Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures.
Xin, Junliang; Huang, Baifei; Yang, Zhongyi; Yuan, Jiangang; Dai, Hongwen; Qiu, Qiu
2010-03-15
A pot experiment was conducted to investigate the stability of Cd and/or Pb accumulation in shoot of Cd and Pb pollution-safe cultivars (PSCs), the hereditary pattern of shoot Cd accumulation, and the transfer potentials of Cd and Pb in water spinach (Ipomoea aquatica Forsk.). A typical Cd-PSC, a typical non-Cd-PSC (Cd accumulative cultivar), a hybrid from the former two cultivars, and two typical Cd+Pb-PSCs were grown in seven soils with different concentrations of Cd and Pb. The results showed that concentrations of Cd and Pb in shoot of the PSCs were always lower than the non-PSC and the highest Cd and Pb transfer factors were also always observed in the non-PSC, indicating the stability of the PSCs in Cd and Pb accumulation. Shoot Cd concentration seemed to be controlled by high Cd dominant gene(s) and thus crossbreeding might not minimize Cd accumulation in water spinach. Interaction between Cd and Pb in soils affected the accumulations of the metals in shoot of water spinach. Under middle Cd and Pb treatments, the presence of higher Pb promoted the accumulation of Cd. However, under high Pb treatment, accumulations of Cd and Pb were both restricted. (c) 2009 Elsevier B.V. All rights reserved.
Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta Izabela; Prokopowicz, Adam; Kalisinska, Elzbieta; Sokolowski, Sebastian; Karaczun, Maciej; Zietek, Pawel; Podlasińska, Joanna; Pilarczyk, Bogumila; Tomza-Marciniak, Agnieszka; Baranowska-Bosiacka, Irena; Gutowska, Izabela; Safranow, Krzysztof; Chlubek, Dariusz
2015-01-01
The aim of this study was to evaluate the aforementioned chemical elements in tibial plateau samples obtained during knee arthroplasty. The gender-specific analysis of chemical element levels in the bone samples revealed that there were statistically significant differences in the concentration of Pb and Se/Pb ratio. The contents of elements in the tibial plateau in the patients with osteoarthritis (OA) can be arranged in the following descending order: F(-) > K > Zn > Fe > Sr > Pb > Mn > Se > Cd > THg. We observed statistical significant effects of environmental factors including smoking, seafood diet, and geographical distribution on the levels of the elements in tibial bone. Significant positive correlation coefficients were found for the relationships K-Cd, Zn-Sr, Zn-F(-), THg-Pb, Pb-Cd, Se-Se/Pb, Se-Se/Cd, Se/Pb-Se/Cd, Pb-Cd/Ca, Cd-Cd/Ca, and F(-)-F(-)/Ca·1000. Significant negative correlations were found for the relationships THg-Se/Pb, Pb-Se/Pb, Cd-Se/Pb, K-Se/Cd, Pb-Se/Cd, Cd-Se/Cd, THg-Se/THg, Pb-Se/THg, Se-Pb/Cd, Zn-Cd/Ca, and Se/Cd-Cd/Ca. The results reported here may provide a basis for establishing reference values for the tibial plateau in patients with OA who had undergone knee replacement surgery. The concentrations of elements in the bone with OA were determined by age, presence of implants, smoking, fish and seafood diet, and sport activity.
Zinc, lead, and cadmium levels in serum and milk of lactating women in Ibadan, Nigeria.
Edem, Victory Fabian; Akintunde, Kikelomo; Adelaja, Yewande Adeola; Nwozo, Sarah O; Charles-Davies, Mabel
2017-01-01
Zinc (Zn) is known to interact with lead (Pb) and cadmium (Cd) reversing their toxicity and reducing their concentrations. However, lactating women are at high risk of developing Zn deficiency, which may result in Pb and Cd intoxication or increased exposure of breast-fed infants to Pb and Cd from breast milk. The aim of this study was to determine Zn, Pb, and Cd concentrations and examine their relationship in serum and breast milk of lactating women in Ibadan, Nigeria. Ninety-two lactating women were recruited into this study. Anthropometric measurements were assessed by standard methods while serum and breast milk concentrations of Zn, Pb, and Cd were assessed by atomic absorption spectrophotometry. Data analyzed statistically by Student's t test, Pearson's correlation coefficient, and a multiple regression model were significant at p < 0.05. Zn deficiency was observed in 12 (17.1%) of lactating women. Breast milk levels of Zn, Pb, and Cd were significantly higher than their levels in serum, whereas the ratios Zn:Pb and Zn:Cd in milk were significantly less than serum ratios. Significant negative correlation was observed between milk Pb and serum Zn:Pb while milk Cd correlated positively with milk Zn. Significant positive correlations were observed between serum Zn and serum Zn:Pb, serum Zn and serum Zn:Cd, as well as serum Zn:Cd and serum Zn:Pb. Serum Cd and serum Zn were significantly negatively related. Significant negative correlations between serum Pb and serum Zn:Pb as well as milk Zn:Pb. Serum Cd and serum Zn:Pb as well as serum Zn:Cd correlated negatively. Milk Cd and Zn/Cd positively related with milk Pb while milk Zn was a negatively related with milk Pb in a multiple regression model ( R 2 = 0.333; p = 0.023). Breast milk may be contaminated by toxic metals. However, Zn supplementation in deficient mothers may protect maternal and infant health.
Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping
2017-01-01
Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems. PMID:28046098
Lou, Yanhong; Zhao, Peng; Wang, Deling; Amombo, Erick; Sun, Xin; Wang, Hui; Zhuge, Yuping
2017-01-01
Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems.
Xia, Qing; Lamb, Dane; Peng, Cheng; Ng, Jack C
2017-02-01
Interaction effects of As, Cd and Pb on their respective bioaccessibility in co-contaminated soils were reported. In addition, the influence of aging time (up to 90 days) on potential interactions was also investigated. Experiments were carried out by spiking four diverse soils with single, binary or ternary mixtures of As, Cd and Pb. Soils were measured for bioaccessibility at different aging periods. Results demonstrate that bioaccessibility of As, Cd and Pb reached a steady state after soils were aged for 30 days. Bioaccessibility of As, Cd and Pb in soils spiked with binary mixtures of As, Cd and Pb were not affected by the other co-existing metal/metalloid. But when As, Cd and Pb were introduced together to acidic soils which lacked abundant binding sites, intestinal bioaccessibility of Cd was increased at the early stage of aging (7 to 30 days) whilst bioaccessibility of As and Pb remained unchanged. However, when Pb and As were added after Cd has been incubated in soil for 7 days, Cd intestinal bioaccessibility was not influenced by As and Pb. Therefore, a number of factors should be taken into consideration when estimating the bioaccessibility of mixed As, Cd and Pb, including the loadings of As, Cd and Pb in soils, the time for which they have been aged together and the time period between As, Cd and Pb entering the soils.
Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.
Xu, Jianling; Cai, Qiongyao; Wang, Hanxi; Liu, Xuejun; Lv, Jing; Yao, Difu; Lu, Yue; Li, Wei; Liu, Yuanyuan
2017-05-01
In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg -1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg -1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg -1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg -1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground biomass of barnyard grass. Remediation should occur through phytostabilization. Thus, with its strong adaptability and lush growth, barnyard grass can be applied as a pioneer species for the phytoremediation of Cd- and Pb-contaminated soils.
Niu, Zhixin; Li, Xiaodong; Sun, Lina; Sun, Tieheng
2013-01-01
Sunflower (Helianthus annuus L.) has been considered as a good candidate for bioaccumulation of heavy metals. In the present study, sunflower was used to enrich the cadmium and lead in sand culture during 90 days. Biomass, Cd and Pb uptake, three organic acids and pH in cultures were investigated. Results showed that the existence of Cd and Pb showed different interactions on the organic acids exudation. In single Cd treatments, malic and acetic acids in Cd10 showed an incremental tendency with time. In the mixed treatments of Cd and Pb, malic acids increased when 10 and 40 mg x L(-1) Cd were added into Pb50, but acetic acids in Pb50 were inhibited by Cd addition. The Cd10 supplied in Pb10 stimulated the secretion of malic and succinic acids. Moreover, the Cd or Pb uptake in sunflower showed various correlations with pH and some organic acids, which might be due to the fact that the Cd and Pb interfere with the organic acids secretion in rhizosphere of sunflower, and the changes of organic acids altered the form and bioavailability of Cd and Pb in cultures conversely.
NASA Astrophysics Data System (ADS)
Madyiwa, Simon; Chimbari, Moses John; Schutte, Frederik
Pb and Cd are known to influence each other’s uptake by some plants when the two metals exist in the soil in significant amounts. This influence may be beneficial if it reduces uptake of metal by plants but may be detrimental if it increases uptake of the metal. This study was carried out to investigate the interaction of Pb and Cd in sandy soils and Cynodon nlemfluensis (star grass). Star grass was grown under greenhouse conditions in 33 fertilized pots containing sandy soils. Three weeks after planting the grass the pots were randomly assigned to the following treatments replicated three times; (a) application of three varying concentrations of Pb or Cd in addition to effluent and sludge, (b) application of three varying concentrations of combined Pb and Cd in addition to effluent and sludge, (c) application of water and (d) application of only effluent and sludge. Analysis of grass samples was done 45 and 90 days after addition of Pb and Cd to pots and that of the soil was done 90 days after addition of Pb and Cd to pots. The log normal mean level (in mg/kg) of Pb detected in the soil was 1.75 and that of Cd was 0.057 in mixed treatments while for single treatments the levels were 1.67 for Pb and 0.03 for Cd. The presence of Cd in the soil had no effect on the bio-available level of Pb but Pb significantly ( p < 0.05) increased the bio-available concentration of Cd. The log normal mean levels of Pb in grass re-growth from mixed treatment was 1.68 and that of Cd was 0.57 while the values for single treatments were 1.47 for Pb and 0.31 for Cd. There was no significant change in the level of uptake of Pb between single treatments and mixed treatments. However, Pb significantly increased uptake of Cd in mixed treatments compared to single treatments ( p < 0.05). The results of this study indicate that co-presence of Pb and Cd may have the detrimental effect of increasing uptake of Cd in star grass.
Xiao, Hong; Zhou, Jian; Liu, Xing
2018-04-03
Two new cadmium bromoplumbates [CdPb2Br2L2]n (1, L = ethylene glycol) and [CdPb6Br6L4]n (2) have been solvothermally synthesized and structurally characterized. 1 contains 1-D neutral heterometallic chains [CdPb2Br2L2]n, which are further connected via weak Pb-Br bonds, resulting in a 3-D network structure. The 3-D framework of 2 is constructed by the interconnection of a 2-D neutral layer [CdPb6Br6L4]nvia weak Pb-Br bonds. The [CdPb6Br6L4]n layer is based on the linkages of dimeric [Pb2Br4] units and heterometallic crown [Cd(Pb4O4)Br2] clusters containing a rare eight-membered [Pb4O4] ring. Although a few heterometallic bromoplumbate clusters have been reported, they usually exhibit molecular moieties. 2 represents the only example of 3-D heterometallic bromoplumbate based on the combination of heterometallic crown [Cd(Pb4O4)Br2] clusters and dimeric [Pb2Br4] units. Their optical properties are studied and density functional theory calculations for 1 and 2 have also been performed.
Growth of rye grass and fescue as affected by lead-cadmium-fertilizer interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, R.W.; Rolfe, G.L.
Rye grass (Lolium perenne L.) and red fescue (Festuca rubra L.) were grown from seed in fertilized (NPK, 12:6:6) and unfertilized Flanagan silt loam soil treated with Pb (0, 10, 100, 1000, 5000, 10,000 ..mu..g g/sup -1/), Cd (0, 0.1, 1, 10, 50, 100 ..mu..g g/sup -1/), or a combination of Pb plus Cd at a ratio of 100 Pb:1 Cd. Plant growth and heavy metal content of plants were measured at the end of three, consecutive, 10-day periods. Growth of Pb-treated plants did not begin to decrease until treatment concentrations reached 1000 ..mu..g g/sup -1/ Pb or above. Abovemore » a treatment concentration of 1000 ..mu..g g/sup -1/ Pb with or without added Cd, growth was reduced sharply in a log-linear fashion with increasing treatment concentrations. Some reduction in growth of plants treated with Cd alone occurred for fertilized fescue above 10 ..mu..g g/sup -1/ Cd but not for rye until treatments above 50 ..mu..g g/sup -1/. No reduction in growth was found for nonfertilized plants treated with Cd alone at the highest soil concentration (100 ..mu..g g/sup -1/). Reduction in growth for plants treated with Pb + Cd was no lower than that of plants treated with Pb alone. While fertilization stimulated growth at treatment concentrations < 1000 ..mu..g g/sup -1/, it did not ameliorate the effects of Pb at higher concentrations. Fertilization reduced Pb content and uptake in rye (P <0.001) but not in fescue. The Cd content of fertilized plants was greater (P < 0.05) than that of nonfertilized plants. Cadmium content of plants treated with Pb + Cd was greater (P < 0.05) than that of plants treated with Cd alone, while there was no difference in Pb content between Pb and Pb + Cd treatments.« less
Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures
NASA Astrophysics Data System (ADS)
Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-03-01
Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edgemore » of the nanocrystals and proceeds along the <111> direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.« less
Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.
Zhang, Jianbing; Chernomordik, Boris D; Crisp, Ryan W; Kroupa, Daniel M; Luther, Joseph M; Miller, Elisa M; Gao, Jianbo; Beard, Matthew C
2015-07-28
We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.
Use of the sea hare (Aplysia fasciata) in marine pollution biomonitoring of harbors and bays.
Dirrigl, Frank J; Badaoui, Zachariah; Tamez, Carlos; Vitek, Christopher J; Parsons, Jason G
2018-04-01
Our study evaluated heavy metal concentrations in soft tissues of sea hare, Aplysia fasciata, from the Lower Laguna Madre, Texas. Heavy metals in tissues followed Se>As>Pb>Cd. Concentrations ranged As (BDL-28.08), Cd (BDL-5.50), Pb (BDL-12.85) and Se (4.25-93.43ppm). Median As, Cd, Pb, and Se tissue levels exceeded exposure levels. Significant relationships occurred in metal-metal (AsCd, AsPb, CdPb, CdSe, and PbSe), metal-tissue (significant Se uptake by inhalant and exhalant siphons and As in the hepatopancreas), and metal-metal within tissue (AsPb in the hepatopancreas and CdPb in the digestive cecum) analyses (p<0.05). Bioaccumulation factors (BAF) suggested the inhalant siphon, hepatopancreas, and digestive cecum function as macroconcentrators of Cd, hepatopancreas and digestive cecum as macroconcentrators of Pb, and all tissues were deconcentrators for As and Se. As a bioaccumulator of heavy metals, Aplysia was evaluated as a bioindicator of marine pollution in harbors and bays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fernandez-Ruiz, Daniel; Lau, Lei Shong; Ghazanfari, Nazanin; Jones, Claerwen M; Ng, Wei Yi; Davey, Gayle M; Berthold, Dorothee; Holz, Lauren; Kato, Yu; Enders, Matthias H; Bayarsaikhan, Ganchimeg; Hendriks, Sanne H; Lansink, Lianne I M; Engel, Jessica A; Soon, Megan S F; James, Kylie R; Cozijnsen, Anton; Mollard, Vanessa; Uboldi, Alessandro D; Tonkin, Christopher J; de Koning-Ward, Tania F; Gilson, Paul R; Kaisho, Tsuneyasu; Haque, Ashraful; Crabb, Brendan S; Carbone, Francis R; McFadden, Geoffrey I; Heath, William R
2017-12-15
We describe an MHC class II (I-A b )-restricted TCR transgenic mouse line that produces CD4 + T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4 + T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human ( Plasmodium falciparum ) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8 + T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4 + T cells and the previously described PbT-I CD8 + T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8 + DC (a subset of XCR1 + DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4 + T cell responses. Depletion of CD8 + DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4 + T cell immunity during malaria and provides evidence that CD4 + T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8 + DC. Copyright © 2017 by The American Association of Immunologists, Inc.
EDTA-assisted leaching of Pb and Cd from contaminated soil.
Qiao, Jiangbo; Sun, Huimin; Luo, Xiuhua; Zhang, Wang; Mathews, Shiny; Yin, Xianqiang
2017-01-01
Lead (Pb) and cadmium (Cd) contamination of soil and its harmful effects on human and environmental health have been one concern. In this study, batch and column leaching experiments were conducted to investigate the effects of two EDTA-assisted leaching methods, continuous and intermittent (dry-wet alternate), on the removal of Pb and Cd from contaminated soil. Total content and fractions of Pb and Cd at every 1 cm soil column depth were analyzed before and after the leaching. The results indicated that continuous leaching removed 75.43% of Pb (19.370 mg) and 53.21% of Cd (6.168 mg) and intermittent leaching removed 78.08% of Pb (20.051 mg) and 57.37% of Cd (6.650 mg), which showed intermittent leaching removed more Pb and Cd, but didn't differ significantly (P > 0.05) compared to the continuous leaching. In both leaching methods, total Pb and Cd content in all soil depths reduced after leaching. The two leaching methods made no significant differences in Pb and Cd distributions at different depths of the soil column. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi
2013-06-01
Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.
A transferable force field for CdS-CdSe-PbS-PbSe solid systems
NASA Astrophysics Data System (ADS)
Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.
2014-12-01
A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.
Xia, Qing; Peng, Cheng; Lamb, Dane; Kader, Mohammed; Mallavarapu, Megharaj; Naidu, Ravi; Ng, Jack C
2016-07-01
The bioaccessibility of lead (Pb) in contaminated soils has been extensively studied, including the influence of soil properties on Pb bioaccessibility. However, little is known about the effects of other metals/metalloid, such as arsenic (As), cadmium (Cd) on the bioaccessibility of Pb, i.e. whether As or Cd could increase or decrease the solubility of Pb in human gastrointestinal tract when Pb-contaminated soil and As-contaminated (or Cd-contaminated) soil are ingested simultaneously. Furthermore, it is far from clear that if soil property could make a difference to these effects. In this study, seven types of soils were collected in Australia and spiked with As, Cd or Pb. Gastric bioaccessibility of Pb ranged from 44 ± 0.9% to 100 ± 6.7% whilst intestinal bioaccessibility dropped to 1 ± 0.2% to 36 ± 1.7%. Statistical analysis shows total Pb in soil was the most significant controller for bioaccessible Pb. Effects of As and Cd on the bioaccessibility of Pb in simulated human digestive system were studied by mixing As-spiked soil (or Cd-spiked soil) with Pb-spiked soil of the same type during bioaccessibility test. Results reveal that neither As nor Cd had impact on Pb bioaccessibility, which indicates when As, Cd and Pb aged in soils separately, they may behave independently in the bioaccessibility measuring system. This finding can be part of evidence to assume additive effect when it comes to estimate the bioaccessibility of mixtures of independently-aged As and Pb (or Cd and Pb) in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sobrino-Figueroa, Alma S; Cáceres-Martínez, Carlos; Botello, Alfonso V; Nunez-Nogueira, G
2007-08-01
The effects of Cd, Cr, Pb and their mixtures on the growth and sensitivity of the scallop Argopecten ventricosus were analyzed in this study. Cadmium showed to be more toxic metal to juveniles (96 hour median lethal concentration (LC(50)) = 0.396 mg Cd/L), followed by lead (LC(50) = 0.830 mg Pb/L) and chromium (LC(50) = 3.430 mg Cr/L). Cadmium toxicity was 8 times higher than chromium and 2 times than lead. The most toxic combination was Cd + Cr + Pb. (LC(50) = 0.302 mg/L). Based on toxic units analyses (T.U.), a synergistic effect was observed for Cr + Pb and Cd + Cr + Pb. (T.U. = 0.374; T.U. = 0.403), and antagonic effects for Cd + Cr and Cd + Pb (T.U. = 1.26; T.U. = 1.43) respectively. The level of effect (from high to low) on the growth of A. ventricosus juveniles was: Cd > Cd + Cr + Pb > Cr > Pb. The EC(50) (metal concentration where a reduction of 50% growing rate is observed) obtained were: Cd = 0.018 mg/L, Cd + Cr + Pb = 0.104 mg/L, Cr = 0.51 mg/L and Pb = 4.21 mg/L. These results suggest that A. ventricosus juveniles are more sensitive to these metals in comparison to other juveniles from other bivalve species (e.g., A. irradians, Mytillus edulis, Crassostrea virginica).
