Science.gov

Sample records for pb cu sb

  1. Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions.

    PubMed

    Rothwell, James J; Taylor, Kevin G; Chenery, Simon R N; Cundy, Andrew B; Evans, Martin G; Allott, Timothy E H

    2010-11-15

    Concentration depth profiles and inventories of solid-phase As, Sb, Pb, and Cu were determined in ²¹⁰Pb-dated cores from an ombrotrophic peat bog in northwest England. Cores were collected from the peat dome and adjacent to an eroding gully. Down-core distributions of As, Sb, Pb, and Cu in the dome core are almost identical. The water table is close to the dome surface with only short-term draw-down. Under these conditions, As, Sb, Pb, and Cu are immobile, allowing the reconstruction of trends in historical contaminant deposition. The peak in atmospheric deposition of As, Sb, Pb, and Cu (4.59, 2.78, 147, and 26.7 mg m⁻² y⁻¹, respectively) occurred during the late 19th century. Stable Pb isotope ratios reveal that Pb deposition during this period was from indigenous and foreign sources. The mean water table is much lower at the gully edge, and there are pronounced interannual fluctuations. These conditions have not affected the integrity of the Pb and Cu records but have caused postdepositional mobilization and redistribution of As and Sb. Cumulative inventories show significant loss of As and Sb at the gully edge site. Long-term water table draw-down in ombrotrophic peat bogs has the potential to alter the geochemistry and fate of previously deposited As and Sb.

  2. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    PubMed

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  3. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  4. Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils.

    PubMed

    Evangelou, Michael W H; Hockmann, Kerstin; Pokharel, Rasesh; Jakob, Alfred; Schulin, Rainer

    2012-10-15

    Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils.

  5. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    PubMed

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian

    2012-10-01

    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound.

  6. Bournonite PbCuSbS3 : Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity.

    PubMed

    Dong, Yongkwan; Khabibullin, Artem R; Wei, Kaya; Salvador, James R; Nolas, George S; Woods, Lilia M

    2015-10-26

    An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic-structure calculations of one such material, PbCuSbS3 . Our analysis is presented in terms of a comparative study with Sb2 S3 , from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone-pair s(2) electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase-change-memory, thermal-barrier, thermal-rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil.

    PubMed

    Vithanage, Meththika; Herath, Indika; Almaroai, Yaser A; Rajapaksha, Anushka Upamali; Huang, Longbin; Sung, Jwa-Kyung; Lee, Sang Soo; Ok, Yong Sik

    2017-03-22

    This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 °C (BC) at 0.5, 1 and 2.5% (w w(-1)) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and π-π electron donor-acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization.

  8. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  9. Contents and Leachability of Heavy Metals (Pb, Cu, Sb, Zn, As) in Soil at the Pantex Firing Range, Amarillo, Texas.

    PubMed

    Basunia, Shamsuzzoha; Landsberger, Sheldon

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched ~6 times more than the usual soil concentration levels. Tox-icity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be ~12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  10. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  11. Photovoltaic applications of Cu(Sb,Bi)SM (M = Ag, Pb, Pt)

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2017-04-01

    Ternary Cu-(Sb,Bi)-S compounds are great absorbents of the solar radiation with a variety of applications including optoelectronic and photovoltaic applications. The analyses of several quaternary semiconductors derived from Cu-(Sb,Bi)-S materials is carried out using first-principles density-functional theory with orbital-dependent one-electron potentials. These analyses focus on the optoelectronic properties and the potential for solar cells. The optical properties are obtained from first-principles calculations, and split into inter- and intra-shell-species contributions in order to quantify the optical transitions responsible for the absorption. The absorption coefficients are then used as criteria to evaluate the efficiencies of these materials under several sunlight concentrations. The results indicate high energy photovoltaic conversion efficiency because of the large intra shell s-p absorption of the S and Sb or Bi atomic species.

  12. Doping of BiSrCaCuO compounds with (V+Y), As, Sb, Pb, Cr and Ge

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Y.; Schieber, M.; Beilin, V.; Litvin, S.; Burtman, V.; Cinodman, V.; Shaltiel, D.

    1993-04-01

    The effect of various doping elements such as (V+Y), As, Sb, Pb, Ag and Ge in range of 3-5 atom% on the phase stability of the high temperature superconducting (HTS) Bi - Sr - Ca - Cu - O system was investigated by preparing (1) small single crystals from flux solvents, and (2) thick films by doctor blade casting. It was found that the Bi 2Sr 2CaCu 2O x (2212) is the predominant phase in all doped samples Examples of HTS critical temperature Tc results measured by microwave absorption are 94 K for (V+Y), 78 K for As, 74 K for Ge. For the Sb doped compound a two phase BSCCO material was obtained with two T c of 90 and 78°K in the proportion of 20 to 80% respectively.

  13. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires.

    PubMed

    Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

    2017-04-01

    An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.

  14. A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS 3) and related substitutions

    DOE PAGES

    Faghaninia, Alireza; Yu, Guodong; Aydemir, Umut; ...

    2017-02-08

    Bournonite (CuPbSbS3) is an earth-abundant mineral with potential thermoelectric applications. This material has a complex crystal structure (space group Pmn21 #31) and has previously been measured to exhibit a very low thermal conductivity (κ < 1 W m -1 K -1 at T ≥ 300 K). In this study, we employ high-throughput density functional theory calculations to investigate how the properties of the bournonite crystal structure change with elemental substitutions. Specifically, we compute the stability and electronic properties of 320 structures generated via substitutions {Na-K-Cu-Ag}{Si-Ge-Sn-Pb}{N-P-As-Sb-Bi}{O-S-Se-Te} in the ABCD3 formula. We perform two types of transport calculations: the BoltzTraP model, whichmore » has been extensively tested, and a newer AMSET model that we have developed and which incorporates scattering effects. We discuss the differences in the model results, finding qualitative agreement except in the case of degenerate bands. Based on our calculations, we identify p-type CuPbSbSe3 , CuSnSbSe3 and CuPbAsSe3 as potentially promising materials for further investigation. We additionally calculate the defect properties, finding that n-type behavior in bournonite and the selected materials is highly unlikely, and p-type behavior might be enhanced by employing Sb-poor synthesis conditions to prevent the formation of Sb Pb defects. Finally, we discuss the origins of various trends with chemical substitution, including the possible role of stereochemically active lone pair effects in stabilizing the bournonite structure and the effect of cation and anion selection on the calculated band gap.« less

  15. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding

  16. Influence of simultaneous doping of Sb and Pb on phase formation, superconducting and microstructural characteristics of HgBa 2Ca 2Cu 3O 8+ δ

    NASA Astrophysics Data System (ADS)

    Giri, Rajiv; Tiwari, R. S.; Srivastava, O. N.

    2007-01-01

    We report systematic studies of structural, microstructural and transport properties of (Hg 0.80Sb 0.2- xPb x)Ba 2Ca 2Cu 3O 8+ δ (where x = 0.0, 0.05, 0.1, 0.15, 0.2) compounds. Bulk polycrystalline samples have been prepared by two-step solid-state reaction route at ambient pressure. It has been observed that simultaneous substitution of Sb and Pb at Hg site in oxygen deficient HgO δ layer of HgBa 2Ca 2Cu 3O 8+ δ cuprate high- Tc superconductor leads to the formation of Hg-1223 as the dominant phase. Microstructural investigations of the as grown samples employing scanning electron microscopy reveal single crystal like large grains embodying spiral like features. Superconducting properties particularly transport current density ( Jct) have been found to be sensitive to these microstructural features. As for example (Hg 0.80Sb 0.05Pb 0.15)Ba 2Ca 2Cu 3O 8+ δ compound which exhibits single crystal like large grains (∼50 μm) and appears to result through spiral growth mechanism, shows highest Jct (∼1.85 × 10 3 A/cm 2) at 77 K. A possible mechanism for the generation of spiral like features and correlation between microstructural features and superconducting properties have been put forward.

  17. Bi-sulphotellurides associated with Pb - Bi - (Sb ± Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo

    NASA Astrophysics Data System (ADS)

    Kołodziejczyk, Joanna; Pršek, Jaroslav; Voudouris, Panagiotis Ch.; Melfos, Vasilios

    2017-08-01

    New mineralogical and mineral-chemical data from the Stan Terg deposit, Kosovo, revealed the presence of abundant Bi-sulphotellurides associated with Bi- and Sb-sulphosalts and galena in pyrite-pyrrhotite-rich skarn-free ore bodies (ores without skarn minerals). The Bi-bearing association comprises Bi-sulphotellurides (joséite-A, joséite-B, unnamed phase A with a chemical formula close to (Bi,Pb)2(TeS)2, unnamed phase B with a chemical composition close to (Bi,Pb)2.5Te1.5S1.5), ikunolite, cosalite, Sb-lillianite, members of the kobellite series and Bi-jamesonite. Compositional trends of the Bi-sulphotellurides suggest lattice-scale incorporation of Bi-(Pb)-rich module and/or admixture with submicroscopic PbS layers in modulated structures, or complicated Bi-Te substitution. Cosalite is characterized by high Sb (max. 3.94 apfu), and low Cu and Ag (up to 0.72 apfu of Cu+Ag). Jamesonite from this mineralization has elevated Bi content, from 0.85 to 2.30 apfu. The negligible content of Au and Ag in the Bi-sulphotellurides, the low content of Ag in Bi-sulphosalts, together with the lack of Au-Ag bearing phases in the mineralization, indicate either ore deposition from fluid(s) depleted in precious metals, or physico-chemical conditions of ore formation preventing Au and Ag precipitation at the deposit site. The temperature of initial mineralization may have exceeded 400 °C as suggested by the lamellar exsolution textures observed in lillianite, which indicate breakdown textures from decomposition of high-temperature initial crystals. Non-stoichiometric phases among the Bi-sulphosalts and sulphotellurides studied at Stan Terg reflect modulated growth processes in a metasomatic environment.

  18. Atmospheric deposition of Pb, Cu, Ni, As, Sb, V, Cr, Co, Cd and Zn recorded in the Misten peat bog (Hautes-Fagnes, Belgium) during the Industrial Revolution

    NASA Astrophysics Data System (ADS)

    Allan, M.; Le Roux, G.; De Vleeschouwer, F.; Mattielli, N.; Fagel, N.

    2012-04-01

    A 40 cm peat core was studied from ombrotrophic bog in Western Europe (Misten bog, Hautes-Fagnes, Belgium). Trace metal and metalloid content (TM) and Pb isotopes were analysed by Q-ICP-MS and MC-ICP-MS, respectively. We focused our attention to a selected number of TM according to their specific enrichment (i.e. Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn). Our aims were: 1) to investigate TM mobility; 2) to determine TM accumulation rates and 3) to link TM accumulation rates with established histories of anthropogenic atmospheric emission. According to 210Pb and 14C data the studied peat core section covered the last two centuries. The general agreement in TM concentration and flux profiles suggested that all TM (except Zn and Cd), were immobile in the Misten peat bog. The temporal increase of TM fluxes between the inception of the Industrial Revolution and the present vary by a factor of 5 to 50 according to TM. The maximum fluxes of TM were found between 1991 and 1995 AD. The coal consumption and metallurgical activities were the predominant source of pollution. The historical TM profiles in the Misten peat profile are in agreement with other European records, reflecting the influence of regional European pollution.

  19. Homogeneous eutectic of Pb-Sb

    NASA Technical Reports Server (NTRS)

    Winter, J. M., Jr.

    1977-01-01

    Dendrite free eutectic mixture of Pb-Sb is expected to be superelastic material that can be used in formation of shaped charge liners for industrial explosive metal-forming processes and other applications.

  20. Studies of pretreatments in the determination of Zn, Cd, Pb, Cu, Sb and Bi in suspended particulate matter and plankton by differential-pulse anodic-stripping voltammetry with a hanging mercury drop electrode.

    PubMed

    Gillain, G

    1982-08-01

    The determination of Zn, Cd, Pb, Cu, Sb and Bi by differential-pulse anodic-stripping voltammetry has been applied to samples of plankton and suspended particulate matter after decomposition of organic matter by two methods: low-temperature ashing with microwave-activated oxygen and wet-ashing in pressurized Teflon crucibles. The loss of these elements, and contamination, were studied with a standard reference material. The relative merits of these oxidation techniques are discussed.

  1. Assembly of Mixed-Metal Cages Using Polyimido Antimony(III) Anions. Syntheses and Structures of [Sb(3)(NCy)(4)(HNCy)(2)]K.2(toluene), [Sb(2)(NCy)(4)](2)M(4) (M = Cu, Ag), and [Sb(NCy)(3)](2)Pb(3) (Cy = Cyclohexyl, C(6)H(11)).

    PubMed

    Beswick, Michael A.; Cromhout, Natalie L.; Harmer, Christopher N.; Paver, Michael A.; Raithby, Paul R.; Rennie, Moira-Ann; Steiner, Alexander; Wright, Dominic S.

    1997-04-23

    Transmetalation reactions of the polyimido Sb(III) anions [Sb(3)(NCy)(4)(HNCy)(2)](-), [Sb(2)(NCy)(4)](2)(-), and [Sb(NCy)(3)](3)(-) with metal sources allows the logical assembly of cage compounds containing various mixed-metal stoichiometries. The breadth of this approach is illustrated by the syntheses of [Sb(NCy)(4)(HNCy)(2)]K.2(toluene) (1), containing an early main group metal, [Sb(2)(NCy)(4)](2)M(4) (M = Cu (2), Ag (3)), containing transition metals, and [Sb(NCy)(3)Pb(3)] (4), containing a p-block metal. The low-temperature X-ray structures of complexes 1-4 have been determined. Crystal data: 1, monoclinic, space group C2/c, a = 18.418(3) Å, b = 11.457(2) Å, c = 24.798(6) Å, beta = 90.24(2) degrees, Z = 4; 3, triclinic, space group P&onemacr;, a = 11.501(2) Å, b = 13.752(3) Å, c = 22.868(5) Å, alpha = 103.50(3) degrees, beta = 95.89(3) degrees, gamma = 96.71(3) degrees, Z = 2; 4, triclinic, space group P&onemacr;, a = 11.071(2) Å, b = 14.892(2) Å, c = 17.262(2) Å, alpha = 65.36(3) degrees, beta = 74.21(3) degrees, gamma = 70.70(3) degrees, Z = 2. The structure of 2 has been reported in preliminary form. The K(+) ion of 1 is coordinated by four of the N centers of the [Sb(3)(NCy)(4)(HNCy)(2)](-) ligand. In addition, beta-C(-H).K interactions involving four of the Cy groups and MeC(-H).K interactions involving two toluene molecules give the K(+) ion a 10-coordinate geometry. In 2 and 3, the N centers of two [Sb(2)(NCy)(4)](2)(-) dianions symmetrically coordinate a central M(4) square-planar core. The symmetrical complexation of three Pb(II) centers by two [Sb(NCy)(3)](3)(-) trianions produces an 11-membered polyhedral cage structure in 4.

  2. Molar and excess volumes of liquid In-Sb, Mg-Sb, and Pb-Sb alloys

    SciTech Connect

    Hansen, A.R.; Kaminski, M.A. ); Eckert, C.A. )

    1990-04-01

    By a direct Archimedes' technique, volumetric data were obtained for liquid In, Mg, Pb, and Sb and mixtures of In-Sb, Mg-Sb, and Pb-Sb. In this paper the excess volumes for the alloys studied are presented and discussed.

  3. Tensile behavior of pb-sn solder/cu joints

    NASA Astrophysics Data System (ADS)

    Quan, Lenora; Frear, Darrel; Grivas, Dennis; Morris, J. W.

    1987-05-01

    Solders of nominal 95Pb-5Sn and 60Sn-40Pb were used to join Cu plates. The effect of ternary additions of In, Ag, Sb, and Bi to the near-eutectic solder were also investigated. Bulk solder and interfacial joint microstructures were characterized for each solder alloy. The solder joints were strained to failure in tension; joint strength and failure mode were determined. 95Pb-5Sn/Cu and 60Sn-40Pb/Cu specimens were tested both as-processed and after reflow. 95Pb-5Sn/Cu as-processed and reflow specimens failed in tension in a ductile mode. Voids initiated at β-Sn precipitates in the as-processed specimens and at the Cu3Sn intermetallic in the reflow specimens. 60Sn-40Pb/Cu failed transgranularly through the Cu6Sn5 intermetallic in both the as-processed and reflow conditions. The joint tensile strength of the reflow specimens was approximately half that of the as-processed specimens for both the high-Pb and near-eutectic alloys. The Cu6Sn{5} intermetallic dominated the tensile failure mode of the near-eutectic solder/Cu joints. The fracture path of the near-eutectic alloys with ternary additions depended on the presence of Cu6Sn5 rods in the solder within the Cu plates. Specimens with ternary additions of In and Ag contained only interfacial intermetallics and exhibited interfacial failure at the Cu6Sn5. Joints manufactured with ternary additions of Sb and Bi contained rods of Cu6Sn5 within the solder. Tensile failure of the Sb and Bi specimens occurred through the solder at the Cu6Sn5 rods.

  4. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study.

    PubMed

    Okkenhaug, Gudny; Grasshorn Gebhardt, Karl-Alexander; Amstaetter, Katja; Bue, Helga Lassen; Herzel, Hannes; Mariussen, Espen; Rossebø Almås, Åsgeir; Cornelissen, Gerard; Breedveld, Gijs D; Rasmussen, Grete; Mulder, Jan

    2016-04-15

    Small-arm shooting ranges often receive a significant input of lead (Pb), copper (Cu) and antimony (Sb) from ammunition. The goal of the present study was to investigate the mobility, distribution and speciation of Pb and Sb pollution under field conditions in both untreated and sorbent-amended shooting range soil. Elevated Sb (19-349μgL(-1)) and Pb (7-1495μgPbL(-1)) concentrations in the porewater of untreated soil over the four-year test period indicated a long-term Sb and Pb source to the adjacent environment in the absence of remedial measures. Mixing ferric oxyhydroxide powder (CFH-12) (2%) together with limestone (1%) into the soil resulted in an average decrease of Sb and Pb porewater concentrations of 66% and 97%, respectively. A similar reduction was achieved by adding 2% zerovalent iron (Fe°) to the soil. The remediation effect was stable over the four-year experimental period indicating no remobilization. Water- and 1M NH4NO3-extractable levels of Sb and Pb in field soil samples indicated significant immobilization by both treatments (89-90% for Sb and 89-99% for Pb). Results from sequential extraction analysis indicate fixation of Sb and Pb in less accessible fractions like amorphous iron oxides or even more crystalline and residual mineral phases, respectively. This work shows that amendment with Fe-based sorbents can be an effective method to reduce the mobility of metals both in cationic and anionic form in polluted shooting range soil.

  5. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  6. Sb-doped PbTe: An NMR Perspective

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Jaworski, C. M.; Heremans, J. P.

    2010-03-01

    In PbTe, Sb as a dopant can occupy either Pb or Te sites. To understand the effect of Sb on the local charge-carrier concentration in both cases, we have studied high-resolution ^125Te and ^207Pb NMR spectra of Pb1-xSbxTe, PbSbxTe1-x, and n- and p-type PbTe samples. The spectra of Pb0.9975Sb0.0025Te and PbSb0.0025Te0.9975 have distinctly different resonance frequencies due to Knight shifts and chemical shifts produced by Sb at Pb or Te sites. Pb0.9975Sb0.0025Te is n-type while in PbSb0.0025Te0.9975 both n- and p-type are found. NMR spectra and spin-lattice T1 relaxation of ^207Pb nuclei in PbSb0.0025Te0.9975, which are sensitive to the hyperfine interaction between charge carriers and NMR nuclei, reveal at least four components, which reflect electronic inhomogeneity of the sample. The local carrier concentrations estimated from T1 NMR varies from n<3x10^17 to p˜10^19 cm-3. These multiple components help rationalize the complex temperature dependence of the thermopower of PbSb0.0025Te0.9975. However, comparison with Hall and Seebeck effects data indicates that some NMR signals are due to localized electron states, which do not directly contribute to transport.

  7. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ∼FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (ΔFMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ΔFMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The

  8. Controlled CVD growth of Cu-Sb alloy nanostructures.

    PubMed

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-12

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu(11)Sb(3) nanowires (NWs), Cu(2)Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu(11)Sb(3) NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu(11)Sb(3) nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu(11)Sb(3) nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  9. Controlled CVD growth of Cu-Sb alloy nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-01

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu11Sb3 nanowires (NWs), Cu2Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu11Sb3 NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu11Sb3 nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu11Sb3 nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  10. Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in water samples by differential pulse stripping voltammetry at a hanging mercury drop electrode.

    PubMed

    Ghoneim, M M; Hassanein, A M; Hammam, E; Beltagi, A M

    2000-06-01

    A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.

  11. Synthesis of nanoparticles of Cu, Sb, Sn, SnSb and Cu2Sb by densification and atomization process.

    PubMed

    Lafont, Ugo; Simonin, Loïc; Tabrizi, Nooshin S; Schmidt-Ott, Andreas; Kelder, Erik M

    2009-04-01

    Here we present a technique based on an initial densification of solid precursor materials using magnetic pulses followed by an atomization process via spark discharging. These two processes allow changing bulky micron sized materials into nanoparticles (5-60 nm). The resulting intermediates and nanomaterials have been characterized using electron microscopy (TEM, SEM) and X-ray diffraction to show the texture and structure evolution between the initial bulk phase and the final nanoparticles. In this paper we present the nanoparticle formation of certain metals (Cu, Sn, Sb), alloys and intermetallics (SnSb, Cu2Sb) starting with pure elemental powders.

  12. Ab Initio Molecular Dynamics Studies of Pb m Sb n (m + n ≤ 9) Alloy Clusters

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-07-01

    Structure, stability, and dynamics of Pb m Sb n (m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 (n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  13. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  14. Kinetics of compound formation in Cu-Sb thin films

    NASA Astrophysics Data System (ADS)

    Halimi, R.; Merabet, A.

    1989-12-01

    Formation processes of intermetallic compounds on annealing, at temperatures from 150°C to 600 ° C, of Cu-Sb two-layer thin films are studied by means of the helium ion backscattering technique and X-ray diffractometry. It is found that at annealing up to 300 °C only the compound Cu 2Sb is formed. During the subsequent heat treatment from 350 °C to 600 °C the final Cu 9Sb 2 phase nucleates and grows at the expense of the Cu 2Sb phase. The structure of the Cu 2Sb compound is tetragonal. The Cu 9Sb 2 phase presents a superstructure of close-packed hexagonal type.

  15. X-Ray Investigations on Molten Cu-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Halm, Th.; Neumann, H.; Hoyer, W.

    1994-05-01

    Using X-ray diffraction, structure factors and pair correlation functions of several molten Cu-Sb alloys and pure antimony were determined and compared with published structural, thermodynamic and electronic properties. The eutectic concentration Cu37Sb63 was investigated in dependence on temperature, and a model structure factor was calculated applying a segregation model.

  16. Thermal Treatment Improvement of CuSbS2 Absorbers

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Mascaro, Lucia H.; Zakutayev, Andriy

    2015-06-14

    Thermal treatment in Sb2S3 vapor was used to improve the quality of CuSbS2 thin films, a promising non-toxic and earth-abundant absorber. A change in the CuSbS2 crystallographic texture and a decrease in the lattice stress were observed, as well as increases in the grain size, photoluminescence intensity and photoconductivity. To eliminate the influence of the possible Sb2S3 rich surface layer on photovoltaic performance, a selective chemical etching with KOH was developed.

  17. Pressure induced structural transitions in CuSbS2 and CuSbSe2 thermoelectric compounds

    DOE PAGES

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...

    2015-04-27

    Here, we investigate the structural behavior of CuSbS2 and CuSbSe2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS2 and CuSbSe2, respectively. High pressure Raman experiments complement the transitions observed by high pressure X-ray diffractionmore » (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less

  18. Yield strength of Cu and a CuPb alloy (1% Pb)

    NASA Astrophysics Data System (ADS)

    Buttler, W. T.; Gray, G. T.; Fensin, S. J.; Grover, M.; Prime, M. B.; Stevens, G. D.; Stone, J. B.; Turley, W. D.

    2017-01-01

    With PBX9501 we explosively loaded fully annealed OFHC-Cu and an OFHC-CuPb (extruded with 1% Pb that aggregates at the Cu grain boundaries) to study the effects of the 1% Pb on the elastic-plastic yield Y of Cu. The yield-stress Y was studied through observation of surface velocimetry and total ejected mass ρA from periodic surface perturbations machined onto the sample surfaces. The perturbation's wavelengths were λ ≈ 65 µm, and their amplitudes h were varied to determine the wavenumber (2π/λ) amplitude product kh at which ejecta production for the Cu and CuPb begins, which relates to Y. The Y of the two materials is apparently different.

  19. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: evidence from structures, Re-Os-Pb-S isotopes, and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Li, Wenchang; Qing, Chengshi; Lai, Yang; Li, Yingxu; Liao, Zhenwen; Wu, Jianyang; Wang, Shengwei; Dong, Lei; Tian, Enyuan

    2017-08-01

    The Zhaxikang Pb-Zn-Sb-Ag-(Au) deposits, located in the eastern part of northern Himalaya, totally contain more than 1.146 million tonnes (Mt) of Pb, 1.407 Mt of Zn, 0.345 Mt of Sb, and 3 kilotonnes (kt) of Ag. Our field observations suggest that these deposits are controlled by N-S trending and west- and steep-dipping normal faults, suggesting a hydrothermal rather than a syngenetic sedimentary origin. The Pb-Zn-Sb-Ag-(Cu-Au) mineralization formed in the Eocene as indicated by a Re-Os isochron age of 43.1 ± 2.5 Ma. Sulfide minerals have varying initial Pb isotopic compositions, with (206Pb/204Pb)i of 19.04-19.68, (207Pb/204Pb)i of 15.75-15.88, and (208Pb/204Pb)i of 39.66-40.31. Sulfur isotopic values display a narrow δ34S interval of +7.8-+12.2‰. These Pb-S isotopic data suggest that the Zhaxikang sources of Pb and S should be mainly from the coeval felsic magmas and partly from the surrounding Mesozoic strata including metasedimentary rocks and layered felsic volcanic rocks. Fluid inclusion studies indicate that the hydrothermal fluids have medium temperatures (200-336 °C) but varying salinities (1.40-18.25 wt.% NaCl equiv.) with densities of 0.75-0.95 g/cm3, possibly suggesting an evolution mixing between a high salinity fluid, perhaps of magmatic origin, with meteoric water.

  20. Valence analysis of Pb and Cu and superconductivity of (Pb,Cu)(Sr,La) 2CuO y

    NASA Astrophysics Data System (ADS)

    Minako Shida; Eriko Ohshima; Masae Kikuchi; Masayasu Nagoshi; Yasuhiko Syono

    1996-02-01

    The Pb 1201 phases, Pb 0.5Cu 0.5Sr 2- xLa xCuO y, with x = 1.0-1.2 and Pb 0.6Cu 0.4Sr 2- xLa x CuO y, with x = 0.9-1.2 have been prepared at 1010-1015°C for 1.7-2.0 hours in flowing oxygen. To evaluate the Cu valence in the CuO 2 sheet, the Pb valence is separately determined by K 2Cr 2O 7 titration, in addition to the oxygen content determination by iodometry. The Tc (onset) rises as the oxygen content decreases due to release of the overdoping, but was not affected by La 3+ substitution for Sr 2+ and by the Pb content in the (Pb,Cu)O layer. The explanation is that the Cu valence in the CuO 2 sheet decreases as the oxygen content decreases, while the Pb valence is reduced by La 3+ substitution or the Pb content increases.

  1. Reassessment of Atomic Mobilities in fcc Cu-Ag-Sn System Aiming at Establishment of an Atomic Mobility Database in Sn-Ag-Cu-In-Sb-Bi-Pb Solder Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong

    2017-04-01

    To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.

  2. Segregation of Sn and Sb in a ternary Cu(1 0 0)SnSb alloy

    NASA Astrophysics Data System (ADS)

    Asante, J. K. O.; Terblans, J. J.; Roos, W. D.

    2005-12-01

    Surface segregation studies of Sn and Sb in Cu(1 0 0)-0.14 at.% Sn-0.12 at.% Sb ternary alloy, have been done by making use of Auger Electron Spectroscopy. The method of Linear Temperature Ramp (LTR) was employed, whereby the sample was heated and cooled linearly at a constant rate. The positive heating rate showed both a kinetic segregation profile, as well as a narrow equilibrium segregation region, at higher temperatures. The equilibrium segregation profile was extended by cooling the sample. Sn was first to segregate to the surface due to its higher diffusion coefficient, mainly from a smaller activation energy ESn. Sb, due to its higher segregation energy, eventually replaced Sn from the surface. The modified Darken model was used to simulate the profile yielding the following segregation parameters: Do(Sn) = 6.3 × 10 -6 m 2/s, Do(Sb) = 2.8 × 10 -5 m 2/s; ESn = 175.4 kJ/mol, ESb = 186.3 kJ/mol; ΔGSn°=64.2 kJ/mol, ΔGSb°=84.3 kJ/mol; ΩCu-Sn = 3.4 kJ/mol, ΩCu-Sb = 15.9 kJ/mol and ΩSn-Sb = -5.4 kJ/mol.

  3. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  4. Retention of As and Sb in ombrotrophic peat bogs: records of As, Sb, and Pb deposition at four Scottish sites

    SciTech Connect

    Joanna M. Cloy; John G. Farmer; Margaret C. Graham; Angus B. MacKenzie

    2009-03-15

    Possible postdepositional As migration in ombrotrophic peat bogs was investigated by comparing depth profiles of As with those of Sb and Pb, two elements considered to be essentially immobile in peat, and those of redox-sensitive, potentially mobile nutrient elements such as Mn, Fe, P, and S in {sup 210}Pb-dated cores from four Scottish bogs. Concentration profiles of As were similar to those of Sb and Pb rather than these other elements, indicating that As is bound strongly to organic matter and is relatively immobile in ombrotrophic peat. Historical records of atmospheric anthropogenic As, Sb, and Pb deposition during the industrial and postindustrial periods were derived, site-specific maxima (up to 1.55, 1.33, and 45 mg m{sup -2} y{sup -1}, respectively) occurring between the late 1890s and 1960s, reflecting emissions from diverse sources such as mining and smelting, coal combustion, and also, in the case of Pb, exhaust emissions from the use of leaded gasoline. Since the mid-1980s, fluxes of Pb decreased (4-7 fold) more rapidly than those of As and Sb (2-3 fold), attributable to both the gradual elimination of leaded gasoline and recent new sources of the latter elements. Relative trends in derived anthropogenic As, Sb, and Pb deposition largely agreed with other Scottish peat and moss archive records, direct measurements of deposition, and UK emissions, i.e., four different types of data source. 36 refs., 3 figs., 1 tab.

  5. Activities of oxygen in liquid Cu-Sb and Cu-Ge alloys

    NASA Astrophysics Data System (ADS)

    Otsuka, Shinya; Matsumura, Yoshihiro; Kozuka, Zensaku

    1982-03-01

    In order to determine the activity coefficients of oxygen, γΩ in liquid Cu-Sb and Cu-Ge alloys at 1373 K as a function of alloy composition, the modified coulometric titrations, described previously, have been performed by using the galvanic cell: O in liquid Cu-Sb or Cu-Ge alloys/ZrO2 (+CaO)/Air, Pt. A pronounced point of inflection in the In γΩ vs alloy composition curve has been observed both for Cu-Sb and Cu-Ge alloys, as predicted by Jacob and Alcock’s quasichemical equation. The measured data itself, however, are significantly different from those predicted by their equation. The validity of Wagner’s solution model with one or two energy parameters has been also tested.

  6. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  7. Diverse lattice dynamics in ternary Cu-Sb-Se compounds.

    PubMed

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-09-02

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings.

  8. Yield strength of Cu and an engineered material of Cu with 1% Pb

    NASA Astrophysics Data System (ADS)

    Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William

    2015-06-01

    To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.

  9. Growth of tertiary dendritic arms during the transient directional solidification of hypoeutectic Pb-Sb alloys

    NASA Astrophysics Data System (ADS)

    Freitas, Emmanuelle S.; Rosa, Daniel M.; Garcia, Amauri; Spinelli, José E.

    2011-12-01

    Despite the importance of a complete characterization of dendritic patterns in castings, the availability of studies on the development of tertiary dendrite arms is scarce in the literature. In the present study, the tip cooling rate, local solidification time, primary and tertiary dendrite arm spacings have been determined in Pb-Sb alloys castings directionally solidified under unsteady-state heat flow conditions. The alloys compositions experimentally examined are widely used in the as-cast condition for the manufacture of positive and negative grids of lead-acid batteries. The initial growth of tertiary dendritic arms from the secondary branches was found to occur only for a Pb-3.5 wt% Sb alloy at cooling rates in the range 0.4-0.2 K/s, with no evidence of this spacing pattern for Pb-Sb alloys having lower solute content. Tertiary dendritic branches have been observed along the entire casting lengths for alloys of the Pb-Sb hypoeutectic range having compositions higher than 4.0 wt% Sb. It is shown that a power function experimental law with a characteristic -0.55 exponent is able to characterize the tertiary spacing evolution with the solidification cooling rate for alloys compositions ≥4.0 wt% Sb. The only exception was the Pb-3.5 wt% Sb alloy for which λ 3 exhibited significant lower values when compared with the experimental values obtained for the other Pb-Sb alloys for a same solidification cooling rate.

  10. Thermal Processing Effects on Microstructure and Composition of Cu3SbSe3

    SciTech Connect

    Majsztrik, Paul W; Kirkham, Melanie J; Garcia Negron, Valerie; Lara-Curzio, Edgar; Skoug, Eric; Morelli, Donald

    2013-01-01

    We report on the effects of thermal processing on the microstructure and composition of a system with overall stoichiometry of 3Cu:1Sb:3Se with the aim of producing single-phase Cu3SbSe3. It was found that slowly cooling from the melt produced a multiphase material consisting of Cu2Se and CuSbSe2, but devoid of Cu3SbSe3. Cooling rapidly from the melt resulted in three-phase microstructures consisting of Cu2Se, CuSbSe2, and Cu3SbSe3. Subsequent annealing of the three-phase material between 325 C and 400 C shifted composition towards nearly pure Cu3SbSe3, the target compound of this work. The kinetics of the transformation into Cu3SbSe3 is successfully described using a modified Avrami model, which suggests that diffusion is the rate-controlling step. Values of Young s modulus and hardness, obtained by nanoindentation, are reported for Cu2Se, CuSbSe2, and Cu3SbSe3.

  11. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    SciTech Connect

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  12. The role of Sb in solar cell material Cu2ZnSnS4

    DOE PAGES

    Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...

    2017-03-03

    In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu2ZnSnS4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, SbSn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration, Sb 5s states formmore » an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less

  13. Cu-Sb dumbbell arrangement in the spin-orbital liquid candidate Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Altmeyer, Michaela; Mila, Frederic; Smerald, Andrew; Valentí, Roser

    2017-09-01

    The absence of both spin freezing and of a static Jahn-Teller effect have led to the proposition that Ba3CuSb2O9 is a quantum spin-orbital liquid. However, theoretical understanding of the microscopic origin of this behavior has been hampered by a lack of consensus on the lattice structure. Cu ions have been proposed to realize either a triangular lattice, a short-range ordered honeycomb lattice, or a disordered lattice with stripelike correlations. Here we analyze the stability of idealized versions of these arrangements using density functional theory. We find stripe order of Cu ions to be energetically favored, hinting towards stripelike local Cu-Cu arrangements, while long-range order is presumably hindered due to disorder effects. Furthermore, we find evidence of significant interlayer interactions between Cu-Sb dumbbells, which affects the out-of-plane arrangement. Analysis of the relaxed crystal structures, electronic properties, and tight-binding parameters provides clues as to the nature of the Jahn-Teller distortions.

  14. Structural morphology of cotunnite, PbCl 2, laurionite, Pb(OH)Cl, and SbSI

    NASA Astrophysics Data System (ADS)

    Woensdregt, C. F.; Hartman, P.

    1988-03-01

    The structural morphology of compounds having the PbCl 2 and the closely related SbSI structures has been determined. Based upon the nine-coordination of the Pb atoms the F forms of the PbCl 2 structure are {110}, {020}, {120}, {011}, {200}, {111} , {201}, {121} and {211}. These forms are arranged in an order of increasing attachment energies, that were calculated using a broken bond model. In the SbSI structure type the Sb atom has a seven-coordination with the consequence that {020} becomes a different surface structure and that {120} is an S face. The theoretical habit of PbCl 2 and Pb(OH)Cl is short prismatic, elongated along the c axis, with {011} as terminal form. The appearance of {211} as main form on PbCl 2 when growth takes place from pure aqueous solution is ascribed to the preferential adsorption of OH - ions on that face. The predominance of {020} and {121} on PbCl 2 from solutions containing HCl is explained by adsorption of H 3O + on these faces. The theoretical habit of the SbSI structure type is slender prismatic {110} with {011} as terminal form.

  15. Defect-induced magnetic structure of CuMnSb

    NASA Astrophysics Data System (ADS)

    Máca, F.; Kudrnovský, J.; Drchal, V.; Turek, I.; Stelmakhovych, O.; Beran, P.; Llobet, A.; Marti, X.

    2016-09-01

    The observed ground state for the CuMnSb alloy is the antiferromagnetic (111) phase as confirmed by neutron diffraction experiments. Ab initio total energy calculations for ideal, defect-free CuMnSb contradict this result and indicate that other magnetic structures can have their total energies lower. It is known that Heusler alloys usually contain various defects depending on the sample preparation. We have therefore investigated magnetic phases of CuMnSb assuming the most common defects which exist in real experimental conditions. The full-potential supercell approach and a Heisenberg model approach using the coherent potential approximation are adopted. The results of the total energy supercell calculations indicate that defects that bring Mn atoms close together promote the antiferromagnetic (111) structure already for a low critical defect concentrations (≈3 %). A detailed study of exchange interactions between Mn moments further supports the above stabilization mechanism. Finally, the stability of the antiferromagnetic (111) order is enhanced by inclusion of electron correlations in narrow Mn bands. The present refinement structure analysis of the neutron scattering experiment supports theoretical conclusions.

  16. The mechanisms for the growth of the anodic Pb(II) oxides films formed on Pb-Sb and Pb-Sn alloys in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Liu, Hou-Tian; Yang, Chun-Xiao; Liang, Hai-He; Yang, Jiong; Zhou, Wei-Fang

    The anodic Pb(II) films formed on Pb, Pb-Sb and Pb-Sn alloys at 0.9 V (versus Hg/Hg 2SO 4) in 4.5 mol/l H 2SO 4 solution for 1 h were studied using alternating current (ac) impedance, open circuit decay curve and linear sweep voltammetry methods. Our research group has obtained the thickness of the anodic PbO film on Pb from the photocurrent measurement and proved that the resistance of the anodic PbO film is close to that of the interstitial liquid among the PbO particles in the film, from which it was inferred that the anodic PbO film grows via the dissolution-precipitation mechanism. It was concluded from the experimental results that (1) the films on Pb-Sb and Pb-Sn alloys also grow via the dissolution-precipitation mechanism, and the interstitial liquid may serve as the major passage for ion transportation during the film growth, (2) Sn facilitates the mechanism of oxidation of the surface layer of PbO particles to PbO 1+ x (0< x<1), (3) the influence of Sb to facilitate the growth of PbO 1+ x is smaller than that of Sn, but the doping effect of Sb(III) in the PbO crystals is more remarkable, (4) Sn increases the porosity of the anodic PbO film remarkably. All of the above effects decrease the specific resistance of the films.

  17. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-10-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  18. Insight into the mechanism of Sb promoted Cu(In,Ga)Se{sub 2} formation

    SciTech Connect

    Xiang, Yong Zhang, Xiaokun; Zhang, Shu

    2013-08-15

    Sb-doping has been demonstrated to be a new approach to promote Cu(In,Ga)Se{sub 2} (CIGS) thin film formation. To study the mechanism of Sb-promoted CIGS formation, we investigated the influence of Sb on the evolution of the critical intermediate Cu–Se phases, and found that Cu{sub 3}SbSe{sub 3} species was formed. Phase change of the as-prepared Cu–Se compounds at elevated temperature was determined using the differential scanning calorimetry analysis. For samples containing Sb, the melting decomposition occurred at 507.1 °C, along with aggregation of nanocrystals into a bulk, while the morphology of the sample without Sb barely changed after heating. This result suggests that the mobile Cu{sub 3}SbSe{sub 3} is likely the key intermediate responsible for Sb-promoted CIGS formation. Furthermore, we extended the scope of Sb-doping approach to solvothermal synthesis and CIGS nanocrystals were synthesized with significantly promoted kinetics in the presence of Sb. Based on these results, we propose the mechanism of Sb promoted CIGS formation. - Graphical abstract: Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to promote the formation of Cu(In,Ga)Se{sub 2}, and significantly promoting effect by Sb is also found in the synthesis of Cu(In,Ga)Se{sub 2} nanocrystals. Highlights: • In the presence of Sb, Cu{sub 3}SbSe{sub 3} is formed while synthesizing the essential intermediate Cu–Se compounds for Cu(In,Ga)Se{sub 2} materials. • Cu{sub 3}SbSe{sub 3} shows high mobility at elevated temperature. • Cu{sub 3}SbSe{sub 3} mobile phase is likely the key species to improve Cu(In,Ga)Se{sub 2} thin film formation. • A synthesis methodology is developed to produce Cu(In,Ga)Se{sub 2} nanocrystals with significantly promoted reaction kinetics.

  19. Physics of bandgap formation in Cu-Sb-Se based novel thermoelectrics: the role of Sb valency and Cu d levels.

    PubMed

    Do, Dat; Ozolins, Vidvuds; Mahanti, S D; Lee, Mal-Soon; Zhang, Yongsheng; Wolverton, C

    2012-10-17

    In this paper we discuss the results of ab initio electronic structure calculations for Cu(3)SbSe(4) (Se4) and Cu(3)SbSe(3) (Se3), two narrow bandgap semiconductors of thermoelectric interest. We find that Sb is trivalent in both the compounds, in contrast to a simple nominal valence (ionic) picture which suggests that Sb should be 5 + in Se4. The gap formation in Se4 is quite subtle, with hybridization between Sb 5s and the neighboring Se 4s, 4p orbitals, position of Cu d states, and non-local exchange interaction, each playing significant roles. Thermopower calculations show that Se4 is a better p-type system. Our theoretical results for Se4 agree very well with recent experimental results obtained by Skoug et al (2011 Sci. Adv. Mater. 3 602).

  20. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    NASA Astrophysics Data System (ADS)

    Jiang, Qianlei; Xue, Ruisheng; Jia, Mengqiu

    2012-02-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu2Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  1. Pressure induced structural transitions in CuSbS2 and CuSbSe2 thermoelectric compounds

    SciTech Connect

    Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; Connolly, Anthony; Zhang, Yi; Velisavljevic, Nenad; Paladugu, Jayalakshmi; Pravica, Michael; Chen, Changfeng; Cornelius, Andrew; Zhao, Yusheng

    2015-04-27

    Here, we investigate the structural behavior of CuSbS2 and CuSbSe2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS2 and CuSbSe2, respectively. High pressure Raman experiments complement the transitions observed by high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.

  2. Quick Fabrication and Thermoelectric Properties of Cu12Sb4S13 Tetrahedrite

    NASA Astrophysics Data System (ADS)

    Wang, Juyi; Gu, Ming; Bao, Yefeng; Li, Xiaoya; Chen, Lidong

    2016-04-01

    Tetrahedrites, comprised mainly of earth-abundant and environment-friendly elements, copper and sulfur, may pave the way to many new and low-cost thermoelectric energy generation opportunities. However, the preparation of tetrahedrites is time- and energy-consuming. In this paper, we study the melting process and the effect of the annealing time on the microstructure and thermoelectric properties of the Cu12Sb4S13 tetrahedrite, in an effort to shorten the synthesis (melting and annealing) time. Our results show that the Cu12Sb4S13 tetrahedrite phase forms in the melt during cooling. Shortening the melting time does not affect the formation of Cu12Sb4S13. The cooled ingot consists of the principal phase of Cu12Sb4S13 and two secondary phases, Cu3SbS4 and CuSbS2. It is found that prolonged annealing cannot eliminate the impurity phases in Cu12Sb4S13 tetrahedrite, has a small effect on the electrical resistivity, and a negligible effect on the Seebeck coefficient and the thermal conductivity of the tetrahedrite. All our samples have a ZT above 0.47 at 600 K and the maximum ZT obtained was 0.52 when the sample was annealed for 1 day. Based on our experimental results, the time for preparing the Cu12Sb4S13 tetrahedrite can be considerably shortened.

  3. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; Xu, Qishu; Tan, Guolong

    2016-09-01

    CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.

  4. Microstructure and a Nucleation Mechanism for Nanoprecipitates In PbTe-AgSbTe2

    SciTech Connect

    Ke, X.; Chen, C.; Yang, J.; Wu, L.; Zhou, J.; Li, Q.; Zhu, Y.; Kent, P.R.C.

    2009-10-02

    Many recent advances in thermoelectric (TE) materials are attributed to their nanoscale constituents. Determination of the nanocomposite structures has represented a major experimental and computational challenge and eluded previous attempts. Here we present the first atomically resolved structures of high performance TE material PbTe-AgSbTe{sub 2} by transmission electron microscopy imaging and density functional theory calculations. The results establish an accurate structural characterization for PbTe-AgSbTe{sub 2} and identify the interplay of electric dipolar interactions and strain fields as the driving mechanism for nanoprecipitate nucleation and aggregation.

  5. [Cu and Pb absorption and tolerance of Agrostis stolonifera and Festuca arundinacea].

    PubMed

    Wang, Yan; Xin, Shi-Gang; Ma, Lian-Ju; Dai, Bao-Qing; Yu, Long; Wang, Lan-Lan

    2007-03-01

    This paper studied the seed germination rate, chlorophyll content, net photosynthetic rate, SOD activity, and Cu and Pb absorption of Agrostis stolonifera and Festuca arundinacea under Cu and Pb pollution. The results showed that Cu and Pb pollution had a significant effect on the seed germination rate of F. arundinacea. The chlorophyll content of F. arundinacea decreased dramatically under Pb and Cu-Pb pollution, while decreased slightly under Cu pollution. No significant effect of Cu and Pb was observed on the chlorophyll content of A. stolonifera. The SOD activity of A. stolonifera increased under 350 mg Cu x kg(-1) and all test concentrations of Pb, while that of F. arundinacea only increased under 700 mg Pb x kg(-1) and 350 mg Cu x kg(-1) + 1100 mg Pb x kg(-1). The net photosynthetic rate of F. arundinacea decreased more under Pb pollution than under Cu pollution, but that of A. stolonifera all decreased under Cu or Pb pollution. It was suggested that A. stolonifera was more tolerant in physiological characteristics to Cu and Pb pollution than F. arundinacea, while F. arundinacea was more tolerant to Cu than to Pb. The Cu absorption amount of F. arundinacea was relatively large, but did not increase with increasing Cu pollution. A. stolonifera had a high absorption ability of Pb, and the absorbed Pb amount was increased with increasing Pb pollution. A. stolonifera and F. arundinace could be the potential phytoremediation plants for Pb and Cu-polluted soil, respectively.

  6. Enhancement of thermoelectric figure of merit of nanostructured FeSb2 by adding Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Koirala, Machhindra; Zhao, Huaizhou; Pokharel, Mani; Chen, Shuo; Opeil, Cyril; Chen, Gang; Ren, Zhifeng

    2014-03-01

    We present the enhancement of thermoelectric properties of FeSb2 through modulation doping by Cu nanoparticles. Since, FeSb2 and Cu have matched work function, the electrical conductivity of this Kondo-like system can be increased dramatically without affecting Seebeck coefficient. The optimized nanocomposite FeSb2Cu0.045 has enhancement of power factor by 90% compared to pure nanostructured FeSb2. The further reduction of thermal conductivity from FeSb2/Cu interface gives the total enhancement of figure of merit (ZT) by 110%. This strategy has been widely used on other semiconductors to improve ZT. Our result demonstrates that the potential of the modulation doping technique can also be extended to Kondo insulator systems.

  7. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  8. Immobilisation of Cu, Pb and Zn in Scrap Metal Yard Soil Using Selected Waste Materials.

    PubMed

    Kamari, A; Putra, W P; Yusoff, S N M; Ishak, C F; Hashim, N; Mohamed, A; Isa, I M; Bakar, S A

    2015-12-01

    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.

