in vehicle usage, and a compendium of NASA sounding rocket firings are also included.

  5. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  6. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  7. The development of STS payload environmental engineering standards

    NASA Technical Reports Server (NTRS)

    Bangs, W. F.

    1982-01-01

    The presently reported effort to provide a single set of standards for the design, analysis and testing of Space Transportation System (STS) payloads throughout the NASA organization must be viewed as essentially experimental, since the concept of incorporating the diverse opinions and experiences of several separate field research centers may in retrospect be judged too ambitious or perhaps even naive. While each STS payload may have unique characteristics, and the project should formulate its own criteria for environmental design, testing and evaluation, a reference source document providing coordinated standards is expected to minimize the duplication of effort and limit random divergence of practices among the various NASA payload programs. These standards would provide useful information to all potential STS users, and offer a degree of standardization to STS users outside the NASA organization.

  8. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  9. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  10. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload changeout room on the Rotating Service Structure, Launch Pad 39B, workers move the Multi-Purpose Logistics Module Leonardo out of the payload canister. From the PCR Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  11. NASA's Space Launch System Marks Critical Design Review

    NASA Technical Reports Server (NTRS)

    Singer, Chris

    2016-01-01

    With completion of its Critical Design Review (CDR) in 2015, NASA is deep into the manufacturing and testing phases of its new Space Launch System (SLS) for beyond-Earth exploration. This CDR was the first in almost 40 years for a NASA human launch vehicle and marked another successful milestone on the road to the launch of a new era of deep space exploration. The review marked the 90-percent design-complete, a final look at the design and development plan of the integrated vehicle before full-scale fabrications begins and the prelude to the next milestone, design certification. Specifically, the review looked at the first of three increasingly capable configurations planned for SLS. This "Block I" design will stand 98.2 meters (m) (322 feet) tall and provide 39.1 million Newtons (8.8 million pounds) of thrust at liftoff to lift a payload of approximately 70 metric tons (154,000 pounds). This payload is more than double that of the retired space shuttle program or other current launch vehicles. It dramatically increases the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique, high-value national payloads. The Block 1 SLS will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the moon and back and the first crewed flight around the moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has hardware in production or testing, including flight hardware for the Exploration 1 (EM-1) test flight. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  12. Evaluation of scheduling techniques for payload activity planning

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley F.

    1991-01-01

    Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.

  13. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2015-12-01

    the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management system, and a new...MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will continue to support legacy...Antecedent Information The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons

  14. Education Payload Operation - Demonstrations

    NASA Technical Reports Server (NTRS)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  15. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  16. MSPR-2 installation and checkout

    NASA Image and Video Library

    2015-09-01

    ISS044E079682 (09/01/2015) --- NASA Astronaut Scott Kelly works inside the U.S. Destiny Laboratory. Destiny is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety and quality of life for people all over the world.

  17. Space Station Freedom resource allocation accommodation of technology payload requirements

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Collier, Lisa D.; Gartrell, Charles F.

    1990-01-01

    An overview of the Office of Aeronautics, Exploration, and Technology (OAET) Space Station Freedom Technology Payload Development Program is provided, and the OAET Station resource requirements are reviewed. The requirements are contrasted with current proposed resource allocations. A discussion of the issues and conclusions are provided. It is concluded that an overall 20 percent resource allocation is appropriate to support OAET's technology development program, that some resources are inadequate even at the 20 percent level, and that bartering resources among U.S. users and international partners and increasing the level of automation may be viable solutions to the resource constraint problem.

  18. STS-39 OV-103 reaction control system (RCS) jets fire during onorbit maneuver

    NASA Image and Video Library

    1991-05-06

    STS039-27-016 (28 April-6 May 1991) --- The Space Shuttle Discovery fires reaction control subsystem (RCS) thrusters in this 35mm frame, taken from inside the crew cabin. Seen in Discovery's payload bay are the tops of cannisters on the STP-1 payload, configured on the STS 39 Hitchhiker carrier; and the Air Force Program (AFP) 675 package. AFP-675 consists of the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS)-1A; Far Ultraviolet Camera (FAR-UV) Experiment; Horizon Ultraviolet Program (HUP); Quadruple Ion Neutral Mass Spectrometer (QINMS); and the Uniformly Redundant Array (URA).

  19. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  20. Project Aether Aurora: STEM outreach near the arctic circle

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Bering, E. A.

    2012-12-01

    Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.

  1. Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies

    NASA Technical Reports Server (NTRS)

    Jones, A. L.

    1972-01-01

    Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.

  2. Results from a tethered rocket experiment (Charge-2)

    NASA Astrophysics Data System (ADS)

    Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.

    A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

  3. Project Columbiad: Mission to the Moon. Book 2, volume 3: Stage configuration designs; volume 4: Program plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.

  4. A study to define an in-flight dynamics measurement and data applications program for space shuttle payloads

    NASA Technical Reports Server (NTRS)

    Rader, W. P.; Barrett, S.; Payne, K. R.

    1975-01-01

    Data measurement and interpretation techniques were defined for application to the first few space shuttle flights, so that the dynamic environment could be sufficiently well established to be used to reduce the cost of future payloads through more efficient design and environmental test techniques. It was concluded that: (1) initial payloads must be given comprehensive instrumentation coverage to obtain detailed definition of acoustics, vibration, and interface loads, (2) analytical models of selected initial payloads must be developed and verified by modal surveys and flight measurements, (3) acoustic tests should be performed on initial payloads to establish realistic test criteria for components and experiments in order to minimize unrealistic failures and retest requirements, (4) permanent data banks should be set up to establish statistical confidence in the data to be used, (5) a more unified design/test specification philosophy is needed, (6) additional work is needed to establish a practical testing technique for simulation of vehicle transients.

  5. Graduate Student Researchers Program (GSRP)

    NASA Technical Reports Server (NTRS)

    Westerhoff, John

    2004-01-01

    An advanced concept in in-space transportation currently being studied is the Momentum-Exchange/Electrodynamic Reboost Tether System (MXER). The MXER system is a permanently orbiting platform designed to boost payloads from low earth orbit (LEO). Unlike conventional rockets that use propellants, MXER acts as a large momentum wheel, imparting a Av to a payload at the expense of its own orbital energy. After throwing a payload, the system reboosts itself using an electrodynamic tether to push against Earth s magnetic field and brings itself back up to an operational orbit to prepare for the next payload. The ability to reboost itself allows for continued reuse of the system without the expenditure of propellants. Considering the cost of lifting propellant from the ground to LEO to do the same Av boost at $10000 per pound, the system cuts the launch cost of the payload dramatically, and subsequently, the MXER system pays for itself after a small number of missions. As such, this technology is a valuable addition to NASA s mission for in-space transportation.