Qin, Peng; Wang, Hailong; Yang, Xing; He, Lizhi; Müller, Karin; Shaheen, Sabry M; Xu, Song; Rinklebe, Jörg; Tsang, Daniel C W; Ok, Yong Sik; Bolan, Nanthi; Song, Zhaoliang; Che, Lei; Xu, Xiaoya
2018-05-01
Biochar effect on the potential mobility of dibutyl phthalate (DBP), cadmium (Cd), and lead (Pb) in co-contaminated soils is not well investigated. A laboratory leaching study was conducted to evaluate the effect of biochars derived from bamboo (BB) and pig (PB) on the leachability of DBP, Cd, and Pb through soil columns packed with two soils with low or high organic carbon content (LOC; 0.35% C: HOC; 2.24% C) and spiked with DBP, Cd, and Pb. Application of PB to the LOC soil significantly (P < 0.05) reduced the leaching loss by up to 88% for DBP, 38% for Cd, and 71% for Pb, whereas its impact was insignificant in the HOC soil. The higher efficacy of PB in reducing the leaching of DBP, Cd, and Pb in the LOC soil than that of BB might be related to PB's higher specific surface area, surface alkalinity, pH, and mineral contents compared to those of BB. Co-contamination of Cd and Pb enhanced leaching of DBP in the LOC soil treated with PB, possibly by competition for the sorption sites. Leaching of DBP, Cd, and Pb were significantly (P < 0.05) higher in the LOC soil than in the HOC soil. This study revealed that the effectiveness of biochars was dependent on the soil organic carbon content. Application of PB to the LOC soil was effective in reducing the leaching risk of DBP, Cd, and Pb. Copyright © 2018 Elsevier Ltd. All rights reserved.
Han, Hui; Sheng, Xiafang; Hu, Jingwen; He, Linyan; Wang, Qi
2018-06-18
In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Liang; Zhao, Fang; Shen, Xuefeng
Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood bymore » 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.« less
Clemow, Yvonne H; Wilkie, Michael P
2015-04-01
The physiological and toxicological effects of Cd and Pb have been thoroughly studied, but relatively little work has been done to determine how mixtures of these metals affect fishes in soft (<100 μmol L(-1)Ca(2+)) slightly acidic (pH ∼6) waters typical of many lakes in the Canadian Shield and other regions. Recently, it has been suggested that acute exposure to Cd plus Pb mixtures (3h) had greater than additive effects on both Ca(2+) and Na(+) influx, which could potentially exacerbate disturbances to ion balance and result in greater toxicity in rainbow trout (Oncorhynchus mykiss). The goal of the present study was to test this hypothesis by assessing the physiological and toxicological effects of Cd plus Pb mixtures over longer time periods (3-5 days), but at relatively low, more environmentally relevant concentrations of these metals. Accordingly, toxicity and measurements of blood acid-base regulation (PaO2, pHa), hematology (Ht, Hb, MCHC, and Protein), ionic composition (body ions and plasma Ca(2+), Na(+), Cl(-), osmolality), unidirectional Na(+) fluxes and branchial Na(+)/K(+)-ATPase activity were measured in rainbow trout exposed to Cd plus Pb mixtures. Experiments on rainbow trout, implanted with dorsal aortic catheters for repetitive blood sampling, demonstrated that exposure to Pb alone (26 nmol PbL(-1)) was less toxic than Cd alone (6 nmol CdL(-1)), which was much less toxic to the fish than a Cd plus Pb mixture (7 nmol CdL(-1) plus 45 nmol PbL(-1)), which led to greater than additive 80% mortality by 5d. Both Cd and Pb inhibited Na(+) influx over 3d exposure to the metals, which was partially offset by decreases in the diffusive efflux (outflux) of Na(+) across the gill. Despite an absence of detectable effects of Pb alone on plasma ion balance, Cd plus Pb mixtures exacerbated Cd-induced reductions in plasma Ca(2+) concentration, and resulted in pronounced reductions in plasma Na(+), Cl(-), and osmolality. No effects on Na(+)/K(+)-ATPase activity were noted following exposure to Cd, Pb or Pb plus Cd mixtures. We conclude that the greater than additive toxicity of Cd plus Pb mixtures observed in the present and previous studies is because these metals not only have common, but also independent binding sites and mechanisms of action, which could exacerbate the pathophysiological effects caused by each metal alone. Copyright © 2015 Elsevier B.V. All rights reserved.
Morandi, Fabio; Ferretti, Elisa; Castriconi, Roberta; Dondero, Alessandra; Petretto, Andrea; Bottino, Cristina; Pistoia, Vito
2011-11-24
Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.
Kopeć, Aneta; Sikora, Elżbieta; Piątkowska, Ewa; Borczak, Barbara; Czech, Tomasz
2016-05-01
The objective of this study was the investigation whether the administration of the elderberry fruit lyophilizate under exposure to cadmium(Cd) and (Pb) lead may protect against some effects of their toxic action in Wistar rats. Rats were fed with diets containing Cd (Cd 0.025 mg/kg b.m.) or Pb (Pb 0.025 mg /kg b.m.) with the addition of the freeze-dried elderberry fruits (BEF) in the amount of 5 %. BEF added to the diet with Cd significantly decreased the activity of AST and ALT compared to the rats fed with the control diet with Cd (C + Cd). Activity of glutathione peroxidase was significantly higher in the blood of rats fed with BEF diet compared with animals fed with BEF + Cd, BEF + Pb, and C + Pb diets. Addition of BEF to the diets with Cd or Pb significantly decreased the uric acid concentration compared to the level of this parameter in the serum of animals fed with control diets containing Cd or Pb. The level of the Cd significantly decreased in the livers of rodents fed with BEF + Cd diet as compared to the concentration of this metal in the livers of rats fed with C + Cd diet. Elderberry fruit lyophilizate did not protect against the increased concentration of Cd or Pb in kidneys and bones of experimental rats; however, it improved the function of livers and kidneys, especially of rats intoxicated with Cd.
Fukui, Tomoaki; Mifune, Yutaka; Matsumoto, Tomoyuki; Shoji, Taro; Kawakami, Yohei; Kawamoto, Atsuhiko; Ii, Masaaki; Akimaru, Hiroshi; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Alev, Cantas; Kuroda, Ryosuke; Kurosaka, Masahiro; Asahara, Takayuki
2015-01-01
We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34(+) cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34(+) cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34(+) cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 10(5) GM-PB CD34(+) cells (CD34(+) group), 1 × 10(7) GM-PB MNCs (containing approximately 1 × 10(5) GM-PB CD34(+) cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34(+) and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34(+) group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34(+) cells is a practical and effective strategy for treatment of nonunion after fracture.
Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays
2013-01-01
Narrow bandgap PbS nanoparticles, which may expand the light absorption range to the near-infrared region, were deposited on TiO2 nanorod arrays by successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The thicknesses of PbS nanoparticles were optimized to enhance the photovoltaic performance of PbS QDSCs. A uniform CdS layer was directly coated on previously grown PbS-TiO2 photoanode to protect the PbS from the chemical attack of polysulfide electrolytes. A remarkable short-circuit photocurrent density (approximately 10.4 mA/cm2) for PbS/CdS co-sensitized solar cell was recorded while the photocurrent density of only PbS-sensitized solar cells was lower than 3 mA/cm2. The power conversion efficiency of the PbS/CdS co-sensitized solar cell reached 1.3%, which was beyond the arithmetic addition of the efficiencies of single constituents (PbS and CdS). These results indicate that the synergistic combination of PbS with CdS may provide a stable and effective sensitizer for practical solar cell applications. PMID:23394609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S.M.; Howell, R.D.; Sholas, M.
The whole-body residues of Cd and Pb in the tissues of Louisiana swamp crayfish (Procambarus clarkii) were determined by flame AAS technique. Test animals were collected from roadside ditches alongside major highways. The water and soil samples were also collected from the same sites. The mean Cd and Pb concentrations in crayfish tissues were 0.46 and 0.07, respectively. The levels of Cd and Pb in the water were 0.09 and 0.04; and in soil were 2.85 and 0.87 mg/1, respectively. The concentration of cadmium was 32 and Pb 12 times more than in the water. The bioaccumulation factors (BF) formore » Cd and Pb in crayfish tissues were 5.1 and 1.7, respectively. Alligator weed (Alternanthera philoxiroides) plants were exposed to 0.5 mg/1 Cd-chloride or Pb-nitrate solutions for 3 wk period, thrice. The mean Pb accumulation in roots was 1.31 mg/1, followed by stem (0.078 mg/1), but Cd only accumulated in root (0.83 mg/1). The BF for Pb and Cd in plant tissues were 14.8 and 16.6, respectively. The uptake of metals was time-dependent. These data suggest that although there is no biomagnification of Cd and Pb from alligator weed to crayfish, both metals readily accumulate in field-collected crayfish and laboratory-exposed alligator weed.« less
Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang
2017-07-01
Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Lai, Hung-Yu; Chen, Zueng-Sang
2006-10-11
Soil used in this study was artificially contaminated with Cd, Zn, Pb, or applied in combinations (Cd-Zn, Cd-Pb, Zn-Pb, or Cd-Zn-Pb) to study the interactions of metals in soil contaminated with multiple metals. After planting rainbow pink (Dianthus chinensis) in these soils for 21 days, three different concentrations of ethylenedinitrilotetraacetic acid (EDTA) solutions were added to study the effect of applying EDTA on the interactions among these metals. The concentrations of Cd, Zn, and Pb in the soil solutions of different metals-treated soils increased significantly after applying 5 mmol EDTA kg(-1) soil (p<0.05). The potential of groundwater contamination will increase after applying EDTA and it is not recommended to be in situ used or have to use very carefully. The existence of Pb in the Cd-contaminated soil enhanced the uptake of Cd in rainbow pink in the treatments of control and 2 mmol EDTA kg(-1) soil. Cadmium inhibited the concentration of Zn without applying EDTA. However, whether the application of EDTA or not and the applied EDTA concentration had the greatest effect on the uptake of Pb when compared to Cd and Zn. After applying 5 mmol EDTA kg(-1) soil, Cd or Zn in the Pb-contaminated soil inhibited the uptake of Pb in rainbow pink, but there were no effect in other treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Donghong; Mondal, Tapan K.; Lawrence, David A.
2007-07-01
Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) {+-} PbCl{sub 2}. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS {+-} Pb for 2 days. Themore » day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-{alpha} levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway.« less
Zhang, Hui; Chen, Xueping; He, Chiquan; Liang, Xia; Oh, Kokyo; Liu, Xiaoyan; Lei, Yanru
2015-01-01
Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18-45%, respectively, at the dosage of 10 mM kg(-1) soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.
Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin
2016-02-23
In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O8(2-) system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01-100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore.
Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.
Tayeb, A; Chellali, M R; Hamou, A; Debbah, S
2015-09-15
In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Jing, Jing; Fang, Biaopeng
2017-07-01
Improving the photovoltaic performance of CdSe/CdS/PbS co-sensitized double-layered TiO2 solar cells is reported. Double-layered TiO2 films with TiO2 microspheres as the light blocking layers were prepared. PbS, CdS and CdSe quantum dots (QDs) were assembled onto TiO2 photoanodes by simple successive ionic layer absorption and reaction (SILAR) to fabricate CdSe/CdS/PbS co-sensitized solar cells. An improved power conversion efficiency (PCE) of 5.11% was achieved for CdSe/CdS/PbS co-sensitized solar cells at one sun illumination (AM 1.5 G, 100 mW cm-2), which had an improvement of 22.6% over that of the CdSe/CdS co-sensitized solar cells (4.17%). This enhancement is mainly attributed to their better ability of the absorption of solar light with the existence of PbS QDs, the reduction of charge recombination of the excited electron and longer lifetime of electrons, which have been proved with the photovoltaic studies and electrochemical impedance spectroscopy (EIS).
Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei
2016-11-01
Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2 + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Chao; Chen, Hao-Xiang; Xiang, Qian; Zhu, Han-Hua; Wang, Shuai; Zhu, Qi-Hong; Huang, Dao-You; Zhang, Yang-Zhu
2018-01-01
Soil amendments, such as biochar, have been used to enhance the immobilization of heavy metals in contaminated soil. A pot experiment was conducted to immobilize the available cadmium (Cd) and lead (Pb) in soil using peanut shell biochar (PBC) and wheat straw biochar (WBC), and to observe the accumulation of these heavy metals in rice (Oryza sativa L.). The application of PBC and WBC led to significantly higher pH, soil organic carbon (SOC), and cation exchange capacity (CEC) in paddy soil, while the content of MgCl 2 -extractable Cd and Pb was lower than that of untreated soil. MgCl 2 -extractable Cd and Pb showed significant negative correlations with pH, SOC, and CEC (p < 0.01). The application of 5% biochar to contaminated paddy soil led to reductions of 40.4-45.7 and 68.6-79.0%, respectively, in the content of MgCl 2 -extractable Cd and Pb. PBC more effectively immobilized Cd and Pb than WBC. Sequential chemical extractions revealed that biochar induced the transformation of the acid-soluble fraction of Cd to oxidizable and residual fractions, and the acid-soluble fraction of Pb to reducible and residual fractions. PBC and WBC clearly inhibited the uptake and accumulation of Cd and Pb in rice plants. Specially, when compared to the corresponding concentrations in rice grown in control soils, 5% PBC addition lowered Cd and Pb concentrations in grains by 22.9 and 12.2%, respectively, while WBC addition lowered them by 29.1 and 15.0%, respectively. Compared to Pb content, Cd content was reduced to a greater extent in grain by PBC and WBC. These results suggest that biochar application is effective for immobilizing Cd and Pb in contaminated paddy soil, and reduces their bioavailability in rice. Biochar could be used as a soil amendment for the remediation of soils contaminated with heavy metals.
Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-06-15
Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.
Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals.
Carfagna, M A; Ponsler, G D; Muhoberac, B B
1996-03-08
Inhibition of Na+/K+-ATPase and Mg2+-ATPase activities by in vitro exposure to Cd2+, Pb2+ and Mn2+ was investigated in rat brain synaptic plasma membranes (SPMs). Cd2+ and Pb2+ produced a larger maximal inhibition of Na+/K+-ATPase than of Mg2+-ATPase activity. Metal concentrations causing 50% inhibition of Na+/K+-ATPase activity (IC50 values) were Cd2+ (0.6 microM) < Pb2+ (2.1 microM) < Mn2+ (approximately 3 mM), and the former two metals were substantially more potent in inhibiting SPM versus synaptosomal Na+/K+-ATPase. Dixon plots of SPM data indicated that equilibrium binding of metals occurs at sites causing enzyme inhibition. In addition, IC50 values for SPM K+-dependent p-nitrophenylphosphatase inhibition followed the same order and were Cd2+ (0.4 microM) < Pb2+ (1.2 microM) < Mn2+ (300 microM). Simultaneous exposure to the combinations Cd2+/Mn2+ or Pb2+/Mn2+ inhibited SPM Na+/K+-ATPase activity synergistically (i.e., greater than the sum of the metal-induced inhibitions assayed separately), while Cd2+/Pb2+ caused additive inhibition. Simultaneous exposure to Cd2+/Pb2+ antagonistically inhibited Mg2+-ATPase activity while Cd2+/Mn2+ or Pb2+/Mn2+ additively inhibited Mg2+-ATPase activity at low Mn2+ concentrations, but inhibited antagonistically at higher concentrations. The similar IC50 values for Cd2+ and Pb2+ versus Mn2+ inhibition of Na+/K+-ATPase and the pattern of inhibition/activation upon exposure to two metals simultaneously support similar modes of interaction of Cd2+ and Pb2+ with this enzyme, in agreement with their chemical reactivities.
Biochar from Chinese herb residues as adsorbent for toxic metals removal
NASA Astrophysics Data System (ADS)
Liu, Guocheng; Huang, Yu; Xu, Lina
2017-04-01
Two biochars were prepared form Chinese herb residues by slow pyrolysis at 300 °C and 600 °C (CHR300 and CHR600) for removing two toxic metal ions (Pb2+ and Cd2+) from aqueous phase. In this study, both Pb2+ and Cd2+ were effectively immobilized by CHR300 and CHR600 from water. For an initial concentration of Pb2+ and Cd2+ (C 0 = 10 mg/L), the removal rate by CHR300 and CHR600 were all greater than 90.0% at a solid:liquid ratio of 50 mg biochar in 10 mL solution. For C 0 of the two toxic metals was 100 mg/L, the Pb2+ removal by CHR600 was significantly stronger than that by CHR300, but there was no significant difference of the removal rate of Cd2+ between CHR300 and CHR600. Moreover, the removal rate of Pb2+ by CHR300 and CHR600 was both markedly greater than that of Cd2+, indicating that the biochars had stronger adsorption favorite for Pb2+ than Cd2+. The SEM-EDX data of the biochars after the toxic metals sorption drew strong evidences on the Pb2+ and Cd2+ immobilization by CHR300 and CHR600. The existing of phosphorus (P) and sulphur (S) in CHR300 and CHR600 implied that the heavy metals might be removed by forming Pb/Cd-P and Pb/Cd-S precipitates. These results suggested that the biochars from Chinese herb residues would be likely to be good adsorbents for Pb2+ and Cd2+ removal in water.
Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites
NASA Astrophysics Data System (ADS)
Das, D.; Konwar, R.; Kalita, P. K.