  9. Cell/dendrite transition and electrochemical corrosion of Pb-Sb alloys for lead-acid battery applications

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Rosa, Daniel M.; Peixoto, Leandro C.; Garcia, Amauri

    2011-08-01

    The aim of this article is focused on a comparative experimental study of the electrochemical feature of as-cast Pb-2.2 wt.% Sb alloy with cellular/dendritic transition for applications in the manufacturing of lead-acid battery parts. A water-cooled unidirectional solidification system is used to obtain the alloy samples. Electrochemical impedance spectroscopy (EIS) plots, potentiodynamic polarization curves and equivalent circuit analysis are used to evaluate corrosion resistance in a 0.5 M H2SO4 solution at 25 °C. The cellular Pb-2.2 wt.% Sb alloy is found to have a current density which is of about 3 times lower than that of the dendritic Pb-2.2 wt.% Sb alloy. The Pb-2.2 wt.% Sb alloy has lower current density than both the Pb-1 wt.% Sb and the Pb-6.6 wt.% Sb alloys evidencing its potential for application as positive grid material in lead-acid batteries. It is also verified that a conventional casting with low cooling rate of about 0.6 °C s-1 produces coarser cellular spacings which is more appropriate for the manufacturing of the Pb-2.2 wt.% Sb alloys grids due to its corresponding electrochemical behavior.

  10. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  11. Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes

    DOE PAGES

    Baggetto, Loic; Carroll, Kyler J.; Hah, Hien -Yoong; ...

    2014-03-25

    Cycling Cu2Sb films with fluoroethylene carbonate additive drastically improves the capacity retention of the electrode compared to cycling in pure PC with about 250 mAh g-1 retained capacity for about two hundred cycles. TEM photographs reveal that the pristine films are formed of nanoparticles of 5-20 nm diameters. XRD results highlight that during the first discharge the reaction leads to the formation of Na3Sb via an intermediate amorphous phase. During charge, Na3Sb crystallites convert into an amorphous phase, which eventually crystallizes into Cu2Sb at full charge, indicating a high degree of structural reversibility. The subsequent discharge is marked by amore » new plateau around 0.5 V at low Na/Sb content which does not correspond to the formation of a crystalline phase. XAS data show that the fully discharged electrode material has interatomic distances matching those expected for the coexistence of Cu and Na3Sb nanodomains. At 1 V charge, the structure somewhat differs from that of Cu2Sb whereas at 2 V charge, when all Na is removed, the structure is significantly closer to that of the starting material. 121Sb Mössbauer spectroscopy isomer shifts of Cu2Sb powder (-9.67 mm s-1) and thin films (-9.65 mm s-1) are reported for the first time, and agree with the value predicted theoretically. At full discharge, an isomer shift (-8.10 mm s-1) rather close to that of a Na3Sb reference powder (-8.00 mm s-1) is measured, in agreement with the formation of Na3Sb domains evidenced by XRD and XAS data. As a result, the isomer shift at 1 V charge (-9.29 mm s-1) is close to that of the pristine material and the higher value is in agreement with the lack of full desodiation at 1 V.« less

  12. The role of Sb in solar cell material Cu 2 ZnSnS 4

    SciTech Connect

    Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; Duan, Yuhua

    2017-01-01

    In this study, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu2ZnSnS4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, SbSn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration, Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.

  13. A model for the composition modifications in the Cu-Sb-O system

    SciTech Connect

    Stan, M.

    1997-05-01

    THE SN-SB-CU-O SYSTEM HAS BEEN EXTENSIVELY STUDIED BUT SYSTEMATIC PHASE EQUILIBRIUM STUDIES HAVE NOT BEEN APPROACHED. THE SYSTEM CONTAINS USEFUL CERAMICS WITH SPECIFIC ELECTRICAL AND MAGNETIC PROPERTIES, EMPLOYED AS SENSORS, ELECTRODES AND CATALYSTS. AS A PRELIMINARY STEP TO THE PHASE DIAGRAM CALCULATION, THE PAPER AIMS TO PRESENT A MODEL FOR THE COMPOSITION MODIFICATIONS IN THE CU-SB-O SYSTEM, WHICH IS THE MOST COMPLEX OF ALL SUBSYSTEMS. EXOTHERMIC EFFECTS ALONG WITH MASS INCREASES CAN BE OBSERVED IN DTA/GA CURVES, WERE ASSIGNED, FOR ALL SAMPLES, TO SB2O3 AND SB2O4 OXIDATION AND TO CUSB2O6 FORMATION: (1) APPROX. EQUAL 500 DIG C SB2O3 + 1/2 O2 DOUBLE RIGHT ARROW SB2O4; (2) {gt} 750 DIG C SB2O4 + CUO + 1/2 O2 DOUBLE RIGHT ARROW CUSB2O6. FOR THE SAMPLES HAVING CUO IN EXCESS, THE REDUCTION OF CUO TO CUO AND THE FORMATION OF THE CU4SBO4.5 COMPOUND SIMULTANEOUSLY OCCUR: {gt} 950 dig C CUSB2O6 + 7CuO double right arrow (1-r) CUSB2O6+7(1-r)cow+ 2rCu4SbO4.5 + 2rO2 where rEpsilon (0, 1) is the fraction of CUSB2O6 that transforms into Cu4SbO4.5. All the experimental evidences show that the Equations (1), (2) and (3) are good descriptions of the transformations that occurs in the CuO-Sb2O3 system along with the temperature. If the reactions are considered as completed, including a=1 in IQ. (3), then the quantity of oxygen that is gained or lost can be calculated for each sample. It is important to note that Equations (2) and (3) should be carefully solved because of the excess quantities of cow or SB2O4 that can be found in some samples. The calculated values of mass variation are in a good agreement with those obtained from the experimental GT diagrams. The atomic fractions of Cu, Sb and Awe content change in the system and they can be also calculated. The model assumes that at room temperature the compositions lay on the CuO-Sb2O3 line as shown in Fig. 1.

  14. Cellular/Dendritic Transition and Microstructure Evolution during Transient Directional Solidification of Pb-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Rosa, Daniel M.; Spinelli, José E.; Ferreira, Ivaldo L.; Garcia, Amauri

    2008-09-01

    Recent studies of lead-antimony alloys, used for the production of positive electrodes of lead-acid batteries, have assessed the influences of both the microstructural morphology and of solute redistribution on the surface corrosion resistance in sulfuric acid solution, and have shown that cellular structures and dendritic structures have different responses on the corrosion rate of such alloys. The present article focuses on the search of adequate solidification conditions (alloy composition, cooling rate, and solidification velocity), which determine the occurrence of a microstructural transition from the cellular to the dendritic regime during the transient unidirectional solidification of hypoeutectic Pb-Sb alloys and on the microstructural evolution after such transition. The experimental data refers to the solidification of four hypoeutectic Pb-Sb alloys (2.2, 2.5, 3, and 6.6 wt pct Sb) and of the eutectic composition. The experimental results include transient metal/mold heat-transfer coefficients, liquidus isotherm velocity, cooling rate, and cellular and dendritic spacings. It was found that the cooling rate dependence on cellular and primary dendritic spacings is characterized by an experimental law of the form λ 1 = A{\\cdot}ifmmodeexpandafterdotelseexpandafter\\.fi{T}^{{{kern 1pt} {-0.55}}}, which seems to be independent of composition where A = 60 represents the alloys undergoing a cellular growth and A = 115 can describe the dendritic growth. The sudden change on such multiplier has occurred for the Pb 2.2 wt pct Sb alloy, i.e., for the cellular/dendritic transition.

  15. Effects of SbBr3 addition to CH3NH3PbI3 solar cells

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Ohishi, Yuya; Suzuki, Atsushi

    2017-01-01

    TiO2/CH3NH3Pb1-xSbxI3-2xBr3x-based photovoltaic devices were fabricated, and effects of SbBr3 addition to CH3NH3PbI3 precursor solutions on the photovoltaic properties were investigated. The short-circuit current densities and photoconversion efficiencies were improved by adding a small amount of SbBr3 to the perovskite phase, which would be due to a doping effect of Sb or Br atoms at the Pb or I sites.

  16. Positive current collector for Li||Sb-Pb liquid metal battery

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Sadoway, Donald R.

    2017-07-01

    Corrosion in grid-scale energy storage devices adversely affects service lifetime and thus has a significant economic impact on their deployment. In this work, we investigate the corrosion of steel and stainless steels (SSs) as positive current collectors in the Li||Sb-Pb liquid metal battery. The erosion and formation of new phases on low-carbon steel, SS301, and SS430 were evaluated both in static conditions and under cell operating conditions. The cell performance is not adversely affected by the dissolution of iron or chromium but rather nickel. Furthermore, the in situ formation of a Fe-Cr-Sb layer helps mitigate the recession of SS430.

  17. Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2

    NASA Astrophysics Data System (ADS)

    Koirala, Machhindra; Zhao, Huaizhou; Pokharel, Mani; Chen, Shuo; Dahal, Tulashi; Opeil, Cyril; Chen, Gang; Ren, Zhifeng

    2013-05-01

    We present the thermoelectric figure-of-merit (ZT) improvement in nanostructured FeSb2 by Cu nanoparticles of ˜5 nm as a modulation dopant. Because of the similar work functions between FeSb2 and Cu and the high electrical conductivity of Cu, the Kondo insulator-like electrical resistivity of FeSb2 at low temperatures was dramatically reduced. Both carrier concentration and mobility of the nanocomposites were improved over pure FeSb2 without degrading the Seebeck coefficient. Overall, an improvement of ˜90% in power factor was achieved for the optimized nanocomposite FeSb2Cu0.045. Combined with the reduced thermal conductivity by Cu/FeSb2 interfaces, ZT was improved by ˜110%. These results clearly demonstrate the potential of modulation doping to enhance the thermoelectric performance of FeSb2. A similar approach could be applied to other Kondo insulators or previously known thermoelectric materials to improve ZT.

  18. Mineralogy and geochemistry of the argentiferous Pb-Zn and Cu veins of the Çolaklı´ area, Elazig, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Sagiroglu, Ahmet; Sasmaz, Ahmet

    2004-03-01

    The studied Pb-Zn and Cu veins occur as N-S trending and vertically dipping features in quartz diorite of Coniacian-Campanian Elazig Magmatic Complex. The complex has characteristics typical of arc magmatism and is composed of granitoids and, volcanic, subvolcanic and pyroclastic rocks. The veins are 0.5-2.5 m. thick and their lengths reach up to 750 m. The ore of veins are either massive or disseminated in gangue of carbonate minerals, quartz and barite. The veins display two sets of mineral assemblages: (1) Pb-Zn veins are composed of galena, freibergite, barite, sphalerite, chalcopyrite, pyrite, a Pb-Cl phase and native silver; (2) Cu veins have a mineral association of chalcopyrite, pyrite, galena, sphalerite, cubanite, bismuthinite and fahlore. The ore bodies are accompanied by narrow but intensely developed wall rock alterations of argillization, carbonatization and silicification. Chemical analyses of ore samples indicate high Pb, Ag, Sb, Zn, Ba and Cu contents in the veins and high correlation values between Pb-Ag, Pb-Ba, Pb-Zn, Sb-Ag, Cd-Sb and Ba-Cd. The REE geochemistry points to ore deposition under acidic conditions and probably as a product of the final stages of magmatism. Field, microscopic and geochemical data also indicate that the ores are related to the last phases of the magmatic activity of the Elazig Magmatic Complex.

  19. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6.

    PubMed

    Feng, Zhenzhen; Wang, Yuanxu; Yan, Yuli; Zhang, Guangbiao; Yang, Jueming; Zhang, Jihua; Wang, Chao

    2015-06-21

    Band engineering is one of the effective approaches for designing ideal thermoelectric materials. Introducing an intermediate band in the band gap of semiconducting thermoelectric compounds may largely increase the carrier concentration and improve the electrical conductivity of these compounds. We test this hypothesis by Pb doping in Zintl Ca5In2Sb6. In the current work, we have systematically investigated the electronic structure and thermoelectric performances of substitutional doping with Pb on In sites at a doping level of 5% (0.2 e per cell) for Ca5In2Sb6 by using density functional theory combined with semi-classical Boltzmann theory. It is found that in contrast to Zn doping, Pb doping introduces a partially filled intermediate band in the band gap of Ca5In2Sb6, which originates from the Pb s states by weakly hybridizing with the Sb p states. Such an intermediate band dramatically increases the electrical conductivity of Ca5In2Sb6 and has little detrimental effect on its Seebeck coefficient, which may increase its thermoelectric figure of merit, ZT. Interestingly, a maximum ZT value of 2.46 may be achieved at 900 K for crystalline Pb-doped Ca5In2Sb6 when the carrier concentration is optimized. Therefore, Pb-doped Ca5In2Sb6 may be a promising thermoelectric material.

  20. Investigation of Ni/. gamma. -Al/sub 2/O/sub 3/ catalyst modified by Sb and Pb

    SciTech Connect

    Thoang, H.S.; Lanh, H.D.; Khoai, N.

    1986-09-01

    Ni/..gamma..-Al/sub 2/O/sub 3/ catalysts have a very strong dehydrogenation function; however, they also show strong hydrogenolysis activity. The addition of inactive metal such as Cu or Sn inhibits the hydrogenolysis activity, but improves the hydrogenation selectivity of Ni/..gamma..-Al/sub 2/O/sub 3/. In several cases, reforming properties of modified catalysts have also been observed, i.e., combined dehydrogenation and aromatization catalytic properties of the catalysts. In this paper, the authors present the results of a study of Ni/..gamma..-Al/sub 2/O/sub 3/ catalysts modified by Sb and Pb. these metals are generally inactive and have not been extensively investigated as modifying agents for catalysts. They used hydrogen adsorption methods to study the influence of catalysts preparation (oxidation and reduction) on the surface states of the metals as well as the metal-metal interactions on the catalyst surfaces.

  1. Impact of Lone-Pair Electrons on Thermal Conductivity in CuSbS2 Compound

    NASA Astrophysics Data System (ADS)

    Du, Baoli; Zhang, Ruizhi; Chen, Kan; Reece, Michael; Material research institute Team

    Compounds with intrinsically low lattice thermal conductivity are of practical importance for thermoelectric energy conversion. Recent studies suggest that s2 lone pair orbital electrons are a key contributing factor to the anomalously low lattice thermal conductivity of chalcogenide compounds that contain a nominally trivalent group VA element. CuSbS2 has an orthorhombic structure with space group Pnma. The pyramidal SbS5 units are separated by CuS4 tetrahedron so that the base of the square pyramidal units are aligned to face one another, thus directing the Sb lone pair electron density into the void separating the SbS5 units. Different from tetrahedrite, all the Cu atoms are bonded in the CuS4 tetrahedron. So, it has a perfect structure to study the influence of electron lone pair on thermal conductivity without the impact from trigonal coordinated Cu. In this work, the trivalent transition metal atom Fe and IIIA atom Ga without lone-pair electrons were chosen to substitute Sb in CuSbS2. The changes in the bonding environment by foreign atoms and their influences on the thermal properties have been studied and correlated. Marie Curie International Incoming Fellowship of the European Community Human Potential Program under Contract No. PIIF-GA-2013-622847.

  2. The antimony-group 11 chemical bond: Dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb

    SciTech Connect

    Carta, V.; Ciccioli, A. E-mail: andrea.ciccioli@uniroma1.it; Gigli, G. E-mail: andrea.ciccioli@uniroma1.it

    2014-02-14

    The intermetallic molecules CuSb, AgSb, and AuSb were identified in the effusive molecular beam produced at high temperature under equilibrium conditions in a double-cell-like Knudsen source. Several gaseous equilibria involving these species were studied by mass spectrometry as a function of temperature in the overall range 1349–1822 K, and the strength of the chemical bond formed between antimony and the group 11 metals was for the first time measured deriving the following thermochemical dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 186.7 ± 5.1 (CuSb), 156.3 ± 4.9 (AgSb), 241.3 ± 5.8 (AuSb). The three species were also investigated computationally at the coupled cluster level with single, double, and noniterative quasiperturbative triple excitations (CCSD(T)). The spectroscopic parameters were calculated from the potential energy curves and the dissociation energies were evaluated at the Complete Basis Set limit, resulting in an overall good agreement with experimental values. An approximate evaluation of the spin-orbit effect was also performed. CCSD(T) calculations were further extended to the corresponding group 11 arsenide species which are here studied for the first time and the following dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 190 ± 10 (CuAs), 151 ± 10 (AgAs), 240 ± 15 (AuAs) are proposed. Taking advantage of the new experimental and computational information here presented, the bond energy trends along group 11 and 4th and 5th periods of the periodic table were analyzed and the bond energies of the diatomic species CuBi and AuBi, yet experimentally unobserved, were predicted on an empirical basis.

  3. The magnetic structure of EuCu2Sb2

    DOE PAGES

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  4. Optoelectronic Investigation of Sb-Doped Cu(In, Ga)Se2

    SciTech Connect

    Mansfield, Lorelle M.; Kuciauskas, Darius; Dippo, Patricia; Li, Jian V.; Bowers, Karen; To, Bobby; DeHart, Clay; Ramanathan, Kannan

    2015-06-14

    Doping Cu(In,Ga)Se2 (CIGS) thin films with Sb can provide large grains at lower processing temperatures than are normally required. In this study, we incorporated Sb into the precursor of a two-step selenization process. We saw enhanced grain size and improved device performance compared to similarly processed CIGS films made without Sb. The optoelectronic properties of the Sb-doped CIGS films were examined with photoluminescence (PL) and admittance spectroscopy. These techniques allowed us to evaluate the origin of a lower-energy PL peak that is not typically seen in CIGS.

  5. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  6. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  7. CuSbS2 as a negative electrode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Marino, C.; Block, T.; Pöttgen, R.; Villevieille, C.

    2017-02-01

    CuSbS2 was tested as a negative electrode material for sodium-ion batteries. The material synthesized by ball milling offers a specific charge of 730 mAh g-1, close to the theoretical value (751 mAh g-1), over a few cycles. The reaction mechanism was investigated by means of operando X-ray diffraction, 121Sb Mössbauer spectroscopy, and Cu K-edge X-ray absorption spectroscopy. These studies reveal a sodiation mechanism that involves an original conversion reaction in two steps, through the formation of a ternary phase, CuSb(1-x)S(2-y), as well as a NaxS alloy and Sb, followed by an alloying reaction involving the previously formed Sb. The desodiation process ends with the reformation of the ternary phase, CuSb(1-x‧)S(2-y‧), deficient in Sb and S; this phase is responsible for the good reversibility observed upon cycling.

  8. Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3

    NASA Astrophysics Data System (ADS)

    Kim, Il-Ho; Choi, Soon-Mok; Seo, Won-Seon; Cheong, Dong-Ik

    2012-01-01

    A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K. PACS: 72.15.Jf: 72.20.Pa

  9. Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3.

    PubMed

    Kim, Il-Ho; Choi, Soon-Mok; Seo, Won-Seon; Cheong, Dong-Ik

    2012-01-05

    A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K.PACS: 72.15.Jf: 72.20.Pa.

  10. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-11-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  11. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    SciTech Connect

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  12. Accelerated development of CuSbS2 thin film photovoltaic device prototypes

    SciTech Connect

    Welch, Adam W.; Baranowski, Lauryn L.; Zawadzki, Pawel; DeHart, Clay; Johnston, Steve; Lany, Stephan; Wolden, Colin A.; Zakutayev, Andriy

    2016-02-03

    Development of alternative thin film photovoltaic technologies is an important research topic because of the potential of low-cost, high-efficiency solar cells to produce terawatt levels of clean power. However, this development of unexplored yet promising absorbers can be hindered by complications that arise during solar cell fabrication. Here, a high-throughput combinatorial method is applied to accelerate development of photovoltaic devices, in this case, using the novel CuSbS2 absorber via a newly developed three-stage self-regulated growth process to control absorber purity and orientation. Photovoltaic performance of the absorber, using the typical substrate CuInxGa1 - xSe2 (CIGS) device architecture, is explored as a function of absorber quality and thickness using a variety of back contacts. This study yields CuSbS2 device prototypes with ~1% conversion efficiency, suggesting that the optimal CuSbS2 device fabrication parameters and contact selection criteria are quite different than for CIGS, despite the similarity of these two absorbers. The CuSbS2 device efficiency is at present limited by low short-circuit current because of bulk recombination related to defects, and a small open-circuit voltage because of a theoretically predicted cliff-type conduction band offset between CuSbS2 and CdS. Overall, these results illustrate both the potential and limits of combinatorial methods to accelerate the development of thin film photovoltaic devices using novel absorbers.

  13. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases

    NASA Astrophysics Data System (ADS)

    Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel

    2017-03-01

    Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.

  14. Synthesis, crystal and electronic structures, and physical properties of caged ternary Cu-rich antimonide: BaCu(7.31(3))Sb5.

    PubMed

    Zheng, Wu-Zui; Wang, Peng; Wu, Li-Ming; Chen, Ling

    2010-08-16

    A new caged Cu-rich antimonide, BaCu(7.31(3))Sb(5), was obtained from a direct combination of the elements in a graphite crucible under a high vacuum by a solid state reaction, and the structure was determined by the single-crystal X-ray diffraction method to be hexagonal P6(3)/mmc (No.194), with a = 7.0154(4) A, c = 12.5423(14) A, V = 534.58(7) A(3), and Z = 2. BaCu(7.31(3))Sb(5) is the first antimonide member of the BaNi(9)P(5)-type barium copper pnictides with a Cu2 site occupancy of 43.7(9)%, and the structure building unit is a 30-vertex Cu(18)Sb(12) cage centered by a Ba atom. The Cu(18)Sb(12) cages form chains along the c axis by sharing the opposite hexagonal (Cu2)(3)(Sb2)(3) faces. Such a cage chain shares (Cu1)(2)(Sb1)(2) rhomboidal faces with six neighboring chains along the [100], [010], and [110] directions to generate a 3D condensed metallic network. The electronic structure calculations by CASTEP indicate the metallic nature, which matches well with the metallic electrical conductivity, small Seebeck coefficient, and Pauli paramagnetism. The calculated formation energies indicate that BaCu(7.5)Sb(5)[triple bond]Ba(2)Cu(15)Sb(10) with the Cu2 site half occupied is the energetically favorable stoichiometry compared with Ba(2)Cu(12)Sb(10) (empty Cu2 site) and Ba(2)Cu(18)Sb(10) (fully occupied Cu2 site).

  15. Surface alloying of Pb on Cu(111): a TEAS study

    NASA Astrophysics Data System (ADS)

    de Beauvais, Ch.; Girard, Y.; Pérard, C.; Croset, B.; Mutaftschiev, B.

    1996-11-01

    Thermal energy atom scattering on vacuum deposited Pb submonolayers on Cu(111) in close to equilibrium conditions, at substrate temperatures between 303 K and 413 K, gives evidence for: (a) decoration by Pb atoms of monatomic steps on the Cu surface at degree of coverage 0 < θ < 0.004; (b) formation of disordered surface alloy in the first lattice plane of the copper substrate in the coverage range 0.004 < θ < 0.21; (c) formation of non-alloyed Pb layer with a p(4 × 4) structure above this coverage, up to the monolayer ( θ ≈ 0.56). The latter transition is shown to be of first order. The role of the deposition kinetics in far from equilibrium conditions is pointed out.

  16. Magnetism and site exchange in CuFeAs and CuFeSb: A microscopic and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Kamusella, Sirko; Klauss, Hans-Henning; Thakur, Gohil S.; Haque, Zeba; Gupta, Laxmi C.; Ganguli, Ashok K.; Kraft, Inga; Burkhardt, Ulrich; Rosner, Helge; Luetkens, Hubertus; Lynn, Jeffrey W.; Zhao, Yang

    2017-03-01

    We have investigated the magnetic ground state of CuFeAs and CuFeSb by means of 57Fe-Mössbauer spectroscopy, muon spin rotation/relaxation (μ SR ), neutron diffraction, and electronic structure calculations. Both materials share the 111-LiFeAs crystal structure and are closely related to the class of iron-based superconductors. In both materials there is a considerable occupancy of the Cu site by Fe, which leads to ferromagnetic moments, which are magnetically strongly coupled to the regular Fe site magnetism. Our study shows that CuFeAs is close to an antiferromagnetic instability, whereas a ferromagnetic ground state is observed in CuFeSb, supporting theoretical models of anion height driven magnetism.

  17. Failure analysis of PB-1 (EBTS Be/Cu mockup)

    SciTech Connect

    Odegard, B.C. Jr.; Cadden, C.H.

    1996-11-01

    Failure analysis was done on PB-1 (series of Be tiles joined to Cu alloy) following a tile failure during a high heat flux experiment in EBTS (electron beam test system). This heat flux load simulated ambient conditions inside ITER; the Be tiles were bonded to the Cu alloy using low-temperature diffusion bonding, which is being considered for fabricating plasma facing components in ITER. Results showed differences between the EBTS failure and a failure during a room temperature tensile test. The latter occurred at the Cu-Be interface in an intermetallic phase formed by reaction of the two metals at the bonding temperature. Fracture strengths measured by these tests were over 300 MPa. The high heat flux specimens failed at the Cu-Cu diffusion bond. Fracture morphology in both cases was a mixed mode of dimple rupture and transgranular cleavage. Several explanations for this difference in failure mechanism are suggested.

  18. Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb-Sb-Ag-Te) thermoelectric materials

    SciTech Connect

    Ren, Fei; Hall, Bradley D.; Case, Eldon D; Timm, Edward J; Trejo, Rosa M; Meisner, Roberta Ann; Lara-Curzio, Edgar

    2009-01-01

    The thermal expansion for two compositions of cast and hot-pressed LAST (Pb Sb Ag Te) n-type thermoelectric materials has been measured between room temperature and 673K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion for both cast and hot-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20106K1 and 24106K1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450K for both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.43Pb18Sb1.2Te20 specimen increased monotonically with temperature.

  19. Effect of Cu deficiency on the transport behavior and thermoelectric properties in Cu3SbSe4

    NASA Astrophysics Data System (ADS)

    Kumar, Aparabal; Dhama, P.; Banerji, P.

    2017-05-01

    We investigate the effect of Cu deficiency on the transport behavior and thermoelectric properties in Cu3-δSbSe4 in the temperature range of 300 - 650 K. Samples were synthesized by melt grown technique followed by spark plasma sintering. The electrical resistivity and thermal conductivity were found to decrease with increase in Cu deficiency till a certain limit (δ = 0.03), and after that, increase in electrical resistivity was observed. Positive value of Seebeck coefficient indicates p-type behavior of the carriers taking part in transport. Enhancement in power factor and thermoelectric figure of merit was achieved by controlling the transport of phonons and electrons, and a maximum thermoelectric figure of merit (0.59 at 650 K) was achieved for Cu2.98SbSe4 in this study.

  20. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  1. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  2. Structural and electrical property analysis of bulk Cu1-xAgxSbS2

    NASA Astrophysics Data System (ADS)

    Wubet, Walelign; Saragih, Albert Daniel; Kuo, Dong-Hau

    2017-08-01

    Ag-doped CuSbS2 bulk materials with the (Cu1-xAgx)SbS2 (Ag-x-CAS) formula at x=0, 0.025, 0.05, 0.1, and 0.15 were prepared at 400 °C for 2 h by reactive sintering. Defect chemistry was studied by measuring structural and electrical properties of Ag-doped CuSbS2 as a function of dopant concentration. All Ag-x-CAS pellets show p-type conductivity. The low hole concentration of 1.17×1017 cm-3 and mobility of 1.11 cm2 V-1 s-1 were obtained for (Cu1-xAgx)SbS2 bulks at x=0.025 (2.5% Ag) as compared to 3.78×1018 cm-3 and 20.11 cm2 V-1 s-1 for the undoped one. The explanation based upon the Ag-to-Cu defect for the changes in electrical property was declared. The study in bulk Ag-x-CAS has been based upon defect states and is consistent and supported by the data of structural and electrical properties.

  3. New amorphous As-Se-Sb-Cu thin films: theoretical characterization and evaluation of optical constants

    NASA Astrophysics Data System (ADS)

    Dahshan, A.

    2017-03-01

    The purpose of this paper is to report the theoretical characterization and optical constants of the newly As30Se55Sb15- x Cu x (where x = 2.5, 5, 7.5 and 10 at%) thin films. Amorphous thin films were prepared from As30Se55Sb15- x Cu x ingots utilizing the thermal evaporation technique. The average coordination number, the number of constraints, the overall mean bond energy, the average heat of atomization, and the cohesive energy were examined theoretically. The optical transmission spectra for the as-prepared films have been measured in the spectral range from 400 to 2500 nm at normal incidence. Swanepoel method was utilized to obtain the refractive index and thickness of the As30Se55Sb15- x Cu x thin films. The absorption coefficient of the investigated films was calculated using the Connell and Lewis equation. It was found that the refractive index and the extinction coefficient of As30Se55Sb15- x Cu x films are influenced by increasing the copper content. Increasing the Cu content from 2.5 to 10 at% leads to a decrease of the energy gap from 1.61 to 1.42 eV.

  4. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union.

    PubMed

    Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2014-01-01

    The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

  5. Electronic inhomogeneity and Ag:Sb imbalance of Ag1-yPb18/207Sb1+zTe20 high-performance thermoelectrics elucidated by 125Te and 207Pb NMR

    SciTech Connect

    Levin, E.M.; Cook, B.A.; Ahn, K.; Kanatzidis, M.G.; Schmidt-Rohr, K.

    2009-09-22

    Using magic-angle spinning {sup 125}Te and {sup 207}Pb NMR, we have discovered the presence of two phases of approximately tenfold different free-electron concentration, n, in high-performance thermoelectrics Ag{sub 1?y}Pb{sub 18}Sb{sub 1+z}Te{sub 20} (LAST-18), proven by pairs of Knight-shifted NMR peaks and biexponential spin-lattice relaxation. The ratio of the phases is typically 2:1 with n {approx} 2 x 10{sup 19} cm{sup -3} and 0.2 x 10{sup 19} cm{sup -3}, respectively, determined from the spin-lattice relaxation times. {sup 125}Te NMR spectra show that both phases contain similar concentrations of Sb. The low-n component is assigned to Ag-rich regions with Ag-Sb pairing (but not AgSbTe{sub 2}), the dominant high-n component to PbTe:Sb resulting from the excess of Sb relative to Ag. The electronic inhomogeneity observed here must be considered in the search for a better understanding of high-performance thermoelectric materials.

  6. Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume.

    PubMed

    Moreno, T; Querol, X; Pey, J; Minguillón, M C; Pérez, N; Alastuey, A; Bernabé, R M; Blanco, S; Cárdenas, B; Eichinger, W; Salcido, A; Gibbons, W

    2008-03-01

    We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.

  7. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  8. CuSb(S,Se)2 thin film heterojunction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Welch, Adam W.

    Thin film heterojunction solar cells based on CuSb(S,Se)2 absorbers are investigated for two primary reasons. First, antimony is more abundant and less expensive than elements used in current thin film photovoltaics, In, Ga, and Te, and so, successful integration of Sb based materials offers greater diversification and scalability of solar energy. Second, the CuSb(S,Se) 2 ternary is chemically, electronically, and optically similar to the well-known, high efficiency, CuIn(S,Se)2 based materials. It is therefore postulated that the copper antimony ternaries will have similar defect tolerant electronic transport that may allow for similar highly efficient photoconversion. However, CuSb(S,Se)2 forms a layered crystal structure, different from the tetrahedral coordination found in conventional solar absorbers, due to the non-bonding lone pair of electrons on the antimony site. Thus examination of 2D antimony ternaries will lend insight into the role of structure in photoconversion processes. To address these questions, the semiconductors of interest (CuSbS 2 & CuSbSe2) were first synthesized on glass by combinatorial methods, to more quickly optimize process condi- tions. Radio-frequency (RF) magnetron co-sputtering from Sb2(S,Se)3 and Cu 2(S,Se) targets were used, without rotation, to produce chemical and flux graded libraries which were then subjected to high throughput characterization of structure (XRD), composition (XRF), conductivity (4pp), and optical absorption (UV/Vis/NIR). This approach rapidly identified processes that generated phase pure material with tunable carrier concentration by applying excess Sb 2(S,Se)3 within a temperature window bound by the volatility of Sb2(S,Se)3 and stability of the ternary phase. The resulting phase pure thin films were then incor- porated into the traditional CuInGaSe2 (CIGS) substrate photovoltaic (PV) architecture, and the resulting device performance was correlated to gradients in composition, sputter flux, absorber

  9. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars.

    PubMed

    Doumer, M E; Rigol, A; Vidal, M; Mangrich, A S

    2016-02-01

    Sorption and desorption of heavy metals (Cd, Cu, Pb, and Zn) was evaluated in biochars derived from sugarcane bagasse (SB), eucalyptus forest residues (CE), castor meal (CM), green coconut pericarp (PC), and water hyacinth (WH) as candidate materials for the treatment of contaminated waters and soils. Solid-liquid distribution coefficients depended strongly on the initial metal concentration, with K d,max values mostly within the range 10(3)-10(4) L kg(-1). For all biochars, up to 95 % removal of all the target metals from water was achieved. The WH biochar showed the highest K d,max values for all the metals, especially Cd and Zn, followed by CE (for Cd and Pb) and PC (for Cd, Pb, and Zn). Sorption data were fitted satisfactorily with Freundlich and linear models (in the latter case, for the low concentration range). The sorption appeared to be controlled by cationic exchange, together with specific surface complexation at low metal concentrations. The low desorption yields, generally less than 5 %, confirmed that the sorption process was largely irreversible and that the biochars could potentially be used in decontamination applications.

  10. Structure and Magnetic Properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with Honeycomb Lattices

    SciTech Connect

    Roudebush, J. H.; Andersen, N.; Ramlau, R.; Garlea, Vasile O; Toft-Petersen, R.; Norby, P.; Schneider, R.; Hay, J. N.; Cava, R J

    2013-01-01

    The crystal structures of two Delafossites, Cu3Ni2SbO6 and Cu3Co2SbO6, are determined by high resolution synchrotron powder X-ray diffraction. The Ni and Co are ordered with respect to Sb in the layer of edge sharing octahedra, forming magnetic layers with honeycomb geometry. High-resolution electron microscopy confirms ordering, and selected-area electron diffraction patterns identify examples of the stacking polytypes. Low temperature synthetic treatments result in disordered stacking of the layers, but heating just below their melting points results in nearly fully ordered stacking variants. The major variant in both cases is a monoclinic distortion of a 6-layer Delafossite polytype, but a significant amount of a 2-layer polytype is also present for the Ni case. The antiferromagnetic ordering with transitions, at 22.3 and 18.5 K for Ni and Co variants, respectively, is investigated by temperature and field dependent magnetization, as well as specific heat. The sharp magnetic transitions support the presence of well developed 2:1 ordering of the Co:Sb or Ni:Sb ions in the honeycomb layers. Neutron diffraction measurements at 4 K are used to determine the magnetic structures. For both the Ni and Co phases, the propagation vector is k = [100], and can be described as alternating ferromagnetic chains in the metal-oxide plane giving an overall antiferromagntic zigzag alignment. While orientation of the magnetic moments of the Co is along the b-axis, the Ni moments are in the ac plane, approximately parallel to the stacking direction. Bulk magnetization properties are discussed in terms of their magnetic structures.

  11. Structure and magnetic properties of Cu3Ni2SbO6 and Cu3Co2SbO6 Delafossites with honeycomb lattices.

    PubMed

    Roudebush, J H; Andersen, N H; Ramlau, R; Garlea, V O; Toft-Petersen, R; Norby, P; Schneider, R; Hay, J N; Cava, R J

    2013-05-20

    The crystal structures of two Delafossites, Cu3Ni2SbO6 and Cu3Co2SbO6, are determined by high-resolution synchrotron powder X-ray diffraction. The Ni and Co are ordered with respect to Sb in the layer of edge sharing octahedra, forming magnetic layers with honeycomb geometry. High-resolution electron microscopy confirms ordering, and selected-area electron diffraction patterns identify examples of the stacking polytypes. Low temperature synthetic treatments result in disordered stacking of the layers, but heating just below their melting points results in nearly fully ordered stacking variants. The major variant in both cases is a monoclinic distortion of a 6-layer Delafossite polytype, but a significant amount of a 2-layer polytype is also present for the Ni case. The antiferromagnetic ordering with transitions, at 22.3 and 18.5 K for Ni and Co variants, respectively, is investigated by temperature and field dependent magnetization, as well as specific heat. The sharp magnetic transitions support the presence of well developed 2:1 ordering of the Co:Sb or Ni:Sb ions in the honeycomb layers. Neutron diffraction measurements at 4 K are used to determine the magnetic structures. For both the Ni and Co phases, the propagation vector is k = [100], and can be described as alternating ferromagnetic chains in the metal-oxide plane giving an overall antiferromagntic "zigzag" alignment. While orientation of the magnetic moments of the Co is along the b-axis, the Ni moments are in the ac plane, approximately parallel to the stacking direction. Bulk magnetization properties are discussed in terms of their magnetic structures.

  12. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    SciTech Connect

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea; Borodi, Gheorghe

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  13. Ferromagnetism in CuFeSb: Evidence of competing magnetic interactions in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Qian, B.; Lee, J.; Hu, J.; Wang, G. C.; Kumar, P.; Fang, M. H.; Liu, T. J.; Fobes, D.; Pham, H.; Spinu, L.; Wu, X. S.; Green, M.; Lee, S. H.; Mao, Z. Q.

    2012-04-01

    We have synthesized a new layered iron-pnictide CuFeSb. This material shares a similar layered tetragonal structure with iron-based superconductors, with Fe square planar sheets forming from the edge-sharing iron antimony tetrahedral network. CuFeSb differs remarkably from Fe-based superconductors in the height of anion Zanion from the Fe plane; ZSb for CuFeSb is ˜1.84 Å, much larger than ZAs (1.31-1.51 Å) in FeAs compounds and ZTe (˜1.77 Å) in Fe1+yTe. In contrast with the metallic antiferromagnetic (AFM) or superconducting state of iron pnictides and chalcogenides under current studies, CuFeSb exhibits a metallic, ferromagnetic (FM) state with Tc=375 K. This finding suggests that the competition between AFM and FM coupling may exist in Fe-based superconductors and that the nature of magnetic coupling within the Fe plane is indeed dependent on the height of anion as predicted in theories.

  14. Ferromagnetism in CuFeSb: Evidence of competing magnetic interactions in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Qian, Bin; Lee, J.; Wang, Gaochao; Kumar, P.; Fang, Minghu; Liu, Tijiang; Fobes, David; Pham, H.; Spinu, L.; Wu, Xiaoshan; Green, M.; Lee, S. H.; Mao, Zhiqiang

    2013-03-01

    In this talk, we will report a new layered iron-pnictide compound CuFeSb. This material shares similar layered tetragonal structure with iron-based superconductors, with Fe square planar sheets forming from the edge-sharing iron antimony tetrahedral network. CuFeSb differs remarkably from Fe-based superconductors in the height of anion Zanion from the Fe plane; ZSb for CuFeSb is ~1.84 Å, much larger than ZAs (1.31-1.51 Å) in FeAs compounds and ZTe (~1.77 Å) in Fe1+yTe. In contrast with the metallic antiferromagneticor superconducting state of iron pnictides and chalcogenides under current studies, CuFeSb exhibits a metallic, ferromagnetic state with Tc = 375 K. This finding provide strong experimental evidence for the competition between antiferromagnetic and ferromagneticcorrelations in layered Fe-based superconductors, and that the nature of magnetic coupling within the Fe plane is indeed dependent on the height of anion as predicted in theories.

  15. {[CuSn5 Sb3 ](2-) }2 : A Dimer of Inhomogeneous Superatoms.

    PubMed

    Wilson, Robert J; Broeckaert, Lies; Spitzer, Fabian; Weigend, Florian; Dehnen, Stefanie

    2016-09-19

    Reaction of the binary Zintl anion (Sn2 Sb2 )(2-) with the β-diketiminato complex [LCu(NCMe)] (L=nacnac=[(N(C6 H3 (i) Pr2 -2,6)C(Me))2 CH](-) ) in ethylenediamine or DMF affords the ternary cluster dimer {[CuSn5 Sb3 ](2-) }2 (1) as its [K(crypt-222)](+) salt. The chemical formulation of 1 is supported by energy-dispersive X-ray spectroscopy (EDX) and quantum chemical calculations. Each monomeric part of the dimer represents a trimetallic "[CuSn5 Sb3 ](2-) " cluster, with an architecture in between a tricapped trigonal prism and a capped square antiprism. As shown by quantum chemical investigations, the presence of Sb atoms and, in particular, of Cu atoms in the cluster skeleton makes the monomeric unit behave like an inhomogeneous superatom, which clearly prefers to dimerize, thereby producing a relatively short, yet virtually non-bonding Cu⋅⋅⋅Cu distance.

  16. Structural phase transition and phonon instability in Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    May, A. F.; Delaire, O.; Niedziela, J. L.; Lara-Curzio, E.; Susner, M. A.; Abernathy, D. L.; Kirkham, M.; McGuire, M. A.

    2016-02-01

    A structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13 , both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ . In Cu12Sb4S13 , signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.

  17. Structural phase transition and phonon instability in Cu12Sb4S13

    DOE PAGES

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  18. Theoretical investigation of Cu-containing materials with different valence structure types: BaCu2S2, Li2CuSb, and LiCuS

    NASA Astrophysics Data System (ADS)

    Soliman, S.

    2014-08-01

    Optoelectronics research requires cheap materials with a broad spectrum of optical, electronic, and structural properties. The class of Heusler compounds and ternary structures provide many possibilities for finding alternative group IV and III-V semiconductor compounds. This study introduces wider band gap materials for use in solar cells as an alternative to cadmium sulfide buffer layers. The buffer layer is inserted between the absorber layer (p-type) and the transparent window layer (n-type) to enhance the maximum amount of light transmission. Reasonable calculations are reported for the band gaps of copper-containing materials: LiCuS, BaCu2S2, and Li2CuSb. Previous optical analysis measurements of these films determined that the band gaps were 1.8 and 1.9 eV for BaCu2S2 and LiCuS, respectively. In general, semiconductor compounds have been studied theoretically, but there are major differences between the experimental and theoretically calculated band gaps. A suitable calculation method for semiconductor compounds is described in this study. For the first time, calculations based on the Engel and Vosko method are introduced for these semiconductor compounds. This method yields band gaps that are comparable to the experimental values, which facilitate the development of microscopic analyses of these compounds. Direct band gaps of 1.15 and 1.7 eV were obtained for BaCu2S2 and LiCuS, respectively, whereas the indirect band gap was 0.7 eV for Li2CuSb.

  19. Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu2As2 and α-BaCu2Sb2

    DOE PAGES

    Wu, S. F.; Richard, P.; van Roekeghem, A.; ...

    2015-06-08

    In this study, we use angle-resolved photoemission spectroscopy to extract the band dispersion and the Fermi surface of BaCu2As2 and α-BaCu2Sb2. While the Cu 3d bands in both materials are located around 3.5 eV below the Fermi level, the low-energy photoemission intensity mainly comes from As 4p states, suggesting a completely filled Cu 3d shell. The splitting of the As 3d core levels and the lack of pronounced three-dimensionality in the measured band structure of BaCu2As2 indicate a surface state likely induced by the cleavage of this material in the collapsed tetragonal phase, which is consistent with our observation ofmore » a Cu+1 oxidation state. However, the observation of Cu states at similar energy in α-BaCu2Sb2 without the pnictide-pnictide interlayer bonding characteristic of the collapsed tetragonal phase suggests that the short interlayer distance in BaCu2As2 follows from the stability of the Cu+1 rather than the other way around. In conclusion, our results confirm the prediction that BaCu2As2 is an sp metal with weak electronic correlations.« less

  20. Influence of alloying elements on structure and some physical properties of quenched Sn-Sb alloy

    NASA Astrophysics Data System (ADS)

    Kamal, M.; El-Bediwi, A. B.; El-Shobaki, M. R.

    2006-09-01

    We study the influence of ternary and quaternary alloying elements (Pb, Cd, Cu or Cu-Pb and Cu-Cd) on structural, electrical, hardness and other mechanical properties of Sn-Sb alloys (using an X-ray diffractometer and optical microscope, the double bridge method, Vickers hardness tester and the dynamic resonance method) to produce the best alloy for bearing applications. Adding Cu or Pb to Sn-Sb alloys improves their bearing properties, such as the mechanical properties (elastic modulus, internal friction, hardness and fracture strain) and thermal conductivity. Also, adding Cu, Pb or Cu-Pb to Sn-Sb alloys makes them excellent in their bearing applications and environmental hazards when compared with the Pb88Sn10Cu2 alloy for automotive applications (FIAT Normalizzazione) and the lead-based Babbitt bearing alloy.

  1. Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3

    PubMed Central

    Hao, Feng; Qiu, Pengfei; Song, Qingfeng; Chen, Hongyi; Lu, Ping; Ren, Dudi; Shi, Xun; Chen, Lidong

    2017-01-01

    Recently, Cu-containing p-type Bi0.5Sb1.5Te3 materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi0.5Sb1.5Te3 is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi0.5Sb1.5Te3 materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance—with a maximum thermoelectric figure of merit of around 1.4 at 430 K—has been achieved in Cu0.005Bi0.5Sb1.495Te3, which is 70% higher than the Bi0.5Sb1.5Te3 matrix. PMID:28772610

  2. Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

    NASA Astrophysics Data System (ADS)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-02-01

    CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new “Time-Temperature-Reaction” (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS2 to appear is substantially lower than for Cu3BiS3, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation.

  3. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  4. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  5. Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Hempel, Hannes; Unold, Thomas; Eichberger, Rainer; Blank, Beatrix; Rau, Uwe; Mascaro, Lucia H.; Zakutayev, Andriy

    2016-08-01

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.

  6. Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2more » PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  7. Effects of Thermochemical Treatment on CuSbS 2 Photovoltaic Absorber Quality and Solar Cell Reproducibility

    SciTech Connect

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Hempel, Hannes; Unold, Thomas; Eichberger, Rainer; Blank, Beatrix; Rau, Uwe; Mascaro, Lucia H.; Zakutayev, Andriy

    2016-08-25

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Overall, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.

  8. Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics.

    PubMed

    Riha, Shannon C; Koegel, Alexandra A; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-02-08

    Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>10(4) cm(-1)), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10(4) cm(-1), as well as a hole concentration of 10(15) cm(-3). Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.

  9. Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Emery, Jonathan D.; ...

    2017-01-24

    Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm–1, as well as a hole concentration of 1015 cm–3.more » Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.« less

  10. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF)(pyrazine)]SbF, [CuF(HF)(FH)(pyrazine)].(SbF), and [CuAg(HF)(pyrazine)](SbF).

    SciTech Connect

    Manson, J. L.; Schlueter, J. A.; Funk, K. A.; Southerland, H. I.; Twamley, B.; Lancaster, T.; Blundell, S. J.; Baker, P. J.; Pratt, F. L.; Singleton, J.; McDonald, R. D.; Goddard, P. A.; Sengupta, P.; Batista, C. D.; Ding, L.; Lee, C.; Whangbo, M.-H.; Franke, I.; Cox, S.; Baines, C.; Trail, D.; Eastern Washington Univ.; Univ. of Idaho; Oxford Univ.; Rutherford Appleton Lab.; LANL; Univ. of Southern California; North Carolina State Univ.; Paul Scherrer Inst.

    2009-01-01

    Three Cu{sup 2+}-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF{sub 2})(pyz){sub 2}]SbF{sub 6} (pyz = pyrazine) (1a), [Cu{sub 2}F(HF)(HF{sub 2})(pyz){sub 4}](SbF{sub 6}){sub 2} (1b), and [CuAg(H{sub 3}F{sub 4})(pyz){sub 5}](SbF{sub 6}){sub 2} (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz){sub 2}]{sup n+} that are linked in the third dimension by either HF{sub 2}{sup -} (1a and 1b) or H{sub 3}F{sub 4}{sup -} (2). The resulting 3D frameworks contain charge-balancing SbF{sub 6}{sup -} anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF{sub 2}{sup -} links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d{sub x{sup 2}-y{sup 2}} orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in x at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B{sub c}, of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M{sub sat}, suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although x vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were

  11. Microstructures of phased-in Cr-Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders

    NASA Astrophysics Data System (ADS)

    Pan, G. Z.; Liu, Ann A.; Kim, H. K.; Tu, K. N.; Totta, Paul A.

    1997-11-01

    The microstructure of phased-in Cr-Cu/Cu/Au multilayer thin films and their solderability with high Pb-content PbSn solder (95/5%) and eutectic PbSn solder (37/63%) were studied by using cross-sectional transmission electron microscopy and scanning electron microscopy. We found that the phased-in Cr-Cu layer is intermixed and grains of both Cr and Cu are elongated along the growth direction. This special compositionally graded or functionally graded microstructure presents a lock-in effect of the Cr and Cu grains. It has succeeded in preventing the spalling of Cu3Sn in solder joints formed using the 95/5% solder, but failed in preventing the spalling of Cu6Sn5 in those formed using the eutectic solder. We suggest that the difference may be due to the different dissolution rates of the two compounds in the solders.

  12. Superconductivity in the BaPb 1- xBi x/2 Sb x/2 O 3 system

    NASA Astrophysics Data System (ADS)

    Fu, W. T.; Drost, R. J.