  6. Performance estimates for space shuttle vehicles using a hydrogen or a methane fueled turboramjet powered first stage

    NASA Technical Reports Server (NTRS)

    Knip, G., Jr.; Eisenberg, J. D.

    1972-01-01

    Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.

  7. Reinventing the International Space Station Payload Integration Processes and Capabilities

    NASA Technical Reports Server (NTRS)

    Jones, Rod; Price, Carmen; Copeland, Scott; Geiger, Wade; Geiger, Wade; Rice, Amanda; Lauchner, Adam

    2011-01-01

    The fundamental ISS payload integration philosophy, processes and capabilities were established in the context of how NASA science programs were conducted and executed in the early 1990 s. Today, with the designation of the United States (US) portion of ISS as a National Lab, the ISS payload customer base is growing to include other government agencies, private and commercial research. The fields of research are becoming more diverse expanding from the NASA centric physical, materials and human research sciences to test beds for exploration and technology demonstration, biology and biotechnology, and as an Earth and Space science platform. This new customer base has a broader more diverse set of expectations and requirements for payload design, verification, integration, test, training, and operations. One size fits all processes are not responsive to this broader customer base. To maintain an organization s effectiveness it must listen to its customers, understand their needs, learn from its mistakes, and foster an environment of continual process improvement. The ISS Payloads office is evolving to meet these new customer expectations.

  8. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.

  9. The Role of ESA TEC-QTE in the ISS Safety Process

    NASA Astrophysics Data System (ADS)

    Orlandi, M.; Rohr, T.; Stienstra, M. H.; Semprimoschnig, C.

    2013-09-01

    On the 17th of July 2000, the Materials and Processes Reciprocal Agreement was signed between NASA and ESA to define the process for selection and certification of materials used in the Space Shuttle and the International Space Station. Consecutively, on the 20th of June 2003 this agreement was extended to the Automated Transport Vehicle (ATV). It is therefore the responsibility of ESA TEC-QTE, the Materials Space Evaluation and Radiation Effects section, part of the Product Assurance and Safety Department, to ensure that all materials, parts and processes of each of the ISS payloads not only function as required but also do not pose a risk to the safety of the crew members. In this context, TEC-QTE provides qualified expertise to support the ESA Flight Safety Review and assesses safety aspects related to manned projects (materials properties, fluid system compatibility, fungus resistance). This is supported by the Materials Space Evaluation and Radiation Effects section's Materials and Electrical Components laboratory having at its disposition a range of facilities designed to perform environmental effects testing of which off-gassing tests according to ECSS-Q-ST-70-29C (equivalent to NASA STD 6001 test 7) and outgassing tests according to ECSS-Q-ST-70-02C (equivalent to ASTM-E-595). The ESA facility to perform flammability tests according to ECSS-Q-ST-70-21A (equivalent to NASA STD 6001 test1) was moved to Astrium Bremen.TEC-QTE is in charge of reviewing and approving, via RFA or MUA , all materials that do not meet safety requirements as well as COTS or CAM (black boxes) equipment.The safety process ends with the issue of the Materials Certification of the reviewed payload hardware that shows compliance with the relevant materials and processes requirements and standards.In addition to the safety related activities for the ISS, specialised TEC-QTE personnel provide measurements of the air quality inside the ATV and assess whether the toxicity index is within requirements.

  10. Space Station Mission Planning System (MPS) development study. Volume 2

    NASA Technical Reports Server (NTRS)

    Klus, W. J.

    1987-01-01

    The process and existing software used for Spacelab payload mission planning were studied. A complete baseline definition of the Spacelab payload mission planning process was established, along with a definition of existing software capabilities for potential extrapolation to the Space Station. This information was used as a basis for defining system requirements to support Space Station mission planning. The Space Station mission planning concept was reviewed for the purpose of identifying areas where artificial intelligence concepts might offer substantially improved capability. Three specific artificial intelligence concepts were to be investigated for applicability: natural language interfaces; expert systems; and automatic programming. The advantages and disadvantages of interfacing an artificial intelligence language with existing FORTRAN programs or of converting totally to a new programming language were identified.

  11. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  12. TET-1- A German Microsatellite for Technology On -Orbit Verification

    NASA Astrophysics Data System (ADS)

    Föckersperger, S.; Lattner, K.; Kaiser, C.; Eckert, S.; Bärwald, W.; Ritzmann, S.; Mühlbauer, P.; Turk, M.; Willemsen, P.

    2008-08-01

    Due to the high safety standards in the space industry every new product must go through a verification process before qualifying for operation in a space system. Within the verification process the payload undergoes a series of tests which prove that it is in accordance with mission requirements in terms of function, reliability and safety. Important verification components are the qualification for use on the ground as well as the On-Orbit Verification (OOV), i.e. proof that the product is suitable for use under virtual space conditions (on-orbit). Here it is demonstrated that the product functions under conditions which cannot or can only be partially simulated on the ground. The OOV-Program of the DLR serves to bridge the gap between the product tested and qualified on the ground and the utilization of the product in space. Due to regular and short-term availability of flight opportunities industry and research facilities can verify their latest products under space conditions and demonstrate their reliability and marketability. The Technologie-Erprobungs-Tr&äger TET (Technology Experiments Carrier) comprises the core elements of the OOV Program. A programmatic requirement of the OOV Program is that a satellite bus already verified in orbit be used in the first segment of the program. An analysis of suitable satellite buses showed that a realization of the TET satellite bus based on the BIRD satellite bus fulfilled the programmatic requirements best. Kayser-Threde was selected by DLR as Prime Contractor to perform the project together with its major subcontractors Astro- und Feinwerktechnik, Berlin for the platform development and DLR-GSOC for the ground segment development. TET is now designed to be a modular and flexible micro-satellite for any orbit between 450 and 850 km altitude and inclination between 53° and SSO. With an overall mass of 120 kg TET is able to accommodate experiments of up to 50 kg. A multipurpose payload supply systemThere is significant confusion in the space industry today over the terms used to describe satellite bus architectures. Terms such as "standard bus" (or "common bus"), "modular bus" and "plug-and-play bus" are often used with little understanding of what the terms actually mean, and even less understanding of what the differences in these space architectures mean. It may seem that these terms are subtle differentiators, but in reality these terms describe radically different ways to design, build, test, and operate satellites. Furthermore, these terms imply very different business models for the acquisition, operation, and sustainment of space systems. This paper will define and describe the difference between "standard buses", "modular buses" and "plug-and-play buses"; giving examples of each kind with a cost/benefit discussion of each type. under Kayser-Threde responsibility provides the necessary interfaces to the experiments. The first TET mission is scheduled for mid of 2010. TET will be launched as piggy-back payload on any available launcher worldwide to reduce launch cost and provide maximum flexibility. Finally, TET will provide all services required by the experimenters for a one year mission operation to perform a successful OOV-mission with its technology experiments leading to an efficient access to space for German industry and institutions.