2015-08-01
Starch capped PbS, CdS and PbS-CdS nanocomposites are conjugated with Calf-Thymus DNA. All the materials are characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The x-ray diffraction patterns of PbS and CdS show that the materials possess polycrystalline having both cubic and hexagonal phases. High resolution transmission electron microscopic results (HRTEM) shows PbS nanoparticles of size 3 nm and that of CdS nanoparticles having average size 4 nm which exhibit tendency of agglomeration. In case of PbS/CdS, it exhibits different types of nanosheets. The UV absorption spectra of all the samples exhibit clear blue-shift with the respective bulk absorption edges. This is attributed to the strong quantum confinement in the materials. The absorption spectra also exhibit increase of the band gaps from 2.25 to 4.35 eV for PbS; 2.25-4.2 eV for CdS with decrease of molarities from 0.1 to 0.001 M as well as conjugated with DNA. The photoluminescence spectra of all PbS, CdS and PbS/CdS composites synthesized at 0.1 M molar concentration show a further blue shift and an enhancement of intensity after conjugation with DNA, but the effect is reversed i.e. occurrence of red shift and reduction of intensity for those having 0.01 M. This is due to the two competing processes of surface passivation as well as stabilization of nanocomposites governed by bio-molecules and that of Dexter energy transfer with the effective charge separation. The result shows the applicability of the materials in development of biological labels and biosensors.
NASA Astrophysics Data System (ADS)
Milleville, Christopher C.
This dissertation focuses on the formation and characterization of semiconductor heterostructures, consisting of light-harvesting cadmium selenide quantum dots (CdSe QDs) and single crystalline lead vanadium oxide nanowires (β-Pb0.33V2O5 NWs), for the purpose of excited-state charge transfer and photocatalytic production of solar fuels. We reported two distinct routes for assembling CdSe/β-Pb0.33V2O5 heterostructures: linker-assisted assembly (LAA) mediated by a bifunctional ligand and successive ionic layer adsorption and reaction (SILAR). In the former case, the thiol end of a molecular linker, cysteine (Cys) is found to bind to the QD surface, whereas a protonated amine moiety interacts electrostatically with the negatively charged NW surface. In the alternative SILAR route, the surface coverage of CdSe on the β-Pb0.33V2O5 NWs is tuned by varying the number of successive precipitation cycles. Hard X-ray photoelectron spectroscopy (HAXPES) measurements revealed that the mid-gap states of β-Pb0.33V2O5 NWs are closely overlapped in energy with the valence band edges of CdSe QDs, suggesting that hole transfer from the valence band of CdSe into the mid-gap states is possible. Preliminary evidence of hole transfer was obtained through photoluminescence quenching experiments. Steady-state and time-resolved photoluminescence measurements on Cys-CdSe dispersions, mixed dispersions of Cys-CdSe QDs and β-Pb0.33V¬2O5 NWs, and mixed dispersions of Cys-CdS QDs and V2O5 revealed a greater extent of quenching of the emission of Cys-CdSe QDs by β Pb0.33V¬2O5 relative to V2O5. V2O5, devoid of mid-gap states, is unable to accept holes from CdSe and therefore should not quench emission to the same extent as β-Pb0.33V¬2O5. The additional quenching was dynamic, consistent with a mechanism involving the transfer of photogenerated holes from CdSe QDs to the mid-gap states of β Pb0.33V2O5. Transient absorption spectroscopy (TA) was used to probe the dynamics of interfacial charge transfer of CdSe/β-Pb0.33V¬2O5 and CdSe/V2O5 heterostructures. TA measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by a transfer of electrons to the conduction band of β-Pb0.33V¬2O5 and holes to the mid-gap states of β-Pb0.33V¬2O5. Ultrafast transient absoprtion measurements revealed that holes actually transferred before electrons, on time scales of ca. 2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V2O5, only electron transfer was observed. In addition, electron transfer was readily achieved for SILAR-prepared heterostructures; however, for LAA-prepared heterostructures, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Transient absorbance decay traces revealed longer excited-state lifetimes (1-3 μs) for CdSe/β Pb0.33V2O5 heterostructures relative to bare β-Pb0.33V2O5 NWs (0.2 to 0.6 μs); the difference was attributed to surface passivation of intrinsic surface defects in β-Pb0.33V2O5 upon interfacing with CdSe. In an effort to improve the energetic offset in QD/β-Pb0.33V2O5 heterostructures, cadmium sulfide (CdS) QDs were used in place of CdSe QDs. X-ray photoelectron spectroscopy (XPS) valence band spectra of CdS/β-Pb0.33V2O5 and CdSe/β-Pb0.33V2O5 revealed a greater binding energy onset for CdS compared to CdSe. Binding energy onsets of 1.33 (± 0.03) and 0.92 (± 0.02) eV were determined for Cys-CdS/β Pb0.33V2O5 and Cys-CdSe/β Pb0.33V2O5, respectively; suggesting a 0.41 (±0.04) eV decrease in the free energy (ΔG) needed for hole transfer from the valence band edge of the QDs to the mid-gap states. Linear sweep voltammetry was employed to measure the photocatalytic activity of CdSe/β Pb0.33V2O5 heterostructures in electrolytes containing ascorbic acid as a sacrificial proton donor. Preliminary photoelectrochemical measurements on CdSe/β-Pb0.33V2O5 electrodes revealed reductive photocurrents at applied potentials ca. 450 mV positive of the dark proton reduction onset. Importantly, no reductive photocurrents were measured on bare β-Pb0.33V2O5 electrodes. These results are consistent with a mechanism in which photoinduced hole transfer from CdSe QDs to the mid-gap states of β Pb0.33V2O5 NWs facilitates the reduction of protons, as the charge-separated state allows proton reduction to compete with exciton recombination. This avenue of research is ongoing.
Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism
Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng
2018-01-01
The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (P<0.05). In addition, it was demonstrated that thyroid function of patients with hyperthyroidism was significantly improved (P<0.05) subsequent to receiving medication. Compared with the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (P<0.05). PB CD4+CD25+ Tregs function was decreased in patients with hyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121
NASA Astrophysics Data System (ADS)
Zeb, BibiSaima; Ping, Zheng; Mahmood, Qaisar; Lin, Qiu; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad; Shaheen, Shahida
2017-07-01
This research work is focusing on the toxicities of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phosphoreum T3S was used as an indicator organism. The acute toxicities of heavy metals on P. phosphoreum T3S were assessed during 15-min half inhibitory concentration (IC50) as indicator at pH 5.5-6. Toxicity assays involved the assessment of multicomponent mixtures using TU and MTI approaches. The results of individual toxicity indicated that the toxicity of Cd, Cu and Pb on P. phosphoreum increased with increasing concentrations and there was a linear correlation. The 15-min IC50 values of Cd, Cu and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, and their toxic order was Cd > Pb > Cu. The combined effects of Cd, Cu and Pb were assayed by equivalent concentration mixing method. The results showed that the combined effects of Cd + Cu, Cd + Pb, Cu + Pb, Cd + Cu + Pb were antagonistic, antagonistic and partly additive. The combined effect of three heavy metals was partly additive.
NASA Astrophysics Data System (ADS)
Niu, Z. X.; Sun, L. N.
2017-06-01
Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.
Özdemir, Sadin; Kilinç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida
2016-02-01
Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abduljaleel, Salwa A; Shuhaimi-Othman, M
2013-11-15
The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.
Zhuang, Ping; Li, Yingwen; Zou, Bi; Su, Feng; Zhang, Chaosheng; Mo, Hui; Li, Zhian
2016-12-01
A systematic investigation into cadmium (Cd) and lead (Pb) concentrations and their oral bioaccessibility in market vegetables in the Pearl River Delta region were carried out to assess their potential health risks to local residents. The average concentrations of Cd and Pb in six species of fresh vegetables varied within 0.09-37.7 and 2.3-43.4 μg kg -1 , respectively. Cadmium and Pb bioaccessibility were 35-66 % and 20-51 % in the raw vegetables, respectively, and found to be significantly higher than the cooked vegetables with 34-64 % for Cd and 11-48 % for Pb. The results indicated that Cd bioaccessibility was higher in the gastric phase and Pb bioaccessibility was higher in the small intestinal phase (except for fruit vegetables). Cooking slightly reduced the total concentrations and bioaccessibility of Cd and Pb in all vegetables. The bioaccessible estimated daily intakes of Cd and Pb from vegetables were far below the tolerable limits.
Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers.
Hambach, R; Lison, D; D'Haese, P C; Weyler, J; De Graef, E; De Schryver, A; Lamberts, L V; van Sprundel, M
2013-10-24
Research on the effect of co-exposure to Cd and Pb on the kidney is scarce. The objective of the present study was to assess the effect of co-exposure to these metals on biomarkers of early renal effect. Cd in blood (Cd-B), Cd in urine (Cd-U), Pb in blood (Pb-B) and urinary renal biomarkers, i.e., microalbumin (μ-Alb), beta-2-microglobulin (β₂-MG), retinol binding protein (RBP), N-acetyl-β-d-glucosaminidase (NAG), intestinal alkaline phosphatase (IAP) were measured in 122 metallurgic refinery workers examined in a cross-sectional survey. The median Cd-B, Cd-U, Pb-B were: 0.8 μg/l (IQR = 0.5, 1.2), 0.5 μg/g creatinine (IQR = 0.3, 0.8) and 158.5 μg/l (IQR = 111.0, 219.3), respectively. The impact of Cd-B on the urinary excretion of NAG and IAP was only evident among workers with Pb-B concentrations ≥ 75th percentile. The association between Cd-U and the renal markers NAG and RBP was also evidenced when Pb-B ≥ 75th percentile. No statistically significant interaction terms were observed for the associations between Cd-B or Cd-U and the other renal markers under study (i.e., μ-Alb and β2-MG). Our findings indicate that Pb increases the impact of Cd exposure on early renal biomarkers. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Zhou, Tong; Li, Zhu; Zhang, Fan; Jiang, Xiaosan; Shi, Weiming; Wu, Longhua; Christie, Peter
2016-12-01
Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) were determined in 384 human hair samples and 445 purchased food samples from 11 cities in China. The mean concentrations of hair As, Cd and Pb were 0.23, 0.062 and 2.45mgkg -1 , respectively. The As, Cd and Pb concentrations in different foods were lower than the national maximum allowable contaminant levels. By comparison, males had higher hair As concentrations but lower Cd concentrations than females. When the interaction effects of gender and age were considered, males had the higher hair As, Cd and Pb concentrations in the 51-65 year-old age group. Residents of rural areas had higher hair As, Cd and Pb concentrations than people living in urban areas. Further analysis indicates that hair As, Cd and Pb concentrations and their changes with biological and environmental factors cannot be satisfactorily explained by the estimated intakes from purchased food. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.
Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A
2009-01-01
This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.
Lai, Hung-Yu; Chen, Zueng-Sang
2005-08-01
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.
Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice
2008-02-01
Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.
Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay
NASA Astrophysics Data System (ADS)
Suprapto, D.; Suryanti, S.; Latifah, N.
2018-02-01
Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity
Cadmium and lead in cocoa powder and chocolate products in the US Market.
Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick
2018-06-01
Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from
Bur, T; Crouau, Y; Bianco, A; Gandois, L; Probst, A
2012-01-01
The toxicity of Pb and Cd+Pb was assessed on the Collembola F. candida in two cultivated soils (SV and AU) with low organic matter (OM) content and circumneutral to basic pH, and an acid forested soil (EPC) with high OM content. Collembola reproduction and growth as well as metal content in Collembola body, in soil, exchangeable fraction and soil solutions, pH and DOC were investigated. Pb and Cd+Pb were the highest in exchangeable fraction and soil solution of the acidic soils. Soil solution pH decreased after metal spiking in every soil due to metal adsorption, which was similar for Cd and the highest in AU for Pb. With increasing Pb and Cd+Pb, the most important reproduction decrease was in EPC soil. The LOEC for reproduction after metal addition was 2400 (Pb) and 200/2400 (Cd/Pb), 1200 and 100/1200, 300 and 100/1200 μg g(-1) for AU, SV and EPC, respectively. The highest and the lowest Pb toxicity was observed for EPC and AU bulk soil, respectively. The metal in Collembola increased with increasing soil concentration, except in AU, but the decreasing BF(solution) with increasing concentrations indicates a limited metal transfer to Collembola or an increased metal removal. Loading high Pb concentrations decreases Cd absorption by the Collembola, but the reverse was not true. The highest Pb toxicity in EPC can be explained by pH and OM content. Because of metal complexation, OM might have a protective role but its ingestion by Collembola lead to higher toxicity. Metal bioavailability in Collembola differs from soil solution indicating that soil solution is not sufficient to evaluate toxicity in soil organisms. The toxicity as a whole decreased when metals were combined, except for Pb in AU, due to adsorption competition between Cd and Pb on clay particles and OM sites in AU and EPC soils, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
[Determination of lead and cadmium contents in chicken granules and gourmet powder].
Shi, Min; Hao, Ai-guo; Zhu, Li-zun
2005-02-01
Through atomic absorption detector, the contents of Pb and Cd in chicken granules and gourmet powder were determined. From the result it was found that there are differing contents of pollutant elements, i. e. 0.00-10.00 microg x mL(-1) for Pb and 0.00-4.00 microg x mL(-1) for Cd, respectively. The relative standard deviations of Pb and Cd are 3.15% and 4.26%, respectively. At the same time, a recovery experiment for Pb and Cd in chicken granules and gourmet powder were performed, and the recoveries are 96.7%-102.1% for Pb and 91.9%-107.6% for Cd, respectively.
Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F
2009-12-01
With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.
Xenidis, A; Stouraiti, C; Moirou, A
2001-01-01
The effectiveness of municipal sewage sludge for the stabilisation of Pb, Zn and Cd in a heavily contaminated soil was evaluated by performing pot experiments on soil-sludge mixtures. The soil sample originated from the Montevecchio mining district, Sardinia, Italy, and presented high Pb, Zn and Cd content, as well as US EPA TCLP solubility values for Pb and Cd, which exceeded the respective regulatory limits. Sewage sludge application increased the soil pH. Stabilisation experiments showed that 10% w/w sewage sludge addition effectively reduced Pb and Cd solubilities below the TCLP regulatory limits. At the same addition rate, the EDTA extractable fraction of Pb, Zn, Cd in the treated soil was reduced by 12, 47 and 50% respectively compared with the untreated sample. The five-stage sequential extraction procedure applied on the untreated and treated soil samples, showed a remarkable shift of the metals towards more stable forms. The reducible fractions of Zn and Cd and the residual fraction of Pb were increased by 12, 20 and 18% respectively, while a corresponding decrease in the mobile fractions (exchangeable and carbonate) occurred which accounted for 14, 23 and 25% respectively.
Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R
2008-06-15
Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.
Wang, Li; Li, Yong-Hua; Ji, Yan-Fang; Yang, Lin-Sheng; Li, Hai-Rong; Zhang, Xiu-Wu; Yu, Jiang-Ping
2011-07-01
The composite agents containing potassium chloride (KCl) and Hydroxyapatite (HA) were used to remediate the lead and cadmium contaminated soil in Fenghuang lead-zinc mining-smelting areas, Hunan province. The objective of this study was to identify and evaluate the influence of Cl- to the fixing efficiency of Pb and Cd by HA. Two types of contaminated soil (HF-1, HF-2) were chosen and forty treatments were set by five different Hydroxyapatite (HA) dosages and four different Cl- dosages. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the results. It showed that HA could efficiently fix the Pb and Cd from TCLP form. The maximum Pb-fixing efficiency and Cd-fixing efficiency of two types of soil were 83.3%, 97.27% and 35.96%, 57.82% when the HA: Pb: KCl molar ratio was 8: 1: 2. Compared to the fixing efficiency without KCl, KCl at the KCl: Pb molar ratio of 2 improved Pb-fixing efficiency and Cd-fixing efficiency by 6.26%, 0.33% and 7.74%, 0.83% respectively when the HA: Pb molar ratio was 8. Generally, Cl- can improve the Pb/Cd-fixing efficiency in heavy metal contaminated soil by Hydroxyapatite.
Shen, Xin; Huang, Dao-You; Ren, Xue-Fei; Zhu, Han-Hua; Wang, Shuai; Xu, Chao; He, Yan-Bing; Luo, Zun-Chang; Zhu, Qi-Hong
2016-03-01
Crop straw biochar incorporation may be a sustainable method of amending soil, but feedstock-related Cd and Pb content is a major concern. We investigated the effects of heavy metal-rich (RC) and -free biochar (FC) on the phytoavailability of Cd and Pb in two acidic metalliferous soils. Biochar significantly increased soil pH and improved plant growth. Pb in soil and plant tissues significantly decreased after biochar application, and a similar pattern was observed for Cd after FC application. RC significantly increased NH4NO3-extractable Cd in both lightly contaminated (YBS) and heavily contaminated soils (RS). The Cd content of plants grown on YBS increased, whereas it decreased on RS. The Cd and Pb input-output balance suggested that RC application to YBS might induce a soil Cd accumulation risk. Therefore, identifying heavy metal contamination in biochar is crucial before it is used as a soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.
CD147 is a signaling receptor for cyclophilin B.
Yurchenko, V; O'Connor, M; Dai, W W; Guo, H; Toole, B; Sherry, B; Bukrinsky, M
2001-11-09
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A binding proteins that can be secreted in response to inflammatory stimuli. We recently identified CD147 as a cell-surface receptor for CyPA and demonstrated that CD147 is an essential component in the CyPA-initiated signaling cascade that culminates in ERK activation and chemotaxis. Here we demonstrate that CD147 also serves as a receptor for CyPB. CyPB induced Ca(2+) flux and chemotaxis of CD147-transfected, but not control, CHO cells, and the chemotactic response of primary human neutrophils to CyPB was blocked by antibodies to CD147. These results suggest that CD147 serves as a receptor for extracellular cyclophilins. Copyright 2001 Academic Press.
[Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil].
Yang, Zhuo; Wang, Zhan-Li; Li, Bo-Wen; Zhang, Rui-Fang
2009-08-01
Taking Brassica juncea as a hyperaccumulator, a pot experiment was conducted to study the effects of Bacillusme gaterium - Bacillus mucilaginosus mixed agent and Aspergillus niger 30177 fermentation liquor on the phytoremediation of Cd, Pb, and Zn-contaminated soil. The B. gaterium - B. mucilaginosus mixed agent not only promoted the growth of B. juncea, but also increased the soil Cd, Pb, and Zn uptake by the hyperaccumulator, with the phytoremediation efficiency enhanced greatly. The enrichment amount of Cd, Pb and Zn in B. juncea on the soil added with soluble Cd, Pb and Zn increased by 1.18, 1.54 and 0.85 folds, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 4.00, 0. 64 and 0. 65 folds, respectively, compared with the control. A. niger 30177 fermentation liquor increased the soil Cd, Pb, and Zn uptake by B. juncea. Comparing with the control, the enrichment amount of Cd, Pb and Zn in aboveground part of B. juncea on the soil added with soluble Cd, Pb and Zn increased by 88.82%, 129.04% and 16.80%, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 78.95%, 113.63% and 33.85%, respectively. However, A. niger 30177 fermentation liquor decreased the B. juncea biomass greatly, having less effect in the enhancement of phytoremediation efficiency. The analysis of reversed-phase high performance liquid chromatography showed that the fermentation liquor of B. gaterium and B. mucilaginosus contained some organic acids such as oxalic acid and citric acid. These acids could dissolve the heavy metals to some degree, and accordingly, enhance the bioavailability of the metals.