    1998-08-01

    The system BaPb 1- xBi x/2 Sb x/2 O 3 has been synthesized and investigated. The parent compound, BaBi 0.5Sb 0.5O 3, is a rhombohedral perovskite, having an ordered arrangement of Bi 3+ and Sb 5+ ions. Upon Pb-doping the ordered arrangement vanishes at x≈0.60, but the system remains insulating. Superconductivity occurs in the composition range of about 0.2≤ x<0.4 with the Tc (magnetically determined) ranging from 2 K to 6 K. The most important feature of this system is that the Bi exists only as Bi 3+. Therefore, the occurrence of superconductivity may shed the light on whether the pairing mechanism in the bismuthate superconductors can be described in terms of local pairs.

  13. Thermoelectric and mechanical properties of spark plasma sintered Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}: Promising thermoelectric materials

    SciTech Connect

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-29

    We report the synthesis of thermoelectric compounds, Cu{sub 3}SbSe{sub 3} and Cu{sub 3}SbSe{sub 4}, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu{sub 3}SbSe{sub 4} exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu{sub 3}SbSe{sub 3}, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu{sub 3}SbSe{sub 4} was found to be ∼1.2 as compared to 0.2 V{sup −1} for Cu{sub 3}SbSe{sub 3} at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  14. Surfactant-mediated layer-by-layer homoepitaxial growth of Cu/In/Cu(100) and Ag/Sb/Ag(111) systems: A theoretical study

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Zhao, Yu-Jun; Cao, Pei-Lin

    1998-04-01

    Two typical surfactant-mediated homoepitaxial metal systems, Cu/In/Cu(100) and Ag/Sb/Ag(111), are studied by using first-principles calculations and a kinetic Monte Carlo method. Our results confirm the validity of the model that Zhang and Lagally suggested for Cu/In/Cu(100) system. A repulsion model is proposed for the Ag/Sb/Ag(111) system where surface-substitutional Sb atoms repel diffusing Ag adatoms. The layer-by-layer growth for Ag/Sb/Ag(111) system is achieved with a repulsion model in kinetic Monte Carlo simulation. By comparing the two different growth models, the importance of the additional barrier ΔE and effectiveness of two ways of reducing ΔE are confirmed in determining film morphology.

  15. Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal J.; Vinod, Vijay; Subrahmanyam, A.; Malar, P.

    2017-10-01

    Bulk copper antimony selenide was synthesized using mechanical alloying from the elemental precursors. Phase formation in milled powders was studied using x-ray diffraction (XRD) and Raman spectroscopy studies. The synthesized bulk source after cold compaction was used as source material for thin film deposition by e-beam evaporation. Thin film deposition was carried out at various e-beam current values (Ib ∼30, 40 and 50 mA) and at a substrate temperature of 200 °C. Near stoichiometric CuSbSe2 thin films were obtained for Ib values closer to 50 mA and post annealing at a temperature of 380 °C for 1 h. Thin films deposited using above conditions were found to exhibit an absorption coefficient (α) values of >105 cm-1 and a band gap value ∼1.18 eV that is closer to the reported band gap for CuSbSe2 compound.

  16. Magnetic properties of Mn1.9Cu0.1Sb under high pressure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihiro; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Hiroi, Masahiko; Mitsui, Yoshifuru; Koyama, Keiichi

    2016-08-01

    Magnetization measurements were carried out for polycrystalline Mn1.9Cu0.1Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ˜116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70 K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn1.9Cu0.1Sb was suppressed by the application of high pressures.

  17. by Cu Deficiencies

    NASA Astrophysics Data System (ADS)

    Wei, Tian-Ran; Li, Fu; Li, Jing-Feng

    2014-06-01

    This work revealed that the Cu-deficient ternary compounds Cu3- x SbSe4 free of Te and Pb exhibit enhanced thermoelectric performance. Cu3- x SbSe4 ( x = 0, 0.025, 0.050, 0.075) polycrystalline materials with high phase purity were fabricated by a facile method combining mechanical alloying and spark plasma sintering. Effects of Cu deficiencies on crystal structures, microstructures, element chemical states, and thermoelectric properties were systematically studied. High carrier concentration was obtained for the compositions Cu2.95SbSe4 and Cu2.925SbSe4 due to additional Cu vacancies, contributing to a remarkable increase in electrical conductivity. Together with a satisfactorily large Seebeck coefficient above 300 μV/K, a high power factor of about 890 μW/m-K2 at 523 K was achieved for Cu2.95SbSe4 and Cu2.925SbSe4, almost 60% larger than that of the stoichiometric sample with x = 0. The maximum ZT value was increased to 0.50 at 673 K in the Cu2.925SbSe4 sample sintered at a high temperature (703 K); this is the highest value reported so far for the undoped Cu3SbSe4 system.

  18. Determination of oxygen contents of Bi1.9-xPbxSb0.1Sr2Ca2Cu3Oy by iodometry and its relevance to superconducting transition

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Vigdorchik, L. V.; Akbar, S. A.; Chaudhury, Z. A.; Ehmann, W. D.; Ni, B.-F.

    1992-02-01

    The effect of metal doping on the transition temperature (Tc) of Bi1.9-xPbxSb0.1Sr2Ca2Cu3Oy (0.05≤×≤0.40) was investigated. Doping with 10 atom% Pb produced a sample with maximum Tc in the series. The oxidation state of Cu and oxygen stoichiometry in these cuprates were determined by iodometry and fast neutron activation analysis (FNAA). Excellent agreement in oxygen data derived from iodometry and FNAA were observed. An apparent relationship between the average oxidation state of Cu and Tc values of these materials were observed.

  19. Suppression of Nonmagnetic Insulating State by Application of Pressure in Mineral Tetrahedrite Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    Kitagawa, Shunsaku; Sekiya, Taishi; Araki, Shingo; Kobayashi, Tatsuo C.; Ishida, Kenji; Kambe, Takashi; Kimura, Takumi; Nishimoto, Naoki; Kudo, Kazutaka; Nohara, Minoru

    2015-09-01

    The mineral tetrahedrite Cu12Sb4S13 exhibits a first-order metal-insulator transition (MIT) at TMI = 85 K and ambient pressure. We measured the 63Cu-NMR at ambient pressure and the resistivity and magnetic susceptibility at high pressures. 63Cu-NMR results indicate a nonmagnetic insulating ground state in this compound. The MIT is monotonically suppressed by pressure and disappears at ˜1.0 GPa. Two other anomalies are observed in the resistivity measurements, and the pressure-temperature phase diagram of Cu12Sb4S13 is constructed.

  20. Vibrational spectroscopic study of the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH)

    NASA Astrophysics Data System (ADS)

    Bahfenne, Silmarilly; Frost, Ray L.

    2009-09-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb 2Sb 2O 6(O,OH). The mineral is characterised by an intense Raman band at 656 cm -1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm -1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm -1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm -1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm -1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm -1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb 2Sb 2O 6(O,OH,H 2O).

  1. A study of transport properties in Cu and P doped ZnSb

    SciTech Connect

    Valset, K.; Song, X.; Finstad, T. G.

    2015-01-28

    ZnSb samples have been doped with copper and phosphorus and sintered at 798 K. Electronic transport properties are interpreted as being influenced by an impurity band close to the valence band. At low Cu dopant concentrations, this impurity band degrades the thermoelectric properties as the Seebeck coefficient and effective mass are reduced. At carrier concentrations above 1 × 10{sup 19 }cm{sup −3}, the Seebeck coefficient in Cu doped samples can be described by a single parabolic band.

  2. High-Temperature Order/Disorder Transition in the Thermoelectric Cu3SbSe3

    SciTech Connect

    Kirkham, Melanie J; Majsztrik, Paul W; Skoug, Eric; Morelli, Donald; Wang, Hsin; Porter, Wallace D; Payzant, E Andrew; Lara-Curzio, Edgar

    2011-01-01

    We report the results from an investigation into the structural evolution of a potential new thermoelectric material, Cu3SbSe3, as a function of temperature from 25 to 390 C. From high-temperature X-ray diffraction data, the refined lattice parameters were seen to change non-linearly, but continuously, with temperature, with an increased rate of thermal expansion in the a and b lattice parameters from around 125 C until around 175 C and negative thermal expansion in the c axis from around 100 C until around 175 C. Crystallographic charge flipping analysis indicated an increase in the disorder of the copper cations with temperature. This reversible order/disorder phase transition in Cu3SbSe3 affects the transport properties, as evidenced by thermal diffusivity measurements, which change from negative to positive slope at the transition temperature. This structural change in Cu3SbSe3 has implications for its potential use in thermoelectric generators.

  3. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode.

    PubMed

    Chen, Yong; Li, Hongyi; Liu, Weijing; Tu, Yong; Zhang, Yaohui; Han, Weiqing; Wang, Lianjun

    2014-10-01

    The interlayer of Sb-doped SnO2 (SnO2-Sb) and TiO2 nanotubes (TiO2-NTs) on Ti has been introduced into the PbO2 electrode system with the aim to reveal the mechanism of enhanced electrochemical performance of TiO2-NTs/SnO2-Sb/PbO2 electrode. In contrast with the traditional Ti/SnO2-Sb/PbO2 electrode, the constructed PbO2 electrode has a more regular and compact morphology with better oriented crystals of lower size. The TiO2-NTs/SnO2-Sb interlayer prepared by electrodeposition process improves PbO2 coating structure effectively, and enhances the electrochemical performance of PbO2 electrode. Kinetic analyses indicated that the electrochemical oxidation of nitrobenzene on the PbO2 electrodes followed pseudo-first-order reaction, and mass transport was enhanced at the constructed electrode. The accumulation of nitrocompounds of degradation intermediates on constructed electrode was lower, and almost all of the nitro groups were eliminated from aromatic rings after 6h of electrolysis. Higher combustion efficiency was obtained on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. The intermediates of nitrobenzene oxidation were confirmed by IC and GC/MS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  5. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.

    PubMed

    Pehlivan, Erol; Altun, Türkan; Parlayici, Serife

    2009-05-30

    The potential to remove Cu(2+) and Pb(2+) ion from aqueous solutions through biosorption using barley straw (BS) was investigated in batch experiments. The main parameters influencing Cu(2+) and Pb(2+) ion sorption on BS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Cu(2+) and Pb(2+) ion concentration (0.1-1mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been reported. Equilibrium isotherms have been measured and modelled. The percent adsorption of Cu(2+) and Pb(2+) ions increased with an increase in pH and dosage of treated BS. The biosorptive capacity of the BS was dependent on the pH of Cu(2+) and Pb(2+) ion solution. Adsorption of Cu(2+) and Pb(2+) ion was in all cases pH dependent showing a maximum at equilibrium pH value at 6.0. The equilibrium sorption capacities of Cu(2+) and Pb(2+) after 2h were 4.64 mg/g and 23.20mg/g for BS, respectively. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that complexation on surface, adsorption (chemisorption) and ion exchange is one of the major adsorption mechanisms for binding Cu(2+) and Pb(2+) ion to the sorbents.

  6. Superconducting spin-valve effect and triplet superconductivity in Co Ox/Fe1/Cu /Fe2/Cu /Pb multilayer

    NASA Astrophysics Data System (ADS)

    Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Hess, C.; Kataev, V.; Büchner, B.; Garifullin, I. A.

    2015-06-01

    We report magnetic and superconducting properties of the modified spin-valve system CoOx/Fe1/Cu /Fe2/Cu /Pb . Introduction of a Cu interlayer between Fe2 and Pb layers prevents material interdiffusion process, increases the Fe2/Pb interface transparency, stabilizes and enhances properties of the system. This allowed us to perform a comprehensive study of such heterostructures and to present theoretical description of the superconducting spin-valve effect and of the manifestation of the long-range triplet component of the superconducting condensate.

  7. Sources of Cd, Cu, Pb and Zn in biowaste.

    PubMed

    Veeken, Adrie; Hamelers, Bert

    2002-12-02

    Biowaste, the separately collected organic fraction of municipal solid waste, can be reused for soil conditioning after composting. In this way, environmentally harmful waste management strategies, such as landfilling or incineration, can be reduced. However, frequent application of composts to soil systems may lead to the accumulation of heavy metals in soils, and therefore legal criteria were laid down in a decree to guarantee the safe use of composts. The heavy metal content of biowaste-composts frequently exceeds the legal standards, and thus raises a conflict between two governmental policies: the recycling of solid waste on the one hand, and the protection of natural ecosystems and public health on the other hand. In this study, the heavy metal content (Cd, Cu, Pb and Zn) of biowaste was compared with the natural background content of Cd, Cu, Pb and Zn in the different constituents of biowaste. For this, the physical entities of biowaste were physically fractionated by wet-sieving and subsequent water-elutriation. In this way, organic and inorganic fractions of different particle sizes were obtained and the content of Cd, Cu, Pb and Zn and the organic matter content of the different fractions were determined. On the basis of particle size, density and visual appearance, the particle-size fractions were assigned to various indoor and outdoor origins of the biowaste. It was found that a large amount of biowaste was not organic, but over 50% was made up of soil minerals due to the collection of biowaste constituents from gardens. The heavy metal content of the various fractions in biowaste was compared with the natural background contents of heavy metals in the constituents of biowaste, i.e. food products, plant material, soil organic matter and soil minerals, by collecting literature data. The heavy metal content in the fractionated physical entities of biowaste corresponded with the natural background concentration of its constituents and indicated that

  8. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2017-07-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that

  9. Chalcohalide glasses: The effect of covalent versus ionic bonding in (CuI)0.6(Sb2Se3)0.4

    NASA Astrophysics Data System (ADS)

    Salmon, Philip S.; Xin, Shuqin

    2002-02-01

    The Cu-Cu partial structure factor and related difference functions were measured for the four-component chalcohalide glass (CuI)0.6(Sb2Se3)0.4 by using the method of isotopic substitution in neutron diffraction. The Cu-Cu nearest-neighbors reside at a large distance of 4.06(3) Å, by contrast with metal chalcogenide glasses of high modifier content, and the corresponding coordination number is 1.9(3). Local structural motifs centered on Cu and Sb are deduced using a scheme where there is exclusive heteropolar bonding but where Cu-Sb and Se-I contacts are disallowed.

  10. Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam

    2015-12-01

    Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.

  11. Sb-triggered β-to-α transition: solvothermal synthesis of metastable α-Cu2Se.

    PubMed

    Jia, Feng; Zhang, Shu; Zhang, Xiaokun; Peng, Xiaoli; Zhang, Haitao; Xiang, Yong

    2014-11-24

    Control over phase stabilities during synthesis processes is of great importance for both fundamental studies and practical applications. We describe herein a facile strategy for the synthesis of Cu2Se with phase selectivity through a simple solvothermal method. In the presence and absence of SbCl3, monoclinic α-Cu2Se and cubic β-Cu2Se can be synthesized, respectively. The formation of α-Cu2Se requires optimization of the Cu/Se molar ratio in the starting reagents, the reaction temperature, as well as the timing for the addition of SbCl3. Differential scanning calorimetry of the synthesized α-Cu2Se has shown that a part of it undergoes a phase transition to β-Cu2Se at 135 °C, and that this phase transition is irreversible on cooling to ambient temperature. Kinetic studies have revealed that in the presence of Sb species the kinetically favored β-Cu2Se transforms to the thermodynamically favored α-Cu2Se. In this β-to-α phase transition process, the distribution of Cu ions in β-Cu2Se, as determined by the Cu/Se ratio and temperature, is likely to play a crucial role.

  12. High-performance Ti/Sb-SnO(2)/Pb(3)O(4) electrodes for chlorine evolution: preparation and characteristics.

    PubMed

    Shao, Dan; Yan, Wei; Cao, Lu; Li, Xiaoliang; Xu, Hao

    2014-02-28

    Chlorine evolution via electrochemical approach has wide application prospects in drinking water disinfection and wastewater treatment fields. Dimensional stable anodes used for chlorine evolution should have high stability and adequate chlorine evolution efficiency. Thus a novel and cost-effective Ti/Sb-SnO(2)/Pb(3)O(4)electrode was developed. The physicochemical and electrochemical properties as well as the chlorine evolution performances of the electrodes were investigated. The electrocatalytic activity and deactivation course of the electrodes were also explored. Results showed that this novel electrode had strong chlorine evolution ability with high current efficiency ranging from 87.3% to 93.4% depending on the operational conditions. The accelerated service life of Ti/Sb-SnO(2)/Pb(3)O(4) electrode could reach 180 h at a current density of 10,000 A m(-2) in 0.5 molL(-1) H(2)SO(4). During the electrolysis process, it was found that the conversion of Pb(3)O(4) into β-PbO(2) happened gradually on the electrode surface, which not only inhibited the leakage of hazardous Pb(2+) ion but also increased the anti-corrosion capacity of the electrode effectively.

  13. Effect of Cu and Zn Substitutions on MnSb Properties

    SciTech Connect

    Mitsiuk, V. I.; Ryzhkovskii, V. M.; Tkachenka, T. M.

    2008-10-28

    The NiAs-type solid solutions based on manganese antimonide Mn{sub 1.1}Sb with Zn or Cu (up to 10 at % of substituting component) have been studied by {sup 57}Fe Moessbauer spectroscopy. It has been shown that the replacement of the manganese antimonide by Cu or Zn does not appreciably affect the main Moessbauer parameters in comparison to those of the parent compound. Two different values of hyperfine magnetic field at Fe are present in all the samples and can be attributed to the metal atoms located in MeI and MeII positions. The substitution of Cu or Zn for manganese antimonide leads to the redistribution of the metal atoms between two cation sublattices.

  14. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    SciTech Connect

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (

  15. Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x)

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Chen, Nancy; Gascoin, Franck; Mueller, Eckhard; Karpinski, Gabriele; Stiewe, Christian

    2006-01-01

    A document presents a study of why materials of composition (Ag1 ySbTe2)0.05 (PbTe)0.95 [0< or = y < or = 1] were previously reported to have values of the thermoelectric figure of merit [ZT (where Z = alpha(sup 2)/rk, alpha is the Seebeck coefficient, r is electrical resistivity, k is thermal conductivity, and T is absolute temperature)] ranging from <1 to >2. In the study, samples of (AgSbTe2)0.05(PbTe)0.95, (Ag0.67SbTe2)0.05 (PbTe)0.95, and (Ag0.55SbTe2)0.05(PbTe)0.95 were prepared by melting followed, variously, by slow or rapid cooling. Analyses of these samples by x-ray diffraction, electron microscopy, and scanning-microprobe measurements of the Seebeck coefficient led to the conclusion that these materials have a multiphase character on a scale of the order of millimeters, even though they appear homogeneous in x-ray diffraction and electron microscopy. The Seebeck measurements showed significant variations, including both n-type and p-type behavior in the same sample. These variations were found to be consistent with observed variations of ZT. The rapidly quenched samples were found to be less inhomogeneous than were the furnace-cooled ones; hence, rapid quenching was suggested as a basis of research on synthesizing more nearly uniform high-ZT samples.

  16. Douglas fir (pseudotsuga menziesii) plantlets responses to as, PB, and sb-contaminated soils from former mines.

    PubMed

    Bonet, Amandine; Pascaud, Grégoire; Faugeron, Céline; Soubrand, Marilyne; Joussein, Emmanuel; Gloaguen, Vincent; Saladin, Gaëlle

    2016-01-01

    Phytoremediation of metalloids by conifers is not widely studied although they may be relevant for several contaminated sites, especially those located in cold areas and sometimes under dry climates. Here, seeds of Douglas fir were sown in greenhouse on three soils collected in two French former mines: a gold mine (soils L1 and L2) and a lead and silver mine (soil P). These soils are highly contaminated by Pb, As, and Sb at different concentrations. Plants were harvested after ten weeks. Growth parameters, primary metabolite content, and shoot and root ionomes were determined. Douglas firs grown on the soils L1 and P had a lower biomass than controls and a higher oxidation status whereas those grown on the soil L2 exhibited a more developed root system and only slight modifications of carbon and nitrogen nutrition. Based on trace element (TE) concentrations in shoots and roots and their translocation factor (TF), Douglas fir could be a relevant candidate for As phytoextraction (0.8 g. kg(-1) dry weight in shoots and a TF of 1.1) and may be used to phytostabilize Pb and Sb (8.8 g and 127 mg. kg(-1) in roots for Pb and Sb, respectively, and TF lower than 0.1).

  17. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    PubMed

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  18. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Cheong, Kyung Hoon; Chang, Yoon-Young; Baek, Kitae; Ok, Yong Sik; Park, Jeong-Hun

    2015-07-01

    In this study, As-, Pb-, and Cu-contaminated soil was stabilized using calcined oyster shells (COS) and steel slag (SS). The As-contaminated soil was obtained from a timber mill site where chromate copper arsenate (CCA) was used as a preservative. On the other hand, Pb- and Cu-contaminated soil was obtained from a firing range. These two soils were thoroughly mixed to represent As-, Pb-, and Cu-contaminated soil. Calcined oyster shells were obtained by treating waste oyster shells at a high temperature using the calcination process. The effectiveness of stabilization was evaluated by 1-N HCl extraction for As and 0.1-N HCl extraction for Pb and Cu. The treatment results showed that As, Pb, and Cu leachability were significantly reduced upon the combination treatment of COS and SS. The sole treatment of SS (10 wt%) did not show effective stabilization. However, the combination treatment of COS and SS showed a significant reduction in As, Pb, and Cu leachability. The best stabilization results were obtained from the combination treatment of 15 wt% COS and 10 wt% SS. The SEM-EDX results suggested that the effective stabilization of As was most probably achieved by the formation of Ca-As and Fe-As precipitates. In the case of Pb and Cu, stabilization was most probably associated with the formation of pozzolanic reaction products such as CSHs and CAHs.

  19. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory.

    PubMed

    Kehoe, Aoife B; Temple, Douglas J; Watson, Graeme W; Scanlon, David O

    2013-10-07

    As the thin film photovoltaic sector continues to expand, there is an emerging need to base these technologies on abundant, low cost materials in place of the expensive, rare, or toxic elements such as Te, In, or Cd that currently constitute the industry standards. To this end, the geometric and electronic structure of four materials comprising low cost, earth abundant elements (Cu3SbS3, Cu3SbSe3, Cu3BiS3, and Cu3BiSe3) are investigated with the screened hybrid exchange-correlation functional HSE06 and their candidacy for use as absorber materials assessed. The materials are shown to exhibit low VBM effective masses, due partially to the presence of lone pairs that originate from the Sb and Bi states. Although all four materials possess indirect fundamental band gaps, calculated optical absorbance shows direct transitions close in energy. Optical band gaps within the visible-light spectrum are also predicted for three of the systems, (Cu3SbSe3, Cu3BiS3 and Cu3BiSe3) making them promising candidates for PV applications.

  20. Synthesis and spectroscopic investigations of Cu- and Pb-doped colloidal ZnS nanocrystals.

    PubMed

    Ehlert, Oliver; Osvet, Andres; Batentschuk, Miroslaw; Winnacker, Albrecht; Nann, Thomas

    2006-11-23

    A novel organometallic synthesis method for the preparation of colloidal ZnS nanoparticles is presented. This method enables the synthesis of undoped ZnS nanocrystals as well as doping with Cu, Pb, or both. The particles can be covered with an undoped layer of ZnS, forming core/shell-type particles with the ZnS:Pb, ZnS:Cu, or ZnS:Cu,Pb cores. The particles were characterized via TEM, XRD, dynamic light scattering, and optical spectroscopy. We investigated the extrinsic surface defects and their coverage with an additional ZnS layer in detail by temperature-dependent luminescence and luminescence lifetime spectroscopy.

  1. Microstructure-Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Siddharth; Biswas, Krishanu; Basu, Bikramjit

    2014-01-01

    The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (~1.5 × 10-6 mm3/Nm) and a modest COF (~0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (~2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu.

  2. Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts. A review and some new data from Colorado California and Pennsylvania

    USGS Publications Warehouse

    Foord, Eugene E.; Shawe, Daniel R.

    1989-01-01

    Galena, associated with Pb-Bi-Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb-Bi-Ag-Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data.

  3. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells

    PubMed Central

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-01-01

    The blood–cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular 64Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of 64Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the 64Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular 64Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure. PMID:24316150

  4. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.

    PubMed

    Zheng, Gang; Zhang, Jieqiong; Xu, Yan; Shen, Xuefeng; Song, Han; Jing, Jinfei; Luo, Wenjing; Zheng, Wei; Chen, Jingyuan

    2014-02-10

    The blood-cerebrospinal fluid barrier (BCB) plays a key role in maintaining copper (Cu) homeostasis in the brain. Cumulative evidences indicate that lead (Pb) exposure alters cerebral Cu homeostasis, which may underlie the development of neurodegenerative diseases. This study investigated the roles of Cu transporter 1 (CTR1) and ATP7A, two Cu transporters, in Pb-induced Cu accumulation in the choroidal epithelial cells. Pb exposure resulted in increased intracellular (64)Cu retention, accompanying with up-regulated CTR1 level. Knockdown of CTR1 using siRNA before Pb exposure diminished the Pb-induced increase of (64)Cu uptake. The expression level of ATP7A was down-regulated following the Pb exposure. ATP7A siRNA knockdown, or PCMB treatment, inhibited the (64)Cu efflux from the cells, while the following additional incubation with Pb failed to further increase the intracellular (64)Cu retention. Cu exposure, or intracellular Cu accumulation following the tetracycline (Tet)-induced overexpression of CTR1, did not result in significant change in ATP7A expression. Taken together, these data indicate that CTR1 and ATP7A play important roles in Cu transport in choroidal epithelial cells, and the Pb-induced intracellular Cu accumulation appears to be mediated, at least in part, via the alteration of CTR1 and ATP7A expression levels following Pb exposure.

  5. Size as a Parameter to Stabilize New Phases: Rock Salt Phases of Pb(m)Sb(2n)Se(m+3n).

    PubMed

    Soriano, Ronald B; Wu, Jinsong; Kanatzidis, Mercouri G

    2015-08-12

    A series of Pb(m)Sb(2n)Se(m+3n) nanocrystals (m = 2, 4, 6 and 8; n = 1) are demonstrated that exist only as a distinct phase on the nanoscale. The nanocrystals aggregates are new compounds adopting the cubic NaCl-type structure. These materials form aggregates comprised of nanocrystallites that are attached at a preferred orientation. Elemental compositions were studied using the complementary techniques of scanning transmission electron microscopy/energy dispersive X-ray spectroscopy and inductively coupled plasma-atomic emission spectroscopy. The new ternary nanocrystal aggregates are moderately monodisperse and exhibit well-defined band gap energies in the mid-IR region. The Pb(m)Sb(2n)Se(m+3n) nanomaterials behave as homogeneous solid solutions with lattice parameter trending as a function of Sb incorporation at room temperature and tend to phase separate into PbSe and Sb2Se3 at 400 °C.

  6. Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes

    SciTech Connect

    Baggetto, Loic; Carroll, Kyler J.; Hah, Hien -Yoong; Johnson, Charles E.; Mullins, David R.; Unocic, Raymond R.; Johnson, Jacqueline A.; Meng, Ying Shirley; Veith, Gabriel M.

    2014-03-25

    Cycling Cu2Sb films with fluoroethylene carbonate additive drastically improves the capacity retention of the electrode compared to cycling in pure PC with about 250 mAh g-1 retained capacity for about two hundred cycles. TEM photographs reveal that the pristine films are formed of nanoparticles of 5-20 nm diameters. XRD results highlight that during the first discharge the reaction leads to the formation of Na3Sb via an intermediate amorphous phase. During charge, Na3Sb crystallites convert into an amorphous phase, which eventually crystallizes into Cu2Sb at full charge, indicating a high degree of structural reversibility. The subsequent discharge is marked by a new plateau around 0.5 V at low Na/Sb content which does not correspond to the formation of a crystalline phase. XAS data show that the fully discharged electrode material has interatomic distances matching those expected for the coexistence of Cu and Na3Sb nanodomains. At 1 V charge, the structure somewhat differs from that of Cu2Sb whereas at 2 V charge, when all Na is removed, the structure is significantly closer to that of the starting material. 121Sb Mössbauer spectroscopy isomer shifts of Cu2Sb powder (-9.67 mm s-1) and thin films (-9.65 mm s-1) are reported for the first time, and agree with the value predicted theoretically. At full discharge, an isomer shift (-8.10 mm s-1) rather close to that of a Na3Sb reference powder (-8.00 mm s-1) is measured, in agreement with the formation of Na3Sb domains evidenced by XRD and XAS data. As a result, the isomer shift at 1 V charge (-9.29 mm s-1) is close to that of the pristine material and the higher value is in agreement with the lack of full desodiation at 1 V.

  7. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    NASA Astrophysics Data System (ADS)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  8. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes.

    PubMed

    Lin, Hui; Niu, Junfeng; Ding, Shiyuan; Zhang, Lilan

    2012-05-01

    Electrochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) in aqueous solution was investigated over Ti/SnO(2)-Sb, Ti/SnO(2)-Sb/PbO(2), and Ti/SnO(2)-Sb/MnO(2) anodes. The degradation of PFOA followed pseudo-first-order kinetics. The degradation ratios on Ti/SnO(2)-Sb, Ti/SnO(2)-Sb/PbO(2), and Ti/SnO(2)-Sb/MnO(2) anodes achieved 90.3%, 91.1%, and 31.7%, respectively, after 90 min electrolysis at an initial 100 mg/L PFOA concentration at a constant current density of 10 mA/cm(2) with a 10 mmol/L NaClO(4) supporting electrolyte solution. The defluorination rates of PFOA on these three anodes were 72.9%, 77.4%, 45.6%, respectively. The main influencing factors on electrochemical decomposition of PFOA over Ti/SnO(2)-Sb anode were evaluated, including current density (5-40 mA/cm(2)), initial pH value (3-11), plate distance (0.5-2.0 cm), and initial concentration (5-500 mg/L). The results indicated that PFOA (100 mL of 100 mg/L) degradation ratio and defluorination ratio achieved 98.8% and 73.9%, respectively, at the optimal conditions after 90 min electrolysis. Under this optimal condition, the degradation rate constant and the degradation half-life were 0.064 min(-1) and 10.8 min, respectively. The intermediate products including short-chain perfluorinated carboxylic acids (PFCAs, C(2) ≈ C(6)) and perfluorocarbons (C(2) ≈ C(7)) were detected by electrospray ionization (ESI) mass spectrum. A possible electrochemical degradation mechanism of PFOA including electron transfer, Kolbe decarboxylation, radical reaction, decomposition, and hydrolysis was proposed. The electrochemical technique could be employed to degrade PFOA from contaminated wastewater as well as to reduce the toxicity of PFOA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kan, Tian; Zheng, Youye; Gao, Shunbao

    2016-04-01

    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  10. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    PubMed

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  11. Adsorption on vicinal surfaces: {Pb}/{Cu(1,1,11) } — a TEAS study

    NASA Astrophysics Data System (ADS)

    Goapper, S.; Barbier, L.; Salanon, B.

    1996-08-01

    Pb adsorption on Cu(1,1,11) has been studied by He diffraction. Measurements of Pb cross-sections for He scattering as a function of coverage and temperature indicate a complex behavior of the absorbate. Dense island formation, preferential adsorption at steps and surface alloying effects were found.

  12. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  13. Engineering of electronic and optical properties of PbS thin films via Cu doping

    NASA Astrophysics Data System (ADS)

    Touati, Baligh; Gassoumi, Abdelaziz; Dobryden, Illia; Natile, Marta Maria; Vomiero, Alberto; Turki, Najoua Kamoun

    2016-09-01

    Copper-doped PbS polycrystalline thin films were deposited by chemical bath deposition by adding small amount of Cu (ysolution = [Cu2+]/[Pb2+]) between 0.5 and 2 at%. The composition, structure, morphology, optical and electrical properties of the films were investigated by means of X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), UV-visible-near infrared (UV-Vis-NIR) spectrophotometry and Hall effect measurements. The XRD studies showed that the undoped films have PbS face centered cubic structure with (111) preferential orientation, while preferential orientation changes to (200) plane with increasing Cu doping concentration. The AFM and SEM measurements indicated that the film surfaces consisted of nanosized grains with pyramidal shape. Optical band gap was blue shifted from 0.72 eV to 1.69 eV with the increase in Cu doping concentration. The film obtained with the [Cu2+]/[Pb2+] ratio equal to 1.5 at% Cu showed the minimum resistivity of 0.16 Ω cm at room temperature and optimum value of optical band gap close to 1.5 eV. 1.5 at% Cu-doped PbS thin films exhibit the best optical and electrical properties, suitable for solar cells applications.

  14. Ag and Cu doping and their effects on the thermoelectric properties of β-Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Liu, Mian; Qin, Xiaoying; Liu, Changsong; Pan, Lin; Xin, Hongxing

    2010-06-01

    The measurements of electrical resistivity and Seebeck coefficients of Ag- and Cu-doped compounds β-(Zn1-xMx)4Sb3 (M=Ag,Cu;x=0,0.0025,0.005,0.01) were carried out, and the results indicated that both their resistivity and Seebeck coefficients increase first ( x≤0.0025 for Ag and x≤0.005 for Cu) and then decrease obviously with further increase in their doping content. Correspondingly, hole concentration behaviors in the opposite way. In terms of the one vacancy-two interstitial Zn atom model: A11BCSb10 and two-vacancy-three-interstitial Zn atom model: A10BCDSb10 (here A is normal Zn atom and B, C, and D interstitial Zn atoms) proposed by Cargnoni [Chem. Eur. J. 10, 3861 (2004)]10.1002/chem.200400327, first-principles calculations were performed on the occupation options of Ag and Cu atoms in disordered β-Zn4Sb3 . The results indicated that both Ag and Cu atoms occupy preferentially the Zn vacancies in normal sites. Subsequently, Ag and Cu atoms will substitute for interstitial atoms D (for Ag) and B (for Cu). The calculations also showed that as Ag and Cu atoms fill Zn vacancies they play the role of donors, leading to a decrease in hole concentration; while Ag and Cu atoms replace the interstitial atoms they act as acceptors resulting in an increase in hole concentration, which are in good agreement with the nonmonotonous change behavior in the transport properties and Hall carrier concentrations observed experimentally. In addition, calculations revealed that Cu instead of Ag can also fill the Zn vacancies with smaller volumes and Cu doping nearly always has lower formation energies than Ag, which could give a reasonable explanation for the higher solubility of Cu than that of Ag in β-Zn4Sb3 .

  15. Crystal structure of the new compound Pb{sub 3+x}Sb{sub 3-x}S{sub 7-x}Cl{sub 1+x}(x{approx}0.45): The homologous series Pb{sub (2+2N)}(Sb,Pb){sub (2+2N)}S{sub (2+2N)}(S,Cl){sub (4+2N)}Cl{sub N} and its polychalcogenide derivatives (N=1-3)

    SciTech Connect

    Doussier, Charlotte; Moelo, Yves Meerschaut, Alain; Leone, Philippe; Guillot-Deudon, Catherine

    2008-04-15

    The new chloro-sulfosalt Pb{sub 3+x}Sb{sub 3-x}S{sub 7-x}Cl{sub 1+x} (x{approx}0.45) has been synthesized at 500 deg. C from a mixture of PbS, PbCl{sub 2} and Sb{sub 2}S{sub 3}. It crystallizes in the orthorhombic system (space group Pbam), with a=15.194(3) A, b=23.035(5) A, c=4.0591(8) A, V=1420.6 A{sup 3}, Z=4. The crystal structure has been solved by X-ray single-crystal study, with a final R=0.0497. Deviation from stoichiometric Pb{sub 3}Sb{sub 3}S{sub 7}Cl (x coefficient) follows the substitution rule Sb{sup 3+}+S{sup 2-}{yields}Pb{sup 2+}+Cl{sup -}. Sb and Pb sub-positions within mixed (Sb,Pb) sites are discussed; Pb excess precludes any superstructure along c. A unique pure Cl position is bound only to Pb atoms with a distorted square coordination. The title compound is a rod-type structure derived from the SnS archetype, homeotypic with Pb{sub 6}Sb{sub 6}S{sub 14}(S{sub 3}), where the (S{sub 3}){sup 2-} trimer is replaced by two Cl{sup -}; this substitution is quite isovolumic. Other similar structures are: three polychalcogenides Sr{sub 6}Sb{sub 6}S{sub 14}(S{sub 3}), Pb{sub 6}Sb{sub 6}Se{sub 14}(Se{sub 3}) and Eu{sub 6}Sb{sub 6}S{sub 14}(S{sub 3}); KLa{sub 1.28}Bi{sub 3.72}S{sub 8} and its Ln isotypes; dadsonite, Pb{sub 23}Sb{sub 25}S{sub 60}Cl. Pb{sub 3+x}Sb{sub 3-x}S{sub 7-x}Cl{sub 1+x} is the N=2 member of the homologous series Pb{sub (2+2N)}(Sb,Pb){sub (2+2N)}S{sub (2+2N)}(S,Cl){sub (4+2N)}Cl{sub N}; the N=1 member corresponds to the previously known {approx}Pb{sub 4.3}Sb{sub 3.7}S{sub 8.7}Cl{sub 2.3} compound. Other polychalcogenide derivatives of this homologous series are K{sub 2}Pr{sub 2-x}Sb{sub 4+x}Se{sub 8}(Se{sub 4}) and its Ln isotypes (N=1), as well as SrBiSe{sub 3} (N=3). Such a comparative modular analysis allowed to propose a structural model for the previous synthetic 'Phase Y', {approx}Pb{sub 10}Sb{sub 10}S{sub 23}Cl{sub 4}, corresponding to the combined N=(1+2) homolog. - Graphical abstract: The title compound, Pb{sub 3+x}Sb{sub 3-x

  16. Surface characteristics of metallic glass spheres of Au(55)Pb(22.5)Sb(22.5)

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M.

    1983-01-01

    It is pointed out that the production of metallic glasses of high atomic number is currently of considerable importance for inertial confinement fusion (ICF) target applications. In connection with the present investigation, spherules of the alloy Au(55)Pb(22.5)Sb(22.5) were produced. Metallic glass was formed on solidification. With the aid of X-ray diffraction studies, it was established that the spheres were completely amorphous. A near-surface phase separation on spheres of the metallic glass could be observed. Energy dispersive spectroscopy (EDS) measurements showed that the average composition of the surface differed from that of the bulk.

  17. Solvothermal crystal growth of CuSbQ{sub 2} (Q=S, Se) and the correlation between macroscopic morphology and microscopic structure

    SciTech Connect

    Zhou Jian; Bian Guoqing; Zhu Qinyu; Zhang Yong; Li Chunying; Dai Jie

    2009-02-15

    A low temperature solvothermal method has been successfully used for preparation of two semiconductor compounds CuSbQ{sub 2} (Q=S(1), Se(2)) by the reactions of Cu, Sb and S(or Se) powders in 1,2-diaminopropane at 160 deg. C for 10 days. The crystal structure of 2 was determined first time using single crystal X-ray diffraction analyses. The structures of 1 and 2 are discussed in the view of covalent bonds and weak interactions. Double CuSbQ{sub 2} layers are assembled to a 3-D network structure by Cu...Sb and Q...Sb secondary bonds. In contrast with the isostructure of the two materials, the crystal morphology of them is quite different, brick-like crystals for CuSbS{sub 2} and plank-like crystals for CuSbSe{sub 2}. The phenomenon is related to their different inter-planar interactions. Semiconductor properties of the microcrystal samples are measured and the band gaps of 1 and 2 are 1.38 and 1.05 eV, respectively. - Graphical abstract: Two isostructural compounds, CuSbQ{sub 2} (Q=S, Se), display different morphologies in crystals, which is explained by comparing the strength of the interlayer interactions based on the crystal structure data.

  18. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Palafox-Hernandez, J. Pablo; Laird, Brian B.

    2016-12-01

    In this work, we examine the effect of surface structure on the heterogeneous nucleation of Pb crystals from the melt at a Cu substrate using molecular-dynamics (MD) simulation. In a previous work [Palafox-Hernandez et al., Acta Mater. 59, 3137 (2011)] studying the Cu/Pb solid-liquid interface with MD simulation, we observed that the structure of the Cu(111) and Cu(100) interfaces was significantly different at 625 K, just above the Pb melting temperature (618 K for the model). The Cu(100) interface exhibited significant surface alloying in the crystal plane in contact with the melt. In contrast, no surface alloying was seen at the Cu(111) interface; however, a prefreezing layer of crystalline Pb, 2-3 atomic planes thick and slightly compressed relative to bulk Pb crystal, was observed to form at the interface. We observe that at the Cu(111) interface the prefreezing layer is no longer present at 750 K, but surface alloying in the Cu(100) interface persists. In a series of undercooling MD simulations, heterogeneous nucleation of fcc Pb is observed at the Cu(111) interface within the simulation time (5 ns) at 592 K—a 26 K undercooling. Nucleation and growth at Cu(111) proceeded layerwise with a nearly planar critical nucleus. Quantitative analysis yielded heterogeneous nucleation barriers that are more than two orders of magnitude smaller than the predicted homogeneous nucleation barriers from classical nucleation theory. Nucleation was considerably more difficult on the Cu(100) surface-alloyed substrate. An undercooling of approximately 170 K was necessary to observe nucleation at this interface within the simulation time. From qualitative observation, the critical nucleus showed a contact angle with the Cu(100) surface of over 90°, indicating poor wetting of the Cu(100) surface by the nucleating phase, which according to classical heterogeneous nucleation theory provides an explanation of the large undercooling necessary to nucleate on the Cu(100) surface

  19. 210Pb geochronology and trace metal fluxes (Cd, Cu and Pb) in the Gulf of Tehuantepec, South Pacific of Mexico.

    PubMed

    Ruiz-Fernández, Ana Carolina; Páez-Osuna, Federico; Machain-Castillo, María Luisa; Arellano-Torres, Elsa

    2004-01-01

    Distributions of Al, Cd, Cu, Fe, Li, Mn and Pb were analyzed in a sediment core collected in the Gulf of Tehuantepec, an important fisheries region located in the South Pacific of Mexico, where data on metal accumulation and accretion rates were previously almost nonexistent. Depth profiles of metal concentrations were converted to time-based profiles by using a 210Pb-derived vertical accretion rate, estimated to be 0.05 cm year(-1) on the average. Sediments were dated up to 8 cm depth, corresponding to a layer of ca. 140 years old. The historical changes of metal accumulation along the sediment core have shown a moderate enrichment of Cd, Cu and Pb concentrations at present, of about threefold the corresponding background concentrations. Chronological trace metal records showed that metal fluxes have increased over the last 20 years, reaching the maximum values at present of 2.5, 22.5 and 45.8 (microg cm(-2) year(-1)) for Cd, Pb and Cu, respectively. These increments in metal fluxes are likely influenced by the development of anthropogenic land-based activities since over this period of time oil production activities in the region have had a significant development.

  20. Preparation of single 110 K phase of the Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Satoshi; Endo, Utako; Kawai, Tomoji

    1988-10-01

    A pure 110 K phase of the Bi-Pb-Sr-Ca-Cu-O superconductor was obtained by co-decomposition of metal nitrates and a solid reaction under low oxygen pressure. The best starting compositions were in the region close to Bi(1.84)Pb(0.34)Sr2Ca2Cu3O(y) with a little excess of Ca and Cu. In this region, the samples showed the absence of the 80 K and semiconducting phase, and there was no indication of impurities at all. The 110 K phase without stacking faults is stabilized by the addition of Pb, so that the nominal composition close to the ideal one is required at the start. A little excess of Ca and Cu, however, effectively decreases the 80 K phase.

  1. Spheres of the metallic glass Au55 Pb22.5 Sb22.5 and their surface characteristics

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M.; Johnson, W. L.

    1982-01-01

    Spheres of the metallic glass Au55 Pb22.5 Sb22.5 have been formed up to a size of approximately 1.5 mm in diameter. X-ray diffraction was used to establish the glassy nature of the samples and to provide evidence of two phase-separated glass regions. Scanning electron microscopy provided a direct visual observation of the two-phase amorphous network on the surface of the sphere. The physical dimensions of the phase-separated regions were observed to be cooling-rate sensitive. Energy dispersive spectroscopy indicated that the compositions of these two glassy phases were Au-rich and Pb-rich, respectively, confirming the results of Kim and Johnson (1981). In addition, the spheres exhibited an unusual surface smoothness of better than + or - 250 A

  2. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles

    PubMed Central

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J. G.

    2015-01-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu2+ and Pb2+ ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu2+ and Pb2+ to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu2+ and Pb2+ showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu2+ and Pb2+. The binding capacity of Fe3O4 with Cu2+ and Pb2+ were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu2+ and Pb2+ were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu2+ or Pb2+ to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na+, K+, Mg2+ and Ca2+ or a solution consisting of a combination of all the aforementioned cations in one solution. PMID:26811549

  3. Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles.

    PubMed

    Tamez, Carlos; Hernandez, Rebecca; Parsons, J G

    2016-03-01

    Nano-sized Fe3O4 and Fe2O3 were synthesized using a precipitation method. The nanomaterials were tested as adsorbents for the removal of both Cu(2+) and Pb(2+) ions. The nanomaterials were characterized using X-ray powder diffraction to determine both the phase and the average grain size of the synthesized nanomaterials. Batch pH studies were performed to determine the optimum binding pH for both the Cu(2+) and Pb(2+) to the synthesized nanomaterials. The optimum binding was observed to occur at pH 4 and above. Time dependency studies for Cu(2+) and Pb(2+) showed the binding occurred within the first five minutes of contact and remained constant up to 2 hours of contact. Isotherm studies were utilized to determine the binding capacity of each of the nanomaterials for Cu(2+) and Pb(2+). The binding capacity of Fe3O4 with Cu(2+) and Pb(2+) were 37.04 mg/g and 166.67 mg/g, respectively. The binding capacities of the Fe2O3 nanomaterials with Cu(2+) and Pb(2+) were determined to be 19.61 mg/g and 47.62 mg/g, respectively. In addition, interference studies showed no significant reduction in the binding of either Cu(2+) or Pb(2+) to the Fe3O4 or Fe2O3 nanomaterials in the presence of solutions containing the individual ions Na(+), K(+), Mg(2+) and Ca(2+) or a solution consisting of a combination of all the aforementioned cations in one solution.

  4. Investigating the effect of solvents for the preparation of CuSbS2 nanoparticles by solvothermal method

    NASA Astrophysics Data System (ADS)

    John, Bincy; Silvena, G. Genifer; Rajesh, A. Leo

    2017-05-01

    High quality ternary CuSbS2 nanoparticles with orthorhombic structure and controllable morphologies were successfully synthesized using a facile solvothermal method. To prepare these particles, ethylene glycol and ethylenediamine were used as solvents and Polyvinylpyrrolidone (PVP) as a structure directing ligand. Structural and morphological studies revealed that CuSbS2 nanoparticles prepared using PVP as surfactant and ethylene glycol as solvent produced a phase pure, controllable size and shaped nanoparticles. The electrical conductivity of the CuSbS2 pellets varied from 3.0987 × 10-2 to 9.103 × 10-2 S cm-1. Optical properties showed broad absorption in the visible region for all the samples and the estimated absorption band gap were found to vary from 1.11 eV to 1.42 eV whereas, analysis of fluorescence emission spectra provided the emission band gap of 1.59 eV. In both spectra, the results indicate that CuSbS2 nanomaterials have an optimum band gap energy which discloses the suitability for photovoltaic application.

  5. CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution.

    PubMed

    Choi, Yong Chan; Yeom, Eun Joo; Ahn, Tae Kyu; Seok, Sang Il

    2015-03-23

    The device performance of sensitizer-architecture solar cells based on a CuSbS2 light sensitizer is presented. The device consists of F-doped SnO2 substrate/TiO2 blocking layer/mesoporous TiO2 /CuSbS2 /hole-transporting material/Au electrode. The CuSbS2 was deposited by repeated cycles of spin coating of a Cu-Sb-thiourea complex solution and thermal decomposition, followed by annealing in Ar at 500 °C. Poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) (PCPDTBT) was used as the hole-transporting material. The best-performing cell exhibited a 3.1 % device efficiency, with a short-circuit current density of 21.5 mA cm(-2) , an open-circuit voltage of 304 mV, and a fill factor of 46.8 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing

    NASA Astrophysics Data System (ADS)

    Jang, Jin-Wook; Ramanathan, Lakshmi N.; Lin, Jong-Kai; Frear, Darrel R.

    2004-06-01

    We report the spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization (UBM) during solid state annealing. Upon reflow, the Cu3Sn intermetallics formed on Cu UBM. However, after solid state annealing at 170 °C, the Cu3Sn intermetallics spalled off from Cu UBM and the Pb phase filled the gap between the Cu3Sn intermetallics and Cu UBM. This is primarily explained by the loss of chemical adhesion between the Cu3Sn intermetallics and Cu UBM due to no additional chemical reaction. Thermodynamic principles are used to interpret the spalling phenomenon and the analysis showed that the interfacial free energy without spalling is greater than that with spalling after solid-state annealing. Spalling of the Cu3Sn intermetallics initiated at an open interface such as the edge of Cu UBM and finally extended to the flat interface at a slower rate.