  13. RICK BURT AND ANDY SCHORR WITH LAUNCH VEHICLE STAGE ADAPTER

    NASA Image and Video Library

    2016-09-23

    RICK BURT, RIGHT, DIRECTOR OF SAFETY AND MISSION ASSURANCE TALKS WITH ANDY SCHORR, ASSISTANT MANAGER OF THE SPACE LAUNCH SYSTEM'S SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE. BEHIND THEM IS THE LAUNCH VEHICLE STAGE ADAPTOR, WHICH WAS DESIGNED AND MANUFACTURED AT MARSHALL AND WILL CONNECT TWO MAJOR SLS UPPER SECTIONS

  14. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... debris generation will not result from conversion of energy sources into energy that fragments the vehicle or its payload. Energy sources include, but are not limited to, chemical, pneumatic, and kinetic energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards...

  15. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... debris generation will not result from conversion of energy sources into energy that fragments the vehicle or its payload. Energy sources include, but are not limited to, chemical, pneumatic, and kinetic energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards...

  16. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... debris generation will not result from conversion of energy sources into energy that fragments the vehicle or its payload. Energy sources include, but are not limited to, chemical, pneumatic, and kinetic energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards...

  17. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... debris generation will not result from conversion of energy sources into energy that fragments the vehicle or its payload. Energy sources include, but are not limited to, chemical, pneumatic, and kinetic energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards...

  18. 14 CFR 431.43 - Reusable launch vehicle mission operational requirements and restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... debris generation will not result from conversion of energy sources into energy that fragments the vehicle or its payload. Energy sources include, but are not limited to, chemical, pneumatic, and kinetic energy; and (4) Vehicle safety operations personnel shall adhere to the following work and rest standards...

  19. Manned Orbital Transfer Vehicle (MOTV). Volume 4: Supporting analysis

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    Generic missions were defined to enable potential users to determine the parameters for suggested user projects. Mission modes were identified for providing operation, interfaces, performance, and cost data for studying payloads. Safety requirements for emergencies during various phases of the mission are considered with emphasis on radiation hazards.

  20. A Normal Incidence X-ray Telescope (NIXT) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1996-01-01

    During the past year the changeover from the normal incidence X ray telescope (NIXT) program to the new TXI sounding rocket program was completed. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronic and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated X ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The h-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. Two papers, summarizing scientific results from the NIXT rocket program were published this year.

  1. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2013-12-01

    system capacity of the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management...terminals able to support the MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will...Antecedent Information: The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons of O

  2. The Tunable XUV Imager (TXI) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Brinton, John (Technical Monitor); Golub, Leon

    2004-01-01

    The TXI was flown successfully on 21 June 2001 (36.199 US). All systems functioned as planned and image data were acquired and sent to the ground. Unfortunately, due to a parachute failure the payload was destroyed. In this report we summarize results from the flight and provide detailed information on the high resolution X-ray imaging detector which was developed as part of the program.

  3. Rideshare programs: a historical perspective

    NASA Astrophysics Data System (ADS)

    Horais, Brian J.

    2000-11-01

    In recent years there has been a significant increase in demand for testing, qualification and evaluation of satellite components in space. This will continue to be true with the dramatic growth in remote sensing and communication satellites and constellations. Finding ways to space qualify components and sensors without paying for expensive, dedicated space experiments has prompted a number of aerospace companies (large and small) and government organizations to increase their emphasis on providing low-cost access to space by means of secondary rides on primary payloads and launch vehicle structures. Proactive rideshare brokering is a process that supports space testing by actively providing the information, processes and equipment necessary to support successful space testing. As U.S. space programs have grown in scope and cost, the capacity to accetp risk as part of the development process has diminished - resulting in reduced levels of innovation and erosion of our space industry domination. In contrast, the international space community has instituted a number of innovative processes that support low cost entry to space for small programs. This has stimulated new space systems industries in many countries around the world. This growth is closely coupled with the dynamic growth in the International space launch industry. Proactive rideshare brokering takes a new approach to secondary payload integration. Many commercial and government payload integration services have taken the approach "If you build it they will come." This is not sufficiently aggressive to attract the new technologists who know very little about space testing. Proactive brokering must take a "You must go out and actively seek high-payoff technology payloads" approach to have a true impact on the implementation of new space system technologies. It should also include the application of proven practices from the international payload integration community. The paper draws conclusions by comparing what has been done historically and currently in the international space payload integration community versus what the current practices are in the U.S.. Observations and recommendations are made that reflect a reduced timeline approach and that acknowledge the close coupling between the technology base, the space systems industry, infrastructure and educational processes.

  4. History of POIC Capabilities and Limitations to Conduct International Space Station Payload Operations

    NASA Technical Reports Server (NTRS)

    Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason

    2011-01-01

    Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.

  5. UNH Project SMART 2017: Space Science for High School Students

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  6. Space vehicle acoustics prediction improvement for payloads. [space shuttle

    NASA Technical Reports Server (NTRS)

    Dandridge, R. E.

    1979-01-01

    The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

  7. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Inside the payload changeout room on the Rotating Service Structure, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready for the payload ground-handling mechanism (PGHM) to remove it from the canister. A worker beneath the MPLM checks equipment. Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  8. The BIMDA shuttle flight mission: a low cost microgravity payload.

    PubMed

    Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G

    1991-01-01

    This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.

  9. Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1982-01-01

    A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.