Mayado, A; Teodosio, C; Dasilva-Freire, N; Jara-Acevedo, M; Garcia-Montero, A C; Álvarez-Twose, I; Sánchez-Muñoz, L; Matito, A; Caldas, C; Muñoz-González, J I; Henriques, A; Sánchez-Gallego, J I; Escribano, L; Orfao, A
2018-01-13
Recent studies show that most systemic mastocytosis (SM) patients, including indolent SM (ISM) with (ISMs+) and without skin lesions (ISMs-), carry the KIT D816V mutation in PB leukocytes. We investigated the potential association between the degree of involvement of BM hematopoiesis by the KIT D816V mutation and the distribution of different maturation-associated compartments of bone marrow (BM) and peripheral blood (PB) CD34 + hematopoietic precursors (HPC) in ISM and identified the specific PB cell compartments that carry this mutation. The distribution of different maturation-associated subsets of BM and PB CD34 + HPC from 64 newly diagnosed (KIT-mutated) ISM patients and 14 healthy controls was analyzed by flow cytometry. In 18 patients, distinct FACS-purified PB cell compartments were also investigated for the KIT mutation. ISM patients showed higher percentages of both BM and PB MC-committed CD34 + HPC vs controls, particularly among ISM cases with MC-restricted KIT mutation (ISM MC ); this was associated with progressive blockade of maturation of CD34 + HPC to the neutrophil lineage from ISM MC to multilineage KIT-mutated cases (ISM ML ). Regarding the frequency of KIT-mutated cases and cell populations in PB, variable patterns were observed, the percentage of KIT-mutated PB CD34 + HPC, eosinophils, neutrophils, monocytes and T cells increasing from ISMs- MC and ISMs+ MC to ISM ML patients. The presence of the KIT D816V mutation in PB of ISM patients is associated with (early) involvement of circulating CD34 + HPC and multiple myeloid cell subpopulations, KIT-mutated PB CD34 + HPC potentially contributing to early dissemination of the disease. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Lassabatere, Laurent; Spadini, Lorenzo; Delolme, Cécile; Février, Laureline; Galvez Cloutier, Rosa; Winiarski, Thierry
2007-11-01
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.
Pb and Cd Contents in Soil, Water, and Trees at an Afforestation Site, South China.
Pei, Nancai; Chen, Bufeng; Liu, Shuguang
2015-11-01
Pb and Cd contents in 13 plantation tree species (leaf and branch components), soil, water (groundwater and river water) at a young (3-5 year-old) seashore afforestation stand were investigated in Nansha district, Guangzhou city in southern China. The results showed that (1) soil, rather than water or trees, had the highest content of both Pb (averagely 48.79 mg/kg) and Cd (0.50 mg/kg), demonstrating that soil might function as a major reservoir for extraneously derived heavy metals; (2) Pb content was higher in branches than in leaves, but Cd content appeared similar in both components, implying possibly different accumulation mechanisms in trees; (3) Pb and Cd appeared to accumulate differently among some tree taxa, whereas almost no significant difference was detected between introduced and indigenous species. The study indicated that trees were potentially useful to remediate sites contaminated with Pb and Cd in the urbanized areas.
[Survey and evaluation of heavy metal in the major vegetables in Shaanxi Province].
Nie, Xiaoling; Cheng, Guoxia; Wang, Minjuan; Wang, Caixia; Du, Kejun
2015-09-01
To evaluate the contamination condition of the Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province. The Pb and Cd contents were determined by inductively coupled plasma mass spectrometry, and the As contents were determined by hydride generation-atomic fluorescence spectrometry, and the Hg contents were determined by mercury vapourmeter. One factor contamination index was employed to evaluate the metal pollution situation of different types of vegetables. Moreover, the health risk after intake of those heavy metals through vegetables were described. In ten kinds of vegetables of Shaanxi Province, the Pb contents in cowpea reached the alertness level, while the contents of Cd, Hg and As were below the safety level. What' s more, the contents of the Pb, Cd, Hg and As were below the safety level in other nine vegetables, and the over standard rate of were Hg > Pb > Cd > As. The contamination extents of Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province were low.
Zhou, Qiuhong; Zheng, Na; Liu, Jingshuang; Wang, Yang; Sun, Chongyu; Liu, Qiang; Wang, Heng; Zhang, Jingjing
2015-04-01
The residents health risk of Pb, Cd and Cu exposure to street dust with different particle sizes (<100 and <63 μm) near Huludao Zinc Plant (HZP) was investigated in this study. The average concentrations of Pb, Cd and Cu in the <100-μm and <63-μm dust were 1,559, 178.5, 917.9 and 2,099, 198.4, 1,038 mg kg(-1), respectively. It showed that smaller particles tended to contain higher element concentrations. Metals in dust around HZP decreased gradually from the zinc smelter to west and east directions. There was significantly positive correlation among Pb, Cd and Cu in street dust with different particle sizes. The contents of Pb, Cd and Cu in dust increased with decreasing pH or increasing organic matter. Non-carcinogenic health risk assessment showed that the health index (HI) for children and adult exposed to <63-μm particles were higher than exposed to <100-μm particles, which indicated that smaller particles tend to have higher non-carcinogenic health risk. Non-carcinogenic risk of Pb was the highest in both particle sizes, followed by Cd and Cu. HI for Pb and Cd in both particle sizes for children had exceeded the acceptable value, indicated that children living around HZP were experiencing the non-carcinogenic health risk from Pb and Cd exposure to street dust.
Huang, Ying-Ying; Mu, Yang-Xiu; He, Chun-Tao; Fu, Hui-Ling; Wang, Xue-Song; Gong, Fei-Yue; Yang, Zhong-Yi
2018-04-01
Breeding for pollution-safe cultivars (PSCs) can reduce pollutant accumulation in crops. However, the PSC breeding would face the risk of nutritional quality reduction, which is usually ignored in conventional breeding programs targeting to increase crop yield or nutritional quality. Thus, the doubt whether the risk would exist has to be clarified for supporting the PSC breeding. In the present study, a newly bred Cd/Pb-PSC of water spinach (Ipomoea aquatic Forsk.) and its parents (QLQ with low-Cd/Pb accumulation ability and T308 with high yield) of water spinach were employed to clarify the above-mentioned issue. Yields, and concentrations of Cd, Pb, nitrite, and organic and inorganic nutrients in shoots of the three experimental lines were determined. There were no significant differences in Cd/Pb concentration between the new PSC and QLQ, in nitrite content between the new PSC and its two parents and in yield between the new PSC and T308. It is decisively significant that shoot concentrations of organic and inorganic nutrients in the Cd/Pb-PSC were as high as those in one of its parents. It is affirmed that the breeding operations (crossing and consequently continuous selfing) for lowering Cd/Pb accumulation capacity of water spinach would not lower the nutritional values of the obtained Cd/Pb-PSCs from the breeding, which should be a pillar that supports the feasibility to minimize Cd/Pb pollution in vegetables using PSC-breeding method.
Anju, M; Banerjee, D K
2011-05-01
An exploratory study of the area surrounding a historical Pb-Zn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n=87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 μ g/g, Zn 870.25 μ g/g, Mn 696.70 μ g/g, and Cd 2.09 μ g/g. Zn concentrations were significantly correlated with Cd (r=0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n=23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of 'total' metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ≥ Pb > > Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.
NASA Astrophysics Data System (ADS)
Lu, Cheng-Hsin
Quantum Dots (QDs) are semiconductor nanocrystals with typical size ranges around 1-20 nm. They exhibit distinctive size-dependent photoluminescence (PL) properties due to the quantum confinement effect. QDs have great potentials in display, lighting, lasing, bioimaging, fluorescent label, sensor, photodetector, and photovoltaic applications, and have been widely studied in the past decades. Cadmium selenide (CdSe) QDs have been synthesized using an environmentally friendly, aqueous method under low temperature. While traditional QDs synthesized by hot injection method using organic solvent generally exhibit edge-state emission with narrow peaks, aqueous quantum dots (AQDs) tend to have trap-state emissions with broad peaks. The objective of this thesis is to investigate how Pb modifications in CdSe AQDs synthesis can affect the optoelectronic properties of the QDs and how these modifications affect their corresponding photovoltaic performance in quantum dot-sensitized solar cell (QDSSC) applications. Lead (Pb) precursor has been introduced either during the synthesis or after the synthesis of CdSe AQDs forming either Pb-doped or Pb-coated CdSe QDs, respectively. Pb-doped CdSe QDs exhibit red-shift in both absorption and emission spectra while Pb-coated CdSe QDs exhibit blue-shift in both absorption and emission spectra along with the generation of more surface defects. Although blue-shifted absorption indicating a narrower absorption range and the surface defects providing undesired recombination pathways are detrimental to solar cell performance, however surprisingly, we found that QDSSCs made from Pb-coated CdSe QDs actually had better solar cell performance than that made from Pb-doped CdSe QDs. We attributed this finding to a protection/passivation layer formed in-situ when the coated Pb react with the iodide/triiodide electrolyte during solar cell operation resulting in QDSSCs with better charge injection and stability.
Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie
2015-02-01
Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.
PbF2-based single crystals and phase diagrams of PbF2-MF2 systems (M = Mg, Ca, Sr, Ba, Cd)
NASA Astrophysics Data System (ADS)
Buchinskaya, I. I.; Fedorov, Pavel P.; Sobolev, B. P.
1997-07-01
Optical grade single crystals of Pb0.67Cd0.33F2 and Pb1-xCaxF2 (x less than 0.05) were grown by the Bridgman technique in graphite crucibles under fluorinating atmosphere of teflon pyrolysis products. For determinations of concentration areas of solid solutions, suitable for crystal growth, the phase interactions in the systems PbF2 with fluorides of alkaline-earth elements and Cd were studied by DTA and x-ray powder diffraction techniques. Phase diagrams were described by corresponding thermodynamic models. Transition from pure PbF2 to two- component Pb0.67Cd0.33F2 crystal is accompanied by some increase in radiation hardness of the latter and positive changes of mechanical characteristics (the Pb0.67Cd0.33F2 composition microhardness is 147 plus or minus 5 kg/mm2 that is 5 times that of a pure lead fluoride, 28 plus or minus 4 kg/mm2). These solid solutions have a cubic Fm3m fluorite-type lattice as a high-temperature modification of PbF2.
NASA Astrophysics Data System (ADS)
Lv, Lina; Yang, Yanling; Tian, Junguo; Li, Yaojian; Li, Jun; Yan, Shengjun
2018-02-01
In this study, a salinity wastewater was produced during the fly ash treatment in the waste incineration plant. Chemical precipitation method was applied for heavy metals removal in the salinity wastewater. The effect of salinity on the removal of dissolved heavy metal ions (Zn2+, Cu2+, Pb2+, Ni2+ and Cd2+) was studied, especially on the removal of Pb2+ and Cd2+. Because of the formation of [PbCl3]- and [PbCl4]2- complexes, the residual concentration of dissolved Pb2+ increased from 0.02 mg/L to 4.08 mg/L, as the NaCl concentration increased from 0 % to 10 %. And the residual concentration of dissolved Cd2+ increased from 0.02 mg/L to 1.39 mg/L, due to the formation of [CdCl3]-, [CdCl4]2- and [CdCl6]4- complexes.
NASA Astrophysics Data System (ADS)
Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.
2016-12-01
Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, 2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.
Ogunkunle, Clement Oluseye; Ziyath, Abdul M; Adewumi, Faderera Esther; Fatoba, Paul Ojo
2015-05-01
Dietary uptake of heavy metals through the consumption of vegetables grown on polluted soil can have serious human health implications. Thus, the study presented in this paper investigated the bioaccumulation and associated dietary risks of Pb, Zn, and Cd present in vegetables widely consumed in Nigeria, namely amaranth and jute mallow, grown on soil irrigated with polluted water from Asa River. The study found that the soil was polluted with Zn, Pb, and Cd with Pb and Cd being contributed by polluted river, while Zn was from geogenic sources. The metal concentration in amaranth and jute mallow varied in the order of Zn > Pb > Cd and Zn > Pb ≈ Cd, respectively. Jute mallow acts as an excluder plant for Pb, Cd, and Zn. Consequently, the metal concentrations in jute mallow were below the toxic threshold levels. Furthermore, non-cancer human health risk of consuming jute mallow from the study site was not significant. In contrast, the concentrations of Pb and Cd in amaranth were found to be above the recommended safe levels and to be posing human health risks. Therefore, further investigation was undertaken to identify the pathways of heavy metals to amaranth. The study found that the primary uptake pathway of Pb and Cd by amaranth is foliar route, while root uptake is the predominant pathway of Zn in amaranth.
Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.
Guney, Mert; Zagury, Gerald J
2014-01-21
Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.
Geographic clustering of elevated blood heavy metal levels in pregnant women.
King, Katherine E; Darrah, Thomas H; Money, Eric; Meentemeyer, Ross; Maguire, Rachel L; Nye, Monica D; Michener, Lloyd; Murtha, Amy P; Jirtle, Randy; Murphy, Susan K; Mendez, Michelle A; Robarge, Wayne; Vengosh, Avner; Hoyo, Cathrine
2015-10-09
Cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) exposure is ubiquitous and has been associated with higher risk of growth restriction and cardiometabolic and neurodevelopmental disorders. However, cost-efficient strategies to identify at-risk populations and potential sources of exposure to inform mitigation efforts are limited. The objective of this study was to describe the spatial distribution and identify factors associated with Cd, Pb, Hg, and As concentrations in peripheral blood of pregnant women. Heavy metals were measured in whole peripheral blood of 310 pregnant women obtained at gestational age ~12 weeks. Prenatal residential addresses were geocoded and geospatial analysis (Getis-Ord Gi* statistics) was used to determine if elevated blood concentrations were geographically clustered. Logistic regression models were used to identify factors associated with elevated blood metal levels and cluster membership. Geospatial clusters for Cd and Pb were identified with high confidence (p-value for Gi* statistic <0.01). The Cd and Pb clusters comprised 10.5 and 9.2 % of Durham County residents, respectively. Medians and interquartile ranges of blood concentrations (μg/dL) for all participants were Cd 0.02 (0.01-0.04), Hg 0.03 (0.01-0.07), Pb 0.34 (0.16-0.83), and As 0.04 (0.04-0.05). In the Cd cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.06 (0.02-0.16), Hg 0.02 (0.00-0.05), Pb 0.54 (0.23-1.23), and As 0.05 (0.04-0.05). In the Pb cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.03 (0.02-0.15), Hg 0.01 (0.01-0.05), Pb 0.39 (0.24-0.74), and As 0.04 (0.04-0.05). Co-exposure with Pb and Cd was also clustered, the p-values for the Gi* statistic for Pb and Cd was <0.01. Cluster membership was associated with lower education levels and higher pre-pregnancy BMI. Our data support that elevated blood concentrations of Cd and Pb are spatially clustered in this urban environment compared to the surrounding areas. Spatial analysis of metals concentrations in peripheral blood or urine obtained routinely during prenatal care can be useful in surveillance of heavy metal exposure.
Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi
2014-04-01
Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Fabio Benedito; Penido, Evanise Silva; Tappero, Ryan
Soils and wastes enriched with heavy metals may present significant ecological and human health risks. A considerable number of mining/smelting areas exist in Brazil, where high levels of metals have been found, as well as in their surrounding soils and sediments. However, studies of bioaccessibility of metals in soils/tailings from these areas are scarce, despite their potential informational contribution concerning exposure risks for residents near these areas. This study evaluated tailing samples collected from four sites of a smelting area aiming to: (i) evaluate the presence of metals of potential concern; (ii) investigate Cd and Pb bioaccessibility; and, (iii) determinemore » the desorption kinetics of Cd and Pb. Five composite samples were collected from each site, at two depths, from a zinc smelting area located near Três Marias city - MG, Brazil. Availability of Cd and Pb was measured using a bioaccessibility test and a desorption experiment. High concentrations of total Cd and Pb and great variability were found in the tailings (up to 1743 mg Cd kg -1 and 8675 mg Pb kg -1), indicating the importance of adequate planning for their final disposal, in order to avoid contamination in the surrounding environment. Cadmium and Pb bioaccessibility percentages in the intestinal phase were less than 47 and 4%, respectively, which represents significant fractions not available for absorption in the intestinal tract. However, this material has to be monitored since its bioaccessibility may increase with eventual physicochemical changes, releasing Cd and Pb. Desorption kinetics experiments revealed that the Pb in the samples remained in less labile fractions whereas Cd was found in more labile fractions, which is in accordance with the bioaccessibility result.« less
Ono, Fabio Benedito; Penido, Evanise Silva; Tappero, Ryan; ...
2015-10-22
Soils and wastes enriched with heavy metals may present significant ecological and human health risks. A considerable number of mining/smelting areas exist in Brazil, where high levels of metals have been found, as well as in their surrounding soils and sediments. However, studies of bioaccessibility of metals in soils/tailings from these areas are scarce, despite their potential informational contribution concerning exposure risks for residents near these areas. This study evaluated tailing samples collected from four sites of a smelting area aiming to: (i) evaluate the presence of metals of potential concern; (ii) investigate Cd and Pb bioaccessibility; and, (iii) determinemore » the desorption kinetics of Cd and Pb. Five composite samples were collected from each site, at two depths, from a zinc smelting area located near Três Marias city - MG, Brazil. Availability of Cd and Pb was measured using a bioaccessibility test and a desorption experiment. High concentrations of total Cd and Pb and great variability were found in the tailings (up to 1743 mg Cd kg -1 and 8675 mg Pb kg -1), indicating the importance of adequate planning for their final disposal, in order to avoid contamination in the surrounding environment. Cadmium and Pb bioaccessibility percentages in the intestinal phase were less than 47 and 4%, respectively, which represents significant fractions not available for absorption in the intestinal tract. However, this material has to be monitored since its bioaccessibility may increase with eventual physicochemical changes, releasing Cd and Pb. Desorption kinetics experiments revealed that the Pb in the samples remained in less labile fractions whereas Cd was found in more labile fractions, which is in accordance with the bioaccessibility result.« less
Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke
2017-10-01
The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Siriangkhawut, Watsaka; Sittichan, Patcharee; Ponhong, Kraingkrai; Chantiratikul, Piyanete
2017-10-01
A simple, efficient, and reliable ultrasound-assisted digestion (UAD) procedure was used for sample preparation prior to quantitative determination of trace Cd and Pb contaminants in herbal medicines using flame atomic absorption spectrometry. The parameters influencing UAD such as the solvent system, sample mass, presonication time, sonication time, and digestion temperature were evaluated. The efficiency of the proposed UAD procedure was evaluated by comparing with conventional acid digestion (CAD) procedure. Under the optimum conditions, linear calibration graphs in a range of 2-250 μg/L for Cd, and 50-1000 μg/L for Pb were obtained with detection limits of 0.56 μg/L and 10.7 μg/L for Cd and Pb, respectively. The limit of quantification for Cd and Pb were 1.87 μg/L and 40.3 μg/L, respectively. The repeatability for analysis of 10 μg/L for Cd and 100 μg/L for Pb was 2.3% and 2.6%, respectively. The accuracy of the proposed method was evaluated by rice flour certified reference materials. The proposed method was successfully applied for analysis of trace Cd and Pb in samples of various types of medicinal plant and traditional medicine consumed in Thailand. Most herbal medicine samples were not contaminated with Cd or Pb. The contaminant levels for both metals were still lower than the maximum permissible levels of elements in medicinal plant materials and finished herbal products sets by the Ministry of Public Health of Thailand. The exception was the high level of Cd contamination found in two samples of processed medicinal plants. Copyright © 2017. Published by Elsevier B.V.