  7. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  8. Elastic Softening in the Tetrahedrite Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Goto, Hiroki; Ishii, Isao; Noguchi, Yoshihito; Kamikawa, Shuhei; Suekuni, Koichiro; Tanaka, Hiromi I.; Takabatake, Toshiro

    The tetrahedrite Cu12Sb4S13 has a cubic structure above 100 K and is paid attention as thermoelectric materials. At 85 K, a metal-semiconductor phase transition is reported by the electrical resistivity and magnetic susceptibility measurements. The origin of the phase transition is not determined yet. To investigate the phase transition at 85 K, we measured elastic modulus using an ultrasonic technique on polycrystalline samples. The longitudinal modulus shows elastic softening from above 300 K, suggesting that there is an instability of the structure or the electronic state. The softening continues down to 85 K, and it turns into increase below 85 K accompanied by hysteresis. The phase transition is of the first-order. The elastic hardening indicates disappearance of the instability by the phase transition.

  9. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  10. Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments.

    PubMed

    Durán, Iria; Sánchez-Marín, Paula; Beiras, Ricardo

    2012-06-01

    The resuspension of 65 marine sediments was simulated in the laboratory with elutriates from 30 different sites from the north coast of Spain. The partitioning of Cu, Pb and Zn between sediment and elutriate was studied as a function of different physicochemical characteristics of the sediment: organic matter (OM), fine fraction (FF), redox potential and acid volatile sulfides (AVS). Mean remobilization factors (RF) -calculated as metal concentration in the elutriate (μg/L) divided by metal concentration in the sediment (μg/g dry weight)- were 0.072 for Cu, 0.012 for Pb and 0.071 for Zn. Remobilization of Pb was significantly lower than that of Cu and Zn. Although AVS, OM and FF presented a strong intercorrelation, OM explained great part of the variability on Cu and Pb remobilization while AVS did it for Zn. A multiple regression model considering both OM and AVS explained slightly better the remobilization of Pb and Cu, but not that of Zn.

  11. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.

    PubMed

    Cao, Xinde; Wahbi, Ammar; Ma, Lena; Li, Bing; Yang, Yongliang

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H(3)PO(4) treatments (PA and PR+PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H(3)PO(4) was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  12. Development of a new Pb-free solder: Sn-Ag-Cu

    SciTech Connect

    Miller, Chad M.

    1995-02-10

    With the ever increasing awareness of the toxicity of Pb, significant pressure has been put on the electronics industry to get the Pb out of solder. This work pertains to the development and characterization of an alloy which is Pb-free, yet retains the proven positive qualities of current Sn-Pb solders while enhancing the shortcomings of Sn-Pb solder. The solder studied is the Sn-4.7Ag-1.7Cu wt% alloy. By utilizing a variety of experimental techniques the alloy was characterized. The alloy has a melting temperature of 217°C and exhibits eutectic melting behavior. The solder was examined by subjecting to different annealing schedules and examining the microstructural stability. The effect of cooling rate on the microstructure of the solder was also examined. Overall, this solder alloy shows great promise as a viable alternative to Pb-bearing solders and, as such, an application for a patent has been filed.

  13. Metal-Semiconductor Transition Concomitant with a Structural Transformation in Tetrahedrite Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromi I.; Suekuni, Koichiro; Umeo, Kazunori; Nagasaki, Toshiki; Sato, Hitoshi; Kutluk, Galif; Nishibori, Eiji; Kasai, Hidetaka; Takabatake, Toshiro

    2016-01-01

    The tetrahedrite Cu12Sb4S13 undergoes a metal-semiconductor transition (MST) at TMST = 85 K, whose mechanism remains elusive. Our Cu 2p X-ray photoemission spectroscopy study revealed the monovalent state of Cu ions occupying the two sites in this compound. This fact excludes the possibilities of previously proposed antiferromagnetic order and Jahn-Teller instability inherent in a divalent Cu system. A synchrotron X-ray diffraction study has revealed that the body-centered cubic cell of Cu12Sb4S13 transforms into a body-centered 2a × 2a × 2c tetragonal supercell below TMST, where the cell volume per formula unit expands by 0.25%. We have further studied pressure effects on the MST as well as the effects of the substitution of As for Sb. The application of pressure above 1 GPa completely inhibits the MST and leads to a metallic state, suggesting that the low-temperature structure with a larger volume becomes unstable under pressure. The As substitution also reduces the volume and suppresses the MST but the full substitution induces another transition at 124 K.

  14. The crystal structure of the new ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2)

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Bodak, O. I.; Fedorchuk, A. O.; Tokaychuk, Ya. O.

    2005-06-01

    New ternary antimonide Dy 3Cu 20+xSb 11-x ( x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, Cu Kα-radiation, R=6.99%,R=12.27%,R=11.55%). The compound crystallizes with the own cubic structure type: space group F 4¯ 3m, Pearson code cF272, a=16.6150(2) Å,Z=8. The structure of the Dy 3Cu 20Sb 11-x ( x≈2) can be obtained from the structure type BaHg 11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  15. Theoretical Evaluation of Cu-Sn-S and Cu-Sb-S Based Solar Absorbers for Earth-Abundant Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Zawadzki, Pawel; Peng, Haowei; Zakutayev, Andriy; Lany, Stephan

    2013-03-01

    Current thin-film solar absorbers such as Cu(In/Ga)Se2 or CdTe, although remarkably efficient, incorporate limited-supply elements like indium or tellurium. Meeting the cost competiveness criterion necessary for a large-scale deployment of thin-film PV technologies requires development of new earth-abundant solar absorbers. In an effort to accelerate such development we combine first principles theory and high throughput experiments to explore In-free ternary copper chalcogenides. As part of the theoretical evaluation, we study the Cu2SnS3, Cu4SnS4, CuSbS2 and Cu3SbS3 based compounds formed by isovalent alloying on Sn, Sb, and S sites. For this set of materials we predict band-structures and optical absorption coefficients and demonstrate the feasibility of achieving the optimal band gap of 1.3 eV for a single junction cell and a high optical absorption of ~104 cm-1 at Eg+0.2 eV. We additionally perform defect studies to elucidate the doping trends within this class of materials. The project ``Rapid Development of Earth-abundant Thin Film Solar Cells'' is supported as a part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

  16. Understanding nanostructures in thermoelectric materials: an electron microscopy study of AgPb{sub 18}SbSe{sub 20} crystals.

    SciTech Connect

    Lioutas, C. B.; Frangis, N.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G.; Materials Science Division; Aristotle Univ. Thessaloniki; Northwestern Univ.

    2010-01-01

    The characterization and understanding of the presence of nanostructuring in bulk thermoelectric materials requires real space atomic level information. We report electron diffraction and high-resolution transmission electron microscopy studies of crystals of the system AgPb{sub 18}SbSe{sub 20} (=18PbSe + AgSbSe{sub 2}) which reveal that this system is nanostructured rather than a solid solution. Nanocrystals of varying sizes are found, endotaxially grown in the matrix of PbSe (phase A), and consist of two phases, a cubic one (phase B) and a tetragonal one (phase C). Well-defined coherent interfaces between the phases in the same nanocrystals are observed. On the basis of the results of combined electron crystallography techniques, we propose reasonable structural models for the phases B and C. There are significant differences in the nanostructuring chemistry between AgPb{sub 18}SbSe{sub 20} and the telluride analog AgPb{sub 18}SbTe{sub 20} (LAST-18).

  17. Simultaneous determination of Cu, Cd and Pb in drinking-water using W-Coil AAS.

    PubMed

    Salido, A; Jones, B T

    1999-10-01

    An inexpensive, multi-element, W-coil atomic absorption spectrometer has been developed. Atomization occurs on W-coils extracted from commercially available slide projector bulbs. The system has minimal power requirements, 120 ACV and 15 A. A small, computer controlled CCD spectrometer is used as the detector. A multi-element Cu, Cd and Pb hollow cathode lamp is used as the source. 20 mul volumes are deposited on the coil and atomized at 6.7 A or approximately 2200 degrees C. Cu, Cd and Pb were simultaneously determined in tap water, drinking water and a quality control sample. The instrument detection limits are 0.8, 0.2 and 3.0 mug/l for Cu, Cd and Pb, respectively.

  18. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  19. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    SciTech Connect

    Piskunov, Yu. V. Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  20. Accumulation and transport of Cd, Cu, and Pb in an estuarine salt marsh surface microlayer

    SciTech Connect

    Lion, L.W.; Leckie, J.O.

    1982-01-01

    Dissolved and particulate Cd, Cu, and Pb were measured in bulk solution and surface microlayer samples from an intertidal salt marsh in south San Francisco Bay. The phase distribution (dissolved vs. particulate) of metals was consistent with their calculated speciation in computer-simulated sea-salt matrices. Trace metal enrichment at the microlayer corresponded with physical events at the sample site. Advective exchange of Cd, Cu, and Pb between the estuary and marsh systems was dominated by transport of bulk suspended particulate metals, with an apparent net export from the marsh to the bay.

  1. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  2. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  3. Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Miao-Ching; You, Chen-Feng; Lin, Fei-Jan; Huang, Kuo-Fang; Chung, Chuan-Hsiung

    2011-02-01

    Pollutants derived from long-range transport and local emission impact significantly of heavy metal compositions in rainwater and aerosols. To identify their sources and relative contributions in rainwater, 47 monthly rainwater samples from January 1998 to December 2001, collected at Peng Chia Yu (PCY), a non-residential islet offshore Taiwan, were analyzed for heavy metals (i.e. Cu, Zn, Cd, and Pb) and Pb isotopic compositions. The dissolved metals concentrations of Al, Mn, Fe, Cu, Zn, Rb, Ba, and Pb in PCY rains are high in spring and winter, but low in summer. This can be understood in terms of pollutant source changes due to wind direction shifted seasonally. The average EF crust and EF seawater values calculated for Cu, Zn, Cd and Pb are far greater than 1500, suggesting their strong anthropogenic sources, also supported by the PCA results. The pollutants derived from long-range transport are the predominated heavy metals sources during the winter monsoon season, whereas local traffic emissions play the most important role during the summer monsoon period. Unique Pb isotopic fingerprints, similar to those of iron ore sinter dusts and oil combustion dusts from Shanghai and the traffic emissions from Taiwan were identified in PCY rainwater. A mixing model based on three typical end-member Pb isotopic compositions derived from Taiwan and China was applied to evaluate the pollutant sources variations.

  4. Equilibrium distribution of Fe, Ni, Sb, and Sn between liquid Cu and a CaO-rich slag

    NASA Astrophysics Data System (ADS)

    Gortais, J.; Hodaj, F.; Allibert, M.; Welter, J. M.

    1994-10-01

    Equilibrium measurements of the distribution of Fe, Ni, Sb, and Sn between a liquid Cu-O solution and a CaF2-CaO-MgO-SiO2 were carried out at 1500 K in a magnesia crucible. The results show that the studied solutes were in the states Fe(III), Ni(II), Sb(III), and Sn(IV), in the slag, for metal O contents ranging from 100 ppm to saturation at 2.1 pct. The Cu oxide solubility in the slag was also measured in absence of the solute elements. Its maximum solubility is about 4 ± 1 mass pct Cu2O. The compositions at equilibrium allow determination of the activity coefficients (referred to pure oxide) of the four solute oxides in the slag. These values, expressed in round figures to take into account the experimental uncertainties, are 10 for Fe2O3, 20 for NiO, 10 for SnO2, 1.6 10-2 for SbO1.5, and 60 for Cu2O.

  5. Thermoelectric properties of p-type Ag1-x(Pb1-ySny)mSb1-zTem+2

    NASA Astrophysics Data System (ADS)

    Ahn, Kyunghan; Kong, Huijun; Uher, Ctirad; Kanatzidis, Mercouri G.

    2016-10-01

    The thermoelectric properties of Ag1-x(Pb1-ySny)mSb1-zTem+2 (4≤m≤16, -0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometry allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag0.9Pb5Sn5Sb0.8Te12 mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb1-ySny)mSbTem+2, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag1-x(Pb1-ySny)mSb1-zTem+2 compositions.

  6. Electronic structure of Ba3CuSb2O9: A candidate quantum spin liquid compound

    NASA Astrophysics Data System (ADS)

    Shanavas, K. V.; Popović, Z. S.; Satpathy, S.

    2014-02-01

    Using density-functional methods, we study the electronic structure of Ba3CuSb2O9, a candidate material for the quantum spin liquid behavior. We study both the triangular lattice as well as the recently proposed hexagonal lattice structures with flipped Cu-Sb dumbbells. The band structure near the Fermi energy is described very well by a tight-binding Hamiltonian involving the Cu (eg) orbitals, confirming their central role in the physics of the problem. A minimal tight-binding Hamiltonian for the triangular structure is presented. The Cu (d9) ions (a single eg hole in the band structure) present in the compound are expected to be Jahn-Teller centers, while the nature of the Jahn-Teller distortions in this material is still under debate. Solving a simple model by exact diagonalization, we show that electronic correlation effects in general enhance the tendency towards a Jahn-Teller distortion by reducing the kinetic energy due to correlation effects. Our density-functional calculations do indeed show a significant Jahn-Teller distortion of the CuO6 octahedra when we include the correlation effects within the Coulomb-corrected GGA+U method, so that the Jahn-Teller effect is correlation driven. We argue for the presence of a random static Jahn-Teller distortion in the hexagonal structure rather than a dynamical one because of the broken octahedral symmetry around the CuO6 octahedra and the potential fluctuations inherently present in the system caused by a significant disorder, which is believed to be present, in particular, due to the flipped Cu-Sb dumbbells.

  7. (121,123)Sb and (75)As NMR and NQR investigation of the tetrahedrite (Cu12Sb4S13)--Tennantite (Cu12As4S13) system and other metal arsenides.

    PubMed

    Bastow, T J; Lehmann-Horn, J A; Miljak, D G

    2015-10-01

    This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. Subsolidus phase relations of the SrO-SbOx-CuO system at 1140 K in air

    SciTech Connect

    Grivel, J. -C.; Norby, P.; Andersen, N. H.

    2013-11-15

    The subsolidus phase relations of the SrO–SbOx–CuO system were investigated in air. The samples were equilibrated at 1140 K. Under these conditions, 7 binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41-δ, CuSb2O6, SrSb2O6, Sr2Sb2O7 and Sr7Sb2O12. The ternary section contains 10 three-phase regions. A new ternary oxide phase with an approximate Sr3Sb2CuO9 composition of was identified. It structure is related to that of Sr8W3CuO18. This phase is not superconducting above 2 K. Instead, the magnetic susceptibility indicates onset of weak ferro- or ferrimagnetism at T ≈ 30 K.

  9. Spintronic properties of Li1.5Mn0.5Z (Z=As, Sb) compounds in the Cu2Sb structure

    NASA Astrophysics Data System (ADS)

    Damewood, L.; Fong, C. Y.; Klein, B. M.; Yang, L. H.; Felser, C.

    2015-03-01

    We have investigated the spintronic properties of two formula units of Li1.5Mn0.5Z (Z=As, Sb), in the Cu2Sb tetragonal crystal structure based on first-principles density-functional theory calculations, at, and near, their equilibrium (minimum total energy) lattice constants. Two groups of configurations, A and B, are formed for each type of alloy by interchanging Mn with each Li located at four different positions with respect to Li4Z2. Mn has four nearest neighbors in group-A and has one nearest neighbor in group-B. The bonding features of the alloys are compared to the ionic bonding in Li4Z2, and the tetragonal structure of cubic LiMnZ. The magnetic moments of these compounds are reasonably large and range from 3.724 to 4.056 μB, where μB is the Bohr magneton. Both group-B Li3MnZ2, with Z=As, exhibit half-metallic properties at their equilibrium lattice constants while only group-A of the Z=Sb compounds are half-metals. Both the modified Slater-Pauling-Kübler rule and the ionic model can predict the magnetic moments of the alloys showing half-metallicity. The modified rule can be used for exploring other potential half-metals in this class of material.

  10. Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil.

    PubMed

    Trakal, L; Komárek, M; Száková, J; Tlustos, P; Tejnecký, V; Drábek, O

    2012-09-01

    The aim of our study was to compare the sorption properties of a contaminated soil before and after two types of phytoremediation (natural phytoextraction vs. phytostabilization with dolomite limestone (DL) application). Soil from a pot experiment in controlled greenhouse conditions performed for two vegetation periods was used for the study. Lead, as the main contaminant in the studied soil, was easily desorbed by Cu, especially due to the increased affinity of Cu for soil organic matter; hence input of Cu to the studied soil can present another environmental risk in soils contaminated with other metals (such as Pb). In addition, the sorption behavior of chosen metals from single-element solutions differed from multielement solutions. The obtained results proved the different sorption behavior of metals in the single-element solution compared to the multi-element ones. Soil sorption behavior of Cd, Cu, and Zn decreased with the presence of the competitive metals; nevertheless, Pb sorption potential was not influenced by other competitive metals. Natural phytoextraction showed no significant effect on the sorption of Cd, Cu, Pb, and Zn onto the soil On the other hand, phytostabilization associated with DL application improved the soil sorption efficiency of all chosen metals, especially of Cu.

  11. Equilibria between silica-saturated iron silicate slags and molten Cu-As, Cu-Sb, and Cu-Bi Alloys

    NASA Astrophysics Data System (ADS)

    Jimbo, Itaru; Goto, Sakichi; Ogawa, Osamu

    1984-09-01

    The solubilities of copper, arsenic, antimony, and bismuth in silica-saturated iron silicate slag, equilibrated with molten copper which included the corresponding element, were measured at temperatures 1473 and 1523 K under oxygen pressures ranging from 10-1 to 10-7 atm. The results confirm that copper is dissolved as CuO0.5 in silica-saturated fayalite slag. Dissolution of As, Sb, and Bi was found to be dependent upon the oxygen potential, suggesting oxidic rather than atomic dissolution. The data obtained also support models in which these elements exist in the slag mainly as two different types of oxides, but occasionally these oxides coexist with neutral atoms. Based on these models, equations were obtained that related the solubilities of these elements in the slags to the oxygen potential in them. The knowledge obtained in this investigation will be helpful in eliminating deleterious minor elements in copper smelting.

  12. Conformational Distortions of π-Cation Radical (β-Oxoporphyrin)copper(II) Derivatives: [Cu(2,7,12-TrioxoOEHP)][SbCl(6)] and [Cu(2,7-DioxoOEiBC)][SbCl(6)].

    PubMed

    Turowska-Tyrk, Ilona; Kang, Seong-Joo; Scheidt, W Robert

    2011-03-01

    The preparation and characterization of two π-cation radical derivatives of copper β-oxo porphyrins is described. [3,3,8,8,13,13,17,18-Octaethyl-(3H,8H,13H)-porphine-2,7,12-trionato (2-)] copper π-cation radical, [Cu(2,7,12-trioxoOEHP(.))](+), and [3,3,8,8,12,13,17,18-octaethyl-(3H,8H)-porphine-2,7-dionato(2-)] copper π-cation radical, [Cu(2,7-dioxoOEiBC(.))](+), have been prepared and characterized by single-crystal X-ray determinations, UV/vis/NIR, and IR spectroscopies. Both molecules have modest distortion from the planarity and show monomeric units in the solid state. [Cu(2,7-dioxoOEiBC(.))](+) shows a concentration dependent near-IR band at 1410 nm. Crystal data for [Cu(2,7,12-trioxoOEHP(.))][SbCl(6)]: tetragonal, space group P4(2)/n, a = 31.085 (14) Å, c = 9.410 (4) Å, V = 9093 Å(3), Z = 8, T = 127 K. Crystal data for [Cu(2,7-dioxoOEiBC(.))][SbCl(6)]: monoclinic, space group P2(1)/n, a = 9.655 (4) Å, b = 20.592 (8) Å, c = 43.347 (17) Åβ = 89.97(1)(°), V = 8618. Å(3), Z = 8, T = 100 K.

  13. Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb.

    PubMed

    Rial, Diego; Santos-Echeandía, Juan; Álvarez-Salgado, Xosé Antón; Jordi, Antoni; Tovar-Sánchez, Antonio; Bellas, Juan

    2016-02-01

    Guano is an important source of marine-derived nutrients to seabird nesting areas. Seabirds usually present high levels of metals and other contaminants because the bioaccumulation processes and biotic depositions can increase the concentration of pollutants in the receiving environments. The objectives of this study were to investigate: the toxicity of seabird guano and the joint toxicity of guano, Cu and Pb by using the sea urchin embryo-larval bioassay. In a first experiment, aqueous extracts of guano were prepared at two loading rates (0.462 and 1.952 g L(-1)) and toxicity to sea-urchin embryos was tested. Toxicity was low and not dependent of the load of guano used (EC50 0.42 ± 0.03 g L(-1)). Trace metal concentrations were also low either in guano or in aqueous extracts of guano and the toxicity of extracts were apparently related to dissolved organic matter. In a second experiment, the toxicity of Cu-Pb mixtures in artificial seawater and in extracts of guano (at two loadings: 0.015 and 0.073 g L(-1)), was tested. According to individual fittings, Cu added to extracts of guano showed less toxicity than when dissolved in artificial seawater. The response surfaces obtained for mixtures of Cu and Pb in artificial seawater, and in 0.015 g L(-1) and 0.073 g L(-1) of guano, were better described by Independent Action model adapted to describe antagonism, than by the other proposed models. This implied accepting that EC50 for Cu and Pb increased with the load of guano and with a greater interaction for Cu than for Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nanodopant-induced band modulation in AgPb(m)SbTe(2+m)-type thermoelectrics.

    PubMed

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng; Yang, Jihui; Kent, Paul R C

    2011-05-20

    The structure-property relation is a key outstanding problem in the study of nanocomposite materials. Here we elucidate the fundamental physics of nanodopants in thermoelectric nanocomposites XPb(m)YTe(2+m) (X = Ag, Na; Y = Sb, Bi). First-principles calculations unveil a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off mainly caused by the spin-orbit interaction in nanodopant. Boltzmann transport calculations on PbTe with modified band mimicking nanodopant-induced modulations show significant but competing effects on high-temperature electron transport behavior. These results offer insights for understanding experimental findings and optimizing thermoelectric properties of narrow band-gap semiconductor nanocomposites.

  15. Electronic properties and topological phases of ThXY (X = Pb, Au, Pt and Y = Sb, Bi, Sn) compounds

    NASA Astrophysics Data System (ADS)

    Zahra, Nourbakhsh; Aminollah, Vaez

    2016-03-01

    The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compound is stable in the ferromagnetic phase and the other ThXY compounds are stable in nonmagnetic phases. Band structures of these compounds in topological phases (insulator or metal) and normal phases within generalized gradient approximation (GGA) and Engel-Vosko generalized gradient approximation (GGA_EV) are compared. The ThPtSn, ThPtBi, ThPtSb, ThPdBi, and ThAuBi compounds have topological phases and the other ThXY compounds have normal phases. Band inversion strengths and topological phases of these compounds at different pressure are studied. It is seen that the band inversion strengths of these compounds are sensitive to pressure and for each compound a second-order polynomial fitted on the band inversion strengths-pressure curves.

  16. Magnetic properties of Mn{sub 1.9}Cu{sub 0.1}Sb under high pressure

    SciTech Connect

    Matsumoto, Yoshihiro; Hiroi, Masahiko; Mitsui, Yoshifuru; Koyama, Keiichi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya

    2016-08-26

    Magnetization measurements were carried out for polycrystalline Mn{sub 1.9}Cu{sub 0.1}Sb in magnetic fields up to 5 T in the 10-300 K temperature range under high pressures up to 1 GPa in order to investigate the magnetic properties and the thermal transformation arrest (TTA) phenomenon under high pressures. The spin-reorientation temperature increased from 202 K for 0.1 MPa to 244 K for 1 GPa, whereas the transition temperature from the ferrimagnetic (FRI) to antiferromagnetic (AFM) state did not drastically change at ∼116 K. The magnetic relaxation behavior from the FRI to AFM state was observed in 10 < T ≤ 70 K, which was analyzed using the Kohlrausch-Williams-Watts model. Obtained results indicated that the TTA phenomenon of Mn{sub 1.9}Cu{sub 0.1}Sb was suppressed by the application of high pressures.

  17. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France.

    PubMed

    Resongles, Eléonore; Casiot, Corinne; Freydier, Rémi; Dezileau, Laurent; Viers, Jérôme; Elbaz-Poulichet, Françoise

    2014-05-15

    In this study, we assessed past and present influence of ancient mining activity on metal(loid) enrichment in sediments of a former mining watershed (Gardon River, SE France), that is now industrialized and urbanized. A sedimentary archive and current sediments were characterized combining geochemical analyses, zinc isotopic analyses and sequential extractions. The archive was used to establish local geochemical background and recorded (i) increasing enrichment factors (EFs) for Pb, Zn, Cd, Tl, Hg, As and Sb throughout the industrial era, (ii) a contamination peak in 1976 attributed to a tailings dam failure, and (iii) current levels in 2002 and 2011 similar to those of 1969, except for Sb and Hg, reflecting a persisting contamination pattern. Inter-element relationships and spatial distribution of EF values of current sediments throughout the watershed suggested that both ancient and current contamination had a common origin for Pb, Zn, Cd, Tl and As related to the exploitation of Pb/Zn mineralization while old Sb mines and coal extraction area were the main sources for Sb and Hg respectively. This prevailing mining origin was reflected for Zn by a relatively uniform isotopic composition at δ(66)Zn=0.23 ± 0.03‰, although slight decrease from 0.23‰ to 0.18‰ was recorded from upstream to downstream sites along the river course in relation with the contribution of the lighter δ(66)Zn signature (~0.08‰) of acid mine drainage impacted tributaries. Results from sequential extractions revealed that the potential mobility of the studied metal(loid)s varied in the order SbPb, Zn and to a lesser extent for As and Tl associated to increased enrichment. Altogether, these results tend to demonstrate that ancient mining activity still contributes to metal enrichment in the sediments of the Gardon River and that some of these metals may be mobilized toward the water compartment.

  18. Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Cheng; Suriyawong, Nipapon; Aragaw, Belete Asefa; Shi, Jen-Bin; Chen, Peter; Lee, Ming-Way

    2016-04-01

    Lead antimony sulfides are rare in nature and relatively unexplored ternary semiconductors. This work investigates the photovoltaic performance of Pb-Sb-S quantum dot-sensitized solar cells (QDSCs). Pb5Sb8S17 nanoparticles are grown on mesoporous TiO2 electrodes using the successive ionic layer adsorption reaction process. The synthesized Pb5Sb8S17 nanoparticles exhibit two attractive features for a good solar absorber material: a high optical absorption coefficient and a near optimal energy gap. Solid-state QDSCs are fabricated from the synthesized Pb5Sb8S17 nanoparticles using Spiro-OMeTAD as the hole-transporting material. The best cell yields a short-circuit current density Jsc of 11.92 mA cm-2, an open-circuit voltage Voc of 0.48 V, a fill factor FF of 30.7% and a power conversion efficiency (PCE) of 1.76% under 1sun. The external quantum efficiency (EQE) spectrum covers a spectral range of 350-800 nm with a maximal EQE = 65% at λ = 450 nm. At the reduced light intensity of 10% sun, the PCE increases to 4.14% with Jsc = 2.0 mA cm-2 (which could be normalized to 20 mA cm-2 under 1 sun). This PCE is 65% higher than the best previous result. The respectable PCE and Jsc indicate that Pb5Sb8S17 could be a potential candidate for a solar absorber material.

  19. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  20. Some Experiments on Flux Pinning in Pb Doped Bi-Sr-Ca-Cu-O System

    NASA Astrophysics Data System (ADS)

    Nagashima, Toshio; Watanabe, Kenji; Watahiki, Masaya; Fukai, Yuh

    1989-02-01

    In order to investigate the mechanism of energy dissipation by irreversible motion of fluxoids, we performed two different types of experiments; the oscillating-pendulum in magnetic field and the magnetic hysteresis including both major and minor loops. Results obtained for Pb-doped Bi-Sr-Ca-Cu-O system at 77 K are presented and some preliminary discussions are made.

  1. Magnetic ground state of the two isostructual polymeric quantum magnets [Cu(HF2)(pyrazine)2]SbF6 and [Co(HF2)(pyrazine)2]SbF6 investigated with neutron powder diffraction

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...

    2015-10-07

    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF2)(pyrazine)2]SbF6 and (ii) a related compound [Co(HF2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF2)(pyrazine)2]SbF6 are 0.6(1)μb, while the ordered moments for the Co(II) ions in [Co(HF2)(pyrazine)2]SbF6 are 3.02(6)μb. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystal electric field splitting of the S=3/2 Co(II) ions in [Co(HF2)(pyrazine)2]SbF6, this isostructualmore » polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF2)(pyrazine)2]SbF6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less

  2. Magnetic ground state of the two isostructual polymeric quantum magnets [Cu (HF2)(pyrazine)2]SbF6 and [Co (HF2)(pyrazine)2]SbF6 investigated with neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Brambleby, J.; Goddard, P. A.; Johnson, R. D.; Liu, J.; Kaminski, D.; Ardavan, A.; Steele, A. J.; Blundell, S. J.; Lancaster, T.; Manuel, P.; Baker, P. J.; Singleton, J.; Schwalbe, S. G.; Spurgeon, P. M.; Tran, H. E.; Peterson, P. K.; Corbey, J. F.; Manson, J. L.

    2015-10-01

    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S =1 /2 square-lattice antiferromagnet [Cu (HF2)(pyrazine) 2]SbF6 and (ii) a related compound [Co (HF2)(pyrazine) 2]SbF6 , was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S =1 /2 Cu(II) ions in [Cu (HF2)(pyrazine) 2]SbF6 are 0.6 (1 )μb, while the ordered moments for the Co(II) ions in [Co (HF2)(pyrazine) 2]SbF6 are 3.02 (6 )μb. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We show from heat capacity and electron spin resonance measurements that due to the crystal electric field splitting of the S =3 /2 Co(II) ions in [Co (HF2)(pyrazine) 2]SbF6 , this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. The Co moments in [Co (HF2)(pyrazine) 2]SbF6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.

  3. Raman phonon study of Jahn-Teller distortion in Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Drichko, Natalia; Broholm, Collin; Kimura, Kenta; Ishii, Rieko; Nakatsuju, Satoru

    2013-03-01

    The frustrated magnet Ba3CuSb2O9 does not exhibit either structural or magnetic ordering down to the lowest measured temperatures and is of great current interest as a spin-liquid candidate. It has been proposed recently that the lack of ordering is due to a static or dynamic Jahn-Teller distortion that leads to orbital disorder. We use phonon Raman scattering at temperatures between 20 and 380 K to investigate Jahn-Teller distortion in crystals with different Sb:Cu stoichiometry. We focus on phonons in the range of 500-800 cm-1 attributable to oxygen vibrations. In addition to signatures of the strong disorder due to Cu-Sb site mixing present in these materials, we observe mode-splitting due to a static Jahn-Teller distortion below 200 K in samples that undergo a transition to an orthorhombic phase. In contrast, samples that remain hexagonal to the lowest temperatures do not show such mode splitting. We are thankful to O. Tchernyshyov and Zihao Hao for discussions. This work was supported in part by the U.S. DoE, Office of Basic Energy Science, DMSE under Award DE-FG02-08ER46544 and H. Blewett Fellowship from APS

  4. CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells.

    PubMed

    Liu, Zhifeng; Huang, Jiajun; Han, Jianhuan; Hong, Tiantian; Zhang, Jing; Liu, Zhihua

    2016-06-22

    A facile, low-cost, simple solution-based process for preparing novel promising chalcostibite CuSbS2 sensitized ZnO nanorod arrays, and the application of these as photoanodes of semiconductor quantum dot sensitized inorganic-organic solar cells (QDSSCs) is reported for the first time. ZnO/CuSbS2 nanofilms were designed and prepared through a simple successive ionic layer adsorption and reaction (SILAR) method and heat treatment process by employing ZnO nanorods as reactive templates. Novel efficient QDSSCs based on the ZnO/CuSbS2 nanofilms plus a solid electrolyte of poly(3-hexylthiophene) (P3HT) were formed, and a power conversion efficiency of 1.61% was achieved. The excellent photoelectric performance is attributed to the improved light absorption efficiency, widened light absorption region, ideal band gap value, and high speed electron injection and transportation. The results demonstrate that a novel ternary sensitizer (I-V-VI2) can be synthesized via a low-cost method as described here and has great promising potential as a sensitizer in solar cells.

  5. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils.

    PubMed

    Cai, Meifang; McBride, Murray B; Li, Kaiming

    2016-01-01

    Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles. However, metal bioaccessibility was generally lower in finer particles, a trend most pronounced for Ba and Pb. Gastric was higher than gastrointestinal bioaccessibility for all metals except Cu. The lower bioaccessibility of Pb in urban garden soils compared to orchard soil is attributable to the higher organic matter content of the garden soils.

  6. The magnetic structure of EuCu2Sb2

    SciTech Connect

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.

    2015-05-06

    Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.

  7. On the relation between creep cavitation and grain boundary orientation. [Cu-Sb

    SciTech Connect

    Yu, K.S.; Nix, W.D.

    1984-02-01

    The purpose of this paper is to study the influence of grain boundary inclination angle on the creep cavitation process. The cavitation rate on a grain boundary facet is expected to depend on its inclination angle, because differently oriented facets have different stress states. Although qualitative observations have been reported occasionally, this problem has not been studied extensively. The process of creep cavitation can be divided into two parts: cavity nucleation and cavity growth. From a theoretical point of view, these processes depend on grain boundary inclination in different ways. It is generally believed that grain boundary sliding is necessary to provide the stress concentrations needed for the nucleation of cavities. The cavity nucleation rate is therefore expected to peak on inclined boundaries, where grain boundary sliding is at a maximum. On the other hand, transverse grain boundaries are more favorable for cavity growth. The higher normal tractions acting on these boundaries provide a steeper chemical potential gradient for diffusive cavity growth. The influence of grain boundary inclination on the creep cavity nucleation and growth rate has been studied using SEM and a stereo microscopy technique in a Cu-Sb alloy. Both were higher on transverse boundaries. A possible explanation for the higher nucleation rate on transverse boundaries by stochastic grain boundary sliding has been proposed.

  8. Internally consistent database for sulfides and sulfosalts in the system Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.

    2000-11-01

    An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations

  9. Comparison of serum Concentration of Se, Pb, Mg, Cu, Zn, between MS patients and healthy controls

    PubMed Central

    Alizadeh, Anahita; Mehrpour, Omid; Nikkhah, Karim; Bayat, Golnaz; Espandani, Mahsa; Golzari, Alireza; Jarahi, Lida; Foroughipour, Mohsen

    2016-01-01

    Introduction Multiple Sclerosis (MS) is defined as one of the inflammatory autoimmune disorders and is common. Its exact etiology is unclear. There are some evidences on the role of environmental factors in susceptible genetics. The aim of this study is to evaluate the possible role of Selenium, Zinc, Copper, Lead and Magnesium metals in Multiple Sclerosis patients. Methods In the present analytical cross-sectional study, 56 individuals including 26 patients and 30 healthy controls were enrolled in the evaluation. The serum level of Se, Zn, Cu, Pb were quantified in graphite furnace conditions and flame conditions by utilizing an atomic absorption Perkin Elmer spectrophotometer 3030. The serum levels of Mg were measured by auto analyzer 1500 BT. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls. The mean level of minerals (Zn, Pb, Cu, Mg, Se) in serum samples were compared in both cases and controls by using independent-samples t-test for normal distribution and Mann-Whitney U test as a non-parametric test. All statistical analyses were carried out using SPSS 11.0. Results As well as the Zn, Cu, and Se, there was no significant difference between MS patients and healthy individuals in Pb concentrations (p-value = 0.11, 0.14, 0.32, 0.20 respectively) but the level of Mg was significantly different (p= 0.001). Conclusion All serum concentrations of Zn, Pb, Se, Cu in both groups were in normal ranges and there was no difference in MS patients compared with the healthy group who were matched in genetics. Blood level of Mg was significantly lower in MS patients. But it should be noted that even with the low level of serum magnesium in MS patients, this value is still in the normal range. PMID:27757186

  10. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  11. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  12. Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm-Cu-Sb at 870 K

    NASA Astrophysics Data System (ADS)

    Fedyna, L. O.; Fedorchuk, A. O.; Mykhalichko, V. M.; Shpyrka, Z. M.; Fedyna, M. F.

    2017-07-01

    The isothermal section of the Tm-Cu-Sb phase diagram at 870 K was constructed using X-ray phase analysis. The existence of one ternary compound was confirmed - TmCu1-xGe2 (x = 0.109) (structure type HfCuSi2, space group P4/nmm, Pearson code tP8-0.22, a = 4.24170(2), c = 9.73942(9) Å). New ternary copper antimonides Tm3Cu20+xSb11-x (x = 2) (structure type Dy3Cu20+xSb11-x, space group F-43 m, Pearson code cF272, a = 16.55784(4) Å) and TmCu4-xSb2 (x = 1.065) (structure type ErFe4Ge2 (LTM), space group Pnnm, Pearson code oP14-2.13, a = 7.00565(6), b = 7.83582(6), c = 4.25051(3) Å) were found. The crystal structures of compounds were refined by full-profile Rietveld method using X-ray powder diffraction data. The solubility of the third component in all binary phases was found to be negligible. The crystal structures of known ternary antimonides were analyzed and relationship among the crystal structures of compounds in the ternary system Tm-Cu-Sb was illustrated.

  13. Electronic structures and magnetism in the Li2AgSb-type Heusler alloys, Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, Sb): A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, X. T.; Cui, Y. T.; Liu, X. F.; Liu, G. D.

    2015-11-01

    The electronic and magnetic properties of Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Pb, and Sb) alloys with a Li2AgSb-type structure were investigated systematically using the first-principle calculations. Zr2CoZ (Z=Al, Ga, In, Si, Ge, Sn, and Pb) alloys are predicted to be half-metallic ferromagnets at their equilibrium lattice constants. The Zr2Co-based alloys have Mt (the total magnetic moment per unit cell) and Zt (the valence concentration) values following Slater-Pauling rule of Mt=Zt-18. The effects of lattice constants on the electronic and the magnetic properties are discussed in detail. Moreover, all the alloys investigated in this paper have a negative formation energy, which implies that they are thermodynamically stable.

  14. The mutual influence of speciation and combination of Cu and Pb on the photodegradation of dimethyl o-phthalate.

    PubMed

    Jiang, Xinshu; Wang, Zhe; Zhang, Yiyue; Wang, Fei; Zhu, Mijia; Yao, Jun

    2016-12-01

    Specific industrial application of dimethyl o-phthalate (DMP) in ore flotation has led to DMP-heavy metals combined pollution, which causes the abiotic degradation of DMP in the environment more complex. This study focused on the effect of Cu and Pb on photodegradation of DMP. The major mechanism of inhibiting effect of Cu and Pb on degradation of DMP involved their speciation and combination. It was found that the Cu (5 mg/L, I = 95.4%) and Pb (5 mg/L, I = 100%) could inhibit the photodegradation of DMP. The main species that inhibit the DMP degradation were Cu(OH)(+) and Pb(OH)(+), respectively. The intensity of the UV-Vis absorbance of DMP was obviously related to the concentration of Cu(2+) (R(2) = 0.8655) or Pb(2+) (R(2) = 0.9019) ions. Fluorescence quenching effect of Cu(2+) (R(2) > 0.9946), Pb(2+) (R(2) > 0.6879) on DMP is strongly correlated with the concentration of ions. And the equilibrium membrane dialysis experiment has also verified the combination of DMP and Cu, Pb. These results are useful to understand the effect mechanism of metal species on the photodegradation of organic chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    PubMed

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence PbPbCu and Pb suffered the highest retention, with high capacity to displace Cd, Ni and Zn from adsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates.

    PubMed

    Wanat, Nastasia; Joussein, Emmanuel; Soubrand, Marilyne; Lenain, Jean-François

    2014-08-01

    Soils from old Au-mine tailings (La Petite Faye, France) were investigated in relation to the natural vegetation cover to evaluate the risk of metals and metalloids (Pb, As, Sb) mobilizing and their potential transfer to native plants (Graminea, Betula pendula, Pteridium aquilinum, Equisetum telmateia). The soils are classified as Technosols with high contamination levels of As, Pb, and Sb. The single selective extractions tested to evaluate available fraction (CaCl2, acetic acid, A-Rhizo, and DTPA) showed low labile fractions (<5 % of bulk soil contents), but still significant levels were observed (up to 342.6 and 391.9 mg/kg for As and Pb, respectively) due to the high contamination levels of soils. Even at high soil contaminations (considered as phytotoxic levels for plants), translocation factors for native plants studied are very low resulting in low concentrations of As, Sb, and Pb in their aerial part tissues. This study demonstrates the important role of (1) native plant cover in terms of "stabilization" of these contaminants, and (2) the poor effectiveness of extraction procedures used for this type of soil assemblages, i.e., rich in specific mineral phases.

  17. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3

    NASA Astrophysics Data System (ADS)

    Prasad K, Shyam; Rao, Ashok; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay; Chang, Chia-Chi; Kuo, Yung-Kang

    2017-09-01

    A series of Cu2Sn1-xPbxSe3 (0 ≤ x ≤ 0.04) compounds was prepared by solid state synthesis technique. The electrical resistivity (ρ) decreased with increase in Pb content up to x = 0.01, thereafter it increased with further increase in x (till x = 0.03). However, the lowest value of electrical resistivity is observed for Cu2Sn0.96Pb0.04Se3. Analysis of electrical resistivity of all the samples suggests that small poloron hoping model is operative in the high temperature regime while variable range hopping is effective in the low temperature regime. The positive Seebeck coefficient (S) for pristine and doped samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) of the Cu2Sn1-xPbxSe3 compounds was estimated by the Wiedemann-Franz law and found that the contribution from κe is less than 1% of the total thermal conductivity (κ). The highest ZT 0.013 was achieved at 400 K for the sample Cu2Sn0.98Pb0.02Se3, about 30% enhancement as compared to the pristine sample.

  18. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.

    PubMed

    Navarro, Andrés; Cardellach, Esteve; Corbella, Mercé

    2011-02-28

    Immobilization processes were used to chemically stabilize soil contaminated with Cu, Pb and Zn from mine tailings and industrial impoundments. We examined the effectiveness of ordinary Portland cement (OPC), phosphoric acid and MgO at immobilizing Cu, Pb and Zn in soil contaminated by either mine tailings or industrial and mine wastes. The effectiveness was evaluated using column leaching experiments and geochemical modelling, in which we assessed possible mechanisms for metal immobilization using PHREEQC and Medusa numerical codes. Experimental results showed that Cu was mobilized in all the experiments, whereas Pb immobilization with H(3)PO(4) may have been related to the precipitation of chloropyromorphite. Thus, the Pb concentrations of leachates of pure mining and industrial contaminated soils (32-410 μg/l and 430-1000 μg/l, respectively) were reduced to 1-60 and 3-360 μg/l, respectively, in the phosphoric acid experiment. The mobilization of Pb at high alkaline conditions, when Pb(OH)(4)(-) is the most stable species, may be the main obstacle to the use of OPC and MgO in the immobilization of this metal. In the mining- and industry-contaminated soil, Zn was retained by OPC but removed by MgO. The experiments with OPC showed the Zn decrease in the leachates of mining soil from 226-1960 μg/l to 92-121 μg/l. In the industrial contaminated soil, the Zn decrease in the leachates was most elevated, showing >2500 μg/l in the leachates of contaminated soil and 76-173 μg/l in the OPC experiment. Finally, when H(3)PO(4) was added, Zn was mobilized.

  19. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    USGS Publications Warehouse

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests

  20. Stabilization of Thermoelectric Properties of the Cu/Bi0.48Sb1.52Te3 Composite for Advantageous Power Generation

    NASA Astrophysics Data System (ADS)

    Xie, Dewen; Xu, Jingtao; Liu, Zhu; Liu, Guoqiang; Shao, Hezhu; Tan, Xiaojian; Jiang, Haochuan; Jiang, Jun

    2016-09-01

    Bi2Te3 thermoelectric materials have been developed for refrigeration around room temperature. But the ZT values decrease quickly above 400 K, which need to be improved for applications in power generation. In the present work, P-type Cu/BiSbTe alloys have been prepared via a zone melting method followed by spark plasma sintering. Due to the effects of Cu powders, the as-prepared materials exhibit a shift of the peak Seebeck coefficient value towards higher temperature and suppressed lattice thermal conductivity with increasing Cu powders. A peak ZT value as high as 0.87 has been obtained around 500 K in the BiSbTe alloy with 1 wt.% Cu powder addition, and the ZT values stabilize above 0.8 from 375 K to 550 K. This high and stable value for BiSbTe alloys at such a high temperature is very attractive for its application in power generation devices.

  1. Stabilization of Thermoelectric Properties of the Cu/Bi0.48Sb1.52Te3 Composite for Advantageous Power Generation

    NASA Astrophysics Data System (ADS)

    Xie, Dewen; Xu, Jingtao; Liu, Zhu; Liu, Guoqiang; Shao, Hezhu; Tan, Xiaojian; Jiang, Haochuan; Jiang, Jun

    2017-05-01

    Bi2Te3 thermoelectric materials have been developed for refrigeration around room temperature. But the ZT values decrease quickly above 400 K, which need to be improved for applications in power generation. In the present work, P-type Cu/BiSbTe alloys have been prepared via a zone melting method followed by spark plasma sintering. Due to the effects of Cu powders, the as-prepared materials exhibit a shift of the peak Seebeck coefficient value towards higher temperature and suppressed lattice thermal conductivity with increasing Cu powders. A peak ZT value as high as 0.87 has been obtained around 500 K in the BiSbTe alloy with 1 wt.% Cu powder addition, and the ZT values stabilize above 0.8 from 375 K to 550 K. This high and stable value for BiSbTe alloys at such a high temperature is very attractive for its application in power generation devices.

  2. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt.

    PubMed

    Kisku, Ganesh Chandra; Pandey, Poonam; Negi, Mahendra Pratap Singh; Misra, Virendra

    2011-11-01

    Uptake and accumulation of metals in crops may cause possible health risks through food chain. A field survey was conducted to investigate the accumulation of potentially toxic metals contamination in soil and plants irrigated with complexed industrial effluents. Concentration of Zn, Cu and Pb was 205-255,101-130,118-177 microg g(-1) in rhizosphere soils and 116-223, 57-102 and 63-95 microg g(-1) d. wt. in root and 95-186, 44-75 and 27-58 microg g(-1) d. wt. in shoot, respectively. The trend in Cu and Pb was in the order: soil > root > shoot > seed while in Zn it was soil > root > seed > shoot. Roots accumulated a larger fraction of soil Cu (70%) > Zn (67%) > Pb (54%). Bioaccumulation coefficient of soil to root ranged from 51-98 for Zn, 54-85 for Cu and 43-63 for Pb.Analysis of variance showed marginal change in bioaccumulation coefficient, noticed between plants (p > 0.05) while it varied significantly (p < 0.01) between tissues and metals. It increased from root to seed/fruit (root > shoot > seed/fruit) while decreased between metals from Zn to Pb (Zn > Cu > Pb). Out of the three, two Cu and Pb accumulated to phyotoxic levels while Zn was within threshold limit of phytotoxicity.

  3. (Hg, Sb)Ba2Ca2Cu3O8+δ thick films on YSZ substrates

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Lam, C. C.; Peacock, G. B.; Hyatt, N. C.; Gameson, I.; Edwards, P. P.; Shields, T. C.; Abell, J. S.

    2000-02-01

    Superconducting thick films of (Hg, Sb)Ba2Ca2Cu3O8+icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> have been fabricated on polycrystalline yttria-stabilized-zirconia substrates utilizing an Hg-free precursor film reacted with Hg vapour, released from a solid Hg source, in a sealed quartz tube. The resulting films have been studied by x-ray diffraction, scanning electron microscopy, ac susceptibility and resistance measurement techniques. A high quality Hg(Sb)-1223 superconducting thick film on YSZ can be fabricated by using a pre-melted Hg-free precursor film. The zero resistance superconducting transition temperature in the post-growth oxygenated thick film is in excess of 130 K and the transport critical current density for the film is 510 A cm-2 at 77 K.

  4. New dielectric ceramics Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn) with the pyrochlore structure

    SciTech Connect

    Lambachri, A.; Monier, M.; Mercurio, J.P.; Frit, B.

    1988-04-01

    Dielectric ceramics have been obtained by natural sintering of pyrochlore phases with general formula Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn). Low frequency dielectric characteristics have been studied with respect to the processing conditions: sintering without additive and in the presence of some low melting compounds (PbO, Pb/sub 5/Ge/sub 3/O/sub 11/, Bi/sub 12/PbO/sub 19/ and Bi/sub 12/CdO/sub 19/). The dielectric constants of these ceramics lie between 30 and 60, the dielectric losses range from 10 to 30.10/sup -4/ and the temperature coefficient of the dielectric constants (20 - 100/sup 0/C) can be tailored by means of additives in the +- 30 ppm K/sup -1/ range.