  10. Shuttle communication and tracking systems signal design and interface compatibility analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Various options for the Dedicated Payload Communication Link (DPCL) were evaluated. Specific subjects addressed include: payload to DPCL power transfer in the proximity of the payload, DPCL antenna pointing considerations, and DPCL transceiver implementations which can be mounted on the deployed antenna boom. Additional analysis of the Space Telescope performance was conducted. The feasibility of using the Global Positioning System (GPS) for attitude determination and control for large spacecraft was examined. The objective of the Shuttle Orbiter Radar Test and Evaluation (SORTE) program was to quantify the Ku-band radar tracking accuracy using White Sands Missile Range (WSMR) radar and optical tracking equipment, with helicopter and balloon targets.

  11. KSC01kodi058

    NASA Image and Video Library

    2001-07-31

    KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle, while the payload fairing awaits processing, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.

  12. The SPACEHAB payload is installed in the PCR at LC 39A awaiting further STS-89 processing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The SPACEHAB payload arrived at Launch Pad 39A this morning and was installed in the Payload Changeout Room. Final preparations for liftoff of the STS-89 mission are under way. Endeavour and its crew of seven are targeted for a Jan. 22 launch. STS-89 will be the eighth Shuttle docking with the Russian Space Station Mir as part of Phase 1 of the International Space Station program. Mission Specialist Andy Thomas, Ph.D., will succeed Mission Specialist David Wolf, M.D., as the last NASA astronaut scheduled for a long-duration stay aboard Mir.

  13. Spinoff 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.

  14. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    NASA Technical Reports Server (NTRS)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  15. Small Satellites for Secondary Students

    NASA Astrophysics Data System (ADS)

    Zack, Kevin; Cominsky, Lynn

    2012-11-01

    Small Satellites for Secondary Students is a program funded by a three-year grant from NASA to bridge the gap in STEM education for secondary-school students. This is accomplished by creating the educational resources that are needed to support the development of a small scientific payload in alignment with scientific and technological education standards. The prototype payloads are flexible multi-experiment platforms designed to accommodate a wide range of student abilities with minimal resource requirements. The heart of each payload is an Arduino microcontroller which communicates with components that provide sensor data, Global Positioning System information, and which offer on-board data storage. The payload is built with off-the-shelf components and a pre-etched, custom-designed connector board. The platform also supports real-time telemetry updates through the use of Wi-Fi. To date, the prototype payloads have been tested on both high-powered rockets reaching over 3km and weather balloons tethered at 300m. Multiple successful rocket test runs reaching 1km have been conducted in partnership with amateur rocket clubs including the Association of Experimental Rocketry of the Pacific. From these flights, we are continuing to improve the payload design in order to increase the likelihood of student success.

  16. Report to the administrator by the NASA Aerospace Safety Advisory Panel on the Skylab program. Volume 1: Summary report. [systems management evaluation and design analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Contractor and NASA technical management for the development and manufacture of the Skylab modules is reviewed with emphasis on the following management controls: configuration and interface management; vendor control; and quality control of workmanship. A review of the modified two-stage Saturn V launch vehicle which focused on modifications to accommodate the Skylab payload; resolution of prior flight anomalies; and changes in personnel and management systems is presented along with an evaluation of the possible age-life and storage problems for the Saturn 1-B launch vehicle. The NASA program management's visibility and control of contractor operations, systems engineering and integration, the review process for the evaluation of design and flight hardware, and the planning process for mission operations are investigated. It is concluded that the technical management system for development and fabrication of the modules, spacecraft, and launch vehicles, the process of design and hardware acceptance reviews, and the risk assessment activities are satisfactory. It is indicated that checkout activity, integrated testing, and preparations for and execution of mission operation require management attention.

  17. STS-107 Pilot William 'Willie' McCool arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Pilot William 'Willie' McCool pauses next to the T-38 jet aircraft in which he flew to KSC. He and the crew are at KSC to take part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. Other crew members are Commander Rick Husband, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark, and Payload Specialist Ilan Ramon, the first Israeli astronaut. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is scheduled for Jan. 16, 2003.

  18. KSC-02pd1925

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- The STS-107 crew poses for a group portrait with the Vehicle Assembly Building in the background. They are at KSC to take part in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. From left to right are Mission Specialists Kalpana Chawla and Laurel Clark, Pilot William "Willie" McCool, Commander Rick Husband, Mission Specialist David Brown, Payload Specialist Ilan Ramon (the first Israeli astronaut), and Payload Commander Michael Anderson. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is targeted for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST.

  19. STS-107 crew meet with media in front of grandstand at KSC

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-107 crew meet with the media in front of the grandstand. From left are Commander Rick Husband, Pilot William 'Willie' McCool, Payload Specialist Ilan Ramon, Mission Specialist David Brown, Payload Commander Michael Anderson, and Mission Specialists Laurel Clark and Kalpana Chawla. The crew just finished Terminal Countdown Demonstration Test activities, including a simulated launch countdown, in preparation for launch planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. .

  20. KSC-00pp0069

    NASA Image and Video Library

    2000-01-14

    STS-99 Pilot Dominic Gorie suits up in the Operations and Checkout Building, as part of a flight crew equipment fit check, prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  1. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  2. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  3. Integrated medical and behavioral laboratory measurement system engineering analysis and laboratory specification

    NASA Technical Reports Server (NTRS)

    Grave, C.; Margold, D. W.

    1973-01-01

    Site selection, program planning, cost and design studies for support of the IMBLMS program were investigated. Accomplishments are reported for the following areas: analysis of responses to site selection criteria, space-oriented biotechnology, life sciences payload definition, and program information transfer.

  4. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  5. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  6. CubeSat Initiatives at KSC

    NASA Technical Reports Server (NTRS)

    Berg, Jared J.

    2014-01-01

    Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.

  7. GSFC Systems Test and Operation Language (STOL) functional requirements and language description

    NASA Technical Reports Server (NTRS)

    Desjardins, R.; Hall, G.; Mcguire, J.; Merwarth, P.; Mocarsky, W.; Truszkowski, W.; Villasenor, A.; Brosi, F.; Burch, P.; Carey, D.

    1978-01-01

    The Systems Tests and Operation Language (STOL) provides the means for user communication with payloads, applications programs, and other ground system elements. It is a systems operation language that enables an operator or user to communicate a command to a computer system. The system interprets each high level language directive from the user and performs the indicated action, such as executing a program, printing out a snapshot, or sending a payload command. This document presents the following: (1) required language features and implementation considerations; (2) basic capabilities; (3) telemetry, command, and input/output directives; (4) procedure definition and control; (5) listing, extension, and STOL nucleus capabilities.