Wu, Yu-Jun; Zhou, Hang; Zou, Zi-Jin; Zhu, Wei; Yang, Wen-Tao; Peng, Pei-Qin; Zeng, Min; Liao, Bo-Han
2016-08-01
In order to study the persistence of a combined amendment (LS, limestone+sepiolite) for remedying paddy soil polluted with the heavy metals Pb and Cd, a three-year in-situ experiment was conducted in a paddy soil near a mining area in southern Hunan, China. LS was applied at rates of 0, 2, 4, and 8g/kg (w/w); rice was subsequently planted for the three consecutive years of 2012 (first season), 2013 (second season), and 2014 (third season). Experimental results indicated that LS significantly increased soil pH values for all three seasons, and the enhancement ranked as follows: first season>second season>third season. Under the experimental conditions, the effect of LS on decreasing exchangeable concentrations of soil Pb and Cd was as follows: first season (97.6-99.8% for Pb and 88.3-98.9% for Cd)>second season (80.7-97.7% for Pb and 28.3-88.0% for Cd)>third season (32.6-97.7% for Pb and 8.3-71.4% for Cd); the effect of LS on reducing Pb concentrations in brown rice was: first season (73.5-81.2%)>third season (29.6-68.1%)>second season (0-9.7%), and that for reducing Cd concentrations in brown rice was third season (72.7-81.0%)>first season (56.1-66.8%)>second season (20.9-32.3%). For all three seasons, the effect of LS on reducing Cd content in brown rice was better than that for Pb. The highest translocation factors for Pb and Cd were from rice straw to husk, implying that the husk of rice plants was the main organ in which heavy metals accumulated. The effect of LS for decreasing soil exchangeable Cd content was relatively persistent, but that for Pb gradually decreased with time, implying that LS was more suitable for the long-term remediation of Cd-polluted soil than Pb-polluted soil. Copyright © 2016 Elsevier Inc. All rights reserved.
He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong
2015-01-01
Aims The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Methods Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Important findings Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze–thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition. PMID:26115012
He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong
2015-01-01
The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze-thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition.
Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G
2017-10-01
Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.
Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun
2011-01-01
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.
Zhang, Yu; Xu, Xijin; Sun, Di; Cao, Junjun; Zhang, Yuling; Huo, Xia
2017-11-01
Heavy metal lead (Pb) and cadmium (Cd) are widespread environmental contaminants and exert detrimental effects on the immune system. We evaluated the association between Pb/Cd exposures and innate immune cells in children from an electronic waste (e-waste) recycling area. A total number of 294 preschool children were recruited, including 153 children from Guiyu (e-waste exposed group), and 141 from Haojiang (reference group). Pb and Cd levels in peripheral blood were measured by graphite furnace atomic absorption spectrophotometer, NK cell percentages were detected by flow cytometer, and other innate immune cells including monocytes, eosinophils, neutrophils and basophils were immediately measured by automated hematology analyzer. Results showed children in Guiyu had significantly higher Pb and Cd levels than in reference group. Absolute counts of monocytes, eosinophils, neutrophils and basophils, as well as percentages of eosinophils and neutrophils were significantly higher in the Guiyu group. In contrast, NK cell percentages were significantly lower in Guiyu group. Pb elicited significant escalation in counts of monocytes, eosinophils and basophils, as well as percentages of monocytes, but decline in percentages of neutrophils in different quintiles with respect to the first quintile of Pb concentrations. Cd induced significant increase in counts and percentages of neutrophils in the highest quintile compared with the first quintile of Cd concentrations. We concluded alteration of the number and percentage of innate immune cells are linked to higher levels of Pb and Cd, which indicates Pb and Cd exposures might affect the innate and adaptive immune response in Guiyu children. Copyright © 2017 Elsevier Inc. All rights reserved.
Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber.
Ming, Na; Tao, Shina; Yang, Wenqing; Chen, Qingyun; Sun, Ruyi; Wang, Chang; Wang, Shuyun; Man, Baoyuan; Zhang, Huanian
2018-04-02
Previously, PbS/CdS core/shell quantum dots with excellent optical properties have been widely used as light-harvesting materials in solar cell and biomarkers in bio-medicine. However, the nonlinear absorption characteristics of PbS/CdS core/shell quantum dots have been rarely investigated. In this work, PbS/CdS core/shell quantum dots were successfully employed as nonlinear saturable absorber (SA) for demonstrating a mode-locked Er-doped fiber laser. Based on a film-type SA, which was prepared by incorporating the quantum dots with the polyvinyl alcohol (PVA), mode-locked Er-doped operation with a pulse width of 54 ps and a maximum average output power of 2.71 mW at the repetition rate of 3.302 MHz was obtained. Our long-time stable results indicate that the CdS shell can effectively protect the PbS core from the effect of photo-oxidation and PbS/CdS core/shell quantum dots were efficient SA candidates for demonstrating pulse fiber lasers due to its tunable absorption peak and excellent saturable absorption properties.
Ono, F B; Penido, E S; Tappero, R; Sparks, D; Guilherme, L R G
2016-10-01
Soils and wastes enriched with heavy metals may present ecological and human health risks. A considerable number of mining areas exist in Brazil, where high levels of metals have been found. However, studies of bioaccessibility of metals in soils/tailings from these areas are scarce, despite their potential informational contribution concerning exposure risks of residents near these areas. This study evaluated tailings collected from four sites of a zinc smelting area located in Brazil with aims to: (1) evaluate the presence of metals of potential concern; (2) investigate Cd and Pb bioaccessibility; and (3) determine the desorption kinetics of Cd and Pb. High concentrations of total Cd and Pb (up to 1743 mg Cd kg(-1) and 8675 mg Pb kg(-1)) and great variability were found in the tailings, indicating the importance of adequate planning for their final disposal, in order to avoid contamination in the surrounding environment. Cadmium and Pb bioaccessibility percentages in the intestinal phase were less than 47 and 4 %, respectively, which represents significant fractions not available for absorption in the intestinal tract. However, this material has to be monitored since its bioaccessibility may increase with eventual physicochemical changes, releasing Cd and Pb. Desorption kinetics experiments revealed that Pb in the samples remained in less labile fractions, whereas Cd was found in more labile fractions, which is in accordance with the bioaccessibility results.
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
NASA Astrophysics Data System (ADS)
Ma, L.; Herndon, E.; Jin, L.; Sanchez, D.; Brantley, S. L.
2013-12-01
Anthropogenic forcings have dominated metal cycling in many environments. During the period of the industrial revolution, mining and smelting of ores and combustion of fossil fuels released non-negligible amounts of potentially toxic metals such as Pb, Cd, Mn, and Zn into the environment. The extent and fate of these metal depositions in soils during that period however, have not been adequately evaluated. Here, we combine Pb isotopes with Cd isotopes to trace the sources of metal pollutants in a small temperate watershed (Shale Hills) in Pennsylvania. Previous work has shown that Mn additions to soils in central PA was caused by early iron production, as well as coal burning and steel making upwind. Comparison of the Pb and Cd concentrations in the bedrock and soils from this watershed show that Pb and Cd in soils at Shale Hills are best characterized by addition profiles, consistent with atmospheric additions. Three soil profiles at Shale Hills on the same hillslope have very similar anthropogenic Pb inventories. Pb isotope results further reveal that the extensive use of local coals during iron production in early 19th century in Pennsylvania is most likely the anthropogenic Pb source for the surface soils at Shale Hills. Pb concentrations and isotope ratios were used to calculate mass balance and diffusive transport models in soil profiles. The model results further reveal that during the 1850s to 1920s, coal burning in local iron blasting furnaces significantly increased the Pb deposition rates to 8-14 μg cm-2 yr-1, even more than modern Pb deposition rates derived from the use of leaded gasoline in the 1940s to 1980s. Furthermore, Cd has a low boiling point (~760 °C) and easily evaporates and condenses. The evaporation and condensation processes could generate systematic mass-dependent isotope fractionation between Cd in coal burning products and the naturally occurring Cd in the sulfide minerals of coals. This fractionation indicates that Cd isotopes can be used as a novel tracer of materials that have been affected by industrial high temperature processes, distinguishing them from natural Cd sources. Our ongoing Cd isotope measurements in the same soil profiles thus hold significant promise for tracing anthropogenic sources of this highly toxic metal in the environment. This will be the first time that Cd isotopes are characterized for polluted soils related to coal-burning activities. Such information will provide the first Cd isotope dataset to assess the environmental impacts due to the use of coals on a global scale. These new Pb and Cd isotope results, along with previous observations of Mn enrichment at Shale Hills, suggest that historical point sources from the industrial revolution could contribute significant amounts of metal contamination to top-soils. Our study highlights the importance of using multiple isotope systems to investigate Critical Zone processes in identical lithology and environmental settings.
Sall, Mohamed Lamine; Diaw, Abdou Karim Diagne; Gningue-Sall, Diariatou; Chevillot-Biraud, Alexandre; Oturan, Nihal; Oturan, Mehmet Ali; Fourdrin, Chloé; Huguenot, David; Aaron, Jean-Jacques
2018-03-01
Water pollution by heavy metals is a great health concern worldwide. Lead and cadmium are among the most toxic heavy metals because they are dangerous for the human and aquatic lives. In this work, the removal of lead and cadmium from aqueous solutions has been studied using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) films as a new adsorbent. Two distinct methods, including the immersion method, based on the Pb 2+ and Cd 2+ spontaneous removal by impregnation of the polymer in the solution, and the electro-elimination method, consisting of removal of Pb 2+ and Cd 2+ ions from the solution by applying a small electrical current (5 mA) to the polymer film, were developed: the evolution of Pb 2+ and Cd 2+ concentrations with time was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of pH on the adsorption and electro-elimination of Pb 2+ and Cd 2+ using the AHNSA-PPy film was investigated and optimized, showing that the ionic adsorption and electro-elimination processes were highly pH-dependent. The kinetics of Pb 2+ and Cd 2+ adsorption and electro-elimination were found to follow second-order curves. The maximum adsorption capacity values of the AHNSA-PPy film were 64.0 and 50.4 mg/g, respectively, for Pb 2+ and Cd 2+ . The removal efficiency values were, respectively, for Pb 2+ and Cd 2+ , 80 and 63% by the immersion method, and 93 and 85% by the electro-elimination method. Application of both methods to Senegal natural waters, fortified with Pb 2+ and Cd 2+ , led to removal efficiency values of, respectively for Pb 2+ and Cd 2+ , 76-77 and 58-59% by the immersion method, and of 82-90 and 80-83%, by the electro-elimination method.
Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.
Batonneau, Yann; Bremard, Claude; Gengembre, Leon; Laureyns, Jacky; Le Maguer, Agnes; Le Maguer, Didier; Perdrix, Esperanza; Sobanska, Sophie
2004-10-15
The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of the relative quantities. PbS and ZnS were found to be the major phases in PM10 generated by the smelting facilities with PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, Pb metal, and ZnO as minor phases. The slag waste PM10 was found to contain some amounts of PbCO3, PbSO4 x PbO, and ZnFe2O4 phases. The large heterogeneity at the level of the individual particle generates severe overlap of chemical information even at the microm scale using electron microprobe (WDS) and Raman microprobe techniques. Fortunately, scanning Raman microspectrometry combined with SIMPle-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) performed the PM10 speciation at the level of individual particles. The speciation of major Pb, Zn, and Cd compounds of PM10 stack emissions and wind blown dust of ores and recycled materials were found to be PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, PbO, metallic Pb, ZnS, ZnO, and CdS. The PM10 dust of slag waste was found to contain PbCO3, Pb(OH)2 x 2PbCO3, PbSO4 x PbO, and ZnS, while PM10-bound Pb, Zn of the top-soils contain Pb5(PO4)3Cl, ZnFe2O4 as well as Pb(II) and Zn(II) compounds adsorbed on Fe(III) oxides and in association with clays.
Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang
2016-09-21
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.
NASA Astrophysics Data System (ADS)
Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong
2016-11-01
PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.
A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils
NASA Astrophysics Data System (ADS)
Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando
2009-02-01
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.
Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers
NASA Astrophysics Data System (ADS)
He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai
2017-12-01
Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.
Galitsopoulou, A; Georgantelis, D; Kontominas, M G
2013-01-01
The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.
Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen
2012-07-01
In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.
Muhammad, Dawood; Chen, Fei; Zhao, Jing; Zhang, Guoping; Wu, Feibo
2009-08-01
A pot experiment was conducted to study the performance of EDTA and citric acid (CA) addition in improving phytoextraction of Cd, Cu, Pb, and Cr from artificially contaminated soil by T. angustifolia. T. angustifolia showed the remarkable resistance to heavy metal toxicity with no visual toxic symptom including chlorosis and necrosis when exposed to metal stress. EDTA-addition significantly reduced plant height and biomass, compared with the control, and stunted plant growth, while 2.5 and 5 mM CA addition induced significant increases in root dry weight. EDTA, and 5 and 10 mM CA significantly increased shoot Cd, Pb, and Cr concentrations compared with the control, with EDTA being more effective. At final harvest, the highest shoot Cd, Cr, and Pb concentrations were recorded in the treatment of 5 mM EDTA addition, while maximal root Pb concentration was found at the 2.5 mM CA treatment. However, shoot Cd accumulation in the 10 mM CA treatment was 36.9% higher than that in 2.5 mM EDTA, and similar with that in 10 mM EDTA. Shoot Pb accumulation was lower in 10 mM CA than that in EDTA treatments. Further, root Cd, Cu, and Pb accumulation of CA treatments and shoot Cr accumulation in 5 or 10 mM CA treatments were markedly higher than that of control and EDTA treatments. The results also showed that EDTA dramatically increased the dissolution of Cu, Cr, Pb, and Cd in soil, while CA addition had less effect on water-soluble Cu, Cr, and Cd, and no effect on Pb levels. It is suggested that CA can be a good chelator candidate for T. angustifolia used for environmentally safe phytoextraction of Cd and Cr in soils.
Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping
2016-10-01
Secondary metabolites play important roles in plant interactions with the environment. The co-occurrence of heavy metal contamination of soils and rising atmospheric CO2 has important effects on plant. It is important to explore the ways in which production of plant secondary metabolites is affected by heavy metals under elevated atmospheric CO2. We examined the effects of elevated CO2 on secondary metabolite contents in Robinia pseudoacacia seedlings grown in Cd- and lead (Pb)-contaminated soils. The increase in secondary metabolites was greater under Cd + Pb exposure than under exposure to individual metals regardless of elevated CO2 with the exception of condensed tannins in leaves and total alkaloids in stems. Except for phenolic compounds and condensed tannins, elevated CO2 was associated with increased secondary metabolite contents in leaves and stems of plants exposed to Cd, Pb, and Cd + Pb compared to plants exposed to ambient CO2 + metals. Changes in saponins in leaves and alkaloids in stems were greater than changes in the other secondary metabolites. Significant interactive effects of CO2, Cd, and Pb on secondary metabolites were observed. Saponins in leaves and alkaloids in stems were more sensitive than other secondary metabolites to elevated CO2 + Cd + Pb. Elevated CO2 could modulate plant protection and defense mechanisms in R. pseudoacacia seedlings exposed to heavy metals by altering the production of secondary metabolites. The increased Cd and Pb uptake under elevated CO2 suggested that R. pseudoacacia may be used in the phytoremediation of heavy metal-contaminated soils under global environmental scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sánchez-Chardi, Alejandro
2016-04-01
The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.
Smiljanovic, Biljana; Radzikowska, Anna; Kuca-Warnawin, Ewa; Kurowska, Weronika; Grün, Joachim R; Stuhlmüller, Bruno; Bonin, Marc; Schulte-Wrede, Ursula; Sörensen, Till; Kyogoku, Chieko; Bruns, Anne; Hermann, Sandra; Ohrndorf, Sarah; Aupperle, Karlfried; Backhaus, Marina; Burmester, Gerd R; Radbruch, Andreas; Grützkau, Andreas; Maslinski, Wlodzimierz; Häupl, Thomas
2018-02-01
Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. CD14 + cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14 ++ CD16 - , CD14 ++ CD16 + and CD14 + CD16 + cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14 + CD16 + monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14 + CD16 + monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14 ++ CD16 ++ CD163 + HLA-DR + cells and elevated concentrations of sCD14, sCD163 and S100P. Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Dietary strategies for the treatment of cadmium and lead toxicity.
Zhai, Qixiao; Narbad, Arjan; Chen, Wei
2015-01-14
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy.
Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajmal, M.; Uddin, R.; Khan, A.U.
1988-01-01
The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less
Dietary Strategies for the Treatment of Cadmium and Lead Toxicity
Zhai, Qixiao; Narbad, Arjan; Chen, Wei
2014-01-01
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause adverse health effects in humans and animals. Chelation therapy, the conventional treatment for heavy metal toxicity, is reported to have a number of safety and efficacy issues. Recent studies have shown that dietary supplements play important roles in protecting against Cd and Pb toxicity. This paper reviews the evidence for protective effects of essential metals, vitamins, edible plants, phytochemicals, probiotics and other dietary supplements against Cd and Pb toxicity and describes the proposed possible mechanisms. Based on these findings, dietary strategies are recommended for people at risk of Cd and Pb exposure. The application of these strategies is advantageous for both the prevention and alleviation of Cd and Pb toxicity, as such supplements can be added easily and affordably to the daily diet and are expected to have very few side effects compared to the chelation therapy. PMID:25594439
Wang, Peifang; Wang, Teng; Yao, Yu; Wang, Chao; Liu, Cui; Yuan, Ye
2016-01-01
Management of heavy metal contamination requires accurate information about the distribution of bioavailable fractions, and about exchange between the solid and solution phases. In this study, we employed diffusive gradients in thin-films (DGT) and traditional chemical extraction methods (soil solution, HOAc, EDTA, CaCl2, and NaOAc) to determine the Cd bioavailability in Cd-contaminated soil with the addition of Pb. Two typical terrestrial species (wheat, Bainong AK58; maize, Zhengdan 958) were selected as the accumulation plants. The results showed that the added Pb may enhance the efficiency of Cd phytoextraction which is indicated by the increasing concentration of Cd accumulating in the plant tissues. The DGT-measured Cd concentrations and all the selected traditional extractants measured Cd concentrations all increased with increasing concentration of the addition Pb which were similar to the change trends of the accumulated Cd concentrations in plant tissues. Moreover, the Pearson regression coefficients between the different indicators obtained Cd concentrations and plants uptake Cd concentrations were further indicated significant correlations (p < 0.01). However, the values of Pearson regression coefficients showed the merits of DGT, CaCl2, and Csol over the other three methods. Consequently, the in situ measurement of DGT and the ex situ traditional methods could all reflect the inhibition effects between Cd and Pb. Due to the feature of dynamic measurements of DGT, it could be a robust tool to predict Cd bioavaiability in complex contaminated soil. PMID:27271644
NASA Technical Reports Server (NTRS)
Cirlin, E. H.; Housley, R. M.