  5. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  6. Monte-Carlo simulation of {Pb}/{Cu (100) } surface superstructures

    NASA Astrophysics Data System (ADS)

    Tan, S.; Ghazali, A.; Lévy, J.-C. S.

    1997-04-01

    Three surface superstructures of {Pb}/{Cu (100) } at low lead coverage are well known experimentally: c(4 × 4),c(2 × 2) and c(5√2×√2)R45°. The present study consists in (i) using generalized Lennard-Jones pair potentials for lead-lead and copper-copper interactions fitted on structural and elastic bulk properties, (ii) deriving an effective potential for lead-copper and (iii) developing a Monte-Carlo extensive relaxation of superstructure models. The MC simulations reveal the stability of these approximate superstructures and yield structural details that are all observed in STM and LEED experiments: the adlayer corrugation, surface alloying, structural modulations as well as PbPb and PbCu spacings. The simulated results on structures and on melting temperatures are in close agreement with experimental data.

  7. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  8. Nanocomposites from Solution-Synthesized PbTe-BiSbTe Nanoheterostructure with Unity Figure of Merit at Low-Medium Temperatures (500-600 K).

    PubMed

    Xu, Biao; Agne, Matthias T; Feng, Tianli; Chasapis, Thomas C; Ruan, Xiulin; Zhou, Yilong; Zheng, Haimei; Bahk, Je-Hyeong; Kanatzidis, Mercouri G; Snyder, Gerald Jeffrey; Wu, Yue

    2017-03-01

    A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi0.7 Sb1.3 Te3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  10. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete

    NASA Astrophysics Data System (ADS)

    Solpuker, U.; Sheets, J.; Kim, Y.; Schwartz, F. W.

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH < 8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH = 4.3 ± 0.1) for 190 h. The effluent was highly alkaline (pH ~ 10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3 ± 0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  11. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization.

  12. Microstructure-property correlations in the Bi(Pb)-Sr-Ca-Cu-O superconducting system

    SciTech Connect

    Ramesh, R.; Green, S. M.; Mei, Y.; Manzi, A. E.; Luo, H. L.

    1989-08-01

    The microstructure of solid-state processed (Bi,Pb)-Sr-Ca-Cu-O ceramics was characterized using transmission electron microscopy techniques. A strong sensitivity of the transport properties to small deviations in the nominal Bi-Ca ratio is evidenced. Significant differences in the microstructure are shown to correlate to the changes in the transport properties. It is suggested that the microstructure can be predicted by combining the results of resistivity, Meissner, and shielding experiments.

  13. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    PubMed

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  14. Pb, Cu and Cd distribution in five estuary systems of Marche, central Italy.

    PubMed

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Libani, Giulia; Scarponi, Giuseppe

    2015-07-15

    Heavy metals are subjected to monitoring in estuarine and marine water by the European Union Water Framework Directive, which requires water body health to be achieved by 2021. This is the first survey of heavy metals content in five estuaries of Marche, a region in central Italy. Results showed that total Pb and Cu concentrations decreased by 70-80%, from 1000-2000 to 100-200 ng L(-1) (Pb) and from 2000-3000 to 500-1000 ng L(-1) (Cu) from river to sea. Cd was consistently 20-40 ng L(-1). Dissolved Pb and Cu concentrations declined by 50% and 70% respectively passing from oligohaline to euhaline water, from 150 to 70 ng L(-1) and from 2000-1000 to 600-400 ng L(-1). Cd decreased slightly from ∼20 to ∼10 ng L(-1). Although such concentrations are in the range allowed by the Water Framework Directive, they far exceed (up to 10×) the ground content ceiling set for 2021.

  15. Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines.

    PubMed

    Coleman, Nichola J; Lee, William E; Slipper, Ian J

    2005-05-20

    The crushing of reclaimed concrete-based demolition waste to produce recycled aggregate gives rise to a large volume of cement-rich fine material for which market development would be beneficial. It was envisaged that this fine fraction may prove to be an effective sorbent for aqueous heavy metal species by virtue of its ion exchangeable phases and high pH. A batch sorption study confirmed that crushed concrete, in the particle size range 1-2 mm, successfully excluded Cu2+ (35 mg g(-1)), Zn2+ (33 mg g(-1)) and Pb2+ (37 mg g(-1)) from aqueous media. Subsequent distilled water leaching of the metal-laden concrete particles indicated that 1.9, 0.9 and 0.2% of the bound metals, Cu2+, Zn2+ and Pb2+, respectively, were readily soluble. Scanning electron microscopy revealed that the removal of Cu2+ and Zn2+ arose from surface precipitation reactions, whereas, the principal mechanism of uptake of Pb2+ was found to be by diffusion into the cement matrix. The metal ion removal efficiency of crushed concrete fines is compared with those of other low cost sorbents and potential applications which may exploit this sorptive property are also discussed.

  16. Sorption of Cu, Pb and Cr on Na-montmorillonite: competition and effect of major elements.

    PubMed

    Zhu, Jun; Cozzolino, Vincenza; Pigna, Massimo; Huang, Qiaoyun; Caporale, Antonio Giandonato; Violante, Antonio

    2011-07-01

    The competitive sorption among Cu, Pb and Cr in ternary system on Na-montmorillonite at pH 3.5, 4.5 and 5.5 and at different heavy metal concentrations, and the effect of varying concentrations of Al, Fe, Ca and Mg on the sorption of heavy metals were studied. Competitive sorption of Cu, Pb and Cr in ternary system on montmorillonite followed the sequence of Cr≫Cu>Pb. Moreover, the competition was weakened by the increase of pH while was intensified by the increase of heavy metal concentration. The sorption of heavy metal on montmorillonite was inhibited by the presence of Ca and Mg, while Al and Fe showed different patterns in affecting heavy metal sorption. Aluminum and Fe generally inhibited the sorption of heavy metal when the pH and/or concentration of major elements were relatively low. However, promoting effects on heavy metal sorption by Al and Fe were found at relatively high pH and/or great concentration of major elements. The inhibition of major elements on heavy metal sorption generally followed the order of Al>Fe>Ca⩾Mg, while Fe was more efficient than Al in promoting the sorption of heavy metals. These findings are of fundamental significance for evaluating the mobility of heavy metals in polluted environments.

  17. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    PubMed

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  18. Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Hussain, Arshad; Ahmed, R.; Ali, N.; Butt, Faheem K.; Shaari, A.; Shamsuri, W. N. Wan; Khenata, R.; Prakash, Deo; Verma, K. D.

    2016-01-01

    Copper antimony sulfide (CuSbS2) thin films were fabricated by combinatorial thermal evaporation technique on well cleaned glass substrates. The deposited thin films were annealed in argon gas atmosphere for 1 h at temperature range of 150-350 °C. The effect of annealing temperature on structural, morphological, optical and electrical properties was studied using the different characterization techniques. The XRD analysis confirmed the crystallinity of the obtained samples with CuSbS2 phase in chalcostibite structure. Optical properties of the deposited samples showed good response in the visible and NIR region, envisaging the potential of CuSbS2 as an efficient solar cell material. The optical band gap of CuSbS2 thin films was measured to be 1.5 eV. A decrease (12.5-1.43 KΩ-cm) was observed for the resistivity of samples with the increase in annealing temperature. The plot of sheet resistance with annealing temperature confirmed the uniformity of samples. These thin films were found as a sustainable substitute material for the absorber layer in conventional thin film solar cell system, because of the abundance and low cost of its constituent elements. This study opens new avenue of research for scalable synthesis of CuSbS2 thin films for solar cell and photovoltaic applications.

  19. On the low-temperature growth of Pb on Cu (100)

    NASA Astrophysics Data System (ADS)

    Bocquet, F.; Robert, S.; Gauthier, S.; Duvault, J. L.; Klein, J.

    1997-12-01

    The morphology and structure of Pb deposits on Cu(100) between 150 and 220 K is investigated using low-energy electron diffraction (LEED), auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). It is found that Pb grows along a <111> axis, with Pb<110> parallel to Cu<100>. In the surface plane, this relationship of epitaxy induces tensile stress of 3.1% in the direction of the common axis and compressive stress of -0.8% in the perpendicular direction. Starting from the wetting monolayer made above room temperature, the growth proceeds by a three regime sequence. The growth of a complete bilayer is followed by a quasi layer-by-layer regime which switches, at a temperature-dependent critical coverage, into a three-dimensional pyramidal growth mode. LEED observations suggest that the stresses are fully relaxed by the bilayer. These results are shown to be in good agreement with published thermal energy atom scattering (TEAS) data obtained on the same system. It is shown that the transition from the quasi layer-by-layer regime to the three-dimensional pyramidal growth mode is triggered by the development of islands with a triangular shape, which results in a limitation of the mass transport between atomic Pb layers.

  20. Particulate contacts to Si and CdTe: Al, Ag, Hg-Cu-Te, and Sb-Te

    NASA Astrophysics Data System (ADS)

    Schulz, Douglas L.; Ribelin, Rosine; Curtis, Calvin J.; Ginley, David S.

    1999-03-01

    Our team has been investigating the use of particle-based contacts in both Si and CdTe solar cell technologies. First, in the area of contacts to Si, powders of Al and Ag prepared by an electroexplosion process have been characterized by transmission electron microscopy (TEM), TEM elemental determination X-ray spectroscopy (TEM-EDS), and TEM electron diffraction (TEM-ED). These Al and Ag particles were slurried and tested as contacts to p- and n-type silicon wafers, respectively. Linear current-voltage (I-V) was observed for Ag on n-type Si, indicative of an ohmic contact, whereas the Al on p-type Si sample was non-ideal. A wet-chemical surface treatment was performed on one Al sample and TEM-EDS indicated a substantial decrease in the O contaminant level. The treated Al on p-type Si films exhibited linear I-V after annealing. Second, in the area of contacts to CdTe, particles of Hg-Cu-Te and Sb-Te have been applied as contacts to CdTe/CdS/SnO2 heterostructures prepared by the standard NREL protocol. First, Hg-Cu-Te and Sb-Te were prepared by a metathesis reaction. After CdCl2 treatment and NP etch of the CdTe layer, particle contacts were applied. The Hg-Cu-Te contacted cells exhibited good electrical characteristics, with Voc>810 mV and efficiencies > 11.5% for most cells. Although Voc>800 mV were observed for the Sb-Te contacted cells, efficiencies in these devices were limited to 9.1% presumably by a large series resistance (>20 Ω) observed in all samples.

  1. Study of Pb-doped Ge{sub 2}Sb{sub 2}Te{sub 5} in crystalline phase using first principle calculations

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K. E-mail: surya-tr@yahoo.com; Singh, Gurinder; Kaura, Aman

    2015-08-28

    To improve the phase change characteristics of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb{sub 2}Te{sub 3} segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can control any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.

  2. Direct spectroscopic evidence for completely filled Cu 3d shell in BaCu2As2 and α-BaCu2Sb2

    SciTech Connect

    Wu, S. F.; Richard, P.; van Roekeghem, A.; Nie, S. M.; Miao, H.; Xu, N.; Qian, T.; Saparov, Bayrammurad I.; Fang, Z.; Biermann, S.; Sefat, Athena Safa; Ding, H.

    2015-06-08

    In this study, we use angle-resolved photoemission spectroscopy to extract the band dispersion and the Fermi surface of BaCu2As2 and α-BaCu2Sb2. While the Cu 3d bands in both materials are located around 3.5 eV below the Fermi level, the low-energy photoemission intensity mainly comes from As 4p states, suggesting a completely filled Cu 3d shell. The splitting of the As 3d core levels and the lack of pronounced three-dimensionality in the measured band structure of BaCu2As2 indicate a surface state likely induced by the cleavage of this material in the collapsed tetragonal phase, which is consistent with our observation of a Cu+1 oxidation state. However, the observation of Cu states at similar energy in α-BaCu2Sb2 without the pnictide-pnictide interlayer bonding characteristic of the collapsed tetragonal phase suggests that the short interlayer distance in BaCu2As2 follows from the stability of the Cu+1 rather than the other way around. In conclusion, our results confirm the prediction that BaCu2As2 is an sp metal with weak electronic correlations.

  3. Subsolidus phase relations in Na{sub 2}O-CuO-Sb{sub 2}O{sub n} system and crystal structure of new sodium copper antimonate Na{sub 3}Cu{sub 2}SbO{sub 6}

    SciTech Connect

    Smirnova, O.A.; Nalbandyan, V.B. . E-mail: vbn@rsu.ru; Petrenko, A.A.; Avdeev, M.

    2005-04-15

    Subsolidus phase relation studies in the NaSb{sub 3}O{sub 7}-Na{sub 3}SbO{sub 4}-CuO-CuSb{sub 2}O{sub 6} quadrangle of Na{sub 2}O-CuO-Sb{sub 2}O{sub n} system at 1123-1173K revealed the formation of one new compound Na{sub 3}Cu{sub 2}SbO{sub 6}. It is a superstructure derived from {alpha}-NaFeO{sub 2} type, space group C2/m, lattice constants: a=5.6759(1)A, b=8.8659(1)A, c=5.8379(1)A, {beta}=113.289(1){sup o}. All ions are in octahedral environment, but CuO{sub 6} polyhedron exhibits strong elongation due to Jahn-Teller effect (Cu-O: 2.000(2)Ax2, 2.021(2)Ax2, 2.494(3)Ax2), whereas SbO{sub 6} octahedron is almost regular. The relationship to other similar superlattices is discussed.

  4. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.

    PubMed

    Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan

    2011-01-01

    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.

  5. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    SciTech Connect

    Merizalde, Carlos; Cabrera, Jose-Maria; Prado, Jose-Manuel

    2007-04-07

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  6. Interaction Between Ni and Cu Across 95Pb-5Sn High-Lead Layer

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chung, H. Y.; Lai, Y. S.; Kao, C. R.

    2010-12-01

    Ni/95Pb-5Sn/Cu ternary diffusion couples were used to investigate the cross-interaction between Ni and Cu across a layer of 95Pb-5Sn solder. High-lead solder layers with a thickness of 100 μm or 400 μm were electroplated over Cu foils. A pure Ni layer (20 μm) was then deposited over the as-deposited high-lead solder surface. The diffusion couples were then aged at 150°C to 250°C for different periods of time. With this technique, the diffusion couples were assembled without experiencing any high-temperature process such as reflow, which would have accelerated the interaction and caused difficulties in analysis. This study revealed that massive spalling also occurred during aging even though reflow was not used. The massive spalling began with the formation of microvoids. When the microvoids had congregated into large enough voids, intermetallic compounds (Cu3Sn) started to spall from the interface. This spalling phenomenon occurred sooner with increasing temperature and decreasing solder volume.

  7. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  8. Metallic properties of Ba{sub 2}Cu{sub 3}P{sub 4} and BaCu{sub 2}Pn{sub 2} (Pn=As, Sb)

    SciTech Connect

    Saparov, Bayrammurad; Sefat, Athena S.

    2012-07-15

    We report the synthesis of ternary barium copper pnictides, Ba{sub 2}Cu{sub 3}P{sub 4} and BaCu{sub 2}Pn{sub 2} (Pn=As, Sb), and their structural, magnetic, and transport properties. They all crystallize in different structures shown by X-ray diffraction, although their structures reveal close relations. The body-centered tetragonal BaCu{sub 2}As{sub 2} adopts ThCr{sub 2}Si{sub 2}-type (I4/mmm) structure, whereas Ba{sub 2}Cu{sub 3}P{sub 4} is a copper-deficient derivative of this phase, crystallizing in the body-centered orthorhombic space group, Ibam. There are two polymorphs of BaCu{sub 2}Sb{sub 2}: {alpha}-BaCu{sub 2}Sb{sub 2} that adopts CaBe{sub 2}Ge{sub 2}-type structure; {beta}-BaCu{sub 2}Sb{sub 2} that is a 2:1 combination of CaBe{sub 2}Ge{sub 2}- and ThCr{sub 2}Si{sub 2}-type structural segments. All phases are metallic and non-magnetic. The room temperature thermal conductivity for polycrystalline BaCu{sub 2}As{sub 2} is Almost-Equal-To 2 W/(m K) and the Seebeck coefficient is Almost-Equal-To 15 {mu}V/K, which result in a small ( Almost-Equal-To 0.03) thermoelectric figure of merit. - Graphical abstract: Ternary copper pnictides of barium Ba{sub 2}Cu{sub 3}P{sub 4} and BaCu{sub 2}Pn{sub 2} (Pn=As, Sb) show metallic and non-magnetic behavior. Highlights: Black-Right-Pointing-Pointer Synthesis of Ba{sub 2}Cu{sub 3}P{sub 4} and BaCu{sub 2}Pn{sub 2} (Pn=As, Sb). Black-Right-Pointing-Pointer A new form of BaCu{sub 2}Sb{sub 2} (CaBe{sub 2}Ge{sub 2}-type) obtained and characterized. Black-Right-Pointing-Pointer The phases are metallic and non-magnetic in agreement with theory. Black-Right-Pointing-Pointer The thermal conductivity and Seebeck coefficient of BaCu{sub 2}As{sub 2} are quite low.

  9. Synthesis and characterization of the new two-dimensional Heisenberg antiferromagnet double perovskite BaLaCuSbO6.

    PubMed

    Blanco, M Cecilia; Paz, Sergio Alexis; Nassif, Vivian M; Guimpel, Julio J; Carbonio, Raúl E

    2015-06-21

    The BaLaCuSbO(6) double perovskite has been successfully synthesized by solid state reaction under an air atmosphere. Its structure was refined using powder neutron diffraction in the monoclinic space group I2/m with a 4% antisite disorder on the B cations. Magnetic measurements give signs of 2D-antiferromagnetic behaviour with TN around 64 K. The Jahn-Teller distortion produced by Cu(2+) ions favours a crystallographic tetragonal distortion and consequently the in-plane super-superexchange antiferromagnetic interactions, J(90°), are favoured over the in-plane J(180°) antiferromagnetic exchange interactions. Both, J and J' magnetic interactions have been evaluated according to a Heisenberg antiferromagnetic rectangular model using an approximation to Curie's law in powers of J/T, being |J| around 10 times stronger than |J'|.

  10. Catalytic determination of Pb(II) in the presence of Cu(II).

    PubMed

    Rustoiu-Csavdari, A; Bâldea, S; Mihai, D

    2002-09-01

    A kinetic method is presented to determine micro-molar amounts of Pb(II) from various river and wastewater samples, in the presence of trace copper. The procedure is based on the catalytic effect of both species on the oxidation of mercaptosuccinic acid by chromate in acidic media. The extent of the reaction is followed spectrophotometrically at 420 nm and pseudo-first-order rate coefficients of the rate-determining step are determined as a function of catalyst concentrations. The optimum operating conditions (ionic strength, temperature, and concentration of reagents) regarding sensitivity towards lead were established. Interference by several ionic species has been studied. The effect of Fe(III), the only severe interferent, is suppressed by complexation with 1,10-phenantroline. The bi-component calibration model employs an artificial neural network to compute the Pb(II) concentration from a k(obsd) value and the a priori-known Cu(II) concentration of the sample. Working concentration ranges are 20-2160 micro g L(-1) for Pb(II) and 80-650 micro g L(-1) for Cu(II), respectively. Detection limits are 20 micro g L(-1) Pb(II) and 80 micro g L(-1) Cu(II), respectively. The relative standard deviations (3 measurements) for four different testing points are lower than 2.5%. The method was applied to samples of river and wastewater of the mining region of Baia-Mare, Northern Romania. The results were compared to those obtained by an officially standardized AAS method. Good agreement was achieved. The method is inexpensive, fairly rapid, and sensitive. Its working range covers the exact range of concentrations usually encountered in the mentioned geographic area.

  11. Crystalline style and tissue redistribution in Perna viridis as indicators of Cu and Pb bioavailabilities and contamination in coastal waters.

    PubMed

    Yap, C K; Ismail, A; Cheng, W H; Tan, S G

    2006-03-01

    The concentrations of Cu, Pb, and Zn in the crystalline style (CS) and in the remaining soft tissues (ST) of the green-lipped mussel Perna viridis from 10 geographical sites along the coastal waters off peninsular Malaysia were determined. The CS, compared with the remaining ST, accumulated higher levels of Cu in both contaminated and uncontaminated samples, indicating that the style has a higher affinity for the essential Cu to bind with metallothioneins. The similar pattern of Cu accumulation in the different ST of mussels collected from clean and Cu-contaminated sites indicated that the detoxification capacity of the metallothioneins had not been overloaded. For Pb, higher levels of the metal in the CS than in the remaining ST were found only in mussels collected from a contaminated site at Kg. Pasir Puteh. This indicated a tissue redistribution of Pb due to its binding to metallothioneins for Pb detoxification and the potential of the CS as an indicator organ of Pb bioavailability and contamination. For Zn, the above two phenomena were not found since no obvious patterns were observed (lower levels of Zn in the CS than in the remaining ST) in contaminated and uncontaminated samples due to the mechanism of partial regulation. Generally, all the different STs studied (foot, mantle, gonad, CS, gill, muscle, and byssus) are good biomonitoring tissues for Cu and Pb bioavailabilities and contamination. Among these organs, the CS was found to be the best organ for biomonitoring Cu. The present data also suggest the use of the tissue redistribution of Pb in P. viridis as an indicator of Pb bioavailability and contamination in coastal waters.

  12. A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb(II) and Cu(II).

    PubMed

    Huang, Gailing; Wang, Dong; Ma, Shulan; Chen, Junli; Jiang, Ling; Wang, Peiyuan

    2015-05-01

    This work aimed to develop waste (i.e., sulfonated lignin) application in simulated wastewater treatment. Sulfonated lignin (LS), a byproduct of the paper industry, was intercalated into a parent host of layered double hydroxides (LDH) by swelling-restacking method. X-ray diffraction patterns of the composite confirmed that long-chain LS anions exited in the interlayer of Mg2Al-LDH in two forms: (1) a "flat" form with d003=0.88 nm; and (2) a "vertical" form with d003=9.08 nm. Results showed that the obtained Mg2Al-LS-LDH composite was highly selective and efficient for the removal of Pb(2+) and Cu(2+), especially Pb(2+), compared with the NO3-LDH precursor. The coexisting cations decreased the removal efficiency of Pb(2+) or Cu(2+) on Mg2Al-LS-LDH composite, which could be ascribed to outer-sphere sorption style, and the effect order of cations is Li(+)>Ca(2+)>K(+)>Na(+). The pseudo-second-order model appropriately described the sorption kinetics of Mg2Al-LS-LDH composite for Pb(2+) and Cu(2+). Sorption isotherms for Pb(2+) and Cu(2+) by the Mg2Al-LS-LDH composite were found to be more satisfactorily fitted by the Langmuir model than by the Freundlich one. With increased Pb(2+) or Cu(2+) concentration from 2 ppm to 200 ppm, the maximum absorption capacity of the composite toward Pb(2+) was ∼123 mg/g and that toward Cu(2+) was ∼64 mg/g. Therefore, a new, low-cost adsorbent was synthesized by utilizing the byproduct LS, which may be a potential remedy for Pb(2+) or Cu(2+) in contaminated water.

  13. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  14. Sequestration of Pb-Zn-Sb- and As-bearing incidental nanoparticles by mineral surface coatings and mineralized organic matter in soils.

    PubMed

    Schindler, Michael; Hochella, Michael F

    2017-08-16

    Nanoparticles (NPs) often play significant roles in dictating the transport, distribution, bioavailability and toxicity of contaminants in the environment. Incidental NPs (i.e. NPs of anthropogenic origin but not purposely engineered) are often overlooked in contaminant transport and fate studies; yet in many systems they dominate contaminant transport processes. Using surficial contaminated regosols from Trail, British Columbia, Canada, a metal smelting and refining area along the banks of the Columbia River, we show that sequestration of Pb-, Zn-, Sb-, and As-bearing incidental NPs is strongly influenced by their aggregation, crystal growth, and/or particle attachment to mineral surface coatings (MSC) and in mineralized organic matter (MOM). Transmission electron microscopy shows the occurrence of NPs of anglesite (PbSO4), Fe-As-phosphate, kintoreite (Pb[(Fe,Al)3(P(As)O4)(PO3(OH))(OH)6]), and franklinite (ZnFe2O4) in matrices of amorphous silica which retain different stages of their agglomeration and aggregation. Other identified nano-size phases in the MSC and MOM indicate a complex and previously unrecognized mineralogy of Pb-, Zn-, Sb-, and As-phase in surficial soils. Mineralogical complexity and the various sequestration processes observed in this study indicate a new dimension of nano-scale processes on mineral surfaces and organic matter that have been previously overlooked when studying the fate of contaminants with bulk-analytical tools such as micro-X-ray diffraction or synchrotron-based spectroscopic methods.

  15. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems?

    PubMed

    Cardwell, Rick D; Deforest, David K; Brix, Kevin V; Adams, William J

    2013-01-01

    In this review, we sought to assess from a study of the literature whether five in organic metals (viz., cadmium, copper, lead, nickel, and zinc) bio magnify in aquatic food webs. We also examined whether accumulated metals were toxic to consumers/predators and whether the essential metals (Cu and Zn and possibly Ni) behaved differently from non-essential ones (Cd and Pb). Biomagnification potential was indexed by the magnitude of single and multiple trophic transfers in food chains. In this analysis, we used three lines of evidence-laboratory empirical, biokinetic modeling, and field studies-to make assessments. Trophic transfer factors, calculatedfrom lab studies, field studies, and biokinetic modeling, were generally congruent.Results indicated that Cd, Cu, Pb, and Zn generally do not biomagnify in food chains consisting of primary producers, macro invertebrate consumers, and fish occupying TL 3 and higher. However, bio magnification of Zn (TTFs of 1-2) is possible for circumstances in which dietary Zn concentrations are below those required for metabolism. Cd, Cu, Ni, and Zn may biomagnify in specific marine food chains consisting of bivalves, herbivorous gastropods, and barnacles at TL2 and carnivorous gastropods at TL3. There was an inverse relationship between TTF and exposure concentration for Cd, Cu, Pb, and Zn, a finding that is consistent with previous reviews of bioconcentration factors and bioaccumulation factors for metals. Our analysis also failed to demonstrate a relationship between the magnitude of TTFsand dietary toxicity to consumer organisms. Consequently, we conclude that TTFs for the metals examined are not an inherently useful predictor of potential hazard(i.e., toxic potential) to aquatic organisms. This review identified several uncertainties or data gaps, such as the relatively limited data available for nickel, reliance upon highly structured food chains in laboratory studies compared to the unstructured food webs found in nature, and

  16. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  17. Physical, Optical and Electron paramagnetic resonance studies of PbBr2-PbO-B2O3 glasses containing Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2016-09-01

    The glasses with the composition PbBr2-PbO-B2O3 glasses containing Cu2+ ions were prepared by melt quenching technique. X-ray diffractograms revealed the amorphous nature of the glasses. Density and molar volume were determined. Density is found to decrease while the molar volume increases with increase of PbBr2 content. The optical absorption spectra exhibited a broad band corresponding to the d- d transition of Cu2+ ion. From optical absorption spectra Eopt and Urbach energies were determined. Electron Paramagnetic Resonance (EPR) studies were carried out by introducing Cu2+ as the spin probe. Glasses containing transition metal(TM) ions such as Cu2+ give the information about the structure and the site symmetry around the TM ions. EPR spectra of all the glass samples were recorded at X-band frequencies. From the EPR spectra spin-Hamiltonian parameters were evaluated. It was observed that g∥ >g±>ge (2.0023) and A∥>A±. From this values it is concluded that the ground state of Cu2+ is dx2-y2 (2B1g) and the site symmetry around Cu2+ ion is tetragonally distorted octahedral. From the EPR and Optical data bonding coefficients were evaluated. The in plane o-bonding(α2) is moderately ionic while out of plane 7t-bonding(β2) and in plane 7t-bonding(β1 2) are ionic nature

  18. Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities.

    PubMed

    Yang, Zhong-yi; Chen, Fu-hua; Yuan, Jian-gang; Zheng, Zheng-wei; Wong, Ming-hung

    2004-01-01

    Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities were assessed by a seed-suspending seedbed(SSS) approach. The results showed that the SSS approach was suitable for testing the tolerance of a plant to the stress of toxic metals. The endpoints include seed germination success, straightened radicle and hypocotyl of the seedlings from the seeds. The measurements could be done easily and accurately. It was found that the elongation of radicle was the most sensitive indicator to the stress of heavy metals among the endpoints. When exposure to lower or medium concentrations of Pb, Zn, and Cd, the development of the lateral roots were favorable. Species of S. rostrata was more tolerant than S. cannabina to the heavy metals, especially to Zn and Cd. The ED50 of Pb, Zn, Cu and Cd were 32.90, 5.32, 4.40 and 12.00 microg/ml for S. rostrata, respectively, and they were 30.11, 2.87, 4.05 and 4.94 microg/ml respectively for S. cannabina.

  19. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  20. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    PubMed

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated

  1. Materials Data on CuSbPbS3 (SG:31) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-05

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  2. Is increasing industrialization affecting remote ecosystem health in the South Americas? Insights from ocean surface water measurements of As, Sb and Pb from a GEOTRACES transect

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Salaun, Pascal; Van den Berg, Stan; Bi, Zaoshun

    2014-05-01

    Continued industrial development of the South Americas with increasing atmospheric emission of toxic trace metals has lead to a growing concern about possible effects on pristine ecosystem health. Concentration measurements of trace metals in ocean surface waters in the North Atlantic have successfully revealed the global extent of atmospheric pollution in the Northern Hemisphere during economical growth in the USA and Europe, suggesting a similar approach can be applied to the Southern Hemisphere. To this end, we determined concentrations of lead (Pb), antimony (Sb) and arsenic (As) using voltammetry in surface water samples of the South Atlantic Ocean collected during the third leg of the GEOTRACES West Atlantic Cruise. These elements are volatile and therefore most likely suitable tracer elements of industrial emissions from South America. The samples were not filtered and the solutions were acidified and UV digested. Total concentrations of Pb were detected. Detected As levels correspond to the sum of inorganic species (AsIII + AsV) plus the mono methyl arsenic acid (MMA) while the dimethyl arsenic acid (DMA) is not detected in such conditions. For Sb, detected levels correspond at least to the sum of inorganic fractions (SbIII + SbV). The measured concentrations for Pb varied from 6 to 23 pM. Concentrations were highest at -35° latitude and lowest at -40° and -50° latitude. We found a decreasing trend from about -35° latitude southwards. The average concentrations of As was 20 nM and of Sb 1.2 nM. Arsenic showed a more significant north to south trend than Sb. Arsenic concentration was highest at -23 ° latitude (21 nM) and the lowest at -43 ° latitude (17.7 nM). Antimony concentration was highest at -31 ° latitude (1.5 nM) and lowest at -35 ° latitude (1.0 nM). Our preliminary data suggests that the major industrial centres in Brazil (i.e., Sao Paolo, Rio de Janeiro) and Argentina (i.e., Buenos Aires) affect atmospheric metal fluxes to remote

  3. The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater

    NASA Astrophysics Data System (ADS)

    Balistrieri, L. S.; Murray, J. W.

    1982-07-01

    The adsorption of Cu, Pb, Zn, and Cd on goethite (αFeOOH) from NaNO 3 solutions and from major ion seawater was compared to assess the effect of the major ions of seawater (Na, Mg, Ca, K, Cl, and SO 4) on the adsorption behavior of the metals. Magnesium and sulphate are the principal seawater ions which enhance or inhibit adsorption relative to the inert system. Their effect, as determined from the site-binding model of Davis et al. (1978), was a combination of changing the electrostatic conditions at the interface and decreasing the available binding sites. The basic differences between the experimental system of major ion seawater and natural seawater were examined. It was concluded that: 1) although the experimental metal concentrations in major ion seawater were higher than those found in natural seawater, estimates of the binding energy of Cu, Zn, and Cd with αFeOOH for natural seawater concentrations could be made from the data, 2) Cu, Pb, Zn, and Cd showed little or no competition for surface sites on goethite, and 3) the presence of carbonate, phosphate, and silicate had little or no effect on the adsorption of Zn and Cd on goethite.

  4. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L.

    PubMed

    Liu, Donghua; Xue, Ping; Meng, Qingmin; Zou, Jing; Gu, Jiegang; Jiang, Wusheng

    2009-04-01

    The effects of lead and copper on the arrangement of microtubule (MT) cytoskeleton in root tip cells of Allium sativum L. were investigated. Batch cultures of garlic were carried out under defined conditions in the presence 10(-4) M Pb/Cu of various duration treatments. With tubulin immunolabelling and transmission electron microscopy (TEM), we found four different types of MT structures depending on the cell cycle stage: the interphase array, preprophase band, mitotic spindle and phragmoplast were typical for the control cells. Pb/Cu affected the mechanisms controlling the organization of MT cytoskeleton, and induces the following aberrations in interphase and mitotic cells. (1) Pb/Cu induced the formation of atypical MT arrays in the cortical cytoplasm of the interphase cells, consisting of skewed, wavy MT bundles, MT fragments and ring-like tubulin aggregations. (2) Pb/Cu disordered the chromosome movements carried out by the mitotic spindle. The outcome was chromosome aberrations, for example, chromosome bridges and chromosome stickiness, as well as inhibition of cells from entering mitosis. (3) Depending on the time of exposure, MTs disintegrated into shorter fragments or they completely disappeared, indicating MT depolymerization. (4) Different metals had different effects on MT organization. MTs were more sensitive to the pressure of Cu ions than Pb. Moreover, TEM observations showed that the MTs were relatively short and in some places wavy when exposed to 10(-4) M Pb/Cu solutions for 1-2 h. In many sections MTs were no longer visible with increasing duration of treatment (>4 h). Based on these results, we suggested that MT cytoskeleton is primarily responsible for Pb/Cu-associated toxicity and tolerance in plants.

  5. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3

    DOE PAGES

    Yang, Dingfeng; Yao, Wei; Yan, Yanci; ...

    2017-06-09

    The development of new routes for the production of thermoelectric materials with low-cost and high-performance characteristics has been one of the long-term strategies for saving and harvesting thermal energy. We report a new approach for improving thermoelectric properties by employing the intrinsically low thermal conductivity of a quasi-one-dimensional (quasi-1D) crystal structure and optimizing the power factor with aliovalent ion doping. As an example, we demonstrated that SbCrSe3, in which two parallel chains of CrSe6 octahedra are linked by antimony atoms, possesses a quasi-1D property that resulted in an ultra-low thermal conductivity of 0.56 W m-1 K-1 at 900 K. Aftermore » maximizing the power factor by Pb doping, the peak ZT value of the optimized Pb-doped sample reached 0.46 at 900 K, which is an enhancement of 24 times that of the parent SbCrSe3 structure. The mechanisms that lead to low thermal conductivity derive from anharmonic phonons with the presence of the lone-pair electrons of Sb atoms and weak bonds between the CrSe6 double chains. Our results shed new light on the design of new and high-performance thermoelectric materials.« less

  6. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.

    PubMed

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A; Chen, Zhuoying

    2015-05-29

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance.

  7. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  8. Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays.

    PubMed

    Yang, Feng; Xi, Jinfang; Gan, Li-Yong; Wang, Yushu; Lu, Shuangwei; Ma, Wenli; Cai, Fanggong; Zhang, Yong; Cheng, Cuihua; Zhao, Yong

    2016-02-15

    Charge transfer is important for the performance of a photoelectrochemical cell. Understanding photogenerated charge accumulation and separation is mandatory for the design and optimisation of photoelectrochemical cells. Unique stacked and embedded heterostructure of Sb2S3/TiO2 nanotube arrays (NTAs) was fabricated through anodic oxidation with the hydrothermal method. Surface photovoltage spectroscopy, phase spectra and photoluminescence measurements were performed to explore the mechanism by which the inorganic hole transport material CuI affects the charge transfer and photoelectrochemical properties of Sb2S3/TiO2 heterostructure NTAs. The interfacial separation and transport of photoinduced charge carriers were also examined by applying current-voltage characteristics (J-V), incident-photon-to-current conversion efficiency (IPCE) and Mott-Schottky techniques. Results show that CuI acts not only as a hole-conducting and electron-blocking material but also as a light-absorbing material in the ultraviolet range. Efficient charge transfer processes exist in CuI/Sb2S3/TiO2 heterostructure NTAs. The photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure NTAs is dramatically improved. Under AM 1.5G illumination at 100mW/cm(2), the short-circuit current density and open-circuit voltage are 3.51mA/cm(2) and 0.87V, respectively. The photoelectric conversion efficiency of CuI/Sb2S3/TiO2 heterostructure NTAs (0.95%) is 36% higher than that of Sb2S3/TiO2 heterostructure NTAs (0.66%). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pb/Cu (100) surface superstructures: Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tan, S.; Ghazali, A.; L´vy, J. C. S.

    1997-12-01

    Monte Carlo simulations with simple pair potentials of the Lennard-Jones type enable us to show the stability of the three experimentally known superstructures of Pb/Cu (100) at different lead submonolayer coverages: c(4 × 4)atθ = 3/8,c(2 × 2)atθ = 0.5 and c(5√2 × √2)R45° at θ = 0.6. In addition, numerous details of these superstructures, including interatomic distances, surface alloying, corrugation and weak modulation are obtained numerically in quantitative and qualitative accord with the experimentally observed and measured data. By molecular dynamics the melting of these structures is studied from the temperature dependence of the Pb-atom average energy and diffusion coefficient, with evidence for a first-order transition for every superstructure. The dispersion of surface phonons is also derived.

  10. Concentrations of Pb, Zn, and Cu in Taraxacum spp. in relation to urban pollution

    SciTech Connect

    Cook, C.M.; Lanaras, T.; Sgardelis, S.P.; Pantis, J.D. )

    1994-08-01

    The combustion of petroleum fuel and exhaust emissions are major sources of atmospheric pollution in cities which result in the deposition of toxic substances, particularly heavy metals, in the surface layers of soils. Lead in particular enters the environment from the use of tetraethyl lead as an antiknock agent for petrol engines constituting 21% of fine particles emitted from cars burning leaded petrol. Antiwear protectants incorporated in lubricants often contain Cd, Cr, Cu, Hg, Ni, Pb and/or Zn which are also released into the environment by inefficient engines and irresponsible dumping of engine oils. Zn from tyre wear and Cu from diesel engines also add considerably to the environmental metal burden. Lowering of the permitted lead content of petrol and the growing use of unleaded fuel are expected to lead to reductions in the environmental lead burden, however, until unleaded fuel becomes universally accepted lead contamination, particularly of roadside soils and vegetation is a major cause for concern. A direct relationship between car exhaust, the Pb content of needles of Abies alba and reduced growth has been observed and can extend hundreds of metres from major highways. Lead tolerance has been observed in higher plants growing mine waste soils and to a lesser extent on lead-contaminated roadside soils. Automobiles which are responsible for line sources of pollution emissions in rural and suburban areas have a more far-reaching impact on roadside vegetation, already under considerable stress, in urban areas. Information on heavy metal effects on vegetation in urban environments however, are scarce. Modeling and multivariate analysis of a few of the factors involved have provided only limited data related to plant performance in these complex environments. Therefore in this study, the extent of heavy metal pollution by Pb, Zn, Cu and Cd in soils and in dandelion plants in the city of Thessaloniki has been examined. 20 refs., 2 figs., 3 tabs.

  11. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil.

    PubMed

    Mleczek, Mirosław; Rutkowski, Paweł; Goliński, Piotr; Kaczmarek, Zygmunt; Szentner, Kinga; Waliszewska, Bogusława; Stolarski, Mariusz; Szczukowski, Stefan

    2017-02-01

    The aim of the study was to estimate the efficiency of copper (Cu), lead (Pb) and zinc (Zn) phytoextraction by 145 Salix taxa cultivated in an area affected by industrial activity. Survivability and biomass of plants were also analyzed. The highest Cu, Pb and Zn content in shoots was 33.38 ± 2.91 (S. purpurea × viminalis 8), 24.64 ± 1.97 (S. fragilis 1) and 58.99 ± 4.30 (S. eriocephala 7) mg kg(-1) dry weight, respectively. In the case of unwashed leaves, the highest content of these metals was 135.06 ± 8.14 (S. purpurea 26), 67.98 ± 5.27 (S. purpurea 45) and 142.56 ± 12.69 (S. alba × triandra 2) mg kg(-1) dw, while in washed leaves it was 106.02 ± 11.12 (S. purpurea 45), 55.06 ± 5.75 (S. purpurea 45) and 122.87 ± 12.33 (S. alba × triandra 2) mg kg(-1) dw, respectively. The differences between the highest and lowest values for Cu, Pb and Zn were 545%, 20500% and 535% in shoots; 2692%, 2560% and 7500% in unwashed leaves; and 3286%, 2221% and 6950% in washed leaves, respectively. S. acutifolia was able to effectively accumulate all three metals jointly, producing shoots that were well developed in both length and diameter when compared with the other tested willows-an ability that would suggest its high suitability for practical application.

  12. Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess.

    PubMed

    Zang, Fei; Wang, Shengli; Nan, Zhongren; Ma, Jianmin; Li, Yepu; Zhang, Qian; Chen, Yazhou

    2017-08-01

    The in situ immobilization of metal-contaminated sediment, using various amendments, has attracted great attention owing to their cost-effectiveness. The present study investigated the effectiveness of Chinese loess on Cu, Zn, Cd and Pb stabilization by decreasing their bioavailability in contaminated sediment. The loess was mixed with the sediment in doses of 0, 0.5, 1, 2, 5, 10 and 20 kg. Approximately 70 d after loess application, the effectiveness was evaluated using the Tessier sequential extraction procedure and single extractants, including ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), diethylenetriaminepentaacetic acid (DTPA), calcium chloride (CaCl2) and hydrochloric acid (HCl). The results indicated that the loess can effectively transform Cu from the carbonate fraction into the residual fraction when the loess dose was ≥5 kg. However, loess had little effect on Zn, Cd and Pb immobilization. Correlation analysis showed that these four extractants can provide a good indication of the toxicity of Cu, Zn, Cd and Pb in the amended sediment. Additionally, the organic matter content in the amended sediment decreased by 1.4% for CK, 1.6% for L0.5, 1.7% for L1, 1.5% for L2, 1.5% for L5, 1.9% for L10 and 1.9% for L20 (CK: untreated sediment; L0.5 to L20 represent loess doses of 0.5, 1, 2, 5, 10 and 20 kg, respectively) compared to the initial organic matter content in the unamended sediment, which may increase the atmospheric carbon dioxide owing to the degradation of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    SciTech Connect

    Singh, Tejbir Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-28

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  14. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  15. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  16. The exciton absorption spectrum of thin CuPb3Br7 superionic conductor films

    NASA Astrophysics Data System (ADS)

    Yunakova, O. N.; Yunakov, N. N.; Kovalenko, E. N.; Kovalenko, V. V.

    2016-09-01

    A study of the absorption spectrum of thin CuPb2Br7 films in the 2-6 eV spectral and 90-500 K temperature ranges. It is shown that the exciton spectrum of the compound is associated with transitions in the lead ion. The temperature dependence of the spectral position and half-width of the low-frequency exciton band contains features associated with phase transitions γ → β (Tc1 = 159 K) and β → α (Tc2 = 434 K) and the disordering of the cation sublattice of the compound in the transition to the superionic state.

  17. Preparation of Bulky Bi(Pb)-Sr-Ca-Cu-O Superconductor by Magnetized Twin-Roll

    NASA Astrophysics Data System (ADS)

    Kawahara, Nobuaki; Kawabata, Sanemasa; Enami, Hiroyoshi; Shinohara, Toshiyuki; Hoshizaki, Hiroki; Hasegawa, Masashi; Asai, Shigeo; Imura, Toru

    1990-02-01

    A highly oriented (Bi, Pb)2Sr2Ca2Cu3Ox bulk superconductor has been prepared by magnetized twin-roll processing. In these bulks, plate-like crystal grains were highly oriented by a magnetic and mechanical force. The grain c-axes were parallel to the magnetic field and pressing directions. In fact, both critical current density (Jc) and orientation degree of the sample rolled under 2 T were higher than those of the sample rolled with no magnetic field. The magnetized twin-roll processing is effective not only in enhancing grain-orientation but also in packing to improve Jc.

  18. Synthesis, crystal and electronic structure of the quaternary sulfides Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi)

    SciTech Connect

    Kussainova, Ardak M.; Akselrud, Lev G.; Suen, Nian-Tzu; Voss, Leonard; Stoyko, Stanislav; Bobev, Svilen

    2016-01-15

    The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters for Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.

  19. Calculation of Liquid-Solid Interfacial Free Energy in Pb-Cu Binary Immiscible System

    NASA Astrophysics Data System (ADS)

    Li, Hong-shan; Zhou, Sheng-gang; Cao, Yong

    2016-11-01

    Based on the solid-liquid interfacial free energy theory of the complex Warren binary & pseudo-binary system and through the simplification of it by taking Pb-Cu binary system as an example, the physical model for it in binary immiscible system can be obtained. Next, its thermodynamic formula is derived to obtain a theoretical formula that only contains two parameters, and comparisons are made with regard to γSL calculated values and experimental values of MPE (multiphase equilibrium method) under several kinds of temperatures. As manifested in the outcomes, the improved physical model and theoretical formula will become not only easy to understand but also simple for calculation (the calculated value of γSL depends on two parameters, i.e. temperature and percentage composition of Cu atom). It can be treated as the foundation of application for the γSL calculation of liquid-solid interfacial free energy in other immiscible systems.

  20. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  1. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  2. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    PubMed

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu(+2), Hg(+2), Pb(+2), and Zn(+2)). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  3. Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectrometry.

    PubMed

    Schiavo, Daniela; Neira, José Y; Nóbrega, Joaquim A

    2008-09-15

    The applicability of thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was evaluated for direct determination of Cu, Cd and Pb in wines and grape juices. The developed procedure does not require preliminary acid digestion of the samples. The optimum conditions for determination of Cu, Cd and Pb in wines were studied and the performance was compared to those typically obtained by flame atomic absorption spectrometry (FAAS). A sample volume of 150 microL was introduced into a heated nickel tube at a flow rate of 0.54 mLmin(-1) and 0.14 molL(-1) HNO(3) was used as sample carrier flowing at 2.5 mLmin(-1) for determining all analytes. The effect of ethanol concentrations on Cu, Cd and Pb absorbance signals were studied. All determinations were carried out by adopting optimized conditions and quantification was based on the standard additions method. Limits of detection (LOD) of 12.9, 1.8 and 5.3 microgL(-1) (n=14) for Cu, Cd and Pb, respectively, were obtained for wine samples (3sigma(blank)/slope, n=14). Relative standard deviations (R.S.D., %) of 2.7, 2.1 and 2.6 for Cu, Cd and Pb, were obtained (n=6) for wine samples. The values determined for grape juice samples were similar to these ones. The analytical throughput was 45 determinations h(-1) and accuracy was checked by addition-recovery experiments.

  4. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  5. The effect of Sb-surfactant on GaInP CuPtB type ordering: assessment through dark field TEM and aberration corrected HAADF imaging.

    PubMed

    Coll, C; Barrigón, E; López-Conesa, L; Rebled, J; Barrutia, L; Rey-Stolle, I; Estradé, S; Algora, C; Peiró, F

    2017-04-03

    We report on the effect of Sb on the microstructure of GaInP layers grown by metal organic vapor phase epitaxy (MOVPE). These layers exhibit a CuPtB single variant ordering due to the intentional misorientation of the substrate (Ge(001) substrates with 6° misorientation towards the nearest [111] axis). The use of Sb as a surfactant during the GaInP growth does not modify the type of ordering, but it is found that the order parameter (η) decreases with increasing Sb flux. Dark field microscopy reveals a variation of the angle of the antiphase boundaries (APBs) with Sb amount. The microstructure is assessed through high angle annular dark field (HAADF) experiments and image simulation revealing Z-contrast loss in APBs due to the superposition of ordered domains.

  6. Diffusion coefficients for Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolite at 100-200 MPa

    NASA Astrophysics Data System (ADS)

    Berlo, Kim; Brooker, Richard; Wilke, Max

    2014-05-01

    A series of experiments have been conducted to determine the diffusivities of Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolitic melt. Diffusion experiments used two adjoining glass cylinder of the same hydrous composition, one doped with the elements of interest at ~ 100 ppm. These couples were rapidly heated to 850, 1000 and 1150°C at 100-200 MPa for a few hours. After quenching the sectioned charges were analyzed by both synchrotron XRF (The Diamond Light Source) and LA-ICP-MS (University of Oxford). The data shows excellent correlation between these two techniques. The diffusion profiles were fitted to a 1-D diffusion couple equation to determine the diffusivities and fitting to the different temperature runs defined the Arrhenius parameters. We find that for 850°C the diffusion coefficients follow the trend Tl>Pb>Cd>Zn>In>Bi>As>Sb>Mo. Additional experiments were performed with either S or Cl added (to both sides of the diffusion couple). In general S increases the diffusion rate of all metals except Mo and Sb, which diffuse slower in the presence of S. Chlorine also speeds up the diffusion of metals with the exception of In, Mo and Sb. The systematic change in diffusivities of these metals and their different behaviour in the presence of the ligands that are also observed to be significant in volcanic gases, are important in determining the distribution of these metals during degassing (e.g. MacKenzie and Canil, 2008). This is particularly important in a dynamic environment such as a volcanic conduit. There are also implications for economic exploration and well as hazard mitigation.