  8. Space Product Development (SPD)

    NASA Image and Video Library

    2003-01-12

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  9. Proposal to National Aeronautics and Space Administration for continuation of a grazing incidence imaging telescope for X-ray astronomy using sounding rockets

    NASA Technical Reports Server (NTRS)

    Murray, B.

    1976-01-01

    The construction of a high resolution imaging telescope experiment payload suitable for launch on an Astrobee F sounding rocket was proposed. Also integration, launch, and subsequent data analysis effort were included. The payload utilizes major component subassemblies from the HEAO-B satellite program which were nonflight development units for that program. These were the X ray mirror and high resolution imager brassboard detector. The properties of the mirror and detector were discussed. The availability of these items for a sounding rocket experiment were explored with the HEAO-B project office.

  10. Development of termination and utilization concepts for flat conductor cables. Volume 3: Cost study comparison, flat versus round conductor cable

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cost study comparing flat conductor cable (FCC) with small-gage wire (SGW) and conventional round conductor cable (RCC) is presented. This study was based on a vehicle wiring system consisting of 110,000 ft of conventional RCC equally divided between AWG sizes 20,22, and 24 using MIL-W-81044-type wire and MIL-C-26500 circular connectors. Basic cost data were developed on a similar-sized commercial jet airplane wiring system on a previous company R&D program in which advanced wiring techniques were carried through equivalent installations on an airplane mockup; and on data developed on typical average bundles during this program. Various cost elements included were engineering labor, operations (manufacturing) labor, material costs, and cost impact on payload. Engineering labor includes design, wiring system integration, wiring diagrams and cable assembly drawings, wire installations, and other related supporting functions such as the electronic data processing for the wiring. Operations labor includes mockup, tooling and production planning, fabrication, assembly, installation, and quality control cost impact on payload is the conversion of wiring system weight variations through use of different wiring concepts to program payload benefits in terms of dollars.

  11. A new phase for NASA's communications satellite program

    NASA Technical Reports Server (NTRS)

    Dement, D. K.

    1980-01-01

    NASA's research in communications satellite technology is discussed, including orbit-efficient techniques and applications by the commercial sector. Attention is given to expanding the capacities of the C-band (6-4 GHz) and the Ku-band (14-11 GHz), opening the Ka-band (30/20 GHz), broadly applied 're-use' of the spectrum, and developing multibeam spacecraft antennas with on-board switching. Increasing wideband services in video, high-speed data, and voice trunking is considered, as are narrow-band systems that may be used for data collection or public safety, with possible expansion to a thin-route satellite system. In particular, communication for medical, disaster, or search-and-rescue emergencies may be met by the integration of a satellite service with land mobile communications via terrestrial radio links. Also considered is a large geostationary platform providing electrical power, thermal rejection, and orbital station-keeping for many communications payloads.

  12. Final payload test results for the RemoveDebris active debris removal mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2017-09-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  13. Space shuttle system program definition. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.

  14. Evaluation of propellant tank insulation concepts for low-thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Kramer, T.; Brogren, E.; Seigel, B.

    1984-01-01

    An analytical evaluation of cryogenic propellant tank insulations for liquid oxygen/liquid hydrogen low-thrust 2224N (500 lbf) propulsion systems (LTPS) was conducted. The insulation studied consisted of combinations of N2-purged foam and multilayer insulation (MLI) as well as He-purged MLI-only. Heat leak and payload performance predictions were made for three Shuttle-launched LTPS designed for Shuttle bay packaged payload densities of 56 kg/cu m, 40 kg/cu m and 24 kg/cu m. Foam/MLI insulations were found to increase LTPS payload delivery capability when compared with He-purged MLI-only. An additional benefit of foam/MLI was reduced operational complexity because Orbiter cargo bay N2 purge gas could be used for MLI purging. Maximum payload mass benefit occurred when an enhanced convection, rather than natural convection, heat transfer was specified for the insulation purge enclosure. The enhanced convection environment allowed minimum insulation thickness to be used for the foam/MLI interface temperature selected to correspond to the moisture dew point in the N2 purge gas. Experimental verification of foam/MLI benefits was recommended. A conservative program cost estimate for testing a MLI-foam insulated tank was 2.1 million dollars. It was noted this cost could be reduced significantly without increasing program risk.

  15. STS-65 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-65 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-third flight of the Space Shuttle Program and the seventeenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbits the flight vehicle consisted of an ET that was designated ET-64; three SSME's that were designated as serial numbers 2019, 2030, and 2017 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-066. The RSRM's that were installed in each SRB were designated as 360P039A for the left SRB, and 360W039 for the right SRB. The primary objective of this flight was to complete the operation of the second International Microgravity Laboratory (IML-2). The secondary objectives of this flight were to complete the operations of the Commercial Protein Crystal Growth (CPCG), Orbital Acceleration Research Experiment (OARE), and the Shuttle Amateur Radio Experiment (SAREX) II payloads. Additional secondary objectives were to meet the requirements of the Air Force Maui Optical Site (AMOS) and the Military Application Ship Tracks (MAST) payloads, which were manifested as payloads of opportunity.

  16. Safety First: Houston, We Have Liftoff!

    ERIC Educational Resources Information Center

    Roy, Ken

    2014-01-01

    A thrown basketball, a kicked football, an elastically launched catapult payload, and a free-falling solid fuel or pressurized gas-propelled rocket all have one thing in common. They are all projectiles familiar to elementary students. A projectile is an object thrown with an initial velocity and then allowed to move without thrust along its…

  17. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  18. A self-reliant RSI payload development in Taiwan

    NASA Astrophysics Data System (ADS)

    Weng, Shui-Lin; Lian, Yu-Yung

    2011-10-01

    Instead of outsourcing the whole FORMOSAT-2 satellite to a foreign prime contractor, the National Space Organization in Taiwan is stepping ahead to take the full responsibility of consolidating self-reliant space technology capabilities. A newly initiated program FORMOSAT-5 satellite, not only to build a heritage design of a spacecraft bus but also, selfreliantly, to leap a big step toward Remote Sensing Instrument payload development, is sailing on its voyage. Among the payload development effort, an integrated circuit of the kind Complementary Metal Oxide Semiconductor instead of Charge-coupled Device is chosen as the image sensor playing the lead role for the instrument. Despite the foreseen technical concerns, management issues over scheduling and documentation are constantly emerging owing to the payload development underwent is collaborated by several domestic industries and research centers. Regardless of challenges we may confront with, a carefully planned strategy especially emphasizing on the product realization processes is considered, discussed, and implemented.