1982-01-01
The concentration of surface (low temperature site) and interior (high temperature site) Cd, Zn, and Pb in 13 Apollo 16 highland fines samples, pristine rock 65325, and mare fines sample 75081 were analyzed directly from the thermal release profiles obtained by flameless atomic absorption technique (FLAA). Cd and Zn in pristine ferroan anothosite 65325, anorthositic grains of the most mature fines 65701, and basaltic rock fragments of mare fines 75081 were almost all surface Cd and Zn indicating that most volatiles were deposited on the surfaces of vugs, vesicles and microcracks during the initial cooling process. A considerable amount of interior Cd and Zn was observed in agglutinates. This result suggests that high temperature site interior volatiles originate from entrapment during the lunar maturation processes. Interior Cd found in the most mature fines sample 65701 was only about 15% of the total Cd in the sample. Interior Pb present in Apollo 16 fines samples went up to 60%. From our Cd studies we can assume that this interior Pb in highland fines samples is largely due to the radiogenic decay which occurred after the redistribution of the volatiles took place. We obtained an average age of 4.0 b.y. for the parent rocks of Apollo 16 highland regolith from our interior Pb analyses.
Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content
Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.
2001-01-01
In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.
Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.
Arora, Kalpana; Sharma, Satyawati; Monti, Andrea
2016-01-01
In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jue; Yang, Mengjin; Ma, Xiangchao
We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carriermore » lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jue; Yang, Mengjin; Ma, Xiangchao
We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA+) have little impact on carrier lifetime.more » In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA+. Polaron model elucidates the electron-rotor interaction.« less
Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao
2016-08-04
We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA(+)) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA(+). Polaron model elucidates the electron-rotor interaction.
Li, Hongying; Guo, Xisheng; Ye, Xinxin
2017-02-01
Hydroxyapatite (HAP) has been widely used to immobilize many cationic metals in water and soils. The specific reason why an increase in the surface area of HAP enhances cadmium (Cd) uptake, but has no effect on lead (Pb) uptake, is not clear. The aim of this study was to determine the factors causing the differences in sorption behavior between Cd and Pb by evaluating HAPs with different surface areas. We synthesized HAPs with two different surface areas, which were characterized by X-ray diffraction, N 2 adsorption, and scanning electron microscopy, and then evaluated them as sorbents for Cd and Pb removal by testing in single and binary systems. The sorption capacity of large surface area HAP (1.85mmol/g) for Cd in the single-metal system was higher than that of small surface area HAP (0.64mmol/g), but there were no differences between single- and binary-metal solutions containing Pb. After the Cd experiments, the HAP retained a stable structure and intact morphology, which promotes the accessibility of reactive sites for Cd. However, a newly formed precipitate covered the surface and blocked the channels in the presence of Pb, which reduced the number of potential adsorption sites on HAP for Cd and Pb. Remediation experiments using Cd- and Pb-contaminated soil produced similar results to the solution tests. These results indicate that alterations of the structure and morphology during the reaction is an important factor influencing metal sorption to HAP. Copyright © 2016. Published by Elsevier B.V.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan; Yang, Linsheng
2018-05-09
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb⁻Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes ( E r ) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan
2018-01-01
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb–Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes (Er) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd. PMID:29747376
Luo, Jinming; Yin, Xiongrui; Ya, Yajie; Wang, Yongjie; Zang, Shuying; Zhou, Xia
2013-12-01
Pb and Cd concentrations in the habitat and preys of the red-crowned crane (i.e., reed rhizomes and three typical aquatic animal families (Perccottus glehni Dybowski, Carassius auratus Linnaeus, and Viviparidae)) were analyzed to examine the impact of these hazards on red-crowned cranes in northeastern China. Results indicated that Pb and Cd concentrations in the preys of the red-crowned cranes were elevated via food chain. Most of the detected Pb and Cd contents in the sediments were above the natural background level, ranging from 9.85 to 129.72 ppm and 1.23 to 10.63 ppm (dry weight), respectively. Cd geo-accumulation index at all sites were larger than 3, even reached 5.22, suggesting serious pollution in this region. Three common water animal families were detected to contain heavy metals, following the order of increasing concentrations: primary consumers (i.e., Viviparidae and Carassius auratus Linnaeus) < secondary consumers (i.e., Perccottus glehni Dybowski). Pb and Cd concentrations in the buffer zone are significantly higher than in the core area and being elevated in the food chain. The molten feathers of the red-crowned cranes showed the highest toxic metal concentrations of Pb (2.09 to 5.81 ppm) and Cd (1.42 to 3.06 ppm) compared with the feces produced by cranes and residual eggshell left by water fowls. Exceptionally high Pb and Cd concentrations in the cranes and their preys were thought to be associated with their habitat.
Zhu, Mengfei; Zhu, Li; Wang, Jianlong; Yue, Tianli; Li, Ronghua; Li, Zhonghong
2017-07-01
Removing heavy metal ions from aqueous solutions is one of the most challenging separations. In situ oxidized Fe 3 O 4 membranes using 316L porous stainless steel filter tube have shown great potential for removing anion Cr(VI). Here we report the performances of the in situ oxidized Fe 3 O 4 membranes for removing two toxic cations Cd(II) and Pb(II) commonly existing in water and their potential applications for drinking water purification. The membranes exhibited high removal efficiency: 97% at pH 9.0 for Cd(II) of 1.0 mg/L initial concentration and 100% at pH 5.0-6.0 for Pb(II) of 5.0 mg/L initial concentration. The maximum adsorption capabilities were estimated at 0.800 mg/g and 2.251 mg/g respectively for Cd(II) and Pb(II) at 318 K by the Langmuir model. Results of batch tests revealed the existence of electrostatic attraction and chemisorption. XRD and FT-IR analyses indicated that the chemisorption might be the insertion of Cd(II) and Pb(II) into the Fe 3 O 4 crystal faces of 311 and 511 to form mononuclear or binuclear coordination with O atoms of Fe-O 6 groups. Competitive adsorption of Cd(II) and Pb(II) in binary solutions revealed a preferential adsorption for Pb(II). Na 2 EDTA solution was used to regenerate the membranes, and the maximum desorption ratio was 90.29% and 99.75% respectively for Cd(II) and Pb(II). The membranes were able to efficiently lower Cd(II) and Pb(II) concentrations to meet the drinking water standards recommended by the World Health Organization and are promising for engineering applications aimed at drinking water purification. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of Bi-Pb-Sn-Cd-Sb penta-alloys rapidly quenched from melt
NASA Astrophysics Data System (ADS)
Kamal, M.; El-Bediwi, A. B.
2004-11-01
Optical microscopy, X-ray diffractometry, the double bridge method, the Vickers microhardness testing and dynamic resonance techniques have been used to investigate structure, electrical resistivity, hardness, internal friction and elastic modulus of quenched Bi-Pb-Sn-Cd-Sb penta-alloys. The properties of these penta-alloys are greatly affected by rapid quenching. The intermetallic compound chi(Pb-Bi) or Bi3Pb7 is obtained after rapid quenching using the melt-spinning technique, and this is in agreement with reports by other authors [Marshall, T.J., Mott, G. T. and Grieverson, M. H. (1975). Br. J. Radiol., 48, 924, Kamal, M., El-Bediwi, A. B. and Karman, M. B. (1998). Structure, mechanical properties and electrical resistivity of rapidly solidified Pb-Sn-Cd and Pb-Bi-Sn-Cd alloys. J. Mater. Sci.: Mater. Electron., 9, 425, Borromee-Gautier, C., Giessen, B. C. and Grrant, N. J. (1968). J. Chem. Phys., 48,1905, Moon, K.-W., Boettinger, W. J., Kanner, U. R., Handwerker, C. A. and Lee, D.-J. (2001). The effect of Pb contamination on the solidification behavior of Sn-Bi solders. J. Electron. Mater, 30, 45.]. The quenched Bi43.5Pb44.5Cd5Sn2Sb5 alloy has important properties for safety devices in fire detection and extinguishing systems.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali
2018-04-01
In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.
NASA Astrophysics Data System (ADS)
Das, D.; Hussain, A. M. P.
2018-04-01
PbS/CdS core/shell (CS) nanoparticles (NPs) were fabricated with three different concentrations of PbS core and CdS shell. Formation of core/shell heterostructure was confirmed from X-ray diffraction studies. The diffraction patterns exhibited formation of cubic phase and polycrystalline core/shell nanostructure. The crystalline sizes calculated from Williamson-Hall plot exhibited increase with molar concentration of precursors with decrease in strain. High resolution electron microscopy studies also confirm the formation of core/shell structure with particle size around 10 nm. A large blue-shift for PbS core compared to its bulk and small red-shift for the PbS/CdS core/shell as compared to the core is being observed in absorption spectra.
Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł
2016-04-01
The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.
NASA Astrophysics Data System (ADS)
El Baz, Sherif M.; Khalil, Mohamed M.
2018-07-01
Trace metals contamination has been recently increased in the Egyptian Mediterranean coast owing to the nearby anthropological activities. This investigation aimed to detect the concentrations of six different trace metals (Fe, Mn, Cu, Cd, Pb and Zn) in surface sediments from the central part of the Egyptian Mediterranean coast, and to assess their state of contamination from different indices and risk factor calculations. Mean concentrations of Cu, Pb and Zn were lower and the mean concentration of Cd was higher compared to the background values. The assessment of pollution was mainly based on the contamination indices. Based on the contamination factor, Pb was the most enriched element followed by Cd, Mn, Zn and Cu. Most of the sites show low contamination with respect to Pb, Mn, Cd, Fe, Zn and Cu. The pollution load index also suggests that all the coastal sediments are unpolluted. According to the geoaccumulation index, the sediments were classified into unpolluted with Mn, Cd, Fe and Pb, and unpolluted to moderately polluted with Pb. Risk evaluation revealed that Cd had the greatest ecological risk, followed by Pb, Cu, Mn, while Zn had the lowest risk. With the aid of statistical methods, the origin of metals is classified into two clusters (A and B). Group A consists of Fe, Mn and Cu, whereas group B contains Zn, Pb and Cd. In the first cluster Fe and Mn are joined to each other at a positive and significant similarity (0.68). Fe is recognized as an indicator of lithogenous origin, therefore, its higher similarity with Mn may be indicative of the similar origin for Manganese. In the second cluster Pb and Zn are joined to each other at a positive and significant similarity (0.80). Pb is recognized as an indicator of anthropogenic origin, therefore, its higher similarity with Zn may be indicative of the similar origin for Zinc.
Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke
2014-01-01
To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.
Defense Science Study Group IV: Study Reports 1994-1995. Volume I
1996-02-01
100_<- 9 800 70 _ 60- > ~50- P CD 20- 10 450 500 550 600 650 700 750 800 850 900 WAVELENGTH NANOMETEtS 01 GEN II +- EARLY GEN III 0 TYPICAL GEN III...lva•) 6.5 Somlval.ief1 Cd : 3.25 "sle Cd :. 1 Cd : 60 TI:3.25 .pglAdscm[ Pbt:I0 Pb:100 Cd.Pb40 Pb:is Low Volotie ",metas 0 (Am. Be. Cr. ON (Ilk As. Cr...mixed radioactive-hazardous wastes include steam reforming, wet air oxidation, and high pressure hydrothermal processing[11]. High pressure hydrothermal
Aqueous CdPbS quantum dots for near-infrared imaging
NASA Astrophysics Data System (ADS)
Au, Giang H. T.; Y Shih, Wan; Tseng, S.-Ja; Shih, Wei-Heng
2012-07-01
Quantum dots (QDs) are semiconducting nanocrystals that have photoluminescent (PL) properties brighter than fluorescent molecules and do not photo-bleach, ideal for in vivo imaging of diseased tissues or monitoring of biological processes. Near-infrared (NIR) fluorescent light within the window of 700-1000 nm, which is separated from the major absorption peaks of hemoglobin and water, has the potential to be detected several millimeters under the surface with minimal interference from tissue autofluorescence. Here we report the synthesis and bioimaging demonstration of a new NIR QDs system, namely, CdPbS, made by an aqueous approach with 3-mercaptopropionic acid (MPA) as the capping molecule. The aqueous-synthesized, MPA-capped CdPbS QDs exhibited an NIR emission in the range of 800-950 nm with xi ≥ 0.3, where xi denotes the initial Pb molar fraction during the synthesis. Optimal PL performance of the CdPbS QDs occurred at xi = 0.7, which was about 4 nm in size as determined by transmission electron microscopy, had a rock salt structure and a quantum yield of 12%. Imaging of CdPbS QDs was tested in membrane staining and transfection studies. Cells transfected with CdPbS QDs were shown to be visible underneath a slab of chicken muscle tissue of up to 0.7 mm in thickness without the use of multiple-photon microscopy.
Liu, Jia-nv; Zhou, Qi-xing; Sun, Ting; Ma, Lena Q; Wang, Song
2008-02-28
Up to now, there was no document on ornamental plants that had been applied to phytoremediation, which can remedy contaminated environment and beautify it at the same time. Thus, the growth responses and possible phytoremediation ability of three ornamental plants selected from the previous preliminary experiments were further examined under single Cd or combined Cd-Pb stress. The results showed that these tested plants had higher tolerance to Cd and Pb contamination and could effectively accumulate the metals, especially for Calendula officinalis and Althaea rosea. For C. officinalis, it grew normally in soils containing 100 mg kg(-1) Cd without suffering phytotoxicity, and the Cd concentration in the roots was up to 1084 mg kg(-1) while the Cd concentration in the shoots was 284 mg kg(-1). For A. rosea, the Cd accumulation in the shoots was higher than that in the roots when the Cd concentration in soils was <100 mg kg(-1), and reached 100 mg kg(-1) as the criteria of a Cd hyperaccumulator when the Cd concentration in soils was 100 mg kg(-1). Their accumulation and tolerance to Cd and Pb were further demonstrated through the hydroponic-culture method. And A. rosea had a great potential as a possible Cd hyperaccumulator under favorable or induced conditions. Furthermore, the interactive effects of Cd and Pb in the three ornamentals were complicated, not only additive, antagonistic or synergistic, but also related to many factors including concentration combinations of heavy metals, plant species and various parts of plants. Thus, it can be forecasted that this work will provide a new way for phytoremediation of contaminated soils.
Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China.
Yang, Qing-Wei; Xu, Yuan; Liu, Shou-Jiang; He, Jin-Feng; Long, Fang-Yan
2011-09-01
Concentration and daily intake (DI) of heavy metals (Pb, Zn, Mn, Cu, Cd and Cr) in market vegetables in Chongqing of China are investigated and their potential health risk for local consumers is simultaneously evaluated by calculating the target hazard quotient (THQ). The results showed that the measured Pb and Cd concentrations exceeded the safety limits given by FAO/WHO and Chinese regulations, indicating serious contamination of market vegetables by these metals. As respective DI values for Pb, Mn and Cd were also above the international guideline bases, health risk to the consumers is obvious. The individual THQ for Pb and Cd in pakchoi and Cd in mustard, and the combined THQ for all metals in each vegetable species excluding cos lettuce were above the threshold 1.0, implying the obviously adverse effect on health. Therefore, attention should be paid particularly to the potential hazardous exposure to vegetable heavy metals, especially for Pb and Cd, over a lifetime for people in Chongqing. Copyright © 2011 Elsevier Inc. All rights reserved.
Heavy metals in spices and herbs from wholesale markets in Malaysia.
Nordin, N; Selamat, J
2013-01-01
As, Cd, Pb and Hg were analysed in commonly consumed spices and herbs in Malaysia. The range of As, Cd, Pb and Hg content was 0.24-2.54, 0.23-8.07, 1.54-8.94 and 0.06-0.52 µg g(-1), respectively. The highest concentration of Cd, Pb and Hg in spices and herbs exceeded the maximum permitted proportion, which are 1, 2 and 0.05 µg g(-1), respectively. This study suggests further monitoring of Cd, Pb and Hg on daily consumption of spices and herbs and its toxicological implication for consumers since only the amount of As was lower than the permitted concentration.
Lead and cadmium in the blood of nine species of seabirds, Marion Island, South Africa.
Summers, Carly F; Bowerman, William W; Parsons, Nola; Chao, Wayne Y; Bridges, William C
2014-10-01
Levels of lead (Pb) and cadmium (Cd) were investigated as potential stressors in nine species of breeding seabirds on Marion Island, South Africa. The majority of blood Pb levels (95 %) were below background exposure levels. Species was a significant factor in ranked means analysis for mean blood Pb levels. Fewer individual blood Cd levels (<60 %) were within background exposure levels and species was not significant. Elevated levels of Cd have been documented in other seabird species without apparent outward effects, which suggests that seabirds may be adapted to high cadmium environments, particularly from their diets. Overall, the results suggest Pb and Cd are not primary causes for concern in these seabirds.
dos Santos, Rodrigo W; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz K; Kreusch, Marianne; Pereira, Debora T; Costa, Giulia B; Simioni, Carmen; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L
2014-07-01
Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50μM and 100μM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd. Copyright © 2014 Elsevier Inc. All rights reserved.
Arena, C; Figlioli, F; Sorrentino, M C; Izzo, L G; Capozzi, F; Giordano, S; Spagnuolo, V
2017-11-01
The effects of cadmium and lead were investigated in Cynara cardunculus L. Plant uptake by root and shoot, changes in cell ultrastructure and photosynthetic efficiency, photosynthetic key protein levels, as well as regulation of stress-induced Hsp70 were examined. Cynara cardunculus accumulated Cd and Pb in their tissue, with a different trend for the two metals. The prompt translocation of Cd to the shoot may justify the ultrastructural injuries, especially observed in chloroplasts. However, Cd- treated plants did not show any decline in photochemistry; it is likely that Cd in shoot tissue triggers defense mechanisms, increasing the level of proteins involved in photosynthesis (i.e., Rubisco and D1 increased 7 and 4.5 fold respectively) as a compensatory response to neutralize chloroplast damage. The accumulation of Pb mainly in root, can explain the increase in Hsp70 level (23 folds) in this tissue. Pb reached the shoots, even at low amounts, causing an overall significant change in some photochemical parameters (QY and NPQ decreases and increases of 25%, respectively). The results suggest a higher sensitivity of C. cardunculus to Pb than Cd, although maximal photochemical efficiency suggests that this species seems to tolerate Pb and Cd and hence, it is a suitable candidate for phytoremediation. Copyright © 2017. Published by Elsevier Inc.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang
2016-03-01
The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.