  7. Electrical resistivity, magnetoresistance, magnetisation, hall coefficient and excess conductivity in Pb-doped Bi-Sr-Ca-Cu oxides

    NASA Astrophysics Data System (ADS)

    Poddar, A.; Mandal, P.; Das, A. N.; Ghosh, B.; Choudhury, P.

    1989-12-01

    The electrical resistance, Meissner signal, magnetoresistance and Hall coefficient of Bi 1.75Pb 0.25Sr 2Ca 2Cu 3O x and Bi 1.5Pb 0.5Sr 2Ca 2Cu 3O x (nominal compositions) have been measured. Resistance of the Bi 1.75Pb 0.25 sample becomes zero for T≤106 K while the Bi 1.5Pb 0.5 sample shows a 65% drop in the resistance around 106 K and TR = 0 c ≈ 73 K. Powder X-ray diffraction analysis reveals that the major phase in the Bi 1.75Pb 0.25 sample is the high-T c phase and in the Bi 1.5 Pb 0.5 sample the low-T c phase. The Hall coefficients (R H) of both samples are positive with R-1H> linear in temperature. The temperature dependence of R H is stronger in the Bi 1.75Pb 0.25 sample than in the Bi 1.5Pb 0.5 sample. The carrier concentration determined R-1H for the Bi 1.75Pb 0.25 and the Bi 1.5Pb 0.5 samples at 300 K are 1.59 × 10 21 cm -3 and 3.66 × 10 21 cm -3, respectively. The excess conductivity of both samples is analyzed using the Aslamazov-Larkin expression. The critical exponent λ obtained for the Bi 1.75Pb 0.25 sample is 0.78 and that for the Bi 1.5Pb 0.5 sample, in the temperature region where the high- Tc phase contributes only, is 0.77.

  8. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Johnson, W. L.

    1982-01-01

    Recent experiments indicate that a phase separation in a spherical sample of the metallic glass Au55Pb22.5Sb22.5 occurs near the surface of the sphere. This strongly suggests either a contribution of surface-free energy to the decomposition process or a possible influence of near surface impurities absorbed during synthesis of the sphere. The surface phase separation has been studied as a function of cooling rate of the sphere. At high cooling rates (small sphere sizes), the surface separation disappears altogether suggesting that the surface of the parent liquid droplet is initially homogeneous.

  9. [Simultaneous determination of the total content of As, Ba, Cd, Cr, Hg, Pb, Se, Sb in paint coating on toys by ICP-AES].

    PubMed

    Liu, Chong-hua; Zhong, Zhi-guang; Li, Bing-zhong; Huang, Li-na; Yi, Le-zhou

    2002-10-01

    ICP-AES was used for the simultaneous determination of the total content of As, Ba, Cd, Cr, Hg, Pb, Se, Sb in paint coating on toys. Digestion procedures of these materials with different acid mixtures have been developed. The sample was dissvolved in the acid mixture of nitric acid, tartaric acid, and a little phosphoric acid. The matrix elements effect was studied and the preferable experimental conditions were investigated. The recovery rates of this procedure were between 99% and 109%. The RSD was within 1.5%. The proposed method was simple, rapid and can be used in daily inspection of toys.

  10. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Johnson, W. L.

    1982-01-01

    Recent experiments indicate that a phase separation in a spherical sample of the metallic glass Au55Pb22.5Sb22.5 occurs near the surface of the sphere. This strongly suggests either a contribution of surface-free energy to the decomposition process or a possible influence of near surface impurities absorbed during synthesis of the sphere. The surface phase separation has been studied as a function of cooling rate of the sphere. At high cooling rates (small sphere sizes), the surface separation disappears altogether suggesting that the surface of the parent liquid droplet is initially homogeneous.

  11. [Determination of Cd, Cu, Pb, Hg by reversed-phase high performance liquid chromatography].

    PubMed

    Ding, C; Li, H

    1998-11-01

    The chromatographic behaviors of Me(n+)-Dz (dithizone) have been studied with RP-HPLC. A method for the determination of Cd, Cu, Pb and Hg has been established. The chromatographic conditions were: column: Shim-pack CLC-ODS, 150 mm x 6.0 mm i.d.; mobile phase: V(methanol): V(water): V (chloroform) (containing volume fraction 1% triethylamine) = 80:12:8; flow rate: 1 mL/min; column temperature: 35 degrees C; detection wavelength: 254 nm. The linear ranges were from 0.01 mg/mL to 2.0 mg/mL with correlation coefficients of 0.9993-0.9998. The detection limits of Cd, Cu, Pb, Hg were from 2.4 micrograms/L to 5.0 micrograms/L. The RSDs were in the range from 1.8% to 9.7%, and the recoveries ranged from 94% to 103% (except Hg). The method has been applied to the analysis of hair.

  12. Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer.

    PubMed

    Hayati, Bagher; Maleki, Afshin; Najafi, Farhood; Daraei, Hiua; Gharibi, Fardin; McKay, Gordon

    2017-08-15

    This research demonstrates the capability of carbon nanotubes (CNT) modified with four generations of poly-amidoamine dendrimer (PAMAM, G4) to remove Cu(2+) and Pb(2+) heavy metals from aqueous solution in single and binary component systems. Uniquely high adsorption capacities for copper and lead, which are 3333 and 4870mg/g respectively, were achieved. FTIR, H(1) NMR, Zeta potential, SEM and TEM techniques were employed for characterizing the synthetic nanocomposite and indicated that the dendrimer functionalized CNTs have been synthesized. The effects of several parameters including initial metal ion concentration, solution pH and the nanocomposite dosage were studied. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the pseudo-first order and pseudo-second order kinetics models. The maximum adsorption occurred at pH=7. The adsorption process for Cu(2+) and Pb(2+) in single and binary component systems fit the Langmuir and extended Langmuir models respectively. This study also tested the kinetic sorption of the metals on PAMAM/CNT in single and binary component metal systems at various metal ions concentrations. The results showed that PAMAM/CNT nanocomposite was a super-adsorbent, able to uptake uniquely large quantities of heavy metal from single and binary component liquid phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neutron-Induced Partial γ-ray Cross-Section Measurements on Cu, Ge and Pb

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Kidd, M. F.; Tonchev, A.; Tornow, W.; Karwowski, H. J.; Kelley, J. H.; Mei, D. M.

    2008-10-01

    In high-precision low-statistic measurements such as those carried out in deep underground low-background environments, naturally-occurring radiation can obscure the region of interest. For example, energetic neutrons produced from natural radioactivity or muon-induced reactions will interact with the experimental apparatus producing a continuous background. A survey of neutron-induced γ-ray transitions in ^natCu, enriched ^76Ge, and ^natPb from 150-4000 keV was carried out at TUNL using pulsed mono-energetic neutron beams, with an emphasis on the region around 2039 keV where the 0νββ decay peak of ^76Ge is expected to appear. Transitions at 2041, 2615, and 3062 keV in the shielding materials of Pb and Cu may either directly interfere with the ^76Ge 0νββ peak at 2039 keV or may produce nearby escape peaks. The rates at which these background peaks occur are needed to determine whether events due to 0νββ decay are observed and whether neutrinos are indeed their own anti-particles.

  14. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    PubMed

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  15. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.

    PubMed

    Modin, Oskar; Wang, Xiaofei; Wu, Xue; Rauch, Sebastien; Fedje, Karin Karlfeldt

    2012-10-15

    In a microbial bioelectrochemical system (BES) living microorganisms catalyze the anodic oxidation of organic matter at a low anode potential. We used a BES with a biological anode to power the cathodic recovery of Cu, Pb, Cd, and Zn from a simulated municipal solid waste incineration ash leachate. By varying the control of the BES, the four metals could sequentially be recovered from a mixed solution by reduction on a titanium cathode. First, the cell voltage was controlled at zero, which allowed recovery of Cu from the solution without an electrical energy input. Second, the cathode potential was controlled at -0.51 V to recover Pb, which required an applied voltage of about 0.34 V. Third, the cathode potential was controlled at -0.66 V to recover Cd, which required an applied voltage of 0.51 V. Finally, Zn was the only metal remaining in solution and was recovered by controlling the anode at +0.2V to maximize the generated current. The study is the first to demonstrate that a BES can be used for cathodic recovery of metals from a mixed solution, which potentially could be used not only for ash leachates but also for e.g. metallurgical wastewaters and landfill leachates.

  16. Electrical and magnetic properties of honeycomb-type Bi(Pb)-Sr-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Altunbas, M.; Yanmaz, E.; Nezir, S.; Karal, H.; Vidadi, Yu. A.

    1994-11-01

    Bi2O3, PbO, SrCO3, CaO and CuO compounds have been dissolved in liquid ammonium nitrate in order to produce Bi(1.8)Pb(0.2)Sr2Ca2Cu3O10 (2223) superconductors of honeycomb-type structure. The resulting metal nitrate and nitrate complexes have been decomposed in an environment activated by the exothermic reaction. Powders, homogeneous on the molecular scale, containing the binary and ternary oxides as the necessary constituents have been produced. Samples in the form of pellets have been annealed at 845 deg C for 25-125 h. This honeycomb-type BSCCO superconductor with a critical temperature T(sub c) = 110 K and a density of 3 g/cc has been produced. The volume of the sample has increased by about 25%-40% after annealing. Electrical and magnetic properties of the samples have been investigated in three regions: the superconducting region T less than T(sub c), the region T(sub c) less than T less than T(sub c) + Delta T(sub F) where the Flicker effect has been observed (Delta T(sub F) = 20 K), and the normal region T greater than T(sub c) Delta T(sub F). It has been found that it is possible to have a controllable variation in critical current density and that the optimum annealing time was about 100 h in order to obtain its maximum value.

  17. Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111)

    NASA Astrophysics Data System (ADS)

    Chan, Wen-Yuan; Lu, Shin-Ming; Su, Wei-Bin; Liao, Chun-Chieh; Hoffmann, Germar; Tsai, Tsong-Ru; Chang, Chia-Seng

    2017-03-01

    We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

  18. Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111).

    PubMed

    Chan, Wen-Yuan; Lu, Shin-Ming; Su, Wei-Bin; Liao, Chun-Chieh; Hoffmann, Germar; Tsai, Tsong-Ru; Chang, Chia-Seng

    2017-03-03

    We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels. We found that QW states observed by sharper tips always had lower energies, revealing negative energy shifts. This sharpness-induced energy shift originates from an inhomogeneous electric field in the STM gap. An increase in sharpness increases the electric field inhomogeneity, that is, enhances the electric field near the tip apex, but weakens the electric field near the sample. As a result, higher sharpness can increase the electronic phase in vacuum, causing the lowering of QW state energies. Moreover, the behaviors of negative energy shift as a function of state energy are entirely different for Pb islands with a thickness of two and nine atomic layers. This thickness-dependent behavior results from the electrostatic force in the STM gap decreasing with increasing tip sharpness. The variation of the phase contributed from the expansion deformation induced by the electrostatic force in a nine-layer Pb island is significantly greater, sufficient to effectively negate the increase of electronic phase in vacuum.

  19. Interfacial diffusion of metal atoms during air annealing of chemically deposited ZnS-CuS and PbS-CuS thin films

    SciTech Connect

    Huang, L.; Zingaro, R.A.; Meyers, E.A. . Dept. of Chemistry); Nair, P.K.; Nair, M.T.S. . Lab. de Energia Solar)

    1994-09-01

    The authors report on the interfacial diffusion of metal ions occurring during air annealing of multilayer CuS films (0.15-0.6[mu]m) deposited on thin coating of ZnS or PbS ([approximately]0.06 [mu]m) on glass substrates. All the films are deposited from chemical baths at room temperature. The interfacial diffusion on the metal atoms during the air annealing is illustrate by X-ray photoelectron spectroscopy studies. A multilayer of 0.3 [mu]m thick CuS film deposited over a thin film of ZnS upon annealing at 150 C shows atomic ratios of Zn to Cu of [approximately]0.15 and [approximately]0.48 at the surface layers of the samples annealed for 12 and 24 h, respectively. In the case of CuS on PbS film, the corresponding Pb to Cu atomic ratios at the surface layers are 0.43 and 0.83. The optical transmittance spectra and sheet resistance of these multilayer films indicate thermal stabilities superior to that of the CuS-only coatings. Application of the interfacial diffusion process in the production of thermally stable solar control coatings, solar absorber coating, or p-type films for solar cell structures is discussed.

  20. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    DOE PAGES

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less

  1. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    SciTech Connect

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).

  2. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    SciTech Connect

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-05-09

    Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).

  3. Effect of preparation conditions on superconducting properties of (Bi,Pb)-Sr-Ca-Cu-O glass-ceramics

    NASA Astrophysics Data System (ADS)

    Gazda, M.; Kusz, B.; Pitosa, J.; Bienias, A.; Puniak, R.; Stizza, S.; Chudinov, S.; Natali, R.

    2005-03-01

    In this work we present the influence of annealing conditions on superconducting properties of (Bi,Pb)-Sr-Ca-Cu-O high temperature superconductors prepared by the glass-ceramic method. Superconducting (Bi,Pb)-Sr-Ca-Cu-O samples were obtained by annealing of amorphous (Bi0.8Pb0.2)4Sr3Ca3Cu4Ox at temperatures between 750 °C and 865 °C for various time intervals between 1 minute and 43 hours. The electrical and superconducting properties of the material change during annealing because oxide superconductors belonging to the bismuth family (Bi,Pb)2Sr2CuOx (2201), (Bi,Pb)2Sr2CaCu2Ox (2212) and (Bi,Pb)2Sr2Ca2Cu3Ox (2223) crystallise forming a granular metal and superconductor. Low temperature resistivity and magnetic measurements show that during the growth of crystalline phases superconducting properties develop rapidly. Measurements of magnetisation reveal that isolated grains of superconducting 2212 phase crystallise already in the first minute of annealing at 850 °C. Further development of superconducting phases leads to subsequent improvement of superconducting properties. Properties of the material (e.g. critical temperature, critical current) and kinetics of changes depend on the temperature and time of annealing. The highest critical current densities were obtained for samples annealed at 850 °C for 43 hours.

  4. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  5. Thermoelectric transport properties of PbTe-based composites incorporated with Cu2Se nano-inclusions

    NASA Astrophysics Data System (ADS)

    Guo, Haifeng; Xin, Hongxing; Qin, Xiaoying; Jian, Zhang; Li, Di; Li, Yuanyue; Li, Cong

    2016-02-01

    Thermoelectric transport properties of Lead telluride (PbTe)-based composites incorporated with Cuprous selenide (Cu2Se) nano-inclusions were investigated from 300 K to 800 K. Here, except for the transition from p-type to n-type conduction that occurs in pristine PbTe at ~530 K due to the difference of mobility between thermally electron and hole at high temperature, another transition from p-type to n-type conduction at 300 K with an increasing proportion of Cu2Se could be due to the donor levels introduced by defects and unsaturated bonds at the interfaces. Moreover, by incorporating a small proportion (5 vol.%) of Cu2Se nanoparticles into the PbTe matrix to form nano-composites, both a reduction (~55%) in lattice thermal conductivity and an enhanced electrical conductivity compared with that of pristine PbTe are obtained, which allows the thermoelectric power factor to reach a larger value (~11.2 μW cm-1 K-2). Consequently, a maximum value ZT  =  0.91 is obtained at 760 K in the PbTe-5 vol.% Cu2Se sample.

  6. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    NASA Astrophysics Data System (ADS)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  7. Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu12Sb4S13 tetrahedrite.

    PubMed

    Kosaka, Yasufumi; Suekuni, Koichiro; Hashikuni, Katsuaki; Bouyrie, Yohan; Ohta, Michihiro; Takabatake, Toshiro

    2017-03-15

    The synthetic tetrahedrites Cu12-yTrySb4S13 (Tr: Mn, Fe, Co, Ni, Zn) have been extensively studied due to interest in metal-semiconductor transition as well as in superior thermoelectric performance. We have prepared Ge- and Sn-bearing tetrahedrites, Cu12-xMxSb4S13 (M = Ge, Sn; x ≤ 0.6), and investigated the effects of the substitutions on the phase transition and the thermoelectric properties. The substitutions of Ge and Sn for Cu suppress the metal-semiconductor transition and increase the electrical resistivity ρ and the positive thermopower S. This finding suggests that the phase transition is prevented by electron doping into the unoccupied states of the valence band. The variations of ρ, S, and magnetic susceptibility for the present systems correspond well with those for the system with Tr = Zn(2+), confirming the tetravalent states for Ge and Sn. The substitution of M(4+) for Cu(1+) decreases the power factor S(2)/ρ but enhances the dimensionless thermoelectric figure of merit ZT, due to reductions in both the charge carrier contribution and lattice contribution to the thermal conductivity. As a result, ZT has a maximum value of ∼0.65 at 665 K for x = 0.3-0.5 in Cu12-xMxSb4S13 with M = Ge and Sn.

  8. Experimental determination of nonequilibrium transport parameters reflecting the competitive sorption between Cu and Pb in slag-sand column.

    PubMed

    Chung, Jaeshik; Kim, Young-Jin; Lee, Gwanghun; Nam, Kyoungphile

    2016-07-01

    Competitive sorption and resulting nonequilibrium transport of Cu and Pb were investigated using slag as a primary sorbent. A series of estimation models were applied based on the equilibrium, and nonequilibrium sorption respectively, and finally calibrated by incorporating the experimentally determined batch kinetic data. When applied individually, the behavior of metals in slag-sand column were well predicted by both equilibrium and nonequilibrium models in CXTFIT code. However, coexisting Cu and Pb exhibited competition for sorption sites, generating an irregular breakthrough curves such as overshoot (higher concentration in effluent than the feed concentration) of Cu and corresponding earlier peak of Pb followed by gradual re-rising. Although two-site nonequilibrium model further considers coupled hydrochemical process, desorption of the Cu from competition made the model prediction inaccurate. However, the parameter estimation could be improved by incorporating the experimentally determined mass transfer rate, ωexp from batch kinetics. Based on the calibrated model, the fraction of instantaneous retardation, βexp of Pb decreased from 0.41 in the single system to 0.30 in the binary system, indicating the shift from equilibrium to nonequilibrium state, where which of Cu increased from 0.39 to 0.94, representing the shift towards equilibrium. The modified results were also compared with five-step sequential extraction data, confirming that the shift of particular metal fractions from the competition triggered the nonequilibrium transport.

  9. Preparation of superconducting (Bi, Pb)-Sr-Ca-Cu oxide tapes with a highly oriented structure by the solidification method

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kunio; Inoue, Akihisa; Masumoto, Tsuyoshi

    1989-11-01

    Composite tapes consisting of Au and superconducting Bi-Sr-Ca-Cu or Bi-Pb-Sr-Ca-Cu oxide with a pseudotetragonal structure were prepared by annealing the oxide phase which was slowly solidified on the Au tape. The oxide phase has a highly oriented structure, and the c plane lies parallel to the surface of the tape. The tapes were found to exhibit zero resistance at temperatures above 100 K as well as good bending flexibility. The critical current density at 77 K in the absence of applied field is 96 A/sq cm for the BiSrCaCu2O(y)-Au tape and 108 A/sq cm for the Pb(0.2)BiSrCaCu(1.5)O(y)-Au tape.

  10. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles.

    PubMed

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B; Warner, Marvin G; Fryxell, Glen E; Addleman, R Shane; Timchalk, Charles

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  11. Self-assembly of the unique heterotrimetallic Cu/Co/M complexes possessing triangular antiferromagnetic {Cu2CoPb}2 and linear ferromagnetic {Cu2CoCd2} cores.

    PubMed

    Nesterov, Dmytro S; Kokozay, Volodymyr N; Skelton, Brian W; Jezierska, Julia; Ozarowski, Andrew

    2007-02-07

    Two novel heterotrimetallic octa-[Cu2CoPbCl4(L)4]2 (1) and pentanuclear [Cu2CoCd2Cl6(L)4(HOMe)2] (2) complexes have been prepared in one-pot reactions of zerovalent copper with metal chlorides in a methanol (for 1) or acetonitrile (for 2) solution of 2-(dimethylamino)ethanol (HL) in open air. The crystal structures of both compounds consist of discrete centrosymmetric heterotrimetallic molecules revealing triangular (1) and unique consecutive (2) arrangements of magnetic CuII(2)CoII cores. The complex 1 can be viewed as a dimer made up of tetranuclear Cu2CoPbCl4(L)4 units linked through the two micro(2)-Cl atoms. The molecular structure of 2 is a pentanuclear assembly containing the previously unknown Cu(micro-O)(2)Co(micro-O)(2)Cu core. The magnetic studies of 1 revealed an antiferromagnetic coupling (J(CoCu) = 37 cm(-1) and J(CuCu) = 87 cm(-1)) while 2 exhibits a weak ferromagnetic behavior (J(CoCu) = -3.2 cm(-1) and J(CuCu) = -14.2 cm(-1)). The correlations between magnetic behaviour and structures as well as synthetic features are also discussed.

  12. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, Clark County, Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; Browne, Quentin J.; Fleck, Robert J.; Hofstra, Albert H.; Wooden, Joseph L.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ± precious metal-platinum group element (PGE) deposits, and gold ± silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ~500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ~160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs—Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U—were also recovered.Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ± Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (δ34S values range from 2.5–13‰), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ± Cu ± Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ± precious metal-PGE and gold ± silver deposits including fine-grained quartz replacement of carbonate minerals

  13. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-09-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  14. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells.

    PubMed

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey

    2016-12-01

    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  15. Electronic and Thermoelectric Properties of Layered Sn- and Pb-Doped Ge2Sb2Te5 Alloys Using First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2016-06-01

    A computational study on stable hexagonal phase of undoped, and Sn- and Pb-doped Ge2Sb2Te5 (GST) phase change materials has been carried out. The electronic structure, lattice dynamics and thermoelectric properties of doped GST have been extensively investigated using ab initio methods with virtual crystal approximation. The hexagonal symmetry of the GST is maintained with the addition of Sn and Pb dopants. The lattice parameters and atomic volume of the Sn-doped GST structure is larger than that of the undoped GST. Electronic band structure calculations show that there is an increase in band gap with the increase in the concentration of Sn (≤4.4 at.%). However, with the addition of a very small amount of Pb, there is a continuous decrease in lattice parameters and band gap values. The calculated energy band structure is then used in combination with the Boltzmann transport equation to calculate the thermoelectric parameters of GST and Sn- and Pb-doped materials. Seebeck coefficient ( S), electronic thermal conductivity ( κ e) and the thermoelectric figure-of-merit ( ZT) have been calculated with the help of BoltzTraP code. It was found that the thermoelectric properties of GST are enhanced with the addition of Sn.

  16. Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility.

    PubMed

    Pascaud, Grégoire; Leveque, Thibaut; Soubrand, Marilyne; Boussen, Salma; Joussein, Emmanuel; Dumat, Camille

    2014-03-01

    Areas polluted by the persistent presence of metal(loid)s induce health problems, especially when recreational activities (on land or water) promote human exposure to the pollutants. This study focuses on one of the most encountered worldwide mining waste, i.e. those from the extraction of Pb-Zn-Ag. The representative Pb-Zn-rich tailing (about 64,100 m(3)) sampled is located near a soccer field and a famous river for fishing. The scientific interests is relative to: (1) mobility and bioaccessibility of metal(oid)s, (2) human risk assessments and (3) relationship between human risks and solid-bearing phases in the environment. Soccer field soils, tailings and sediments from the nearby river were sampled; moreover, metal(loid) speciation (from BCR experiments) and bioaccessibility were measured and solid speciation performed by X-ray diffraction and electron microscopy in order to highlight metal(loid) dispersion and impact. Results demonstrate that the soccer field is highly contaminated by Pb, Zn, As and Sb due primarily to waste runoff. In terms of risk assessment, Pb and As human bioaccessibility highlights the major health risk (48 and 22.5 % of human bioaccessibility, respectively). Since local populations are regularly in close contact with metal(loid)s, the health risk due to pollutant exposure needs to be reduced through sustainable waste disposal and the rehabilitation of polluted sites.

  17. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  18. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    SciTech Connect

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the

  19. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  20. Interaction of the water soluble fraction of MSW-composts with Pb(II) and Cu(II) ions.

    PubMed

    Castaldi, Paola; Demurtas, Daniela; Silvetti, Margherita; Deiana, Salvatore; Garau, Giovanni

    2017-05-01

    In this study we report on the interactions between the water-soluble fraction (WSF) of two municipal solid waste composts (C1- and C2-WSF) with Pb(II) and Cu(II) ions at pH 4.5. The Me(II) addition to the compost-WSFs led to the formation of soluble Me(II)-organic complexes (as highlighted by FT-IR spectroscopy), and to a decrease of the trace metals' solubility, which was greater for Pb(II) than Cu(II). This was due to the formation of insoluble Me(II) complexes involving the water-soluble organic carbon (WSOC) and the inorganic anions within both WSFs [1.10 and 0.62 mmol L(-1) and 2.06 and 0.42 mmol L(-1) of Pb(II) and Cu(II) precipitated from C1- and C2-WSF respectively, when 6.4 mmol L(-1) Me(II) was added]. A loss of WSOC from both WSFs, i.e. ∼13% and <5%, was detected in the systems containing 6.4 mmol L(-1) Pb(II) and Cu(II) respectively. A significant contribution in the formation of Pb(II) precipitates was also due to phosphate, chloride and sulphate anions, since their concentrations in the WSF decreased of 80, 25 and 90%, respectively, after the addition of 6.4 mmol L(-1) Pb(II). A decrease of phosphate anions in both WSFs (∼30%) was found in the systems containing Cu(II).

  1. Development of an odd-Z-projectile reaction for heavy element synthesis: 208Pb(64Ni, n)271Ds and 208Pb(65Cu, n)272111

    SciTech Connect

    Folden III, C.M.; Gregorich, K.E.; Dullmann, Ch.E.; Mahmud, H.; Pang, G.K.; Schwantes, J.M.; Sudowe, R.; Zielinski, P.M.; Nitsche, H.; Hoffman, D.C.

    2004-08-16

    Seven {sup 271}Ds decay chains were identified in the bombardment of {sup 208}Pb targets with 311.5- and 314.3-MeV {sup 64}Ni projectiles using the Berkeley Gas-filled Separator. These data, combined with previous results, provide an excitation function for this reaction. From these results, an optimum energy of 321 MeV was estimated for the production of {sup 272}111 in the reaction {sup 208}Pb({sup 65}Cu, n). One decay chain was observed, resulting in a cross section of 1.7{sub -1.4}{sup +3.9} pb. This experiment confirms the discovery of element 111 by the Darmstadt group who used the {sup 209}Bi({sup 64}Ni, n){sup 272}111 reaction.

  2. Defect properties of Sb- and Bi-doped CuInSe{sub 2}: The effect of the deep lone-pair s states

    SciTech Connect

    Park, Ji-Sang; Yang, Ji-Hui; Ramanathan, Kannan; Wei, Su-Huai

    2014-12-15

    Bi or Sb doping has been used to make better material properties of polycrystalline Cu{sub 2}(In,Ga)Se{sub 2} as solar cell absorbers, including the experimentally observed improved electrical properties. However, the mechanism is still not clear. Using first-principles method, we investigate the stability and electronic structure of Bi- and Sb-related defects in CuInSe{sub 2} and study their effects on the doping efficiency. Contrary to previous thinking that Bi or Sb substituted on the anion site, we find that under anion-rich conditions, the impurities can substitute on cation sites and are isovalent to In because of the formation of the impurity lone pair s states. When the impurities substitute for Cu, the defects act as shallow double donors and help remove the deep In{sub Cu} level, thus resulting in the improved carrier life time. On the other hand, under anion-poor conditions, impurities at the Se site create amphoteric deep levels that are detrimental to the device performance.

  3. A multiwave CuBr and PbBr 2 laser with a sectioned active volume

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. B.; Filonov, A. G.; Shiyanov, D. V.

    2010-10-01

    The operation of a CuBr and PbBr 2 laser with a two-section gas-discharge tube with working media in different sections and an additional electrode between the sections was studied for the first time. Effective lasing was achieved in both media under control of time location of lasing pulses in different active media. The total mean lasing power equal to 1.5 W was distributed over wavelengths as follows: 1 W (510.6 nm), 0.3 W (578.2 nm), and 0.2 W (722.9 nm). The specific features of operation of the multicomponent laser and methods for its optimization are discussed. It is shown that the lasing power in a section is close to the power of an individual active element.

  4. Experimental determination of the Cu-In-Pb ternary phase diagram

    SciTech Connect

    Bolcavage, A.; Kao, C.R.; Chang, Y.A.; Romig, A.D. Jr.

    1993-12-01

    Use of lead-indium solders in microelectronics packaging has increased over the last decade. Increased usage is due to improved properties, such as greater thermo-mechanical fatigue resistance, lower intermetallic formation rates with base metallizations, such as copper, and lower reflow temperatures. However, search of literature reveals no comprehensive studies on phase equilibrium relations between copper metal and lead-indium solder. Our effort involves a combination of experimental data acquisition and computer modeling to obtain the Cu-In-Pb ternary phase diagram. Isotherms and isopleths of interest at low temperatures are achieved by means of differential scanning calorimetry and electron probe microanalysis. Thermodynamic models of these sections served as a guide for efficient experimentation.

  5. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  6. Microstructure and flux pinning in superconducting Bi-Pb-Sr-Ca-Cu-O wires

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Liu, H. K.; Wang, J.; Apperley, M. H.; Sorrell, C. C.; Guo, S. J.; Loberg, B.; Easterling, K. E.

    1990-12-01

    The critical current density ( Jc) of Ag-clad Bi-Pb-Sr-Ca-Cu-O wire has been measured to be 1.2×10 4 A/cm 2 at 77 K in zero field. The high Jc is attributed to a combination of elimination of the poisoning effect of Ag on superconductivity, grain alignment, and enhancement of flux pinning. Jc- H dependence was significantly improved in the Ag-clad tape, which has a Jc of 1.0×10 3 A /cm 2 at 77 K and 4000 Oe, while the Jc of the sintered pellet drops two orders of magnitude at only 100 Oe. A pronounced anisotropy in Jc under high magnetic field is attributed to the grain alignment. Planar defects, such as heavy stacking faults parallel to the a- b plane in the rolled tape, are considered to be effective pinning centres.

  7. LFZ growth of (Bi,Pb)--Sr--Ca--Cu--O superconducting fibers

    SciTech Connect

    de la Fuente, G.F.; Navarro, R.; Lera, F.; Rillo, C.; Bartolome, J.; Badia, A. ); Beltran, D.; Ibanez, R.; Beltran, A. ); Sinn, E. )

    1991-04-01

    Powder x-ray diffraction, d.c. and a.c. susceptibilities, and SEM have been used to study (Bi{sub 1{minus}{ital x}}Pb{sub {ital x}}){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} fibers grown by the Laser Floating Zone method. The well-oriented, long-grained superconductor fiber properties are shown to be highly dependent on the partial pressure of oxygen in the growth atmosphere, as well as on fiber pulling rate. Slowly grown fibers contain initially the 2212 (80 K) phase; the 2223 (110 K) phase also appears upon annealing in air. Faster growth rates result in fibers that contain a mixture of the 2212 and 2201 phases and, in this case, long annealing procedures are necessary to observe the 2223 phase.

  8. Fabrication and characterization of (Bi,Pb)-Sr-Ca-Cu-O (2223) bars

    SciTech Connect

    Chudzik, M.P.; Polzin, B.J.; Thayer, R.; Picciolo, J.J.; Fisher, B.L.; Lanagan, M.T.

    1996-08-01

    Bulk bars for current lead applications were fabricated from (Bi,Pb)- Sr-Ca-Cu-O (Bi-2223) for low thermal conductivity and high critical current. Bars measuring 17.8 cm in length were made by uniaxially pressing Bi-2223 powder of controlled (1.7/0.34)223 and (1.8/0.4)223 phase composition. The bulk bars were densified by subjecting them to a schedule of alternate liquid-phase sintering and cold isostatic pressing. Liquid phase sintering temperatures were optimized from differential thermal analysis and microstructure morphology. Phase purity and microstructure were evaluated by x-ray diffraction and scanning electron microscopy. Low-resistance silver contacts were applied to the bars by hot-pressing at 820{degrees}C and 3 MPa. Critical current densities {approx} 1000 A/cm{sup 3} (critical currents of 750 A at 77 K in self-field conditions) were achieved.

  9. Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil.

    PubMed

    Gao, Ruili; Zhu, Pengfei; Guo, Guangguang; Hu, Hongqing; Zhu, Jun; Fu, Qingling

    2016-11-01

    The efficiency of five different single leaching reagents (tartaric acid (TA), citric acid (CA), CaCl2, FeCl3, EDTA) and two different composite leaching reagents (CA + FeCl3, CA + EDTA) on removing Cu, Pb, Zn, and Cd from contaminated paddy soil in Hunan Province (in China) was studied. The results indicated that the efficiencies of CA, FeCl3, and EDTA on extracting Cu, Pb, Cd, and Zn from soil were greater than that of TA and CaCl2, and their extraction efficiencies were EDTA ≥ FeCl3 > CA. The efficiencies of CA + FeCl3 on extracting Cu, Pb, Cd, and Zn were higher than that of single CA or FeCl3. The 25 mmol L(-1) CA + 20 mmol L(-1) FeCl3 was a promising composite leaching reagent for paddy soil, and it could remove Cu (57.6 %), Pb (59.3 %), Cd (84.8 %), and Zn (28.0 %), respectively. With the same amount of leaching reagent, the efficiency of continuous leaching by several times was higher than that by once. In addition, the easily reducible and oxidizable fractions of heavy metals showed significant decrease during the process of leaching.

  10. Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems.

    PubMed

    Lezcano, J M; González, F; Ballester, A; Blázquez, M L; Muñoz, J A; García-Balboa, C

    2011-10-01

    This work examines the sorption capacity of a natural biomass collected from an irrigation pond. The biomass mainly consisted of a mixture of chlorophyte algae with caducipholic plants. Biosorption experiments were performed in monometallic and bimetallic solutions containing different metals commonly found in industrial effluents (Cd, Cu and Pb). The biosorption process was slightly slower in the binary system comparing with monometallic system which was related to competition phenomena between metal cations in solution. The biosorbent behaviour was quantified by the sorption isotherms fitting the experimental data to mathematical models. In monometallic systems, the Langmuir model showed a better fit with the following sorption order: Cu ~ Pb > Cd; and biomass-metal affinity order: Pb > Cd ~ Cu. In bimetallic systems, the binary-type Langmuir model was used and the sorption order obtained was: Pb ~ Cu > Cd. In addition, the effectiveness of the biomass was investigated in several sorption-desorption cycles using HCl and NaHCO(3). The recovery of metal was higher with HCl than with NaHCO(3), though the sorption uptake of the biomass was sensitively affected by the former desorption agent in subsequent sorption cycles.

  11. Selective Cu{sup 2+} and Pb{sup 2+} exchange with highly charged cation exchanger of Na-4-mica

    SciTech Connect

    Kodama, Tatsuya; Komarneni, Sridhar

    1999-09-01

    Selective cation exchange for Cu and Pb has been demonstrated with the high-charge-density sodium fluorophlogopite mica, Na-4-mica. The 2Na{sup +} {yields} M{sup 2+} exchange reaction (M = Cu or Pb) was investigated with Na-4-micas prepared by two different synthetic processes. One was easily and economically prepared by crystallization from a mixture of NaF, MgO, and metakaolin, the latter serves as an inexpensive aluminosilicate source. Another was prepared by solution-sol-gel processing. Ion-exchange isotherms for Cu{sup 2+} and Pb{sup 2+} were obtained at room temperature. The thermodynamic functions for the initial ion-exchange reactions were calculated because the isotherms were not completed., High selectivities for both copper and lead exchange were found on the highly crystallized Na-4-mica prepared from metakaolin. Their ion-exchange capacities were 225 and 257 milliequivalents per 100 g of dry clay for Cu{sup 2+} and Pb{sup 2+}, respectively. This high level decontamination of copper and lead with the highly crystallized Na-4-mica from metakaolin will be a very important separation required for purification of drinking water as well as for wastewater treatment and disposal.

  12. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep

    1996-01-01

    In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.

  13. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils.

    PubMed

    Rennert, Thilo; Rabus, Widar; Rinklebe, Jörg

    2017-04-01

    Central European floodplain soils are often contaminated with potentially toxic metals. The prediction of their aqueous concentrations is a prerequisite for an assessment of environmental concerns. We tested the aqueous concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) derived from multi-surface adsorption modelling (on hydrous iron, aluminum and manganese oxides, clay and soil organic matter) against those analyzed in situ in the soil solution of four horizons of floodplain soils at the Elbe River, Germany. The input data for the reactive metals were derived from a seven-step sequential extraction scheme or from extraction with 0.43 M nitric acid (HNO3) and evaluated in four modelling scenarios. In all scenarios, measured and modelled concentrations were positively related, except partially for Pb. Close reproduction of the measured data was obtained using measured data of accompanying cations and anions together with amounts of reactive metals from both the sequential extraction or from 0.43 M HNO3 extraction, except for Cu, which was often strongly overestimated, and partially Cd. We recommend extraction with 0.43 M HNO3 to quantify reactive metals in soil because the modelling results were metal-specific with better or equal results using the single extractant, the application of which is also less laborious. Approximations of ion concentrations and water contents yielded similar results. Modelled solid-phase speciation of metals varied with pH and differed from that from sequential extraction. Multi-surface modelling may be an effective tool to predict both aqueous concentrations and solid-phase speciation of metals in soil.

  14. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    SciTech Connect

    Arfaoui, Lobna; Kouass, Salah; Dhaouadi, Hassouna; Jebali, Raouf; Touati, Fathi

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  15. Nucleation and evolution of dynamic damage at Cu/Pb interfaces using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Valone, S. M.; Cerreta, E. K.; Gray, G. T.; Shao, S.

    2017-01-01

    For ductile metals, the process of dynamic fracture occurs through nucleation, growth and coalescence of voids. For high purity single-phase metals, it has been observed by numerous investigators that voids tend to heterogeneously nucleate at grain boundaries and all grain boundaries are not equally susceptible to void nucleation. However, for materials of engineering significance, especially those with second phase particles, it is less clear if the type of bi-metal interface between the two phases will affect void nucleation and growth. To approach this problem in a systematic manner two bi-metal interfaces between Cu and Pb have been investigated: {111} and {100}. Qualitative and quantitative analysis of the collected data from molecular dynamics shock and spall simulations suggests that Pb becomes disordered during shock compression and is the preferred location for void nucleation under tension. Despite the interfaces being aligned with the spall plane (by design), they are not the preferred location for void nucleation irrespective of interface type.

  16. Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics.

    PubMed

    Guiso, Maria Giovanna; Alberti, Giancarla; Emma, Giovanni; Pesavento, Maria; Biesuz, Raffaela

    2012-01-01

    The sorption properties of rice husk towards Cu(II), Cd(II) and Pb(II) were studied. The sorption isotherms are described by the Langmuir equation, and Pb(II) shows a higher affinity for rice husk compared to Cu(II) and Cd(II) under the same conditions. The kinetics of sorption obeys to a pseudo second-order equation for all metals. The sorption profiles as a function of the pH were used to characterize the stoichiometry of the sorption reaction. The competition for metal complexation by any ligand in solution is also accounted for. Upon increasing the ionic strength, the sorption curves of Pb(II) move to basic pH; this shift can be explained by considering the effect of nitrate complexes on the free metal ion concentration, since KNO(3) is used as the ionic medium. An attempt to employ rice husk in a dynamic system is presented.

  17. [Soil pollution of Cu, Zn, Pb and Cd in different city zones of Nanjing].

    PubMed

    Wu, Xinmin; Li, Lianqing; Pan, Genxing; Ju, Yufen; Jiang, Haiyang

    2003-05-01

    The Nanjing city was divided into six zones as smelter industry, inner commercial, inner residence, newly developed, urban greenland and preserved scenic. In each zone, soil samples were randomly collected by triple subsampling technique. Total 56 soil samples were digested by mixed solution of nitric, chloridic and sulphatic acids and by sequential extractants respectively according to the standard methods. The total and fractional heavy metals were determined by AAS. The mean total content of Pb, Cu, Zn and Cd of the soils from smelter industry, inner commercial, inner residence, newly developed, urban greenland and preserved scenic zone was 117.1 +/- 103.7 mg.kg-1, 39.86 +/- 39.9 mg.kg-1, 273.3 +/- 131.6 mg.kg-1 and 1.13 +/- 0.7 mg.kg-1, with the overall pollution index being 5.4, 4.9, 3.4, 1.6, 2.4 and 2.3 respectively. The pollution in the smelter industrial zone was characterized by high concentration but low chemical mobility of Pb and Cd, while that in inner cities by high concentration of lead and zinc with quite larger acelatic acid extractable pool. Except for the soils from newly developed and preserved zones, the heavy metals were more or less superficial in respect to their depth distribution in the urban soils. The dramatic soil pollution of Pb and Cd in the urban area might cause any health risks for children, whose activities are believed to happen in a relative limited area. The future research on urban soil pollution should pursue the effect of soil pollution on human environment in the urban area.

  18. Fabrication and properties of (Hg,Pb)Ba2Ca2Cu3O8+δ silver-sheathed tapes

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Sastry, P. V. P. S. S.; van der Laan, D. C.; Schwartz, J.

    2002-05-01

    (Hg,Pb)Ba2Ca2Cu3O8+δ (HgPb1223) samples have been fabricated by wrapping Pb0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The precursor/Ag composite is then reacted with CaHgO2 in sealed reaction quartz glass tubes. The XRD pattern of as-prepared tapes shows only one superconducting phase, HgPb1223, was obtained, in agreement with the Tc measurements showing an onset critical temperature (Tc) of about 132 K. The microstructures of these tapes examined by ESEM show defects such as cracks, voids, sausaging, and non-superconducting phases, resulting from mechanical deformation and sintering. Although the localized grain alignment of the silver interface has been observed, globally the HgPb1223 grains are almost randomly aligned, in agreement with magneto-optical images. The irreversibility behavior and the temperature dependence of magnetic (intragrain) critical current density Jc,m, estimated by using Bean's model, are also reported. The average transport Jc,t of the HgPb1223 tapes was ˜103A/cm2 at 4.2 K and self-field, only 1/1000 of Jc,m, which was ˜106A/cm2. The much lower transport Jc,t is explained in terms of grain-linking and defects mentioned above.

  19. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash.

    PubMed

    Fujimori, Takashi; Takaoka, Masaki; Takeda, Nobuo

    2009-11-01

    Model fly ashes containing admixed Cu, Fe, Pb, and Zn chlorides and oxides were heated at a temperature corresponding to the postcombustion zone of a municipal solid waste incinerator (MSWI), resulting in the formation of chlorinated aromatic compounds, including polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs), polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs). The concentrations of these compounds were measured and compared with those occurring in real fly ash. The order with respect generative capacity of each metal additive was calculated from principal component analysis of the concentrations of the different chlorinated aromatic compounds as CuCl(2)*2H(2)O > Cu(2)(OH)(3)Cl > FeCl(3)*6H(2)O > FeCl(2)*4H(2)O > CuO > Fe(2)O(3) > PbCl(2) > blank (no metal added) > ZnCl(2) > PbO > ZnO. From hierarchical cluster analysis of the concentrations and congener distribution patterns of the PCDDs, PCDFs, PCBs, and CBzs, the metallic compounds were divided into five groups: Group A (CuCl(2)*2H(2)O and Cu(2)(OH)(3)Cl), B (FeCl(3)*6H(2)O and FeCl(2)*4H(2)O), C (CuO and PbCl(2)), D (Fe(2)O(3), blank, and ZnCl(2)), and E (PbO and ZnO). Cluster analysis showed the congener distribution patterns of model fly ashes to be similar to the pattern of real MSWI fly ash. The formation of PCDDs was influenced mainly by group B, blank, and PbO; PCDFs, mainly by CuO, Fe(2)O(3) and ZnCl(2); PCBs, mainly by groups B and C; and CBzs, mainly by groups A and B. Thus, the multiple promotion of chlorinated aromatic compound formation by metallic chlorides and oxides in the fly ashes of MSWIs and other thermal processes has considerable importance for the environment.

  20. The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

    PubMed Central

    Koplík, Jan; Kalina, Lukáš; Másilko, Jiří; Šoukal, František

    2016-01-01

    The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)2, a Cu–O bond was also identified. PMID:28773655

  1. The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters

    NASA Astrophysics Data System (ADS)

    Nimmo, Malcolm; Fones, Gary R.

    The detection of dissolved ACSV (adsorptive cathodic stripping voltammetry) Co, Ni, Cu, Cd and Pb in rain waters collected from an urban and a coastal site in the northwest of England is described. The presence of metal complexing organic ligands in rain waters is indicated with an overall percentage of ACSV non - labile dissolved metal of the total dissolved metal fraction ( = %ACSV nl/t) being 33 (33); 28 (35); 26 (32); 33 (25); 27 (34): for Co, Ni, Cu, Cd and Pb, respectively, for the urban site (and coastal site). ACSV metal lability is theoretically defined and is dependent upon the a-coefficient ( β' MAL [AL]) of the added ACSV ligand (AL). No major differences were observed between %ACSV nl/t metal fractions in rain waters collected at the two contrasting sites for all the metals considered. As Cu, Pb, Cd and Ni had values greater than 10 for their Ef crust (crustal enrichment factor), rain water collected from both sites had predominantly anthropic chemical characteristics. The commonality of the aerosol chemical characteristics at the two sites may account for the observed similar (relative to total metal concentrations) proportions of metal organic complexation at the two different sites. The general order of increasing organic associations was Cu = Pb = Ni < Co < Cd, although the analytical log α-coefficients ( β' MAL [AL]) for each metal were different (9.62—Ni; 9.27—Cu; 5.29—Co; 2.15—Pb; 1.13—Cd). Significant correlations were encountered between ACSV non - labile and total dissolved trace metal concentrations of the pooled data from both sites, again an indication of the similarity of the chemical characteristics of the scavenged soluble organic ligands associated with background aerosol material.

  2. Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions.

    PubMed

    Hu, Xiuyi; Zhao, Mouming; Song, Guosheng; Huang, Huihua

    2011-01-01

    Research on chemical modification of pineapple peel fibre with succinic anhydride was carried out to create a novel adsorbent for Cu2+, Cd2+ and Pb2+ removal from aqueous solution. After pretreatment with iso-propyl alcohol and NaOH, pineapple peel fibre was modified via reaction with succinic anhydride for introduction of carboxylic functional groups. The modified pineapple peel fibre was characterized with Fourier transform infrared (FTIR) spectroscopy and evaluated for its adsorptive ability for Cu2+, Cd2+ and Pb2+ from synthetic metal solutions. The FTIR analysis proved the introduction of carboxylic functional groups in the backbone of the modified pineapple peel fibre. The modified pineapple peel fibre showed higher adsorptive capacity for Cu2+, Cd2+ and Pb2+ compared with raw pineapple peel and pineapple peel fibre pretreated with iso-propyl alcohol. The adsorption of Cu2+, Cd2+ and Pb2+ on the modified pineapple peel fibre depended on solution pH value, adsorption time and initial metal concentration. The maximum adsorption capacities of the modified fibre were observed at pH 5.4 for Cu2+ (27.68 +/- 0.83 mg g(-1) or 0.44 mmol g(-1)), at pH 7.5 for Cd2+ (34.18 +/- 1.02 mg g(-1) or 0.30 mmol g(-1)) and at pH 5.6 for Pb2+ (70.29 +/- 2.11 mg g(-1) or 0.34 mmol g(-1)) respectively. The adsorption followed the pseudo-second-order kinetics model and the experimental data coincided well with the Langmuir model.