  19. STS-1 mission contamination evaluation approach

    NASA Technical Reports Server (NTRS)

    Jacobs, S.; Ehlers, H.; Miller, E. R.

    1980-01-01

    The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight.

  20. Results of the 1974 through 1977 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Sidwell, L. B.

    1978-01-01

    From 1974 through 1977, seven solar cell calibration flights and two R&D flights with a spectroradiometer as a payload were attempted. There were two R&D flights, and one calibration flight that failed. Each calibration flight balloon was designed to carry its payload to an altitude of 36.6 km (120 kft). The R&D flight balloons were designed for a payload altitude of 47.5 km (150 kft). At the end of the flight period, the upper (solar cell calibration system) and lower (consolidated instrument package (DIP) payloads were separated from the balloon and descend via parachutes. The calibrated solar cells recovered in this manner were used as primary intensity reference standards during solar simulator testing of solar cells and solar arrays with similar spectral response characteristics. This method of calibration has become the most widely accepted technique for developing space standard solar cells.

  1. Space Station Freedom Data Assessment Study

    NASA Technical Reports Server (NTRS)

    Johnson, Anngienetta R.; Deskevich, Joseph

    1990-01-01

    The SSF Data Assessment Study was initiated to identify payload and operations data requirements to be supported in the Space Station era. To initiate the study payload requirements from the projected SSF user community were obtained utilizing an electronic questionnaire. The results of the questionnaire were incorporated in a personal computer compatible database used for mission scheduling and end-to-end communications analyses. This paper discusses data flow paths and associated latencies, communications bottlenecks, resource needs versus availability, payload scheduling 'warning flags' and payload data loading requirements for each major milestone in the Space Station buildup sequence. This paper also presents the statistical and analytical assessments produced using the data base, an experiment scheduling program, and a Space Station unique end-to-end simulation model. The modeling concepts and simulation methodologies presented in this paper provide a foundation for forecasting communication requirements and identifying modeling tools to be used in the SSF Tactical Operations Planning (TOP) process.

  2. Two stage launch vehicle

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Advanced Space Design project for 1986-87 was the design of a two stage launch vehicle, representing a second generation space transportation system (STS) which will be needed to support the space station. The first stage is an unmanned winged booster which is fully reusable with a fly back capability. It has jet engines so that it can fly back to the landing site. This adds safety as well as the flexibility to choose alternate landing sites. There are two different second stages. One of the second stages is a manned advanced space shuttle called Space Shuttle II. Space Shuttle II has a payload capability of delivering 40,000 pounds to the space station in low Earth orbit (LEO), and returning 40,000 pounds to Earth. Servicing the space station makes the ability to return a heavy payload to Earth as important as being able to launch a heavy payload. The other second stage is an unmanned heavy lift cargo vehicle with ability to deliver 150,000 pounds of payload to LEO. This vehicle will not return to Earth; however, the engines and electronics can be removed and returned to Earth in the Space Shuttle II. The rest of the vehicle can then be used on orbit for storage or raw materials, supplies, and space manufactured items awaiting transport back to Earth.

  3. The Extended Duration Sounding Rocket (EDSR): Low Cost Science and Technology Missions

    NASA Astrophysics Data System (ADS)

    Cruddace, R. G.; Chakrabarti, S.; Cash, W.; Eberspeaker, P.; Figer, D.; Figueroa, O.; Harris, W.; Kowalski, M.; Maddox, R.; Martin, C.; McCammon, D.; Nordsieck, K.; Polidan, R.; Sanders, W.; Wilkinson, E.; Asrat

    2011-12-01

    The 50-year old NASA sounding rocket (SR) program has been successful in launching scientific payloads into space frequently and at low cost with a 85% success rate. In 2008 the NASA Astrophysics Sounding Rocket Assessment Team (ASRAT), set up to review the future course of the SR program, made four major recommendations, one of which now called Extended Duration Sounding Rocket (EDSR). ASRAT recommended a system capable of launching science payloads (up to 420 kg) into low Earth orbit frequently (1/yr) at low cost, with a mission duration of approximately 30 days. Payload selection would be based on meritorious high-value science that can be performed by migrating sub-orbital payloads to orbit. Establishment of this capability is a essential for NASA as it strives to advance technical readiness and lower costs for risk averse Explorers and flagship missions in its pursuit of a balanced and sustainable program and achieve big science goals within a limited fiscal environment. The development of a new generation of small, low-cost launch vehicles (SLV), primarily the SpaceX Falcon 1 and the Orbital Sciences Minotaur I has made this concept conceivable. The NASA Wallops Flight Facility (WFF)conducted a detailed engineering concept study, aimed at defining the technical characteristics of all phases of a mission, from design, procurement, assembly, test, integration and mission operations. The work was led by Dr. Raymond Cruddace, a veteran of the SR program and the prime mover of the EDSR concept. The team investigated details such as, the "FAA licensed contract" for launch service procurement, with WFF and NASA SMD being responsible for mission assurance which results in a factor of two cost savings over the current approach. These and other creative solutions resulted in a proof-of-concept Class D mission design that could have a sustained launch rate of at least 1/yr, a mission duration of up to about 3 months, and a total cost of $25-30 million for each mission. The payload includes a pointing system with arc second precision, a command and data system which can be configured to meet the unique requirements of a particular mission, and a solar cell-battery power system. Anticipating the tremendous need of access to space, Cruddace and his team included a capability of inclusion of a number of smaller secondary instruments, ranging in size from CubeSats to instruments weighing up to 100 lb. These secondary payloads could be ejected as needed by P-PODs. In this talk, we will summarize EDSR, a legacy of Ray Cruddace.