Metal status in human endometrium: Relation to cigarette smoking and histological lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rzymski, Piotr, E-mail: rzymskipiotr@ump.edu.pl; Rzymski, Paweł; Tomczyk, Katarzyna
Human endometrium is a thick, blood vessel-rich, glandular tissue which undergoes cyclic changes and is potentially sensitive to the various endogenous and exogenous compounds supplied via the hematogenous route. As recently indicated, several metals including Cd, Pb, Cr and Ni represent an emerging class of potential metalloestrogens and can be implicated in alterations of the female reproductive system including endometriosis and cancer. In the present study, we investigated the content of five metals: Cd, Cr, Ni, Pb and Zn in 25 samples of human endometrium collected from Polish females undergoing diagnostic or therapeutic curettage of the uterine cavity. The overallmore » mean metal concentration (analyzed using microwave induced plasma atomic emission spectrometry MIP-OES) decreased in the following order: Cr>Pb>Zn>Ni>Cd. For the first time it was demonstrated that cigarette smoking significantly increases the endometrial content of Cd and Pb. Concentration of these metals was also positively correlated with years of smoking and the number of smoked cigarettes. Tissue samples with recognized histologic lesions (simple hyperplasia, polyposis and atrophy) were characterized by a 2-fold higher Cd level. No relation between the age of the women and metal content was found. Our study shows that human endometrium can be a potential target of metal accumulation within the human body. Quantitative analyses of endometrial metal content could serve as an additional indicator of potential impairments of the menstrual cycle and fertility. - Highlights: • Cd, Cr, Ni, Pb and Zn are detectable in human endometrium. • Mean metal content in human endometrium decreases in Cr>Pb>Zn>Ni>Cd order. • Cigarettes smoking increases endometrial content of Cd and Pb. • Lesioned endometrial tissue was characterized by higher metal contents.« less
Chen, Xiu-Ying; Zhuang, Ya-Ling; Li, Li; Zhang, Wu-Wen; Huang, Li-Li
2010-05-15
To investigate the effect of mifepristone on peripheral blood natural killer cell's (pbNK) cytotoxicity and the expression of the inhibitory receptor CD94/NKG2A and the activated receptor NKG2D on pbNK cells. In vitro study. University hospital and research laboratory. Twenty healthy nonpregnant women. Detected the cytolytic activity of pbNK to K562 target cells; measured the expression of CD94/NKG2A and NKG2D on pbNK. Cytotoxicity of pbNK was detected by Methyl thiazolyl tetrazolium. The expression of CD94/NKG2A and NKG2D receptor on pbNK cells were detected by flow cytometry. The NK cell cytotoxicity and the expression of inhibitory receptor CD94/NKG2A during the proliferative phase (81.71 +/- 11.5, 86.6 +/- 9.0) was significantly higher than the secretory phase (60.16 +/- 19.2, 60.15 +/- 31.0). The NK cells cytotoxicity, after being treated with mifepristone and the expression of inhibitory receptor CD94/NKG2A on pbNK cells treated with 200 nmol/L mifepristone, were significantly increased. Mifepristone had no effect on the expression of activating receptor NKG2D. These data suggest that Mifepristone maybe exert its anti-implantation function by increasing NK cytotoxicity. The increasing NK cytotoxicity of mifepristone is not related to CD94/NKG2A and NKG2D. In the secretory phase down-regulated CD94/NKG2A, NKG2D, and NK cytotoxicity may benefit with embryo implantation. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.
He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong
2016-12-01
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha -1 ) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5-91.2 % and the concentrations of Cd and Pb in brown rice by 20.9-50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha -1 ) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.
Massadeh, A M; Al-Safi, S A; Momani, I F; Alomary, A A; Jaradat, Q M; AlKofahi, A S
2007-01-01
Analysis and distribution of Pb and Cd in different mice organs including liver, kidney, spleen, heart and blood were evaluated after treatment with different aqueous concentrations of garlic (12.5-100 mg/l). Atomic absorption spectrometry (AAS) was used for analysis of Pb and Cd in these organs. Treatment of Cd-Pb exposed mice with garlic (12.5-100 mg/l) reduced Pb concentrations by 44.65, 42.61, 38.4, 47.56, and 66.62% in liver, kidney, heart, spleen and blood respectively. Moreover, garlic reduced Cd levels by 72.5, 87.7, 92.6, 95.6, and 71.7% in liver, kidney, heart, spleen and blood respectively. The suppressed immune responses in mice pretreated with Cd-Pb mixture were reversed by 48.85, 55.82, 81.4 and 90.7 in the presence of 100, 50, 25, and 12.5 mg/ml of garlic extract.
Cadmium and lead in chocolates commercialized in Brazil.
Villa, Javier E L; Peixoto, Rafaella R A; Cadore, Solange
2014-08-27
Cadmium (Cd) and lead (Pb) concentrations and their relationship to the cocoa content of chocolates commercialized in Brazil were evaluated by graphite furnace atomic absorption spectrometry (GF AAS) after microwave-assisted acid digestion. Several chemical modifiers were tested during method development, and analytical parameters, including the limits of detection and quantification as well as the accuracy and precision of the overall procedure, were assessed. The study examined 30 chocolate samples, and the concentrations of Cd and Pb were in the range of <1.7-107.6 and <21-138.4 ng/g, respectively. The results indicated that dark chocolates have higher concentrations of Cd and Pb than milk and white chocolates. Furthermore, samples with five different cocoa contents (ranging from 34 to 85%) from the same brand were analyzed, and linear correlations between the cocoa content and the concentrations of Cd (R(2) = 0.907) and Pb (R(2) = 0.955) were observed. The results showed that chocolate might be a significant source of Cd and Pb ingestion, particularly for children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com
2014-10-15
Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2more » to 2.7, suggesting possibility of band gap engineering in the n-type films.« less
Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng
2017-11-01
Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).
Kryczyk, Agata; Piotrowska, Joanna; Sito, Magdalena; Sulkowska-Ziaja, Katarzyna; Dobosz, Konrad; Opoka, Włodzimierz; Muszyńska, Bożena
2017-09-02
The goal of this study was to evaluate cadmium and lead accumulation ability of in vitro cultures biomass containing selected edible mushroom species derived from the environment (Laetiporus sulphureus, Imleria badia) and those of commercial origin (Agaricus bisporus). Atomic absorption spectrometry was used to evaluate the content of Cd(II) and Pb(II) on the medium supplemented with Cd(II) or Pb(II), each of them at the same concentration of 5·10 -5 M. The highest concentration of Cd(II) ions was determined in the biomass from L. sulphureus in vitro cultures, while the highest concentration of Pb(II) ions was found in the biomass from A. bisporus in vitro cultures. The greatest Cd(II) and Pb(II) accumulation ability in mycelium per dry weight was shown for L. sulphureus. Among the test species, biomass of A. bisporus showed the lowest ability for the bioaccumulation of Cd(II); however, comparable ability for the remediation of Pb(II) was provided by the biomasses from A. bisporus and I. badia in vitro cultures. The results confirm the possibility of using these mushroom species for remediation and indicate the relationship between bioaccumulation of heavy metals and the test species.
Gać, P; Pawlas, N; Poręba, R; Poręba, M; Pawlas, K
2014-06-01
This study aimed at determining the relationship between environmental exposure to lead (Pb) and cadmium (Cd) and blood selenium (Se) concentration in randomly selected population of children inhabiting the industrial regions of Silesian Voivodship, Poland. The study was conducted on a group of consecutive randomly selected 349 children aged below 15 years and inhabiting the industrial regions in Upper Silesia. The examined variables included whole blood Cd concentration (Cd-B), whole blood Pb concentration (Pb-B) and whole blood Se concentration (Se-B). The concentration of Cd-B, Pb-B and Se-B in the studied group of children amounted to 0.26 ± 0.14, 37.62 ± 25.30 and 78.31 ± 12.82 μg/L, respectively. In the entire examined group a statistically significant negative linear relationship was noted between Pb-B and Se-B (r = -0.12, p < 0.05). Also, a statistically insignificant negative correlation was detected between Cd-B and Se-B (r = -0.02, p > 0.05) and a statistically insignificant positive correlation between Pb-B and Cd-B (r = 0.08, p > 0.05). A multivariate backward stepwise regression analysis demonstrated that in the studied group of children higher Pb-B and a more advanced age-represented independent risk factors for a decreased Se-B. Environmental exposure to Pb may represent an independent risk factor for Se deficit in blood of the studied population of children. In children, the lowered Se-B may create one of the mechanisms in which Pb unfavourably affects human body. © The Author(s) 2014.
Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.
Bricker, T J; Pichtel, J; Brown, H J; Simmons, M
2001-01-01
In a growth chamber, maize (Zea mays) and Indian mustard (Brassica juncea) were grown over two croppings in soil from a Superfund site (PbTotal = 65,200 mg/kg and CdTotal = 52mg/kg). Soil treatments consisted of ethylenediaminetetraacetic acid, sodium citrate and composted sewage sludge, each at two rates (EDTA .05%, EDTA .2%, citrate .05%, citrate .2%, CSS 5% and CSS 10%, respectively). In most cases, the EDTA and citrate treatments were superior in terms of solubilizing soil Pb for root uptake and translocation into above-ground biomass. In the first maize crop, the EDTA .2% treatment resulted in 2,435 and 9,389mg/kg Pb in shoot and root tissues, respectively. The CSS treatments typically resulted in lowest Pb and Cd removal efficiencies. Lead remaining in the soil after two croppings was mainly associated with the carbonate, organic, and residual fractions, which represent the less bioavailable forms. Soil Cd was generally more mobile for plant uptake than soil Pb. The EDTA .2% and citrate treatments were most successful in promoting Cd uptake by both maize and mustard. Although Pb concentrations (mg/kg tissue) were lower for maize than mustard, the former removed more total Pb (0.2 mg per pot, mean over all treatments), compared to mustard (0.03 mg), by virtue of its higher biomass production.
NASA Astrophysics Data System (ADS)
Armid, A.; Shinjo, R.; Ruslan, R.; Fahmiati
2017-02-01
The concentrations of heavy metals Pb, Cd and Cr in the coastal waters of Kendari Bay were analyzed to assess their pollution status. Water samples from 32 sampling points were analyzed for dissolved heavy metals concentrations by using inductively coupled plasma mass spectrometry (ICP-MS). The RSD(%) of each metal was accounted to analyze the diversity of the heavy metals among 32 sampling points. The results demonstrate that the dissolved heavy metal Pb had the highest concentrations (0.009 to 0.549 μg/L, average = 0.210 μg/L) followed by Cr (0.085 to 0.386 μg/L, average = 0.149 μg/L), and Cd (0.001 to 0.015 μg/L, average = 0.008 μg/L). Based on the the RSD values (Pb = 87.8%, Cd = 45.2% and Cr = 41.3%), it is suggested that the antropogenic activities controls the high diversity of concentrations for heavy metal Pb relative to those of Cd and Cr. Comparing the data with the mean oceanic concentrations, only the concentrations of Pb exceed the mean oceanic level (210 folds). Therefore, the water system of Kendari Bay is severely polluted with heavy metal Pb. More management and treatment should be introduced to protect the marine environment in the study area, especially from Pb pollution.
Effects of lead and cadmium co-exposure on hemoglobin in a Chinese population.
Chen, Xiao; Zhou, Hao; Li, Xiaoshuang; Wang, Zhongqiu; Zhu, Guoying; Jin, Taiyi
2015-03-01
Cadmium (Cd) and lead (Pb) show adverse effects on hemoglobin. But most studies are focussed on one single agent. In this study, we observed the main and interactive effects of Cd and Pb on the hemoglobin level in a Chinese population. A total of 308 persons (202 women and 106 men), living in controlled and polluted areas, were included in this study. Blood and urine were collected to determine the levels of hemoglobin (Hb), Cd, Pb, and urinary N-acetyl-β-D-glucosaminidase (UNAG). The Cd and Pb level of subjects living in the polluted area were significantly higher compared to those living in the control area (p<0.05). The level of hemoglobin was declined with the increasing BPb (p<0.05) and BCd in women. The Hb of women and men with the highest level of BCd and BPb were decreased by 8.3g/L and 10.7 g/L compared to those with the lowest level of BCd and BPb, respectively. The Hb level of those women and men with the highest level of UNAG decreased by 4.2g/L and 17.2g/L compared with those with low level of UNAG, respectively. Hb was negatively associated with BPb, BCd, and UNAG. This study evidenced that Cd and Pb can influence Hb level. In addition, our study shows that Cd and Pb may have interactive effects on Hb and Hb level was correlated with tubular dysfunction caused by Cd and Pb exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Shipley, Heather J; Engates, Karen E; Grover, Valerie A
2013-03-01
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.
Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis.
Bélanger, Pier-Anne; Bellenger, Jean-Philippe; Roy, Sébastien
2015-11-01
Alders have already demonstrated their potential for the revegetation of both mining and industrial sites. These actinorhizal trees and shrubs and the actinobacteria Frankia associate in a nitrogen-fixing symbiosis which could however be negatively affected by the presence of heavy metals, and accumulate them. In our hydroponic assay with black alders, quantification of the roots and shoots metal concentrations showed that, in the absence of stress, symbiosis increases Mo and Ni root content and simultaneously decreases Mo shoot content. Interestingly, the Mo shoot content also decreases in the presence of Ni, Cu, Pb, Zn and Cd for symbiotic alders. In symbiotic alders, Pb shoot translocation was promoted in presence of Pb. On the other hand, Cd exclusion in symbiotic root tissues was observed with Pb and Cd. In the presence of symbiosis, only Cd and Pb showed translocation into aerial tissues when present in the nutrient solution. Moreover, the translocation of Ni to shoot was prevented by symbiosis in the presence of Cd, Ni and Pb. The hydroponic experiment demonstrated that alders benefit from the symbiosis, producing more biomass (total, root and shoot) than non nodulated alders in control condition, and in the presence of metals (Cu, Ni, Zn, Pb and Cd). Heavy metals did not reduce the nodule numbers (SNN), but the presence of Zn or Cd did reduce nodule allocation. Our study suggests that the Frankia-alder symbiosis is a promising (and a compatible) plant-microorganism association for the revegetation of contaminated sites, with minimal risk of metal dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chi-Jung
Cigarette smoking and environmental exposure to heavy metals are important global health issues, especially for urothelial carcinoma (UC). However, the effects of cadmium and lead exposure, as well as the levels of DNA hypomethylation, on UC risk are limited. We evaluated the possible exposure sources of Cd and Pb and the relationship among DNA hypomethylation, urinary Cd and Pb levels, and UC risk. We recruited 209 patients with UC and 417 control patients for a hospital-based case–control study between June 2011 and August 2014. We collected environmental exposure-related information with questionnaires. Blood and urine samples were analyzed to measure themore » Cd and Pb exposure and 5-methyl-2′-deoxycytidine levels as a proxy for DNA methylation. Multivariate logistic regression and 95% confidence intervals were applied to estimate the risk for UC. Study participants with high Cd and Pb exposure in blood or urine had significantly increased risk of UC, especially among the smokers. After adjusting for age and gender, the possible connections of individual cumulative cigarette smoking or herb medicine exposure with the increased levels of Cd and Pb were observed in the controls. Participants with 8.66%–12.39% of DNA hypomethylation had significantly increased risk of UC compared with those with ≥ 12.39% of DNA hypomethylation. Environmental factors including cigarette smoking and herb medicine may contribute to the internal dose of heavy metals levels. Repeat measurements of heavy metals with different study design, detailed dietary information, and types of herb medicine should be recommended for exploring UC carcinogenesis in future studies. - Highlights: • Smoking and herb medicine ingestion is associated with increased urinary Cd and Pb levels. • Urinary levels of Cd and Pb are associated with increased risk of UC. • UC carcinogenesis might have partially resulted from DNA hypomethylation.« less
NASA Astrophysics Data System (ADS)
Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.
2003-07-01
The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( P<0.05) correlation coefficients of Cd and Pb within the shells support the use of the mussel shell as a suitable biomonitoring material for the two metals rather than the soft tissue since this indicated that there is more precision (lower CV) in the determination of metal concentrations in the shell than in the soft tissue. Experimental work showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.
Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing
2015-02-01
In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.
NASA Astrophysics Data System (ADS)
Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam
2017-08-01
The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).
Janaydeh, Mohammed; Ismail, Ahmad; Omar, Hishamuddin; Zulkifli, Syaizwan Zahmir; Bejo, Mohd Hair; Aziz, Nor Azwady Abd
2017-12-27
Heavy metal pollution has become a global concern due to accumulation in tissue and transferable effects to humans via the food chain. This study focused on monitoring the accumulation of cadmium (Cd) and lead (Pb) in surface soil and body content: bone, heart, brain, liver, lung, muscle, kidney, feathers, feces, and gizzard contents of house crow Corvus splendens in the Klang region, Malaysia. The results revealed the occurrence of Pb and Cd in all biological samples from house crows, food contents, and surface soil samples. Heart and kidney accrued high amounts of Cd, while high amounts of Pb were found to accumulate in bones and feathers. Major discrepancies were also discovered in the concentrations of metals between juvenile and adults, as well as female and male bird samples. Concentrations of Pb and Cd in house crow internal tissues correlated significantly with that of bird feathers, but none could be established with that of surface soil. In addition, a significant correlation was observed between Pb concentration in the internal tissues to that of the feces, but the same was not the case when compared with the surface soil concentration. Metal accrual in the house crows feathers and feces may be through a long-term transmission via the food chain, which are eliminated from feathers via molting. This may suggest the utility of molted breast feathers of house crow in the bio-monitoring of Cd and Pb contamination, whereas feces of house crow appear only to be suitable for the bio-monitoring of Pb contamination.
Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi
2017-10-01
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A
1999-01-01
Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in their immunophenotype but also in their functionality, as regards cytokine production. PMID:10594557
Almeida, Maria; Cordero, Miguel; Almeida, Julia; Orfao, Alberto
2007-05-01
HIV-1 infection is associated with dysregulation of cytokine production by peripheral blood (PB) monocytes and dendritic cells (DC), but controversial results have been reported. We aimed to analyze the effect of antiretroviral therapy (ART) on the in vitro production of inflammatory cytokines by PB-stimulated monocytes and DC of myeloid origin -CD33(high+ ) myeloid DC (mDC) and CD33(+)/CD14(-/dim+)/CD16(high+) DC- from HIV-1+ patients and its relationship with CD4+ T-cell recovery and co-infection with hepatitis C virus (HCV). In vitro cytokine production was analyzed at the single cell level in 32 HIV-1+ patients, grouped according to the number of CD4+ T-cells/microl in PB (<200 CD4 versus >200 CD4). Patients were tested prior to therapy and at weeks +2, +4, +8, +12 and +52 after ART. Prior to ART, production of IL-6, TNF-alpha and IL-12 by mDC and of IL-8 and IL-12 by CD16+ DC was significantly increased among >200 CD4 patients. After one year of ART, increased production of IL-8 by monocytes, of TNF-alpha by mDC and of IL-1beta, IL-6 and TNF-alpha by CD16+ DC was specifically observed among <200 CD4 HIV-1+ individuals showing a high recovery of PB CD4+ T-cell counts. In turn, we found that the significantly reduced percentage of IL-1beta, IL-6, IL-8 and TNF-alpha-producing monocytes and of IL-6 and IL-8-producing mDC and CD16+ DC, as well as the significantly diminished mean amount of IL-6 produced per monocyte, mDC and CD16+ DC and of IL-12 produced per CD16+ DC observed at week +52 for the >200 CD4 patients, were related to the presence of co-infection with HCV. In summary, HIV-1+ individuals show abnormal production of inflammatory cytokines by PB-stimulated monocytes and DC of myeloid origin even after one year of ART, such abnormalities being associated with the degree of recovery of PB CD4+ T-cell counts in more immunocompromised patients and HCV co-infection in more immunocompetent HIV-1+ individuals.