  3. Accumulation of Zn, Pb, Cu, Cr and Ni in Sediments Between Roots of the Tagus Estuary Salt Marshes, Portugal

    NASA Astrophysics Data System (ADS)

    Ca çador, Isabel; Vale, Carlos; Catarino, Fernando

    1996-03-01

    Sediment cores of 60 cm length were collected from two Tagus estuary salt marshes. At each salt marsh, samples were taken from a non-vegetated zone and one from each of areas dominated by Halimione portulacoides, Spartina maritimaand Arthrocnemum fruticosum.Cores were sliced in situand, at each sediment layer, redox potential and pH were measured, and the organic matter content (LOI), grain size, and concentrations of Zn, Cu, Pb, Ni and Cr were determined. Sediment between roots and non-vegetated sediments of the same depth (5 -15 cm) were extracted with several acid solutions, and the metal concentrations were compared. Metal residues were determined in roots of vascular plants. Sediment between roots was more oxidative, more acidic and richer in organic matter than non-vegetated sediment. Profiles of Zn, Pb and Cu concentrations in vegetated sediments differed from those recorded in non-vegetated areas: at subsurface layers (where root density is higher), Zn, Pb and Cu were enriched. The percentages of Zn, Pb and Cu removed by acetic acid, nitric acid and DTPA extractions from sediment between roots were much lower than those from non-vegetated sediments, being preferentially linked to the residual fraction. Chromium and Ni behave differently no subsurface enrichment being found and their associations being similar in the two types of sediment. Furthermore, Ni concentrations in roots were much lower than in bulk sediments, while levels of Zn and Pb were similar and Cu values higher. These results point out that plants are an important feature for metal accumulation in salt marshes.

  4. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    PubMed

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China.

    PubMed

    Wang, Fei; Wang, Wen-Xiong; Huang, Xiao-Ping

    2012-06-01

    In this study, we compared the spatial distribution of total metals (Cu, Pb, and Zn) and bioaccessible metals, which were quantified by incubating sediments with the digestive fluid of sipunculans Sipunculus nudus, in natural sediments of the Pearl River Estuary (PRE). The spatial distribution of bioaccessible metal was not the same as that of total metals in PRE sediments, which were mainly controlled by fine-grained size, total organic carbon (TOC) and Fe. Geochemical factors were important in interpreting this different spatial variation. The similar spatial variations of bioaccessible Cu and total Cu were related to TOC in PRE sediments. Differently from the total Zn, a higher bioaccessible Zn was detected near the West Channel of PRE because of a lower TOC. However, the distribution of bioaccessible Pb was not significantly related to any sediment geochemistry. This study provides a more accurate view of metal pollution in the PRE natural sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  7. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.

    1989-10-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  8. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  9. Properties of complexes of galactomannan of Leucaena leucocephala and Al3+, Cu2+ and Pb2+.

    PubMed

    Lombardi, Simone Cristina; Mercê, Ana Lucia Ramalho

    2003-08-01

    The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.

  10. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism.

    PubMed

    Eroglu, A; Dogan, Z; Kanak, E G; Atli, G; Canli, M

    2015-03-01

    The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an "early warning tool" in natural monitoring studies.

  11. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  12. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 μm was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  13. Acid blue 29 decolorization and mineralization by anodic oxidation with a cold gas spray synthesized Sn-Cu-Sb alloy anode.

    PubMed

    do Vale-Júnior, Edilson; Dosta, Sergi; Cano, Irene Garcia; Guilemany, Josep Maria; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2016-04-01

    The elevated cost of anodic materials used in the anodic oxidation for water treatment of effluents undermines the real application of these technologies. The study of novel alternative materials more affordable is required. In this work, we report the application of Sn-Cu-Sb alloys as cheap anodic material to decolorize azo dye Acid Blue 29 solutions. These anodes have been synthesized by cold gas spray technologies. Almost complete decolorization and COD abatement were attained after 300 and 600 min of electrochemical treatment, respectively. The influence of several variables such as supporting electrolyte, pH, current density and initial pollutant concentration has been investigated. Furthermore, the release and evolution of by-products was followed by HPLC to better understand the oxidative power of Sn-Cu-Sb electrodes.

  14. Fabrication and characterization of a nanostructured TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber (eta) solar cell

    NASA Astrophysics Data System (ADS)

    Huerta-Flores, Alí M.; García-Gómez, Nora A.; de la Parra-Arciniega, Salomé M.; Sánchez, Eduardo M.

    2016-08-01

    In this work we report the successful assembly and characterization of a TiO2/In2S3-Sb2S3/CuSCN extremely thin absorber solar cell. Nanostructured TiO2 deposited by screen printing on an ITO substrate was used as an n-type electrode. An ∼80 nm extremely thin layer of the system In2S3-Sb2S3 deposited by successive ionic layer adsorption and a reaction (silar) method was used as an absorber. The voids were filled with p-type CuSCN and the entire assembly was completed with a gold contact. The solar cell fabricated with this heterostructure showed an energy conversion efficiency of 4.9%, which is a promising result in the development of low cost and simple fabrication of solar cells.

  15. The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.

    2009-04-01

    The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised

  16. Structural phase transition and phonon instability in Cu12Sb4S13

    SciTech Connect

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; Lara-Curzio, Edgar; Susner, Michael A.; Abernathy, Douglas L.; Kirkham, Melanie J.; McGuire, Michael A.

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.

  17. Preparation of CuSbS2 Thin Films by Co-Sputtering and Solar Cell Devices with Band Gap-Adjustable n-Type InGaN as a Substitute of ZnO

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Liang; Kuo, Dong-Hau; Tuan, Thi Tran Anh

    2016-01-01

    CuSbS2 films were fabricated by co-sputtering with the (Cu + Sb2S3) target at powers of 50 W, 55 W, and 60 W and a Cu target at 2 W under the deposition temperature of 300°C for 2 h, followed by annealing at 350-450°C for 1 h under a Sb2S3 compensation disc to avoid the sulfur deficiency. The (Cu + Sb2S3) cermet target with the composition of Cu:Sb2S3 = 2:1 was formed by hot pressing. The effects of processing conditions on the growth behavior, microstructural characteristics, and electrical properties of CuSbS2 films were investigated. X-ray diffractometry showed that the films prepared by the (Cu + Sb2S3) target at 50 W and 55 W were single phases. The peaks located at 28.4°, 28.7°, and 29.9° were contributed from the (111), (410), and (301) diffraction peaks, respectively. The film prepared with the (Cu + Sb2S3) target at 60 W was Cu rich and had a high electrical conductivity of 180 S cm-1. The 55 W-deposited film was Cu stoichiometric and had low electrical conductivity of 0.05 S cm-1. The 50 W-deposited film with electrical conductivity of 0.24 S cm-1 was good for use as a solar cell device. The solar cell devices made of the p-CuSbS2/ n-ZnO system had an efficiency of 0.16%, while it was 0.76% for the p-CuSbS2/ n-In0.3Ga0.7N system with the InGaN made by reactive sputtering at 200°C instead of metal-organic chemical vapor deposition above 750°C. This replacement with InGaN for a solar cell device has led to a 4.75-fold increase in efficiency.

  18. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Stabilization of Pb²⁺ and Cu²⁺ contaminated firing range soil using calcined oyster shells and waste cow bones.

    PubMed

    Moon, Deok Hyun; Cheong, Kyung Hoon; Khim, Jeehyeong; Wazne, Mahmoud; Hyun, Seunghun; Park, Jeong-Hun; Chang, Yoon-Young; Ok, Yong Sik

    2013-05-01

    Pb(2+) and Cu(2+) contamination at army firing ranges poses serious environmental and health risks to nearby communities necessitating an immediate and prompt remedial action. In this study, a novel mixture of calcined oyster shells (COSs) and waste cow bones (WCBs) was utilized to immobilize Pb(2+) and Cu(2+) in army firing range soils. The effectiveness of the treatment was evaluated based on the Korean Standard leaching test. The treatment results showed that Pb(2+) and Cu(2+) immobilization in the army firing range soil was effective in significantly reducing Pb(2+) and Cu(2+) leachability upon the combined treatment with COS and WCB. A drastic reduction in Pb(2+) (99%) and Cu(2+) leachability (95%) was obtained as compared to the control sample, upon treatment with 5 wt.% COS and 5 wt.% WCB. The combination treatment of COS and WCB was more effective for Pb immobilization, than the treatment with COS or WCB alone. The 5 wt.% COS alone treatment resulted in 95% reduction in Cu(2+) leachability. The SEM-EDX results suggested that Pb(2+) and Cu(2+) immobilization was most probably associated with the formation of ettringite, pozzolanic reaction products and pyromorphite-like phases at the same time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay

    2017-05-01

    We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

  1. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  2. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences.

    PubMed

    Covelo, E F; Vega, F A; Andrade, M L

    2007-08-25

    The sorption and desorption of six heavy metals by and from the surface or immediately subsurface horizons of eleven acid soils of Galicia (N.W. Spain) were characterized by means of batch experiments in which the initial sorption solution contained identical mass concentrations of each metal. Concentration-dependent coefficients K(d) were calculated for the distribution of the metals between the soil and solution phases, and the values obtained for initial sorption solution concentrations of 100mgL(-1) of each metal (K(d100)) were used, for each soil, to order the metals as regards their sorption and retention. Pb and Cu were sorbed and retained to a greater extent than Cd, Ni or Zn, which had low K(d100) values. Pb was sorbed more than any other metal. Cr was generally sorbed only slightly more than Cd, Ni or Zn, but was strongly retained, with K(d100) (retention) values greater than those of Pb and Cu in soils with very low CEC (<3cmol((+))kg(-1)). The sorption of Pb and Cu correlated with organic matter content, while the retention of these and the other metals considered appeared to depend on clay minerals, especially kaolinite, gibbsite, and vermiculite.

  3. Effect of Crucible Diameter Reduction on the Convection, Macrosegregation, and Dendritic Morphology during Directional Solidification of Pb-2.2 Wt Pct Sb Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Jun; Tewari, S. N.; Magadi, G.; DeGroh, H. C., III

    2003-01-01

    The Pb-2.2 wt pct Sb alloy has been directionally solidified in 1-, 2-, 3-, and 7-mm-diameter crucibles with planar and dendritic liquid-solid interface orphology. For plane front solidification, the experimentally observed macrosegregation along the solidified length follows the relationship proposed by Favier. Application of a 0.4 T transverse magnetic field has no effect on the extent of convection. Reducing the ampoule diameter appears to decrease the extent of convection. However, extensive convection is still present even in the 1-mm-diameter crucible. An extrapolation of the observed behavior indicated that nearly diffusive transport conditions require ampoules that are about 40 microns in diameter. Reduction of the crucible diameter does not appear to have any significant effect on the primary dendrite spacing. However, it results in considerable distortion of the dendrite morphology and ordering. This is especially true for the 1-mm diameter samples.

  4. A study of the chemical composition of grain boundaries and creep cavity surfaces in a Cu-Sb alloy

    NASA Astrophysics Data System (ADS)

    Yu, K. S.; Joshi, A.; Nix, W. D.

    1983-12-01

    Chemical compositions of grain boundaries and creep cavity surfaces in Cu + 0.5 at. pct Sb have been measured quantitatively using Auger Electron Spectroscopy. The grain boundary enrichment ratio for antimony due to segregation was found to be greater than 16. The distribution of antimony on the fracture surface was very homogeneous, with concentrations of about 7 at. pct on the grain boundaries and 9.2 at. pct on the cavity surfaces. The ratio of grain boundary segregation to surface segregation was lower than expected and possible reasons for this discrepancy are discussed. Other impurities (C, S, and O) were more inhomogeneously distributed. Carbon was found mainly on the walls of the cavities and on the grain boundaries while sulfur preferentially concentrated at steps on the cavity surfaces. The distribution of oxygen is closely related to the morphology of the fracture surface. It is concluded that oxygen arises from contamination of intergranular microcracks which extend to the surface of the sample and were exposed to the atmosphere. The highly reproducible Auger spectra clearly indicates that all other impurities were present in the material prior to microanalysis.

  5. A Novel Multiphase Sn-Sb-Cu Alloy Electrodeposited on 3D Interconnected Microporous Cu Current Collector as Negative Electrode for Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Sengupta, Srijan; Patra, Arghya; Deo, Yash; Das, Karabi; Majumder, Subhasish Basu; Das, Siddhartha

    2017-03-01

    We report a novel, active-active-inactive-type tin-antimony-copper alloy with dendritic morphology electrodeposited on 3D interconnected microporous copper foam ( 70 μm pore diameter) as a promising high specific capacity anode for Li-ion batteries. The multiphase composition, SnSb and Cu6Sn5 "reactant" intermetallics embedded in Sn "matrix," alleviates the volumetric stress generated during cycling by lithiating at different step potentials (0.84, 0.66, 0.57, 0.42, 0.39, and 0.38 to 0.33 V vs Li/Li+). Copper foam successfully acts as a stress buffer preventing both pulverization and delamination. This combination of properties in tin-antimony-copper anode on copper foam results in 2nd cycle discharge capacity of 723 mAh/g, superior rate capability, and stable cycle retention with a capacity loss of 16 pct in the last 70 cycles at a rate of 400 mA/g (0.5 C) while preserving its structural integrity in comparison to tin-antimony-copper anode deposited on a planar copper foil as a current collector.

  6. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  7. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids.

  8. [Effects of combined pollution of Cd, Cu and Pb on antioxidant enzyme activities of earthworm in soils].

    PubMed

    Wang, Hui; Xie, Xin-Yuan

    2014-07-01

    Recently, soil heavy metal contamination becomes more and more serious in certain areas in China. Adverse effect caused by heavy metals in contaminated soils has been a wide concern for many years. In this study, a bioassay experiment with the earthworm (Eisenia foetida) was conducted to investigate the effects of compound application of Cd, Cu and Pb in soil on surperoxide dismutase (SOD), glutathione S-transferase (GST) and acid phosphatase (AP) activity in earthworms. Through a method of greenhouse soil experiment, this study utilized a uniform design method of three factors and six levels (Cd: 0-15 mg x kg(-1), Cu: 0-175 mg x kg(-1), Pb: 0-600 mg x kg(-1)) to research the physiological property and enrichment characteristics of earthworm in soils with Cd, Cu and Pb compound pollution. The activity of SOD, GST and AP were inhibited significantly under Cd, Cu and Pb compound pollution. And they were impacted by both time and heavy metal contents in the soil. Compared with the control sample, the activity of SOD increased by 7.4% -240.5% in the first eight days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 19.4% -69.7%. Compared with the control sample, the activity of GST increased by 104.3% -217.3% in the first sixteen days under the stress of heavy metals. But owing to the extremely severe stress, it was suppressed and descended by 1.2% - 40.3%. The activity of AP changed over time in a trend of "increase, decrease, increase, decrease". Compared with the control sample, the activity of AP decreased by 9.2% -37.8% in the first eight days, then increased by 37.2% -117.2% in sixteenth days and decreased by 24.3% -34.0% to the last day. The analysis demonstrates that Pb and Cd-Cu-Pb is the dominant factor to the activity of SOD, while Cd and Cu were the dominant factors to the activity of GST and AP.

  9. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus.

    PubMed

    Jing, Xiao-Bing; He, Nan; Zhang, Ying; Cao, Yan-Ru; Xu, Heng

    2012-01-01

    The enhanced effect of heavy-metal-mobilizing bacteria on the uptake of Pb, Cu, and Cd by Coprinus comatus from Pb-, Cu-, and Cd-multicontaminated soil was assessed in this study. Thirteen strains, tolerating 800 mg·L(-1) Pb, 200 mg·L(-1) Cu, and 200 mg·L(-1) Cd simultaneously were selected for heavy-metal-solubilizing experiments in soil. The mobilization of heavy metals depended on the characteristics of bacteria and heavy metals. Correlation analysis demonstrated that for Pb solubilization, the acid-producing ability was the most significant factor, while for Cu and Cd, siderophores played a leading role in this process. Four strains, based on their excellent ability to solubilize heavy metal in soil, were applied in pot experiments. The results showed that all strains can promote the growth of C. comatus and meanwhile help mushroom accumulate more heavy metals (Pb, Cd, and Cu). The maximum uptake for total Pb and Cu by C. comatus was observed in inoculations with Bacillus sp. strain JSG1 (2.02- and 2.13-fold, respectively, compared with uninoculated soil), while for Cd, it was recorded in Bacillus sp. strain PB2 treated soil (2.03-fold). Therefore, this work suggests that the mushroom-bacteria interaction can be developed into a novel bioremediation strategy.

  10. Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects.

    PubMed

    Ito, Seigo; Tanaka, Soichiro; Vahlman, Henri; Nishino, Hitoshi; Manabe, Kyohei; Lund, Peter

    2014-04-14

    Carbon double bond-free printed solar cells have been fabricated with the structure PbI3/Au> and PbI3/CuSCN/Au>, in which CuSCN acts as a hole conductor. The thickness of the CH3NH3PbI3 layer is controlled by a hot air flow during spin coating. The best conversion efficiency (4.86%) is obtained with PbI3 (hot-air dried)/CuSCN/Au>. However, a thick CH3NH3PbI3 layer on CuSCN is better for light-exposure stability (100 mW cm(-2) AM 1.5) when not encapsulated. Without the CuSCN coverage, the black CH3NH3PbI3 crystal changes to yellow during the light-exposure stability test, which is due to the transformation of the CH3NH3PbI3 perovskite crystal into hexagonal PbI2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    NASA Astrophysics Data System (ADS)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  12. Geometrical frustration in a new S = \\xBD distorted check-board lattice PbCuTeO5

    NASA Astrophysics Data System (ADS)

    Chilakalapudi, S. P.; Shahee, Aga; Mahajan, A. V.; Srinath, S.; Koteswararao, B.

    2017-05-01

    Geometrical frustration, arising from the unsatisfying magnetic bonds in peculiar magnetic materials, leads to the emergence of a variety of ground states ranging from exotic disordered (quantum spin liquid) to unusual magnetic ordered states. We have prepared and studied the magnetic properties of a novel quantum magnet PbCuTeO5, whose structure suggests that it has 2D distorted check-board lattice. A large antiferromagnetic Curie-Weiss temperature of -165 K and a spin freezing temperature Tf = 6 K are observed in the magnetic data. Our results suggest that PbCuTeO5 is a new frustrated quantum magnet with a large frustration parameter f = θCW/Tf > 27.

  13. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests.

    PubMed

    Maisto, Giulia; Manzo, Sonia; De Nicola, Flavia; Carotenuto, Rita; Rocco, Annamaria; Alfani, Anna

    2011-11-01

    This study aimed to assess soil quality by chemical and ecotoxicological investigations and to check the correspondence between soil metal concentrations and ecotoxicity. For these purposes, surface soils collected at four adjacent roadside urban parks and at a former industrial area were characterized for C/N, organic matter content, texture, and pH. Cr, Cu, Ni and Pb, chosen among the most representative soil metal contaminants, were measured as total content and as available and water soluble fractions. In addition, the total concentrations of the investigated metals were used to calculate two chemical indices: the contamination and the potential ecological risk factors. The toxicity of the investigated soils was evaluated by an ecotoxicity test battery carried out on both soil samples (Vibrio fischeri, Heterocypris incongruens and Sinapis alba) and elutriates (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum). The findings, both by the chemical and ecotoxicological approaches, would suggest that the soils with high metal contamination pose ecological risks. On the other hand, moderately metal contaminated soils did not exclude soil ecotoxicity. In fact, toxic effects were also highlighted in soils with low metal content, toxicity being affected by metal availability and soil characteristics. Moreover, the results suggest the importance of using a battery of tests to assess soil ecotoxicity.

  14. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    PubMed

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  15. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  16. A Study on the Effect of Ni Dopping on Bi-Pb-Sr-Ca-Cu-O System

    NASA Astrophysics Data System (ADS)

    Tepe, M.; Abukay, D.

    1998-01-01

    The effect of Ni doping on superconductivity properties of the Bi1.7Pb0.3Sr2Ca2(Cu1-xNix)3Oy system has been investigated by means of x-ray diffraction, ac electrical resistance, ac magnetic susceptibility and critical current measurements. The volume fraction of the 2223 phase decreases with increasing Ni concentration. The zero-resistance temperature and the critical current density are suppressed with Ni substitution.

  17. Valorization of a treated soil via amendments: fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn.

    PubMed

    Zagury, Gerald J; Rincon Bello, Jhony A; Guney, Mert

    2016-04-01

    The present study aims to transform a treated soil (TS) into a more desirable resource by modifying physico-chemical properties via amendments while reducing toxic metals' mobility and oral bioaccessibility. A hydrocarbon-contaminated soil submitted to treatment (TS) but still containing elevated concentrations of Cu, Ni, Pb, and Zn has been amended with compost, sand, and Al2(SO4)3 to render it usable for horticulture. Characterization and sequential extraction were performed for TS and four amended mixtures (AM1-4). P and K availability and metal bioaccessibility were investigated in TS and AM2. Amendment improved soil properties for all mixtures and yielded a usable product (AM2 20 % TS, 49 % compost, 30 % sand, 1 % Al2(SO4)3) satisfying regulatory requirements except for Pb content. In particular, AM2 had improved organic matter (OM) and cation exchange capacity (CEC), highly increased P and K availability, and reduced total metal concentrations. Furthermore, amendment decreased metal mobile fraction likely to be plant-available (in mg kg(-1), assumed as soluble/exchangeable + carbonates fractions). For AM2, estimated Pb bioavailability decreased from 1.50 × 10(3) mg kg(-1) (TS) to 238 mg kg(-1) (52.4 % (TS) to 34.2 %). Bioaccessible concentrations of Cu, Ni, and Zn (mg kg(-1)) were lower in AM2 than in TS, but there was no significant decrease for Pb. The results suggest that amendment improved soil by modifying its chemistry, resulting in lower metal mobile fraction (in %, for Cu and Zn) and bioaccessibility (in %, for Cu only). Amending soils having residual metal contamination can be an efficient valorization method, indicating potential for reducing treatment cost and environmental burden by rendering disposal/additional treatment unnecessary. Further studies including plant bioavailability are recommended to confirm results.

  18. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.

    PubMed

    Wang, Fa Yuan; Lin, Xian Gui; Yin, Rui

    2007-05-01

    A field experiment was carried out to study the effect of microbial inoculation on heavy metal phytoextraction by Elsholtzia splendens and whether chitosan could have a synergistic effect with the microbial inocula. The microbial inocula consisted of a consortium of arbuscular mycorrhizal fungi and two Penicillium fungi. Three treatments were included: the control, inoculation with microbial inocula, and the inoculation combined with chitosan. Microbial inoculation increased plant biomass especially shoot dry weight, enhanced shoot Cu, Zn and Pb concentrations but did not affect Cd, leading to higher shoot Cu, Zn, Pb and Cd uptake. Compared with microbial inoculation alone, chitosan application did not affect plant growth but increased shoot Zn, Pb and Cd concentrations except Cu, which led to higher phytoextraction efficiencies and partitioning to shoots of Zn, Pb and Cd. These results indicated synergistic effects between microbial inocula and chitosan on Zn, Pb and Cd phytoextraction.

  19. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    SciTech Connect

    Linch, Heidi Sue

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  20. Pb electrodeposition on Cu(100) in the presence of Chloride: An in situ optical oblique-incidence reflectivity difference study

    NASA Astrophysics Data System (ADS)

    Gray, Jeremy; Scwharzacher, Walther; Zhu, Xiangdong

    2003-03-01

    The growth of submonolayer, monolayer, and multilayer Pb films electrodeposited on Cu(100) has been studied using an optical oblique-incidence reflectivity difference (OI-RD) technique. The OI-RD signal is shown to be proportional to Pb thickness during underpotential deposition (upd) of one monolayer. The optical results also suggest that subsequent overpotential growth, resulting in multilayer Pb films, can proceed in two distinctly different pathways. The two pathways are a function of the applied deposition potential and, during cyclic voltammetry (CV) scans, the potential ramping rate. Most likely, at low overpotentials and/or scan rates, a progressive two-dimensional nucleation and growth process dominates, while at higher overpotentials growth proceeds in a three-dimensional process. By observing the OI-RD behavior, we were able to control the growth mode in-situ be varying the applied pulse potential.

  1. Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China.

    PubMed

    Luo, Jinming; Meng, Jia; Ye, Yajie; Wang, Yongjie; Bai, Lin

    2016-11-15

    The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)(-1) day(-1) of Cu, 288 μg (kg bw)(-1) day(-1) of Zn, 2.01 μg (kg bw)(-1) day(-1) of Pb, 0.41 μg (kg bw)(-1) day(-1) of Cd, 0.01 μg (kg bw)(-1) day(-1) of Hg, and 0.52 μg (kg bw)(-1) day(-1) of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)(-1) day(-1) and 1.68 μg (kg bw)(-1) day(-1), respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)(-1) day(-1) for Pb and 1.0 μg (kg bw)(-1) day(-1) for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg(-1) dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.

  2. Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: a case study in the Le'an River floodplain, China.

    PubMed

    Chen, Yiyun; Liu, Yaolin; Liu, Yanfang; Lin, Aiwen; Kong, Xuesong; Liu, Dianfeng; Li, Xiran; Zhang, Yang; Gao, Yin; Wang, Dun

    2012-05-01

    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le'an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  3. Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    PubMed Central

    Chen, Yiyun; Liu, Yaolin; Liu, Yanfang; Lin, Aiwen; Kong, Xuesong; Liu, Dianfeng; Li, Xiran; Zhang, Yang; Gao, Yin; Wang, Dun

    2012-01-01

    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants. PMID:22754479

  4. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    NASA Astrophysics Data System (ADS)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.

    2013-04-01

    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  5. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  6. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.

    PubMed

    Labanowski, Jérôme; Monna, Fabrice; Bermond, Alain; Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle; van Oort, Folkert

    2008-04-01

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1+QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.

  7. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  8. Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution.

    PubMed

    Adewuyi, Adewale; Pereira, Fabiano Vargas

    2016-11-01

    Nitrilotriacetic acid functionalized Adansonia digitata (NFAD) biosorbent has been synthesized using a simple and novel method. NFAD was characterized by X-ray Diffraction analysis technique (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier Transform Infrared spectrometer (FTIR), particle size dispersion, zeta potential, elemental analysis (CHNS/O analyzer), thermogravimetric analysis (TGA), differential thermal analysis (DTA), derivative thermogravimetric analysis (DTG) and energy dispersive spectroscopy (EDS). The ability of NFAD as biosorbent was evaluated for the removal of Pb (II) and Cu (II) ions from aqueous solutions. The particle distribution of NFAD was found to be monomodal while SEM revealed the surface to be heterogeneous. The adsorption capacity of NFAD toward Pb (II) ions was 54.417 mg/g while that of Cu (II) ions was found to be 9.349 mg/g. The adsorption of these metals was found to be monolayer, second-order-kinetic, and controlled by both intra-particle diffusion and liquid film diffusion. The results of this study were compared better than some reported biosorbents in the literature. The current study has revealed NFAD to be an effective biosorbent for the removal of Pb (II) and Cu (II) from aqueous solution.

  9. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide.

    PubMed

    Ozverdi, Arzu; Erdem, Mehmet

    2006-09-01

    In this study, removal of Cu(2+), Cd(2+) and Pb(2+) from aqueous solutions by adsorption onto pyrite and synthetic iron sulphide (SIS) was investigated as a function of pH, contact time, adsorbent dosage, initial metal concentration and temperature. It has been determined that the adsorption of metal ions onto both adsorbents is pH dependent and the adsorption capacities increase with the increasing temperature. The mechanisms governing the metal removal processes were determined as chemical precipitation at low pH (<3) due to H(2)S generation and adsorption at high pH (in the range of 3-6). The metal adsorption yields also increased with the increasing adsorbent dosage and contact time and reached to equilibrium for both adsorbents. The Cu(2+), Cd(2+) and Pb(2+) adsorption capacities of both adsorbents decrease in the order of Pb(2+)>Cu(2+)>Cd(2+). Except for cadmium, little fraction of copper and lead in the solid adsorption residues was desorbed in acidic media.

  11. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.

    PubMed

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-01-01

    Zero-valent iron nanoparticle (Nanofer ZVI) is a new reagent due to its unique structure and properties. Images of scanning electron microscopy/electron dispersive spectroscopy (SEM/EDS), transmission electron microscopy and X-ray diffraction revealed that Nanofer ZVI is stable, reactive and has a unique structure. The particles exhibited a spherical shape, a chain-like structure with a particle size of 20 to 100 nm and a surface area between 25-30 m2g(-1). The time interval for particles to agglomerate and settle was between 4-6 h. SEM/EDS Images showed that particle size increased to 2 µm due to agglomeration. Investigation of adsorption and oxidation behavior of Nanofer ZVI used for the removal of Cu(II), Pb(II), Cd(II) ions and trichloroethylene (TCE) from aqueous solutions showed that the optimal pH for Pb(II), Cu(II), Cd(II) and TCE removal were 4.5 and 4.8, 5.0 and 6.5, respectively. Test data were used to form Langmuir and Freundlich isotherms. The maximum contaminant loading was estimated as 270, 170, 110, 130 mg per gram of Nanofer ZVI for Cu(II), Pb(II), Cd(II) and TCE respectively. Removal of metal ions is interpreted in terms of their hydrated ionic radii and their electronegativity. TCE oxidation followed the dechlorination pathway resulting in nonhazardous by-products.

  12. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.

    PubMed

    Komjarova, I; Blust, R

    2008-11-11

    Metal interaction effects were investigated in Daphnia magna during a simultaneous exposure to essential (Cu, Ni and Zn) and non-essential (Cd and Pb) metals at environmentally relevant concentrations using a stable isotope technique. The metals were applied in the following concentration ranges: 0.0125-0.2 microM for (106)Cd, 0.025-0.25 microM for (65)Cu and (204)Pb, 0.1-1.25 microM for (62)Ni and (67)Zn. Cadmium and copper exhibited a suppressing effect on the uptake rates of all other metals present in the mixture with the exception to lead at all studied concentrations. The effect was already pronounced at low Cd and Cu concentrations and reached a maximum at the higher concentrations. Nickel and zinc showed weaker interactions with cadmium and between each other, while having no effect on copper and lead uptake. There was a high degree of correlation between Cd, Ni and Zn uptake rates indicating that these metals share in part common uptake or interaction pathways. Moreover, a significant correlation between Zn and Cu uptake processes suggests that more than one mechanism is involved in Zn accumulation since Cu is known to interact with Na uptake sites. The uptake of lead was marked by a high initial rate, but the uptake process reached saturation within 24 h. Cd applied at a concentration of 0.2 microM was the only metal which affected the lead uptake process by stimulation of the Pb uptake. Added to the medium at a concentration of 0.25 microM, lead in turn, increased copper uptake. Current work illustrates that metal interactions are significant and occur at low environmentally realistic concentrations affecting bioavailability of both toxic and essential metals.

  13. Absence of Jahn-Teller transition in the hexagonal Ba3CuSb2O9 single crystal

    DOE PAGES

    Katayama, Naoyuki; Kimura, Kenta; Han, Yibo; ...

    2015-07-13

    With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Furthermore, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in FeSc2S4. To confirm this exotic ground state, experimentsmore » based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. Lastly, we discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state.« less

  14. Absence of Jahn−Teller transition in the hexagonal Ba3CuSb2O9 single crystal

    PubMed Central

    Katayama, Naoyuki; Kimura, Kenta; Han, Yibo; Nasu, Joji; Drichko, Natalia; Nakanishi, Yoshiki; Halim, Mario; Ishiguro, Yuki; Satake, Ryuta; Nishibori, Eiji; Yoshizawa, Masahito; Nakano, Takehito; Nozue, Yasuo; Wakabayashi, Yusuke; Ishihara, Sumio; Hagiwara, Masayuki; Sawa, Hiroshi; Nakatsuji, Satoru

    2015-01-01

    With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose−Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin–orbital entanglement in FeSc2S4. To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin–orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn−Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn−Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin–orbital entangled quantum liquid state. PMID:26170280

  15. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil.

    PubMed

    Rizwan, Muhammad Shahid; Imtiaz, Muhammad; Chhajro, Muhammad Afzal; Huang, Guoyong; Fu, Qingling; Zhu, Jun; Aziz, Omar; Hu, Hongqing

    2016-11-01

    Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2-41.4% and 5.7-22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.

  16. Crystal structure of nonsuperconducting Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8

    NASA Astrophysics Data System (ADS)

    Hayri, Eric A.; Kvick, Åke

    1990-01-01

    The crystal structure of Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8 was determined by single crystal X-ray diffraction. The compound was found to be orthorhombic ( Cmmm) with a = 5.437(3), b = 5.472(2), c = 15.797(7)Å and Z = 2. In the structure double layers of CuO square pyramids are separated by (Nd, Sr) oxygen deficient layers which are stacked between (PbO)Cu(PbO) slabs. The oxygen in the Pb planes is shifted toward a pair of Pb atoms resulting in an orthorhombic distortion of the tetragonal unit cell. The possibilities for modulations and superlattices are discussed as is the role of the PbO planes in superconductivity.

  17. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-08-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  18. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China.

    PubMed

    Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing

    2015-04-01

    The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.

  19. Structure, infrared and Raman spectroscopic studies of newly synthetic AII(SbV0.50FeIII0.50)(PO4)2 (Adbnd Ba, Sr, Pb) phosphates with yavapaiite structure

    NASA Astrophysics Data System (ADS)

    Aatiq, Abderrahim; Tigha, My Rachid; Fakhreddine, Rachid; Bregiroux, Damien; Wallez, Gilles

    2016-08-01

    The synthesis and structural study of three new AII(SbV0.5FeIII0.5)(PO4)2 (Adbnd Ba, Sr, Pb) phosphates belonging to the Asbnd Sbsbnd Fesbnd Psbnd O system were reported here for the first time. Structures of [Ba], [Sr] and [Pb] compounds, obtained by solid state reaction in air atmosphere, were determined at room temperature from X-ray powder diffraction using the Rietveld method. BaII(SbV0.5FeIII0.5)(PO4)2 features the yavapaiite-type structure, with space group C2/m, Z = 2 and a = 8.1568(4) Å; b = 5.1996(3) Å c = 7.8290(4) Å; β = 94.53(1)°. AII(SbV0.5FeIII0.5)(PO4)2 (Adbnd Sr, Pb) compounds have a distorted yavapaiite structure with space group C2/c, Z = 4 and a = 16.5215(2) Å; b = 5.1891(1) Å c = 8.0489(1) Å; β = 115.70(1)° for [Sr]; a = 16.6925(2) Å; b = 5.1832(1) Å c = 8.1215(1) Å; β = 115.03(1)° for [Pb]. Raman and Infrared spectroscopic study was used to obtain further structural information about the nature of bonding in selected compositions.

  20. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar.

    PubMed

    Deng, Jiaqin; Liu, Yunguo; Liu, Shaobo; Zeng, Guangming; Tan, Xiaofei; Huang, Binyan; Tang, Xiaojun; Wang, Shengfan; Hua, Quan; Yan, Zhili

    2017-11-15

    In this work, a novel engineered biochar prepared through modification with chitosan and pyromellitic dianhydride (PMDA) was investigated as an adsorbent for the removal of heavy metal ions from single metal and mixed-metal solutions (Cd, Cu and Pb). Characterization experiments with FTIR and XPS suggested that the novel modified biochar had more surface functional groups compare to the pristine biochar. Adsorption experiments indicated that the initial pH of the solution influenced the ability of biochars to adsorb heavy metals in single- and multi-metal systems. Moreover, the chitosan-PMDA modified biochar had strong selective adsorption of Cu(II). Mechanism studies showed that chemisorption was the major mechanism for heavy metal removal by the chitosan-PMDA modified biochar. Furthermore, the types of effective functional group for these heavy metal removal were different. The NCO group played a dominant role in the process of Pb(II) removal, while several N-containing functional groups and CC groups participated in the adsorption of Cd(II). The novel engineered biochar had selective adsorption capacity for copper due to the N-containing functional groups, meanwhile abundant carbonyl groups also participated in the removal of copper, and may reduce Cu(II) to Cu(I). Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing

    NASA Astrophysics Data System (ADS)

    Torres, Luis G.; Lopez, Rosario B.; Beltran, Margarita

    Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As. There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.

  2. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.

    PubMed

    Kopittke, Peter M; Kinraide, Thomas B; Wang, Peng; Blamey, F Pax C; Reichman, Suzie M; Menzies, Neal W

    2011-06-01

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role.

  3. Low-Temperature Bonding of Bi0.5Sb1.5Te3 Thermoelectric Material with Cu Electrodes Using a Thin-Film In Interlayer

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Yang, Chung-Lin; Huang, Jing-Yi; Jain, Chao-Chi; Hwang, Jen-Dong; Chu, Hsu-Shen; Chen, Sheng-Chi; Chuang, Tung-Han

    2016-09-01

    A Bi0.5Sb1.5Te3 thermoelectric material electroplated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode at low temperatures of 448 K (175 °C) to 523 K (250 °C) using a 4- μm-thick In interlayer under an external pressure of 3 MPa. During the bonding process, the In thin film reacted with the Ag layer to form a double layer of Ag3In and Ag2In intermetallic compounds. No reaction occurred at the Bi0.5Sb1.5Te3/Ni interface, which resulted in low bonding strengths of about 3.2 MPa. The adhesion of the Bi0.5Sb1.5Te3/Ni interface was improved by precoating a 1- μm Sn film on the surface of the thermoelectric element and preheating it at 523 K (250 °C) for 3 minutes. In this case, the bonding strengths increased to a range of 9.1 to 11.5 MPa after bonding at 473 K (200 °C) for 5 to 60 minutes, and the shear-tested specimens fractured with cleavage characteristics in the interior of the thermoelectric material. The bonding at 448 K (175 °C) led to shear strengths ranging from 7.1 to 8.5 MPa for various bonding times between 5 and 60 minutes, which were further increased to the values of 10.4 to 11.7 MPa by increasing the bonding pressure to 9.8 MPa. The shear strengths of Bi0.5Sb1.5Te3/Cu joints bonded with the optimized conditions of the modified solid-liquid interdiffusion bonding process changed only slightly after long-term exposure at 473 K (200 °C) for 1000 hours.

  4. Structural modulation and superconducting properties in Bi 2- xPb xSr 2CaCu 2O 8+ d and Bi 2- yPb ySr 2YCu 2O 8+ d

    NASA Astrophysics Data System (ADS)

    Fukushima, Noburu; Niu, Hiromi; Nakamura, Shin-ichi; Takeno, Shiro; Hayashi, Masaru; Ando, Ken

    1989-08-01

    Changes in the structural modulation and the superconducting properties were examined in Bi 2- xPb xSr 2CaCu 2O 8+ d and Bi 2- yPb ySr 2YCu 2O 8+ d systems. In both systems, the b-axis decreased and the periodicity of the structur al modulation along the b-axis increased with increasing Pb content, and the structural modulation disappeared in a high Pb concentration region. These changes in structural modulation were explained by the decrease in additional oxygen in the Bi-O layer. Besides this relaxation of the structural modulation, the superconducting transition became sharper, and a slight increase in Tc was observed in the Bi 2- xPb xSr 2CaCu 2O 8+ d system.

  5. The crystal structure of the new ternary antimonide Dy{sub 3}Cu{sub 20+x}Sb{sub 11-x} (x{approx}2)

    SciTech Connect

    Fedyna, L.O.; Bodak, O.I. . E-mail: bodak@franko.lviv.ua; Fedorchuk, A.O.; Tokaychuk, Ya.O.

    2005-06-15

    New ternary antimonide Dy{sub 3}Cu{sub 20+x}Sb{sub 11-x} (x{approx}2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, CuK{alpha}-radiation, R{sub I}=6.99%,R{sub p}=12.27%,R{sub wp}=11.55%). The compound crystallizes with the own cubic structure type: space group F4-bar 3m, Pearson code cF272, a=16.6150(2)A,Z=8. The structure of the Dy{sub 3}Cu{sub 20}Sb{sub 11-x} (x{approx}2) can be obtained from the structure type BaHg{sub 11} by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.

  6. Origin of epithermal Ag-Au-Cu-Pb-Zn mineralization in Guanajuato, Mexico

    NASA Astrophysics Data System (ADS)

    Mango, Helen; Arehart, Greg; Oreskes, Naomi; Zantop, Half

    2014-01-01

    The Guanajuato epithermal district is one of the largest silver producers in Mexico. Mineralization occurs along three main vein systems trending dominantly northwest-southeast: the central Veta Madre, the La Luz system to the northwest, and the Sierra system to the east. Mineralization consists dominantly of silver sulfides and sulfosalts, base metal sulfides (mostly chalcopyrite, galena, sphalerite, and pyrite), and electrum. There is a broad zonation of metal distribution, with up to 10 % Cu+Pb+Zn in the deeper mines along the northern and central portions of the Veta Madre. Ore occurs in banded veins and breccias and as stockworks, with gangue composed dominantly of quartz and calcite. Host rocks are Mesozoic sedimentary and intrusive igneous rocks and Tertiary volcanic rocks. Most fluid inclusion homogenization temperatures are between 200 and 300 °C, with salinities below 4 wt.% NaCl equivalent. Fluid temperature and salinity decreased with time, from 290 to 240 °C and from 2.5 to 1.1 wt.% NaCl equivalent. Relatively constant fluid inclusion liquid-to-vapor ratios and a trend of decreasing salinity with decreasing temperature and with increasing time suggest dilution of the hydrothermal solutions. However, evidence of boiling (such as quartz and calcite textures and the presence of adularia) is noted along the Veta Madre, particularly at higher elevations. Fluid inclusion and mineralogical evidence for boiling of metal-bearing solutions is found in gold-rich portions of the eastern Sierra system; this part of the system is interpreted as the least eroded part of the district. Oxygen, carbon, and sulfur isotope analysis of host rocks, ore, and gangue minerals and fluid inclusion contents indicate a hydrothermal fluid, with an initial magmatic component that mixed over time with infiltrating meteoric water and underwent exchange with host rocks. Mineral deposition was a result of decreasing activities of sulfur and oxygen, decreasing temperature, increasing p

  7. Structure and opoelectronic properies of P-CuSbS2 and N-ZnOxS1-x thin filims synthesiszed by tbds sulfurization mrthod for hetrojunction solar cells

    NASA Astrophysics Data System (ADS)

    Verma, Avinav

    Thin film Hetrojunction solar cell using CuSbS2 as p-type absorber material and ZnOxS1-x/ZnO n-type buffer layer material using magnetron sputtering and three gun sputtering. TBDS (di-tert butyle disulfide) sulfurization material was used in CVD (chemical vapor deposition) technique with time dependence. We investigated for making martial using TBDS which is low cost material. For ZnOxS1-x optical transmission, XRD, Raman spectroscopy and XPS was studied to learn about the material properties. Band gap calculation was taken in place to observe the change in band gap. XRD was to observe the change in crystal structure and Raman was to see the bonding properties of the material. XPS was done to check the depth profile of 6hr sulfurized ZnOxS1-x sample to see the compound ratio. For CuSbS2 optical transmission, XRD and Raman spectroscopy was done. The characterization techniques were used to make an assurance that the sample which I made were CuSbS2 or not. Also we increase the Cu and Sb ratio from original thickness (~480nm) to see the characteristics results using same characterization technique as CuSbS2.

  8. Complex, multiple ore fluids in the world class southeast Missouri Pb-Zn-Cu MVT deposits: Sulfur isotope evidence

    SciTech Connect

    Burstein, I.B.; Shelton, K.L. ); Gregg, J.M.; Hagni, R.D. . Dept. of Geology Geophysics)

    1993-03-01

    More than 625 sulfur isotope data from all of the mines in the Viburnum Trend Pb-Zn-Cu MVT district of southeast Missouri have identified large temporal variations of sulfur isotope composition within the complex mineral paragenesis of each mine as well as large spatial variations in sulfur isotope composition within and among mines. The general trend of [delta][sup 34]S values with increasing paragenetic time is: Early pyrite, [minus]9 to [minus]1[per thousand]; Early bornite-chalcopyrite, [minus]9 to +16[per thousand]; Massive chalcopyrite, [minus]14 to +9[per thousand]; Main sphalerite, +12 to +26[per thousand]; Cuboctahedral galena, +5 to +22[per thousand]; Main marcasite, [minus]19 to +9[per thousand]; Cubic galena, [minus]2 to +13[per thousand] Late sphalerite, +6 to +13[per thousand]; Late marcasite, +10 to +19[per thousand]; Late chalcopyrite, +2 to +33[per thousand]. Spatial correlation of [delta][sup 34]S values of the Main stages of sulfide mineralization in the West Fork mine may indicate that the cuboctahedral galena in this mine was precipitated from a Pb-rich, S-poor fluid that incorporated sulfur from reaction with earlier marcasite. In the rest of the district, ore precipitation may have occurred by mixing of Pb-rich, S-poor fluids with Pb-poor, S-rich fluids. Complex mineral parageneses and sulfur isotope systematics within the southeast Missouri Pb-Zn-Cu MVT deposits are compatible with multiple, metal-specific fluids and multiple precipitation mechanisms, as well as multiple sulfur sources.

  9. Microstructure Characterization, Mechanical, and Tribological Properties of Slow-Cooled Sb-Treated Al-20Mg2Si-Cu In Situ Composites

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ghandvar, Hamidreza; Nordin, Nur Azmah; Ourdjini, Ali

    2017-03-01

    Role of Sb addition on structural characteristics, mechanical properties, and wear behavior of Al-20Mg2Si-Cu in situ composite under slow cooling condition was thoroughly investigated in this study using stereomicroscopy, optical and scanning electron microscopy, thermal analysis, tensile, impact, hardness tests, and wear tester. Results show that addition of 0.8 wt.% Sb was found to produce a change in the morphology of primary Mg2Si from dendrite to fine polygonal shape. At this Sb addition, the primary Mg2Si phase also exhibited a reduction in size from 179.4 to 128.6 μm, an increase in density of Mg2Si per area from 12.5 to 32.2 particle/mm2, and a decrease in the aspect ratio from 1.24 to 1.11. Increasing the amount of Sb added up to 1 wt.% also resulted in a decrease in both nucleation and growth temperatures of the eutectic Mg2Si by 2.6 and 1.7 °C respectively, which is most likely due to change of eutectic Mg2Si morphology from flake to fibrous structure. Thermal analysis technique showed that distribution of Mg2Si particles influences the heat conductivity during the solidification process of Al-Mg2Si composite. The results also showed that improvements in mechanical properties of composite were obtained with increasing Sb content due to modification of both primary and eutectic Mg2Si and due to intermetallic compound transformation from β-Al5FeSi to α-Al15(Fe,Mn)3Si2. Examination of fracture surfaces from tensile and impact samples showed that the base composite failed in a brittle manner with decohered or debonded Mg2Si particles, whereas the 0.8 wt.% Sb-treated composite showed more cracked Mg2Si and ductile fracture in the matrix. Wear properties improved significantly with addition of Sb due to modification and better dispersion of fine Mg2Si particles in matrix.

  10. New magnetic semiconductors CuCr1.5+xSb0.5-xS4 (0<=x<=0.3)

    NASA Astrophysics Data System (ADS)

    Saifullaeva, Dilaram; Solieva, Shahlo; Muminov, Asamat

    2002-11-01

    New compounds with spinel structure CuCr1.5+xSb0.5-xS4(0<=x<=0.3) were obtained and studied in detail. All the compounds are non-degenerate semiconductores. The compounds (0<=x<=0.1) were found to have the magnetic properties characteristic for antiferromagnets. Compounds (0.2<=x<=0.3) have a spontaneous magnetization, with the Curie point of the compound with x=0.3, Tc = 334 K, being higher than room temperature. The re-entrant spin glass transition is observed in the compounds with x=0.17;0.2)

  11. Characteristics of Bi-Pb-Sr-Ca-Cu-O powders produced by aerosol decomposition and their rapid conversion to the high-T c phase

    NASA Astrophysics Data System (ADS)

    Ward, Timothy L.; Lyons, Shirley W.; Kodas, Toivo T.; Brynestad, Jorulf; Kroeger, Donald M.; Hsu, Huey

    1992-09-01

    Bi-Pb-Sr-Ca-Cu-O powders were produced by aerosol decomposition of nitrate solutions. The effects of reactor temperature and residence time on particle morphology and evaporative Pb loss from particles were demonstrated, and conditions necessary to control Pb loss established. Pb loss was roughly proportional to residence time, and minimal loss occurred with short residence times (3s) and T≤800°C. Particles produced at 700°C typically contained significant porosity, while those produced at T≥800°C were solid. Mixtures of the Bi 2Sr 2CuO y (2201) and Bi 2Sr 2CaCu 2O y (2212) phases were produced at 700-900°C in nitrogen and air. However, after hearing in air for 16 h at 850°C, pellets of powder produced at 700°C with nominal composition Pb 0.44Bi 1.8Sr 2Ca 2.2Cu 3O y converted to approximately 79 vol.% of the Bi 2Sr 2Ca 2Cu 3O y (2223) phase and displayed a Tc (onset) of 110 K. Rapid conversion to 2223 was promoted by powder synthesis conditions, leading to controlled Pb loss and a homogeneous fine-grained dispersion of mixed-oxide precursor phases within particles.