  4. KSC-97PC1208

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  5. KSC-97PC1206

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  6. KSC-97PC1209

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  7. KSC-97PC1204

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  8. KSC-97PC1202

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  9. KSC-97PC1203

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  10. KSC-97PC1210

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  11. KSC-97pc1205

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  12. KSC-97PC1207

    NASA Image and Video Library

    1997-08-07

    KENNEDY SPACE CENTER, Fla. -- Blasting through the hazy late morning sky, the Space Shuttle Discovery soars from Launch Pad 39A at 10:41 a.m. EDT Aug. 7 on the 11-day STS-85 mission. Aboard Discovery are Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger, Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason, a Canadian Space Agency astronaut . The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer. The CRISTA-SPAS-2 will be deployed on flight day 1 to study trace gases in the Earth’s atmosphere as a part of NASA’s Mission to Planet Earth program. Also aboard the free-flying research platform will be the Middle Atmosphere High Resolution Spectrograph Instrument (MAHRSI). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), a Japanese Space Agency-sponsored experiment. Also in Discovery’s payload bay are the Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments

  13. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  14. Sensor deployment on unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Witus, Gary

    2007-10-01

    TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.

  15. GAS-007: First step in a series of Explorer payloads

    NASA Technical Reports Server (NTRS)

    Kitchens, Philip H.

    1987-01-01

    As part of the NASA Get Away Special program for flying small, self-contained payloads onboard the Space Shuttle, the Alabama Space and Rocket Center (ASRC) in Huntsville has sponsored three such payloads for its Project Explorer. One of these is GAS-007, which was carried originally on STS mission 41-G in early October 1984. Due to an operational error it was not turned on and was, therefore, subsequently rescheduled and flown on mission 61-C. This paper will review Explorer's history, outline its experiments, present some preliminary experimental results, and describe future ASRC plans for Get Away Special activities, including follow-on Explorers GAS-105 and GAS-608.

  16. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Bobby Bruckner, manager, ELV and Payload Carrier Programs, speaks at the ribbon-cutting ceremony of the E&O Building at KSC. Home for NASA's unmanned missions since 1964, the building has been renovated to house the Expendable Launch Vehicle Program.

  17. Expedite the Processing of Unpressurized Payloads to the International Space Station Using the ExPRESS Pallet

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen S.; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The Expedite the PRocessing of Experiments to Space Station (ExPRESS) Pallet will be used as an experiment platform for external/unpressurized payloads to be flown aboard the International Space Station (ISS). The purpose of the ExPRESS Pallet is to provide an easy access to the ISS for Scientific Investigators that require an external platform for their experiment hardware. As the name of the ExPRESS Pallet implies, the objective of the ExPRESS program is to provide a simplified integration process in a short time period (24 months) for payloads to be flown on the ISS. The ExPRESS Pallet provides unique opportunities for research across many science disciplines, including earth observation, communications, solar and deep space viewing, and long-term exposure. The ExPRESS Pallet provides access to Ram, Wake, Nadir, Zenith and Earth Limb for viewing and exposure to the space environment. The ExPRESS Pallet will provide standard physical payload interfaces, and a standard integration template. The ExPS consists of the Pallet structure, payload Adapters, a subsystem assembly that includes data controller, power distribution and conversion, and Extra Vehicular Robotics compatibility. The ExPRESS Pallet provides the capability to changeout payloads on-orbit via the ExPRESS Pallet Adapter (ExPA). The following paragraphs will describe the Services and Accommodations available to the Payload developers by the ExPRESS Pallet and a brief description of the Integration process. More detailed information on the ExPRESS Pallet can be found in the ExPRESS Pallet Payload Accommodations Handbook, SSP 52000-PAH-EPP.

  18. Preliminary analysis of an integrated logistics system for OSSA payloads. Volume 4: Supportability analysis of the 1.8m centrifuge

    NASA Technical Reports Server (NTRS)

    Palguta, T.; Bradley, W.; Stockton, T.

    1988-01-01

    Supportability issues for the 1.8 meter centrifuge in the Life Science Research Facility are addressed. The analysis focuses on reliability and maintainability and the potential impact on supportability and affordability. Standard logistics engineering methodologies that will be applied to all Office of Space Science and Applications' (OSSA) payload programs are outlined. These methodologies are applied to the 1.8 meter centrifuge.

  19. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  20. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    An interactive computer program for automatically generating traffic models for the Space Transportation System (STS) is presented. Information concerning run stream construction, input data, and output data is provided. The flow of the interactive data stream is described. Error messages are specified, along with suggestions for remedial action. In addition, formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.

  1. A knowledge-based decision support system for payload scheduling

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen; Ford, Donnie

    1988-01-01

    The role that artificial intelligence/expert systems technologies play in the development and implementation of effective decision support systems is illustrated. A recently developed prototype system for supporting the scheduling of subsystems and payloads/experiments for NASA's Space Station program is presented and serves to highlight various concepts. The potential integration of knowledge based systems and decision support systems which has been proposed in several recent articles and presentations is illustrated.

  2. Analysis of Possible Explosions at Kennedy Space Center Due to Spontaneous Ignition of Hypergolic Propellants

    NASA Technical Reports Server (NTRS)

    Brown, Stephen

    2010-01-01

    NASA's Constellation Program plan currently calls for the replacement of the Space Shuttle with the ARES I & V spacecraft and booster vehicles to send astronauts to the moon and beyond. Part of the ARES spacecraft is the Orion Crew Exploration Vehicle (CEV), which includes the Crew Module (CM) and Service Module (SM). The Orion CM's main propulsion system and supplies are provided by the SM. The SM is to be processed off line and moved to the Vehicle Assembly Building (V AB) for stacking to the first stage booster motors prior to ARES move to the launch pad. The new Constellation Program philosophy to process in this manner has created a major task for the KSC infrastructure in that conventional QD calculations are no longer viable because of the location of surrounding facilities near the VAB and the Multi Purpose Processing Facility (MPPF), where the SM will be serviced with nearly 18,000 pounds of hypergolic propellants. The Multi-Payload Processing Facility (MPPF) complex, constructed by NASA in 1994, is located just off E Avenue south of the Operations and Checkout (O&C) building in the Kennedy Space Center industrial area. The MPPF includes a high bay and a low bay. The MPPF high bay is 40.2 m (132 ft) long x 18.9 m (60 ft) wide with a ceiling height of 18.9 m (62 ft). The low bay is a 10.4 m (34 ft) long x 10.4 m (34 ft) wide processing area and has a ceiling height of6.1 m (20 ft). The MPPF is currently used to process non-hazardous payloads. Engineering Analysis Inc. (EAI), under contract with ASRC Aerospace, Inc. in conjunction with the Explosive Safety Office, NASA, Kennedy Space Center (KSC), has carried out an analysis of the effects of explosions at KSC in or near various facilities produced by the spontaneous ignition ofhypergolic fuel stored in the CEV SM. The facilities considered included (1) Vehicle Assembly Building (VAB) (2) Multi-Payload Processing Facility (MPPF) (3) Canister Rotation Facility (CRF) Subsequent discussion deals with the MPPF analysis. Figure 1 provides a view of the MPPF from the northwest. An interior view ofthe facility is shown in Figure 2. The study was concerned with both blast hazards and hazardous fragments which exceed existing safety standards, as described in Section 2.0. The analysis included both blast and fragmentation effects and was divided into three parts as follows: (1) blast (2) primary fragmentation (3) secondary fragmentation Blast effects are summarized in Section 3.0, primary fragmentation in Section 4.0, and secondary fragmentation (internal and external) in Section 5.0. Conclusions are provided in Section 6.0, while references cited are included in Section 7.0. A more detailed description of the entire study is available in a separate document.

  3. KSC-03pp0147

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Commander Michael Anderson gets help with his launch and entry suit from the Closeout Crew in the White Room. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Behind him is Pilot William "Willie" McCool. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.

  4. KSC-02pd1927

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- The STS-107 crew poses for a group portrait with their instructor inside an M113 armored personnel carrier. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. From left to right are Pilot William "Willie" McCool, Commander Rick Husband, Mission Specialist Laurel Clark, Instructor George Hoggard, Mission Specialist Kalpana Chawla, Payload Specialist Ilan Ramon (the first Israeli astronaut), Payload Commander Michael Anderson, and Mission Specialist David Brown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia.

  5. HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.; hide

    2001-01-01

    HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.

  6. STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.

  7. About White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.

  8. 29. DETAIL OF OUTLET DUCTS FOR MST AIRCONDITIONING SYSTEM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL OF OUTLET DUCTS FOR MST AIR-CONDITIONING SYSTEM IN NORTHWEST CORNER OF SLC-3W MST STATION 70.5 (LOWEST PAYLOAD SERVICE STATION). NOTE RING ATTACHMENT FOR PERSONNEL SAFETY HARNESS IN LEFT FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. National Space Transportation System (NSTS) technology needs

    NASA Technical Reports Server (NTRS)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  10. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  11. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova.

  12. Design criteria for payload workstation accommodations

    NASA Technical Reports Server (NTRS)

    Watters, H. H.; Stokes, J. W.

    1975-01-01

    Anticipated shuttle sortie payload man-system design criteria needs are investigated. Man-system interactions for the scientific disciplines are listed and the extent is assessed to which documented Skylab experience is expected to provide system design guidance for each of the identified interactions. Where the analysis revealed that the reduced Skylab data does not answer the anticipated needs candidate criteria, based on unreduced Skylab data, available prior research, original analysis, or related requirements derived from previous space programs, are provided.

  13. STS-95 Payload Specialist Mukai participates in a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist Chiaki Mukai is perched on the back of a red 1999 C-5 Corvette convertible during a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade include the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  14. STS-95 Payload Specialist Glenn participates in a parade in Cocoa Beach

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. waves to spectators from the back of a silver 1999 C-5 Corvette convertible during a parade down State Road A1A in nearby Cocoa Beach. Organizers of the parade include the Cocoa Beach Area Chamber of Commerce, the Brevard County Tourist Development Council, and the cities of Cape Canaveral and Cocoa Beach. The parade is reminiscent of those held after missions during the Mercury Program.

  15. Teacher in Space Christa McAuliffe on the KC-135 for zero-G training

    NASA Image and Video Library

    1986-01-08

    S86-25191 (for release January 1986) --- The two representatives of the Teacher-in-Space Project continue their training program at the Johnson Space Center with an additional flight aboard NASA?s KC-135 ?zero gravity? aircraft. Sharon Christa McAuliffe, left, is prime crew payload specialist, and Barbara R. Morgan is in training as backup payload specialist. The photo was taken by Keith Meyers of New York Times. Photo credit: NASA

  16. Second United States Microgravity Payload: One Year Report

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor); McCauley, Dannah E. (Editor)

    1996-01-01

    The second United States Microgravity Payload (USMP-2), flown in March 1994, carried four major microgravity experiments plus a sophisticated accelerometer system. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission. The four USMP-2 experiments dealt with understanding fundamental aspects of materials behavior, three with the formation of crystals from melts and one with the critical point of a noble gas. This successful, scientifically rich mission also demonstrated telescience operations.

  17. The space shuttle payload planning working groups: Executive summaries

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.

  18. Extravehicular Crewman Work System (ECWS) study program: Prebreathe elimination study

    NASA Technical Reports Server (NTRS)

    Wilde, R. L.

    1981-01-01

    The study examined impacts of changing Orbiter cabin pressure and EMU EVA pressure to eliminate pure O2 prebreathing prior to EVA. The investigation defines circumscribing physiological boundaries and identifies changes required within Orbiter to reduce cabin pressure. The study also identifies payload impacts, payload flight assignment constraints, and impacts upon EMU resulting from raising EVA pressure. The study presents the trade-off which optimizes the choice of reduced cabin pressure and increased EVA pressure.

  19. Spacehab

    NASA Technical Reports Server (NTRS)

    Rossi, David

    1991-01-01

    Information is given in viewgraph form on the Spacehab company and its work on a pressurized module to be carried on the Space Shuttle. The module augments the Shuttle's capability to support man-tended microgravity experiments. The augmentation modules are designed to duplicate the resources, such as power, environmental control, and data management that are available in the Shuttle's middeck. Topics covered include a company overview, company financing, system overview, module description, payload resources, locker accommodations, program status, and a listing of candidate payloads.

  20. STS-64 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-64 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fourth flight of the Space Shuttle Program and the nineteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-66; three SSMEs that were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's that were designated Bl-068. The RSRM's that were installed in each SRB were designated as 360L041 A for the left SRB, and 360L041 B for the right SRB. The primary objective of this flight was to successfully perform the planned operations of the Lidar In-Space Technology Experiment (LITE), and to deploy the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) -201 payload. The secondary objectives were to perform the planned activities of the Robot Operated Materials Processing System (ROMPS), the Shuttle Amateur Radio Experiment - 2 (SAREX-2), the Solid Surface Combustion Experiment (SSCE), the Biological Research in Canisters (BRIC) experiment, the Radiation Monitoring Equipment-3 (RME-3) payload, the Military Application of Ship Tracks (MAST) experiment, and the Air Force Maui Optical Site Calibration Test (AMOS) payload.

Top