  12. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  13. Terahertz conductivity in the under-doped Pb1-ySr2Y1-xCaxCu2+yO7+δ epitaxial film

    NASA Astrophysics Data System (ADS)

    Uzawa, Akira; Komori, Sachio; Kamei, Yuta; Kakeya, Itsuhiro

    2016-11-01

    We measured the complex conductivity at the frequencies from 0.2 THz to 1.0 THz in the under-doped Pb1-ySr2Y1-xCaxCu2+yO7+δ (Pb1212) epitaxial film with terahertz time-domain specteroscopy. By analyzing temperature and frequency dependence of the complex conductivity, we found that the superconducting fluctuation persists up to 12 K above Tc, onset. Compared with previous reports, the superconducting fluctuation in Pb1212 is observed shorter temperature range than Bi2Sr2CaCu2O8+δ and La2-xSrxCuO4. This is ascribed to the lower anisotropy of Pb1212.

  14. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  15. Origin of a carbonate-hosted Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in central Sweden

    NASA Astrophysics Data System (ADS)

    Holtstam, D.; Mansfeld, J.

    2001-10-01

    The Sjögruvan deposit is one of the Långban-type Fe-Mn oxide deposits hosted by marble interbeds within Svecofennian metavolcanic rocks in the Bergslagen region, central Sweden. Mineralogical and geochemical studies have been carried out to clarify the premetamorphic origin of this type of deposit, which is set apart from most other Mn mineralizations by a significant enrichment in Ba, As, Sb, Pb, W and Be contained by various oxyminerals. The principal ore types at Sjögruvan are (1) hematite+quartz±magnetite, (2) hausmannite+calcite+tephroite and (3) braunite+celsian+phlogopite. The Mn ores are compositionally akin to modern Mn deposits formed by submarine hydrothermal processes (with a high Mn/Fe ratio and low contents of Co, Ni, Th, U and REE) and likely owe their existence to similar mechanisms of formation. Pb isotope data indicate that the metal source and timing of deposition is similar to the major stratabound base-metal and iron deposits in Bergslagen. All the key elements have been leached from the local felsic volcanic units and were deposited on the sea floor; the excellent Mn-Fe separation occurred in an Eh-pH gradient that essentially corresponded to the mixing zone of hydrothermal solutions and seawater. The braunite ore is chemically distinct from the hausmannite ore, with a high concentration of refractory elements (Al, Ti, Zr) and a positive Ce anomaly, which indicate a detrital/hydrogenetic contribution to its protolith. Carbon isotope (δ13C) values around 0‰ (relative PDB) suggest that carbonates in the deposit formed directly from seawater.

  16. RbCu 1.2Ag 3.8Se 3 and Cs 2Cu 2Sb 2Se 5: Novel Quaternary Intermetallics Synthesized from Superheated Organic Media

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wang, Ru-Ji; Dilks, Kieran J.; Li, Jing

    1999-10-01

    Reactions in superheated ethylenediamine (en) solutions at 160°C resulted in two novel quaternary intermetallic copper selenides, RbCu1.2Ag3.8Se3(I) and Cs2Cu2Sb2Se5(II). Both I and II are metal rich and represent new layered structure types. Compound I crystallizes in the tetragonal crystal system, space group P4/nbm (No. 125) with a=5.991(1) Å, c=10.918(2) Å, Z=2, V=391.9(1) Å3, R1/wR2=0.0373/0.0458 for all reflections. Compound II belongs to the triclinic crystal system, space group Poverline1 (No. 2), a=7.645(1) Å, b=8.768(2) Å, c=10.264(1) Å, α=91.97(2)°, β=92.07(2)°, γ=103.05(1)°, Z=2, V=669.2(3) Å3, R1/wR2=0.0685/0.0740 for all reflections. I consists of 2∞[(Cu1.2Ag3.8Se3)-] layers and Rb+ counterions located between these layers. There are two types of metal-to-selenium coordination, a square planar (Ag) and a trigonal pyramidal (Cu/Ag). The Se(1) atom displays an unusual eight coordination with Ag and Cu. II contains alternating 2∞[(Cu2Sb2Se5)2-] anionic and Cs+ cationic layers. Each copper atom has a distorted tetrahedral coordination to four Se atoms, and each antimony atom bonds to three Se atoms to result in a trigonal pyramidal geometry. Both I and II are semiconductors with estimated band gaps of 0.7-0.8 and 1.2-1.3 eV, respectively.

  17. Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries.

    PubMed

    Masson, Matthieu; Blanc, Gérard; Schäfer, Jörg

    2006-10-15

    Daily measurements of water discharges and suspended particulate matter (SPM) concentrations and monthly sampling for trace element analyses (Cd, Zn, Pb and Cu) were conducted from 1999 to 2002 on the Garonne, Dordogne and Isle Rivers, the three main tributaries of the Gironde Estuary, France. Dissolved and particulate Cd, Zn, Pb and Cu concentrations in the Isle River were generally higher than those in the Garonne River, despite the known historical polymetallic pollution affecting the Lot-Garonne River system. Even if the relatively high dissolved metal concentrations in the Isle River may be of importance for the local ecosystem, metal inputs into the estuarine and coastal zones are mainly controlled by fluvial transport via the Garonne River. Characteristic element concentration ratios (e.g., Zn/Pb) in SPM and stream sediments from the Dordogne and Isle Rivers suggest two different metal source areas with distinct geochemical signals. Low Zn/Pb ratios (<8) and low Cu/Pb ratios (<0.8) have been attributed to upstream source zones in the Massif Central, featuring various ore deposits and mining areas. High Zn/Pb ratios were assigned to downstream sources (e.g., vineyards), partly explaining high Zn and Cu concentrations and high Cu/Pb ratios (>0.8) in SPM. Although SPM derived from the upstream parts of the studied watersheds may greatly contribute to the observed fluvial metal transport (up to approximately 80% for Pb), the results suggest that intensive agriculture also considerably influences gross metal (e.g., Zn, Cu) fluxes into the Gironde Estuary. Relative contributions of upstream and downstream source zones may vary from one year to another reflecting hydrological variations and/or reservoir management. Monitoring fluxes and identifying distinct geochemical signals from source areas in heterogeneous watersheds may greatly improve understanding of contaminant transport to the coast.

  18. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Doukkali, A.; Lalaoui, K.; Aguenaou, H.; Mokhtar, N.; Attrassi, B.

    2003-05-01

    The main purpose of this study is the interaction between nutrition (micronutrients heavy metals: Fe, Zn, Cu) and toxic heavy metals such as Pb in blood of children living in Gharb region of Morocco. This region receives all pollution carried by the Sebou river coming mainly from industrial activities. A rapid and simple analytical procedure was used for the determination of Fe, Cu and Zn trace amounts in blood by total-reflection X-ray fluorescence technique. This method is an energy dispersive XRF technique in a special geometry of primary beam, sample and detector. The sample is deposited on a plane polished surface of a suitable reflector material. It is presented as a few drops (25 μl) from a solution of blood digested in a mixture of HNO3 and H2O2 using a microwaves accelerated reaction system. The accuracy of measurements has been investigated by using certified materials. The concentration of Cu was found to be normal in all samples (\\cong1 ppm) which ruled out any interaction between this element and the others. On the other hand, amounts of Fe and Zn are very variables, suggesting an interaction between Fe and Zn. However, amounts of Pb in blood are inferior to 50 ppb, suggesting that no interaction exist with this metal and micronutrients.

  19. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu2+ and Pb2+ in Water Samples

    PubMed Central

    Oliveira Silva, Andréa Claudia; de Oliveira, Luis Carlos Ferreira; Vieira Delfino, Angladis; Meneghetti, Mario Roberto

    2016-01-01

    The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV) and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential −0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV), the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb2+ and Cu2+. The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb2+ and Cu2+. The same method was also used to determine Cu2+ in water samples. PMID:27882263

  20. Electrochemical Study of Carbon Nanotubes/Nanohybrids for Determination of Metal Species Cu(2+) and Pb(2+) in Water Samples.

    PubMed

    Oliveira Silva, Andréa Claudia; de Oliveira, Luis Carlos Ferreira; Vieira Delfino, Angladis; Meneghetti, Mario Roberto; Caxico de Abreu, Fabiane

    2016-01-01

    The use of nanomaterials, such as nanoparticles and nanotubes, for electrochemical detection of metal species has been investigated as a way of modifying electrodes by electrochemical stripping analysis. The present study develops a new methodology based on a comparative study of nanoparticles and nanotubes with differential pulse anodic stripping voltammetry (DPASV) and examines the simultaneous determination of copper and lead. The glassy carbon electrode modified by gold nanoparticles demonstrated increased sensitivity and decreased detection limits, among other improvements in analytical performance data. Under optimized conditions (deposition potential -0.8 V versus Ag/AgCl; deposition time, 300 s; resting time, 10 s; pulse amplitude, 50 mV; and voltage step height, 4 mV), the detection limits were 0.2279 and 0.3321 ppb, respectively, for determination of Pb(2+) and Cu(2+). The effects of cations and anions on the simultaneous determination of metal ions do not exhibit significant interference, thereby demonstrating the selectivity of the electrode for simultaneous determination of Pb(2+) and Cu(2+). The same method was also used to determine Cu(2+) in water samples.

  1. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-07-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  2. Systematic study of electronic and magnetic properties for Cu{sub 12–x}TM{sub x}Sb{sub 4}S{sub 13} (TM = Mn, Fe, Co, Ni, and Zn) tetrahedrite

    SciTech Connect

    Suekuni, K.; Tomizawa, Y.; Ozaki, T.; Koyano, M.

    2014-04-14

    Substitution effects of 3d transition metal (TM) impurities on electronic and magnetic properties for Cu{sub 12}Sb{sub 4}S{sub 13} tetrahedrite are investigated by the combination of low-temperature experiments and first-principles electronic-structure calculations. The electrical resistivity for the cubic phase of Cu{sub 12}Sb{sub 4}S{sub 13} exhibits metallic behavior due to an electron-deficient character of the compound. Whereas that for 0.5 ≤ x ≤ 2.0 of Cu{sub 12−x}Ni{sub x}Sb{sub 4}S{sub 13} exhibits semiconducting behavior. The substituted Ni for Cu is in the divalent ionic state with a spin magnetic moment and creates impurity bands just above the Fermi level at the top of the valence band. Therefore, the semiconducting behavior of the electrical resistivity is attributed to the thermal excitation of electrons from the valence band to the impurity band. The substitution effect of TM on the electronic structure and the valency of TM for Cu{sub 11.0}TM{sub 1.0}Sb{sub 4}S{sub 13} are systematically studied by the calculation. The substituted Mn, Fe, and Co for Cu are found to be in the ionic states with the spin magnetic moments due to the large exchange splitting of the 3d bands between the minority- and majority-spin states.

  3. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  4. Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles.

    PubMed

    Fan, Chunzhen; Li, Kan; Li, Juexiu; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2017-03-15

    In this paper, tetraethylenepentamine (TEPA) modified chitosan/CoFe2O4 particles were prepared for comparative and competitive adsorption of Cu(II) and Pb(II) in single and bi-component aqueous solutions. The characteristics results of SEM, FTIR and XRD indicated that the adsorbent was successfully fabricated. The magnetic property results manifested that the particles with saturation magnetization value of 63.83emug(-1) would have a fast magnetic response. The effects of experimental parameters including contact time, pH value, initial metal ions concentration and coexisting ions on single and bi-component adsorption were investigated. The results revealed that the adsorption kinetic was followed pseudo-second-order kinetic model, indicating that chemical adsorption was the rate-limiting step. Sorption isotherms were also determined in single and bi-component solutions with different mass ratio of Cu(II) to Pb(II) (Cu(II)/Pb(II)) and fitted using Langmuir and Freundlich isotherm models. A better fit for Cu(II) and Pb(II) adsorption were obtained with Langmuir model, with a maximum sorption capacity of 168.067 and 228.311mgg(-1) for Cu(II) and Pb(II) in single component solution, 139.860 and 160.256mgg(-1) in bi-component solution (Cu(II)/Pb(II)=1:1), respectively. The present results suggest that TEPA modified chitosan/CoFe2O4 particles are feasible and satisfactory adsorbent for efficient removal of Cu(II) and Pb(II) ions.

  5. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range.

    PubMed

    Mariussen, Espen; Heier, Lene Sørlie; Teien, Hans Christian; Pettersen, Marit Nandrup; Holth, Tor Fredrik; Salbu, Brit; Rosseland, Bjørn Olav

    2017-01-01

    An environmental survey was performed in Lake Kyrtjønn, a small lake within an abandoned shooting range in the south of Norway. In Lake Kyrtjønn the total water concentrations of Pb (14µg/L), Cu (6.1µg/L) and Sb (1.3µg/L) were elevated compared to the nearby reference Lake Stitjønn, where the total concentrations of Pb, Cu and Sb were 0.76, 1.8 and 0.12µg/L, respectively. Brown trout (Salmo trutta) from Lake Kyrtjønn had very high levels of Pb in bone (104mg/kg w.w.), kidney (161mg/kg w.w.) and the gills (137mg/kg d.w), and a strong inhibition of the ALA-D enzyme activity were observed in the blood (24% of control). Dry fertilized brown trout eggs were placed in the small outlet streams from Lake Kyrtjønn and the reference lake for 6 months, and the concentrations of Pb and Cu in eggs from the Lake Kyrtjønn stream were significantly higher than in eggs from the reference. More than 90% of Pb accumulated in the egg shell, whereas more than 80% of the Cu and Zn accumulated in the egg interior. Pb in the lake sediments was elevated in the upper 2-5cm layer (410-2700mg/kg d.w), and was predominantly associated with redox sensitive fractions (e.g., organic materials, hydroxides) indicating low potential mobility and bioavailability of the deposited Pb. Only minor amounts of Cu and Sb were deposited in the sediments. The present work showed that the adult brown trout, as well as fertilized eggs and alevins, may be subjected to increased stress due to chronic exposure to Pb, whereas exposure to Cu, Zn and Sb were of less importance.

  6. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2-Sb/PbO2 electrodes.

    PubMed

    Song, Shuang; Zhan, Liyong; He, Zhiqiao; Lin, Lili; Tu, Jinjun; Zhang, Zhehao; Chen, Jianmeng; Xu, Lejin

    2010-03-15

    Electrochemical oxidation of 4-chloro-3-methyl phenol (CMP) was examined using Ti/SnO(2)-Sb/PbO(2) anodes. The physicochemical properties of the electrodes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The degradation was studied by monitoring the total organic carbon (TOC) removal of CMP, and variation of the concentration of intermediates by high-performance liquid chromatography (HPLC), ion chromatography (IC) and gas chromatography/mass spectrometry (GC/MS). The mineralization of CMP is confirmed to be controlled by mass transfer or by both chemical reaction and mass transfer. Hydroxyl radicals (OH) and active chlorine on the electrode surface had a dominant role in the electro-oxidation process. The chloride element in CMP was immediately driven away from parent substance by OH attack, and then accelerated the ring cleavage of methyl-p-benzoquinone, which was formed during the anodic oxidation of CMP. Ultimately, the chlorine of CMP was mainly transformed to hypochlorite and chloride ion in aqueous solution. Additionally, formic acid and acetic acid were relatively stable products that were not electro-oxidized efficiently in our experiments. The degradation pathway of CMP is proposed on the basis of these results. (c) 2009 Elsevier B.V. All rights reserved.

  7. The effect of disorder on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chen, Hong; Yuan, Hongkuan; Zhou, Ying; Chen, Xiaorui

    2015-03-01

    Thin films based on Heusler alloy often lost their theoretical predicted ultra-high spin polarization owing to the appearance of disorder. Using the first-principles calculations within density functional theory (DFT), we investigate the effect of disorder including antisite and swap on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure. Twelve kinds of antisites and six kinds of swap disorders are proposed and studied comprehensively. In our calculations, Co(Fe)-, Mn(Fe)-, Si(Mn)-antisite and Co-Fe swap disorders are most favorable due to their lowest formation energies. Moreover, the positive binding energies of Co-Fe, Co-Si, Fe-Si and Mn-Si swap disorders with respect to their corresponding antisite disorders indicate that these complex swap disorders are more stable compared with their corresponding isolated antisite disorders. The investigations on density of states (DOS) show that the spin down energy gap of disordered structures suffers contraction and their DOS entirely move towards lower zone. Besides, the 100% spin polarization is maintained in all structures with antisite and swap disorders except for those with Co(Mn)-, Co(Si)-antisite and Co-Mn, Co-Si swap disorders. Therefore, the half-metallicity of quaternary Heusler alloy CoFeMnSi is quite robust against interfering effects such as Si(Mn), Co(Fe) and Co-Fe disorders most possibly formed in the growth.

  8. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-08-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters

  9. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-03-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu, Ag, and of Cd display nutrient-like profiles similar to silicic acid, and phosphate, respectively. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water-masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs appeared to have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However uptake by dino- and nano-flagelattes may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd/P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd-uptake induced by iron-limiting conditions in these High-Nutrient Low

  10. Effects of Complex Modification by Sr–Sb on the Microstructures and Mechanical Properties of Al–18 wt % Mg2Si–4.5Cu Alloys

    PubMed Central

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-01-01

    This research was carried out to investigate the influence of Sr–Sb on the microstructures and mechanical properties of Al–18 wt % Mg2Si–4.5Cu alloys. After the addition of 0.2 wt % Sr–Sb, the morphologies of primary Mg2Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg2Si decreased from ~50 to ~20 μm. The shape of eutectic Mg2Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr–Sb. PMID:28773282

  11. Crystallographic Study of Mixture CeBa1.8Pb0.2Cu3Oy in the Range of 860 deg. C to 940 deg. C

    SciTech Connect

    Stergiou, A.; Yilmaz, S.; Stergiou, C.

    2007-04-23

    A powder mixture with chemical formula CeBa1.8Pb0.2Cu3Oy was prepared. The mixture was heated in free atmosphere, at temperatures 860 deg. C to 940 deg. C, for 24 to 72h. The samples were measured by X-Ray powder diffraction with CuKa radiation. Each sample was characterized with the help of the PDF and refined, using the Rietveld's ''Powder Profile Analysis''. The first sample (860 deg. C) was identified with the phases: Ba2CeBiO6, CuO and BaCuO2, while all the remaining samples (870 deg. C-940 deg. C) with the phases Ba2CePbO6, CuO and CeO2. The phases Ba2CeBiO6 and Ba2CePbO6 are the main phases with analogous chemical types, but different symmetry. The phase CuO is common in all the samples, while from the remaining phases the BaCuO2 appears only in the first sample and the CeO2 in all, except the first one. The quantity 0.2 of Pb is distributed in the Ba positions, substituting a part of these. The percentages of phases are about 82%, 10% and 8% for the first sample and for all the remaining about 85%, 8% and 7%, respectively with above serious.

  12. A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and soil from diverse sites

    USGS Publications Warehouse

    Beyer, W.N.; Cromartie, E.J.

    1987-01-01

    Earthworms and soils were collected from 20 diverse sites in Maryland, Pennsylvania, and Virginia, and were analyzed for Pb, Cu, Zn, Cd, Cr, As, and Se. Correlation coefficients relating Iconcentrations of the elements in earthworms to concentrations in soil were low (-0.20Pb (2100 ppm), Zn (1600 ppm), Cd (23 ppm) and Se (7.6 ppm) detected in earthworms were in the range reported to be toxic to animals fed diets containing these elements; however, even in the absence of any environmental contamination, some species of earthworms may contain high concentrations of Pb, Zn, and Se. Earthworms of the genus Eisenoides, for example, were exceptional in their ability to concentrate Pb. When earthworms are used as indicators of environmental contamination, it is important to identify the species, to report the soil characteristics, and to collect similar earthworms from very similar but uncontaminated soil.

  13. The action of Cd, Cu, Cr, Zn, and Pb on fluid composition of Anodonta cygnea (L.): organic components.

    PubMed

    Moura, G; Vilarinho, L; Machado, J

    2000-09-01

    The heavy metals, Cd, Cu, Cr, Zn, and Pb, were used to incubate healthy specimens of the freshwater mussel species, Anodonta cygnea. Afterwards, their biological fluids, either haemolymph or extrapallial fluid were analyzed for the presence of several organic constituents, known to be important for biomineralization, such as proteins, glycosaminoglycans (GAGs) and glucosamine. Proteins were subjected to further study, namely through the total amino acid determination after acid hydrolysis. The most disturbing pollutants tested seem to be Pb, Zn, and Cr, which caused highly decreased overall compositions, namely with respect to protein, and glucosamine, in comparison to the control group. This suggests that this group contributes to a decrease of the metabolic activity, and thus mineralization, in the exposed animals.

  14. Thermoelectric transport properties of nanostructured FeSb 2 and Ce-based heavy-fermions CeCu and CeAl 3

    NASA Astrophysics Data System (ADS)

    Pokharel, Mani R.

    Thermoelectric (TE) energy conversion is an all-solid-state technology which can convert waste thermal energy into useful electric power and cool ambience without using harmful gases like CFC. Due to their several advantages over traditional energy conversion technologies, thermoelectric generators (TEG) and coolers (TEC) have drawn enormous research efforts. The objective of this work is to find promising materials for thermoelectric cooling applications and optimize their thermoelectric performances. Finding a material with a good value for the thermoelectric figure-of-merit (ZT) at cryogenic temperatures, specifically below 77 K, has been of great interest. This work demonstrates that FeSb2 1, CeCu6 2 and CeAl3 3, all belonging to a class of materials with strongly correlated electron behavior; exhibit promising thermoelectric properties below 77 K. In general, ZT of a TE material can be increased using two basic approaches: lattice thermal conductivity reduction and power factor (PF) enhancement. The results of this study indicate that nanostructuring effectively decreases the thermal conductivity of FeSb2, CeCu6 and CeAl 3 leading to improved ZT. The approach of introducing point-defect scattering to further reduce the thermal conductivity is successfully implemented for Te-substituted FeSb2 nanostructured samples 4. A semiconductor/metal interface has long been proposed to exhibit enhanced thermoelectric properties. We use this technique by introducing Ag-nanoparticles in the host FeSb2 which further increases ZT by 70% 5. Additionally, a detailed investigation is made on the phonon-drag effect as a possible mechanism responsible for the large value of the Seebeck coefficient of FeSb2 6. We show that the phonon-drag mechanism contributes significantly to the large Seebeck effect in FeSb2 and hence this effect cannot be minor as was proposed in literatures previously. A model based on Kapitza-resistance and effective medium approach (EMA) is used to analyze

  15. Ternary CaCu{sub 4}P{sub 2}-type pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb)

    SciTech Connect

    Stoyko, Stanislav S.; Khatun, Mansura; Scott Mullen, C.; Mar, Arthur

    2012-08-15

    Four ternary pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb) were prepared by reactions of the elements at 850 Degree-Sign C and their crystal structures were determined from single-crystal X-ray diffraction studies. These silver-containing pnictides AAg{sub 4}Pn{sub 2} adopt the trigonal CaCu{sub 4}P{sub 2}-type structure (Pearson symbol hR21, space group R3-bar m, Z=3; a=4.5555(6) A, c=24.041(3) A for SrAg{sub 4}As{sub 2}; a=4.5352(2) A, c=23.7221(11) A for EuAg{sub 4}As{sub 2}; a=4.7404(4) A, c=25.029(2) A for SrAg{sub 4}Sb{sub 2}; a=4.7239(3) A, c=24.689(2) A for EuAg{sub 4}Sb{sub 2}), which can be derived from the trigonal CaAl{sub 2}Si{sub 2}-type structure of the isoelectronic zinc-containing pnictides AZn{sub 2}Pn{sub 2} by insertion of additional Ag atoms into trigonal planar sites within [M{sub 2}Pn{sub 2}]{sup 2-} slabs built up of edge-sharing tetrahedra. Band structure calculations on SrAg{sub 4}As{sub 2} and SrAg{sub 4}Sb{sub 2} revealed that these charge-balanced Zintl phases actually exhibit no gap at the Fermi level and are predicted to be semimetals. - Graphical abstract: SrAg{sub 4}As{sub 2} and related pnictides adopt a CaCu{sub 4}P{sub 2}-type structure in which additional Ag atoms enter trigonal planar sites within slabs built from edge-sharing tetrahedra. Highlights: Black-Right-Pointing-Pointer AAg{sub 4}Pn{sub 2} are the first Ag-containing members of the CaCu{sub 4}P{sub 2}-type structure. Black-Right-Pointing-Pointer Ag atoms are stuffed in trigonal planar sites within CaAl{sub 2}Si{sub 2}-type slabs. Black-Right-Pointing-Pointer Ag-Ag bonding develops through attractive d{sup 10}-d{sup 10} interactions.

  16. Preparation of High-Quality Bi-Pb-Sr-Ca-Cu Oxide Precursor by the Citrate Gel Process

    NASA Astrophysics Data System (ADS)

    Aoki, Aiko

    1990-02-01

    In order to achieve a high-Tc superconducting phase of Bi-Pb-Sr-Ca-Cu oxide, we applied a highly reactive citrate gel process to yield a precursor powder. A citrate-nitrate solution was dehydrated and heated to form the desired compound. We applied a thermogravimetric analysis, scanning electron microscopy and X-ray diffraction to study thermal decomposition during the heat stage. Sintered sample showed good superconducting properties with Tc above 100 K. Chemical analyses revealed negligible loss of metals during the preparation procedure, indicating that the citrate gel process is an excellent and reliable method for this compound.

  17. Directional solidification of Cu-Pb and Bi-Ga monotectic alloys under normal gravity and during parabolic flight

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1988-01-01

    Cu-Pb and Bi-Ga monotectic alloys of nominal hypermonotectic compositions were directionally solidified under various furnace translation rates, temperature gradients, and gravity levels. Gravity was varied by solidifying the alloys under ground conditions and in the furnace aboard NASA KC-135 aircraft, flying on parabolic trajectories. High translation rates, high gradients, high gravity levels, and higher density and lower thermal conductivity of the L2 phase favored the formation of fiber composite structure, while the opposite conditions resulted in structures consisting of L2 droplets in alpha matrix. A modified particle engulfment theory as originally enunciated by Ulhmann et al. (1964) is proposed to explain these observations.

  18. Inherent room temperature ferromagnetism and dopant dependent Raman studies of PbSe, Pb{sub 1−x}Cu{sub x}Se, and Pb{sub 1−x}Ni{sub x}Se

    SciTech Connect

    Gayner, Chhatrasal; Kar, Kamal K.

    2015-03-14

    Polycrystalline lead selenide (PbSe) doped with copper (Cu) and nickel (Ni) was prepared to understand its magnetic behaviour and Raman activity. The processing conditions, influence of dopants (magnetically active and non-active) and their respective compositions on the magnetic properties and Raman active mode were studied. A surprising/anomalous room temperature ferromagnetism (hysteresis loop) is noticed in bulk diamagnetic PbSe, which is found to be natural or inherent characteristic of material, and depends on the crystallite size, dopant, and developed strain due to dopant/defects. The magnetic susceptibility (−1.71 × 10{sup −4} emu/mol Oe) and saturated magnetic susceptibility (−2.74 × 10{sup −4} emu/mol Oe) are found to be higher than the earlier reported value (diamagnetic: −1.0 × 10{sup −4} emu/mol Oe) in bulk PbSe. With increase of Cu concentration (2% to 10%) in PbSe, the saturated magnetic susceptibility decreases from −1.22 × 10{sup −4} to −0.85 × 10{sup −4} emu/mol Oe. Whereas for Ni dopant, the saturated magnetic susceptibility increases to −2.96 × 10{sup −4} emu/mol Oe at 2% Ni doped PbSe. But it further decreases with dopant concentration. In these doped PbSe, the shifting of longitudinal (LO) phonon mode was also studied by the Raman spectroscopy. The shifting of LO mode is found to be dopant dependent, and the frequency shift of LO mode is associated with the induced strain that created by the dopants and vacancies. This asymmetry in LO phonon mode (peak shift and shape) may be due to the intraband electronic transition of dopants. The variation in magnetic susceptibility and Raman shifts are sensitive to crystallite size, nature of dopant, concentration of dopants, and induced strain due to dopants.

  19. Influence of microstructure on electromechanical properties of nano-crystalline La-Pb(Ni1/3Sb2/3)-PbZrTiO3 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, H. H.; Lonkar, C. M.; Balasubramanian, K.

    2017-10-01

    A ferroelectric ceramic composition, Pb0.98La0.02(Ni1/3Sb2/3)0.05[(Zr0.52Ti0.48)0.995]0.95O3, has been synthesized by columbite precursor method followed by mechanical activation for 10 h (MA-10) using high-energy ball mill. Formation of desired perovskite phase during activation was confirmed from analysis of X-ray diffraction patterns, while powder particle size, in nano-meter range, was revealed from high-resolution transmission electron microscopic (HRTEM) investigations. Samples were sintered between 1170 and 1320 °C, and were investigated for microstructure and its influence on electromechanical properties. Increment in grain size with sintering temperature was noticed. 1220 °C sintering temperature posed denser and uniform microstructure amongst all the temperatures and also showed composition close to morphotropic phase boundary (MPB) of PZT with optimum tetragonality which resulted in better electromechanical properties, suggesting the suitability of this composition for power harvesting applications. Phase transition studies revealed normal ferroelectric behaviour with transition temperature of 286 °C.

  20. Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods.

    PubMed

    Terzano, Roberto; Spagnuolo, Matteo; Vekemans, Bart; De Nolf, Wout; Janssens, Koen; Falkenberg, Gerald; Fiore, Saverio; Ruggiero, Pacifico

    2007-10-01

    The major geochemical forms of Cr, Ni, Cu, Zn, Pb, and V in a soil from an industrial polluted site in the south of Italy were determined by means of synchrotron X-ray microanalytical techniques such as coupled micro-X-ray fluorescence/micro-X-ray diffraction and micro-X-ray absorption near edge structure spectroscopy in combination with bulk extraction methods (sequential extraction procedures, EDTA extractions, and toxicity leaching characteristic procedure tests). Cr, Ni, Zn, and Cu were found in spinel-type geochemical forms (chromite, trevorite, franklinite, zincochromite, and cuprospinel) and often in association with magnetite and hematite. Vwas mainly present as V(V) associated with iron-oxides or in the form of volborthite [Cu3(OH)2V2O7.2H2O]. Pb was speciated as minium (Pb3O4), lanarkite [Pb2O(SO4)], and, in association with Cr(VI), as crocoite (PbCrO4). In general, despite a high total concentration, metals appear to be speciated for the most part as rather insoluble geochemical forms. However, particular attention should be paid to Zn, Cu, V, and Pb that show non-negligible mobilizable fractions. On the basis of the geochemical forms identified, among others, two major former industrial activities were tentatively ascribed as being responsible for the observed major pollution: polyvinyl chloride and cement-asbestos productions.

  1. Cd, Cu, Pb and Zn in clams and sediments from an impacted estuary by the oil industry in the southwestern Gulf of Mexico: concentrations and bioaccumulation factors.

    PubMed

    Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F

    2009-12-01

    With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.

  2. Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid.

    PubMed

    Lamelas, Cristina; Slaveykova, Vera I

    2007-06-01

    The present study examines the role of humic acid, as a representative of dissolved organic matter, in Cd(II), Cu(II), and Pb(II) speciation and biouptake by green microalgae. Cellular and intracellular metal fractions were compared in the presence of citric and humic acids. The results demonstrated that Cd and Cu uptake in the presence of 10 mg L(-1) humic acid was consistent with that predicted from measured free metal concentrations, while Pb biouptake was higher. By comparing Cd, Cu, and Pb cellular concentrations in the absence and presence of humic acid, it was found that the influence of the increased negative algal surface charge, resulting from humic acid adsorption, on cellular metal was negligible. Moreover, the experimental results for all three metals were in good agreement with the ternary complex hypothesis. Given that metal has much higher affinity with algal sites than humic acid adsorbed to algae, the contribution of the ternary complex to metal bioavailability was negligible in the case of Cd (II) and Cu (II). In contrast, the ternary complex contributed to over 90% of total cellular metal for Pb(II), due to the comparable affinity of Pb to algal sites in comparison with humic acid adsorbed to algae. Therefore, the extension of the biotic ligand model by including the formation of the ternary complex between the metal, humic acid, and algal surface would help to avoid underestimation of Pb biouptake in the presence of humic substances by green algae Chlorella kesslerii.

  3. [Analysis of Pb(II), Cd(II) and Cu(II) in Chinese medicine by the system of porphyrin complexes and sulfhydryl cotton fiber].

    PubMed

    Li, Fang; Zheng, Huai-li

    2004-02-01

    The reaction of alpha beta gamma delta-tetra(p-sulfophenyl)porphyrin (TPPS4) with Pb(II), Cd(II) or Cu(II) has been studied in this article, and the spectra of the Pb(II)-TPPS4, Cd(II)-TPPS4 and Cu(II)-TPPS4 show the spectral absorption of these complexes with high sensitivity. The molar absorptivities of Pb(II)-TPPS4, Cd(II)-TPPS4 and Cu(II)-TPPS4 are 2.5 x 10(5) L x mol(-1) x cm(-1), 5.2 x 10(5) L x mol(-1) x cm(-1) and 4.2 x 10(5) L x mol(-1) x cm(-1), respectively. With the sulfhydryl cotton fiber separation-enrichment method, this analytical system of porphyrin complexes has been successfully applied to determining the trace amounts of Pb(II), Cd(II) and Cu(II) in Ginkgo bilobal leaves and tea leaves. The RSD of determining 10(-6)-10(-7) g x g(-1) Pb(II), Cd(II) or Cu(II) in samples lies between 3.3%-9.6%, and the recovery of added standard lies between 90%-103%. The proposed analytical method has the advantage of high sensitivity, simplicity and high efficiency of interfere-resisting.

  4. Different binding affinities of Pb2+ and Cu2+ to glycosylation variants of human serum transferrin interfere with the detection of carbohydrate-deficient transferrin.

    PubMed

    Luo, Lian-Zhong; Jin, Hong-Wei; Huang, Lin; Huang, He-Qing

    2011-12-01

    Carbohydrate-deficient transferrin (CDT) is a specific biomarker of alcohol abuse, and for diagnosis of chronic alcohol, abuse is often determined using isoelectric focusing (IEF) and chromatographic techniques. To allow this method to be used for the diagnosis of alcohol abuse, inferences of various physical and chemical factors with the detection of CDT have been investigated. However, few reports have focused thus far on whether different metal ions have different binding affinities to CDT and HTf variants or further interfere in the detection of CDT. Here, in order to figure out whether and how metal ions such as Pb(2+) and Cu(2+) bind to holo-human serum transferrin (holo-HTf) and further interfere in CDT detection, the binding characteristics and the binding parameters of holo-HTf with metal ions such as Pb(2+) and Cu(2+) were investigated using UV-visible spectroscopy, Fluorescence spectroscopy, and ICP-MS. Moreover, whether the metal ions such as Pb(2+) and Cu(2+) will reduce the diagnostic accuracy of CDT in clinic was investigated using IEF. The present study demonstrates that Pb(2+) and Cu(2+) have different binding affinities to holo-HTf variants and produce different changes in the relative amounts of each glycosylation isoforms of HTf. Accordingly, the glycosylation chains of HTf will affect the binding affinities of glycosylation isoforms with Pb(2+) and Cu(2+), causing further interferences in CDT detection.

  5. Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic composites.

    PubMed

    Hu, Jun; Zhao, Donglin; Wang, Xiangke

    2011-01-01

    Multiwalled carbon nanotubes (MWCNTs)/iron oxide magnetic composites (named as MCs) were prepared by co-precipitation method, and were characterised by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in detail. The prepared MCs were employed as an adsorbent for the removal of Pb(II) and Cu(II) ions from wastewater in heavy metal ion pollution cleanup. The results demonstrated that the sorption of Pb(II) and Cu(II) ions was strongly dependent on pH and temperature. The experimental data were well described by Langmuir model, and the monolayer sorption capacity of MCs was found to vary from 10.02 to 31.25 mg/g for Pb(II) and from 3.11 to 8.92 mg/g for Cu(II) at temperature increasing from 293.15 to 353.15 K at pH 5.50. The sorption capacity of Pb(II) on MCs was higher than that of Cu(II), which was attributed to their ionic radius, hydration energies and hydrolysis of their hydroxides. The thermodynamic parameters (i.e., ΔH(0), ΔS(0) and ΔG(0)) were calculated from temperature dependent sorption isotherms, and the results indicated that the sorption of Pb(II) and Cu(II) ions on MCs were spontaneous and endothermic processes.

  6. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.

    PubMed

    Ren, Yueming; Li, Nan; Feng, Jing; Luan, Tianzhu; Wen, Qing; Li, Zhanshuang; Zhang, Milin

    2012-02-01

    The adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe(2)O(4) prepared by a sol-gel process was investigated. Single batch experiment was employed to test pH effect, sorption kinetics, and isotherm. The interaction mechanism and the regeneration were also explored. The results showed that Pb(II) and Cu(II) removal was strongly pH-dependent with an optimum pH value of 6.0, and the equilibrium time was 3.0 h. The adsorption process could be described by a pseudo-second-order model, and the initial sorption rates were 526.3 and 2631.5 μmol g(-1)min(-1) for Pb(II) and Cu(II) ions, respectively. The equilibrium data were corresponded well with Langmuir isotherm, and the maximum adsorption capacities were 333.3 and 952.4 μmol g(-1) for Pb(II) and Cu(II) ions, respectively. The adsorbed Pb(II) and Cu(II) ions were in the form of the complex with oxygen in carboxyl and hydroxyl groups binding on the surface of magnetic porous MnFe(2)O(4). The sorbent could be reused for five times with high removal efficiency.

  7. Comparative toxicity of lead (Pb(2+)), copper (Cu(2+)), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip.

    PubMed

    Li, Yinbao; Yang, Xiujuan; Chen, Zuanguang; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Yang, Fan; Sun, Duanping

    2015-03-01

    Investigations were conducted to determine acute effects of Pb(2+) and Cu(2+) presented individually and collectively on zebrafish embryos. Aquatic safety testing requires a cheap, fast, and highly efficient platform for real-time evaluation of single and mixture of metal toxicity. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic effects of Pb(2+) and Cu(2+) using zebrafish (Danio rerio) embryos. The microfluidic chip is composed of a disc-shaped concentration gradient generator and 24 culture chambers, which can generate one blank solution, seven mixture concentrations, and eight single concentrations for each metal solution, thus enabling the assessment of zebrafish embryos. To test the accuracy of this new chip platform, we have examined the toxicity and teratogenicity of Pb(2+) and Cu(2+) on embryos. The individual and combined impact of Pb(2+) and Cu(2+) on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators, such as spontaneous motion at 22 hours post fertilization (hpf), mortality at 24 hpf, heartbeat and body length at 96 hpf, etc. It was found that Pb(2+) or Cu(2+) could induce deformity and cardiovascular toxicity in zebrafish embryos and the mixture could induce more severe toxicity. This chip is a multiplexed testing apparatus that allows for the examination of toxicity and teratogenicity for substances and it also can be used as a potentially cost-effective and rapid aquatic safety assessment tool.

  8. Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach.

    PubMed

    Ding, Congcong; Cheng, Wencai; Wang, Xiangxue; Wu, Zhen-Yu; Sun, Yubing; Chen, Changlun; Wang, Xiangke; Yu, Shu-Hong

    2016-08-05

    The competitive sorption of Pb(II), Cu(II) and Ni(II) on the uniform carbonaceous nanofibers (CNFs) was investigated in binary/ternary-metal systems. The pH-dependent sorption of Pb(II), Cu(II) and Ni(II) on CNFs was independent of ionic strength, indicating that inner-sphere surface complexation dominated sorption Pb(II), Cu(II) and Ni(II) on CNFs. The maximum sorption capacities of Pb(II), Cu(II) and Ni(II) on CNFs in single-metal systems at a pH 5.5±0.2 and 25±1°C were 3.84 (795.65mg/g), 3.21 (204.00mg/g) and 2.67 (156.70mg/g)mmol/g, respectively. In equimolar binary/ternary-metal systems, Pb(II) exhibited greater inhibition of the sorption of Cu(II) and Ni(II), demonstrating the stronger affinity of CNFs for Pb(II). The competitive sorption of heavy metals in ternary-metal systems was predicted quite well by surface complexation modeling derived from single-metal data. According to FTIR, XPS and EXAFS analyses, Pb(II), Cu(II) and Ni(II) were specifically adsorbed on CNFs via covalent bonding. These observations should provide an essential start in simultaneous removal of multiple heavy metals from aquatic environments by CNFs, and open the doorways for the application of CNFs.

  9. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  10. Lattice thermal transport in La3Cu3X4 compounds (X=P,As,Sb,Bi): Interplay of anharmonicity and scattering phase space

    DOE PAGES

    None, None

    2017-06-30

    Thermal conductivities of La3Cu3X4(X=P,As,Sb,Bi) compounds are examined using first-principles density functional theory and Boltzmann transport methods. We observe a trend of increasing lattice thermal conductivity (κl) with increasing atomic mass, challenging our expectations, as lighter mass systems typically have larger sound speeds and weaker intrinsic scattering. In particular, we find that La3Cu3P4 has the lowest κl, despite having larger sound speed and the most restricted available phase space for phonon-phonon scattering, an important criterion for estimating and comparing κl among like systems. The origin of this unusual behavior lies in the strength of the individual anharmonic phonon scattering matrix elements,more » which are much larger in La3Cu3P4 than in the heavier La3Cu3Bi4 system. Lastly, our finding provides insights into the interplay of harmonic and anharmonic properties of complex, low-thermal-conductivity compounds, of potential use for thermoelectric and thermal barrier coating applications.« less

  11. High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Zhai, Yong; Li, Fumin; Tan, Furui; Yue, Gentian; Zhang, Weifeng; Wang, Mingtai

    2017-02-01

    The CH3NH3PbI3:CdS composite films are prepared by a newly developed precursor blending solution method, which are further used to fabricate CH3NH3PbI3:CdS perovskite solar cells. Our experimental results demonstrate that the introduced CdS effectively improves the light absorption property of the ITO/CuInS2/Al2O3/CH3NH3PbI3:CdS film stack and decreases the charge recombination in the prepared solar cells due to the formation of CH3NH3PbI3/CdS bulk heterojunction. Furthermore, the formed CdS/CuInS2 heterojunction also contributes to the enhanced efficiency. As a consequence, the CH3NH3PbI3/CdS bulk heterojunction perovskite solar cells exhibit a maximum power conversion efficiency of (16.5 ± 0.2)%, which is 1.35 times the best efficiency of 12.2% of previously reported CdS/CH3NH3PbI3 bilayer solar cell. In addition, this efficiency is a 59% improvement compared with the efficiency of (10.4 ± 0.2)% for the ITO/CuInS2/Al2O3/CH3NH3PbI3/PC60BM/Ag cell without CdS.

  12. Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering

    NASA Astrophysics Data System (ADS)

    Wang, Kai-Zheng; Chen, Chih-Ming

    2005-12-01

    Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with the Ti/Cu/Ni under bump metallization (UBM) during 350°C reflow for durations ranging from 50 sec to 1440 min were investigated. A thin intermetallic layer of only 0.4 µm thickness was formed at the 95Pb5Sn/UBM interface after reflow for 5 min. When the reflow was extended to 20 min, the intermetallic layer grew thicker and the phase identification revealed the intermetallic layer comprised two phases, (Ni,Cu)3Sn2 and (Ni,Cu)3Sn4. The detection of the Cu content in the intermetallic compounds indicated that the Cu atoms had diffused through the Ni layer and took part in the intermetallic compound formation. With increasing reflow time, the (Ni,Cu)3Sn4 phase grew at a faster rate than that of the (Ni,Cu)3Sn2 phase. Meanwhile, irregular growth of the (Ni,Cu)3Sn4 phase was observed and voids formed at the (Ni,Cu)3Sn2/Ni interface. After reflow for 60 min, the (Ni,Cu)3Sn2 phase disappeared and the (Ni,Cu)3Sn4 phase spalled off the NI layer in the form of a continuous layer. The gap between the (Ni,Cu)3Sn4 layer and the Ni layer was filled with lead. A possible mechanism for the growth, disappearance, and spalling of the intermetallic compounds at the 95Pb5Sn/UBM interface was proposed.

  13. Effects of Cu(2+) and Pb(2+) on different fish species: liver cytochrome P450-dependent monooxygenase activities and FTIR spectra.

    PubMed

    Henczová, Mária; Deér, Aranka Kiss; Filla, Adrienn; Komlósi, Viktória; Mink, János

    2008-07-01

    The effects of Cu(2+)-sulfate and Pb(2+)-acetate on carp (Cyprinus carpio L.), silver carp (Hypopthalmichtys molitrix V.) and wels (Silurus glanis L.) were studied. The liver microsomal Cyt P450 content, the EROD, ECOD and APND monooxygenase activities were measured. In vivo treatment with 1 mg L(-1) Cu(2+) significantly elevated the activities of these enzymes and Cyt P450 content in silver carp livers. The high-dose Cu(2+) treatment (10 mg L(-1)) on silver carp caused two-fold higher induction in the P450 dependent monooxygenase isoensymes than in wels. Although the 2 mg kg(-1) treatment with Pb(2+) in carp elevated significantly the P450 content, the EROD isoenzyme activities were significantly decreased after 1 day, showing the destructive effect of metal ion on the enzyme system. In vitro, Cu(2+) and Pb(2+) decreased the Cyt P450 content in the carp liver microsomes and the absorption peak shifted to higher wavelength. Fourier Transform Infrared (FTIR) spectroscopy was used to detect the damaging effects of the heavy metals. According to the inhibitory potency to Cu(2+), the most sensitive isoenzyme was the EROD in wels, the least was the silver carp's isoenzyme. The investigated fish P450 isoenzymes showed, that the Cu(2+) was a stronger inhibitor than Pb(2+).

  14. Torque magnetometry study of magnetically ordered state and spin reorientation in the quasi-one-dimensional S =1/2 Heisenberg antiferromagnet CuSb2O6

    NASA Astrophysics Data System (ADS)

    Herak, Mirta; Žilić, Dijana; Matković Čalogović, Dubravka; Berger, Helmuth

    2015-05-01

    The antiferromagnetically ordered state of the monoclinic quasi-one-dimensional S =1 /2 Heisenberg antiferromagnet CuSb2O6 was studied combining torque magnetometry with a phenomenological approach to magnetic anisotropy. This system is known to have a number of different twins in the monoclinic β phase, which differ in the orientation of the two CuO6 octahedra in the unit cell resulting in different orientation of magnetic axes with respect to crystal axes for each twin. We performed torque measurements in magnetic fields H ≤0.8 T on a sample where a certain type of twin was shown to be dominant by ESR spectroscopy. The measured data reveal that the easy axis is the crystallographic b axis for this sample. Phenomenological magnetocrystalline anisotropy energy invariant to crystal symmetry operations was used to model the spin axis direction in zero and finite magnetic fields. Our model reproduces the value of the spin-flop field HSF=1.25 T found in literature. A combination of this approach with our torque results shows that the spin axis will flop in the direction of the maximal value of measured g tensor when the magnetic field H >HSF is applied along the easy axis direction. Our analysis of magnetocrystalline anisotropy energy predicts two possibilities for the easy axis direction in this system, b or a , connected to different crystallographic twins that can be realized in CuSb2O6 . These results offer a possibility to reconcile the different reports of easy axis direction found in literature for this system and also nicely demonstrate how a combination of torque magnetometry and a phenomenological approach to magnetic anisotropy can be used to determine the value of the spin-flop field and the direction of spin axis in antiferromagnets in both H HSF by performing measurements in fields significantly smaller than HSF.

  15. Structural disorder in the Pb2Sr2Y1-xCaxCu3O8+δ cuprates

    NASA Astrophysics Data System (ADS)

    Staub, U.; Soderholm, L.; Skanthakumar, S.; Pattison, P.; Conder, K.

    1998-03-01

    High-resolution powder x-ray-diffraction results on Pb2Sr2Y1-xCaxCu3O8+δ are presented. Assuming an orthorhombic cell with Cmmm symmetry, the reflections that index with h and l simultaneous nonzero are observed to be distinctly broader than the other reflections. A model is presented that is able to explain quantitatively and qualitatively the relative widths of the different hkl reflections. The widths of the reflections are found to be independent of the doping level. The model employed is based on anisotropic distributions of the d spacings within the (a,c) plane, corresponding to a fluctuation of the β angle around 90° that occurs as a result of oxygen nonstoichiometry. The distortions may be related to the incommensurable modulation along the b direction in the structurally similar (Bi/Pb)2Sr2(Ca/Y)Cu2O8+δ compounds. At elevated temperatures, a disorder-order phase transition (Tdo=240 °C) is observed. At temperatures above Tdo, the structure relaxes to the undistorted average orthorhombic structure. This order-disorder transition results from oxygen diffusion, which sets in at the transition temperature.

  16. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Phragmites australis Artificial Floating Wetlands.

    PubMed

    Huang, Xiaofeng; Zhao, Feng; Yu, Gao; Song, Chao; Geng, Zhi; Zhuang, Ping

    2017-01-01

    Contamination of heavy metals would threaten the water and soil resources; phytoremediation can be potentially used to remediate metal contaminated sites. We constructed the Phragmites australis artificial floating wetlands outside the Qingcaosha Reservoir in the Yangtze Estuary. Water characteristic variables were measured in situ by using YSI Professional Pro Me