Karri, Venkatanaidu; Schuhmacher, Marta; Kumar, Vikas
2016-12-01
Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na + - K + ATP-ase pump (Cd, MeHg), biological Ca +2 (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Brains of Native and Alien Mesocarnivores in Biomonitoring of Toxic Metals in Europe
Kalisinska, Elzbieta; Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta; Budis, Halina; Podlasinska, Joanna; Popiolek, Marcin; Pirog, Agnieszka; Jedrzejewska, Ewa
2016-01-01
Mercury (Hg), lead (Pb) and cadmium (Cd) are involved in mammalian brain damage. However, little is known about Pb and Cd brain levels in wildlife that reflect the geochemical background. The aims of the study include the estimation of Hg, Pb and Cd concentrations, and the determination of relationships between these elements in the brains of 94 mesocarnivores. Road-killed or hunted animals were obtained from north-western Poland near the Polish-German border. The investigation covered the native Eurasian otter Lutra lutra, badger Meles meles, pine marten Martes martes, beech marten M. foina, European polecat Mustela putorius, red fox Vulpes vulpes, and alien species: feral and ranch American mink Neovison vison, raccoon Procyon lotor and raccoon dog Nyctereutes procyonoides. Depending on the diet and environmental pollution, the carnivore brains accumulated toxic metals in varying amounts. The highest median Hg levels (in mg/kg dry weight, dw) were found in the piscivorous Eurasian otter and feral mink (2.44 and 3.96), Pb in the omnivorous raccoon (0.47), while Cd in minks (~0.06). We indicated that Pb-based ammunition is a significant source of the element in scavengers from hunting area, and we also found a significant correlation between Pb and Cd levels in the fox brain. Finally, this study is the first to suggest background levels for brain Pb and Cd in mesocarnivores (<0.50 and <0.04 mg/kg dw, respectively). PMID:27513467
Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...
2017-01-10
Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less
Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M
2017-02-08
We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.
Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U
2016-01-01
Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217
Wiseman, Clare L S; Zereini, Fathi; Püttmann, Wilhelm
2015-12-15
This study aims to examine the elemental enrichment patterns in low to medium traffic areas over a three year period in Toronto, Canada. Soils were sampled at three locations with different volumes of traffic between 2010 and 2013. A range of elements, including V, Cr, Mn, Cu, Cd, As, Sb and Pb, were measured in acid digested samples using ICP-MS. While the concentrations of Cd, Sb and Pb were found to be relatively low, a significant, albeit small increase in their levels over time was determined for all sites. For the low traffic areas, median Cd, Sb and Pb concentrations increased from 0.18mg Cd/kg, 0.14mg Sb/kg and 12mg Pb/kg in 2010 to 0.38mg Cd/kg, 0.21mg Sb/kg and 15mg Pb/kg in 2012, respectively. For the medium traffic site, the respective levels of Cd and Sb rose from 0.19mg Cd/kg and 0.14mg Sb/kg in 2010 to 0.49mg Cd/kg and 0.28mg Sb/kg in 2012. Median Pb concentrations at the medium traffic site were comparable to those at the low traffic sites (13mg/kg in 2010 and 15mg/kg in 2012). Principal Component Analysis (PCA) revealed the existence of two components (rotated), which explained 77% of the variance for all sites: 1. PC1 with large loadings of V, Cr, Co and Cu that likely originate from the commercial soil originally used for monitoring purposes, and 2. PC2 with high correlations between Cd, Sb and Pb, attributed to traffic sources of emissions. The resuspension and transport of more mobile fractions of contaminated dust and soil particles is hypothesized to be contributing to an elemental enrichment of soils located in low traffic areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Hernández, Norge Cruz; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; De los Santos, Desireé M; Aguilar, Teresa; Martín-Calleja, Joaquín
2015-04-14
This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb(2+) position with Sn(2+), Sr(2+), Cd(2+) and Ca(2+). The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn(2+), Sr(2+) and Cd(2+) did not modify the normal tetragonal phase. When doping with Ca(2+), the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr(2+) < Cd(2+) < Ca(2+) < CH3NH3PbI3 ≈ Sn(2+). The biggest decrease was generated by Sr(2+), which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn(2+) ≈ Pb(2+) > Cd(2+) > Sr(2+) for the tetragonal structure and Pb(2+) > Ca(2+) for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn(2+)-doped tetragonal structures, which were different from those doped with Sr(2+) and Cd(2+). Furthermore, when Cd(2+) was incorporated, the Cd-I interaction was strengthened. For Ca(2+) doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.
NASA Astrophysics Data System (ADS)
Liu, M.; Fan, D.; Han, Z.; Liao, Y.; Chen, B.; Yang, Z.
2016-02-01
The concentrations and speciations of heavy metals (Cu, Co, Ni, Zn, Pb, Cr and Cd) in surface and core sediments collected from the central Bohai Sea were analyzed by ICP-MS, to evaluate their distribution / fractionation, pollution status and sources. The results showed that Cd exhibited gradual increasing vertically, while others were stable or declined slightly in core sediments. Metals showed higher values in `central mud area of the Bohai Sea' and the coastal area of the Bohai Bay in surface sediments. Residual fractions were the dominant forms of Cu, Co, Ni, Zn and Cr in the surface sediments, while Cd and Pb had large proportions of the total concentration in the non-residual fractions. Both the contamination factors and the geo-accumulation index indicated that Cu, Co, Ni, Cr were not polluted, while Pb, Zn, Cd were in moderate contamination. The ecological risk assessment (by sepeciations) indicated that the sediments were unpolluted with respect to the heavy metals Co, Ni and Cr and unpolluted to moderately polluted with respect to Cu, Zn, Cd and Pb. Compared with sediment quality guidelines (SQGs), Cu, Zn, Cr, Pb, Cd were likely to produce occasional adverse biological effects, while Ni showed possible ecotoxicological risks. The combined levels of the metals have a 21% probability of being toxic. Elements Cr, Co and Ni were mainly natural origined and significantly affected by the composition of sediments. Cu, Zn, Pb and especially Cd may be influenced by human activities.
Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.
Ding, Zhuhong; Hu, Xin
2014-06-01
In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.
Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying
2005-07-01
A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.
[Effects of strong reductive process on transformation of heavy metals in protected vegetable soil].
Sun, Yan Chen; Zeng, Xiang Feng; Yang, Li Qiong; Shi, Ya Nan; Chen, Xi Juan; Zhuang, Jie
2017-11-01
The application of sewage and manure in protected vegetable cultivation can induce the occurrence of heavy metals contamination. The present research studied the transformation of heavy metals (Cd, Cu, Pb and Zn) by incubating contaminated protected soil with maize straw and then leaching. The results showed that soil pH was significantly decreased, being more evident in maize straw treatment; soil Eh dropped quickly below -280 mV. Maize straw treatment promoted the activation of Cd, Cu, Pb and Zn from soil, and the total percent of oxidizable fraction and residual fraction of Cd, Cu, Pb and Zn declined at 9 th day; the amount of Cd, Cu, Pb and Zn in soil reduced 18.1%, 19.0%, 16.1% and 15.7% at 15 th day, respectively. Compared to control, maize straw treatment could increase the concentrations of dissolved Cd and Zn, but Cu decreased. The concentration of colloidal-bound Cd and Pb increased, Cu decreased and no significant change occurred in Zn in maize straw treatment. Strong reductive approach could activate heavy metals in protected vegetable soil, increase the risk of heavy metals accumulation in vegetables, and possibly cause water pollution accompanied with soil water mobilization.
Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.
Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota
2016-09-01
This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.
The cadmium and lead content of the grain produced by leading Chinese rice cultivars.
Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S
2017-02-15
The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3
NASA Astrophysics Data System (ADS)
Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao
2017-01-01
Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.
Richardson, J B; Görres, J H; Friedland, A J
2017-10-01
Exotic earthworms are present in the forests of northeastern USA, yet few studies have documented their effects on pollutant metals in soil. The objective of this study was to identify if Cd, Hg, and Pb strong-acid extractable concentrations and pools (bulk inventories) in forest soils decreased with the presence of exotic earthworms. We compared 'Low Earthworm Abundance' (LEA) sites (≤10 g m -2 earthworms, n = 13) and 'High Earthworm Abundance' (HEA) (>10 g m -2 earthworms, n = 17) sites at five watersheds across Vermont and New Hampshire. Organic horizon Cd, Hg, and Pb concentrations were lower at HEA than LEA sites. Organic horizon and total soil pools of Cd and Hg were negatively correlated with earthworm biomass. Soil profile Cd and Hg concentrations were lower at HEA than LEA sites. Our results suggest earthworms are decreasing accumulation of Cd, Hg, and Pb in forest soils, potentially via greater mobilization through organic matter disruption or bioaccumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.
2015-08-06
We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less
Salińska, Aneta; Włostowski, Tadeusz; Zambrzycka, Elżbieta
2012-11-01
Bank voles free living in a contaminated environment are known to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions, but the reasons for this difference are poorly defined. The present work was designed to determine whether dietary lead (Pb), a common environmental co-contaminant, and/or animal density that affects various physiological processes, would influence susceptibility to Cd toxicity in the kidneys and liver of these animals. For 6 weeks, the female bank voles were kept individually or in a group of six and provided with diet containing environmentally relevant concentrations of Cd [<0.1 μg/g (control) and 60 μg/g dry wt] and Pb [<0.2 μg/g (control) and 300 μg/g dry wt] alone or in combination. At the end of exposure period, histopathology and analyses of metallothionein, glutathione and zinc that are linked to a protective effect against Cd toxicity, as well as Cd, Pb, copper, iron and lipid peroxidation were carried out. Histopathological changes in the kidneys (a focal glomerular swelling and proximal tubule degeneration) and liver (a focal hepatocyte swelling, vacuolation and inflammation) occurred exclusively in some bank voles kept in a group and exposed to Cd alone (2/6) or Cd + Pb (4/6). The observed toxicity in grouped bank voles appeared not to be based on altered (1) tissue disposition of Cd and/or Pb, (2) metallothionein, glutathione and zinc concentrations, or (3) tissue copper, iron and lipid peroxidation. The data indicate that high population density in combination with environmental Pb may be responsible for an increased susceptibility to Cd toxicity observed in bank voles free living in a contaminated environment; the mechanism by which animal density affects Cd toxicity deserves further study.
Milleville, Christopher C.; Pelcher, Kate E.; Sfeir, Matthew Y.; ...
2016-02-15
For solar energy conversion, not only must a semiconductor absorb incident solar radiation efficiently but also its photoexcited electron—hole pairs must further be separated and transported across interfaces. Charge transfer across interfaces requires consideration of both thermodynamic driving forces as well as the competing kinetics of multiple possible transfer, cooling, and recombination pathways. In this work, we demonstrate a novel strategy for extracting holes from photoexcited CdSe quantum dots (QDs) based on interfacing with β-Pb 0.33V 2O 5 nanowires that have strategically positioned midgap states derived from the intercalating Pb 2+ ions. Unlike midgap states derived from defects or dopants,more » the states utilized here are derived from the intrinsic crystal structure and are thus homogeneously distributed across the material. CdSe/β-Pb 0.33V 2O 5 heterostructures were assembled using two distinct methods: successive ionic layer adsorption and reaction (SILAR) and linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by the transfer of electrons to the conduction band of β-Pb 0.33V 2O 5 nanowires and holes to the midgap states of β-Pb 0.33V 2O 5 nanowires. Holes were transferred on time scales less than 1 ps, whereas electrons were transferred more slowly on time scales of ~2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V 2O 5 nanowires (wherein midgap states are absent), only electron transfer was observed. Interestingly, electron transfer was readily achieved for CdSe QDs interfaced with V 2O 5 nanowires by the SILAR method; however, for interfaces incorporating molecular linkers, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Furthermore, transient absorbance decay traces reveal longer excited-state lifetimes (1–3 μs) for CdSe/β-Pb 0.33V 2O 5 heterostructures relative to bare β-Pb 0.33V 2O 5 nanowires (0.2 to 0.6 μs); the difference is attributed to surface passivation of intrinsic surface defects in β-Pb 0.33V 2O 5 upon interfacing with CdSe.« less
Hu, Xiaoxin; Liu, Xiaoyan; Zhang, Xinying; Cao, Liya; Chen, Jing; Yu, Hang
2017-12-01
Phytoremediation of heavy metals contaminated soils shows many advantages and it can be improved by adding chelating agents and surfactants. In this study, pot culture experiments were set up to explore the effect of alone application of nitrilotriacetic acid (NTA) and combined application of NTA and alkyl polyglucoside (APG) on changes in absorption and adsorption of heavy metals by root of Scirpus triqueter and bioaccumulation of metals in single or co-contamination. Different additives were added into the soils artificially after 10 d and heavy metals extracted from different plant tissues were analyzed after 60 d. Results showed that more cadmium (Cd) was adsorbed on the root surface while more lead (Pb) was absorbed in root interior with the combined application of NTA and APG during phytoremediation of single contaminated soil. In co-contaminated soils, such a combined application not only strengthened the plant growth, but also promoted accumulation of Pb and Cd by Scirpus triqueter. NTA improved absorption amounts of Pb (9.7-fold) and Cd (1.0-fold) in root interior significantly. APG induced more metals to gather on the root surface in the presence of NTA and the adsorption amounts of Pb and Cd ranged from 26.2 and 17.7 mg kg -1 to 412 and 46.0 mg kg -1 respectively. Besides, the coexistence metal increased bioaccumulation of another metal under combined application of NTA and APG in co-contamination of Pb and Cd. In conclusion, the combined application of NTA and APG would be beneficial to accumulate Pb and Cd from contaminated soils by Scirpus triqueter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.
Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying
2017-08-01
Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC.
Halim, Cheryl E; Short, Stephen A; Scott, Jason A; Amal, Rose; Low, Gary
2005-10-17
A leaching model was developed using the United States Geological Survey public domain PHREEQC geochemical package to simulate the leaching of Pb, Cd, As, and Cr from cementitious wastes. The model utilises both kinetic terms and equilibrium thermodynamics of key compounds and provides information on leachate and precipitate speciation. The model was able to predict the leaching of Pb, Cd, As, and Cr from cement in the presence of both simple (0.1 and 0.6M acetic acid) and complex municipal landfill leachates. Heavy metal complexation by the municipal landfill leachate was accounted for by the introduction of a monoprotic organic species into the model. The model indicated Pb and As were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd was seen to exist as discrete particles in the cement pores and Cr (VI) existed mostly as free CrO4(2-) ions. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. At high pH values, the concentration of As in the leachate was governed by the solubility of Ca3(AsO4)2 with the presence of carbonate alkalinity competing with arsenate for Ca ions. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution. The reduction of As and Cr in municipal landfill leachate was crucial for determining aqueous speciation, with typical municipal landfill conditions providing the reduced forms of As and Cr.
Yabe, John; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yohannes, Yared B; Bortey-Sam, Nesta; Kabalo, Abel Nketani; Ntapisha, John; Mizukawa, Hazuki; Umemura, Takashi; Ishizuka, Mayumi
2018-07-01
Lead (Pb) and cadmium (Cd) are toxic metals that exist ubiquitously in the environment. Children in polluted areas are particularly vulnerable to metal exposure, where clinical signs and symptoms could be nonspecific. Absorbed metals are excreted primarily in urine and reflect exposure from all sources. We analyzed Pb and Cd concentrations in blood, feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia, to determine concurrent childhood exposure to the metals. Moreover, the study determined the Pb and Cd relationships among urine, feces and blood as well as accessed the potential of urine and fecal analysis for biomonitoring of Pb and Cd exposure in children. Fecal Pb (up to 2252 mg/kg, dry weight) and urine Pb (up to 2914 μg/L) were extremely high. Concentrations of Cd in blood (Cd-B) of up to 7.7 μg/L, fecal (up to 4.49 mg/kg, dry weight) and urine (up to 18.1 μg/L) samples were elevated. metal levels were higher in younger children (0-3 years old) than older children (4-7). Positive correlations were recorded for Pb and Cd among blood, urine and fecal samples whereas negative correlations were recorded with age. These findings indicate children are exposed to both metals at their current home environment. Moreover, urine and feces could be useful for biomonitoring of metals due to their strong relationships with blood levels. There is need to conduct a clinical evaluation of the affected children to fully appreciate the health impact of these metal exposure. Copyright © 2018. Published by Elsevier Ltd.
Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida
2016-03-01
The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Santos, Mirian C; Nóbrega, Joaquim A; Cadore, Solange
2011-06-15
A procedure based on the use of a quadrupole inductively coupled plasma-mass spectrometer equipped with a collision-reaction interface (CRI) for control of spectral overlap interferences was developed for simultaneous determination of Cd, Cr, Hg, and Pb in plastics from waste electrical and electronic equipment (WEEE). The injection of H(2) and He (80 and 60 mL min(-1), respectively) into the sampled plasma, colliding and reacting with potentially interfering polyatomic ions, allows interference-free determination of chromium via its isotopes (52)Cr and (53)Cr that are freed from overlap due to the occurrence of (40)Ar(12)C(+), (40)Ar(12)C(1)H(+), (36)S(16)O(+) or (1)H(36)S(16)O(+). Cadmium, Hg and Pb were directly determined via their isotopes (110)Cd, (111)Cd, (112)Cd, (199)Hg, (200)Hg, (201)Hg, (202)Hg, (206)Pb, (207)Pb, and (208)Pb, without using CRI. The CRI can be quickly activated or deactivated before each analyte measurement. Limits of detection for (52)Cr were 0.04 or 0.14 μg L(-1) with He or H(2) injected in CRI. Cadmium and Pb have LODs between 0.02 and 0.08 μg L(-1) and Hg had 0.93-0.98 μg L(-1), without using CRI. Analyte concentrations for samples varied from 16 to 43, 1 to 11, 4 to 12, and 5 to 13 mg kg(-1) for Cr, Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Conversion of waste FGD gypsum into hydroxyapatite for removal of Pb²⁺ and Cd²⁺ from wastewater.
Yan, Yubo; Dong, Xiaoli; Sun, Xiaolei; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun
2014-09-01
Flue gas desulfurization (FGD) gypsum, a familiar waste generated from coal-fired power plants, was successfully transformed to hydroxyapatite (FGD-HAP) by hydrothermal method. The obtained FGD-HAP was characterized by XRD, FTIR, TEM and BET methods and investigated as adsorbent for removal of Pb(2+) and Cd(2+) from wastewater. Batch experiments were performed by varying the pH values, contact time and initial metal concentration. The result of pH impact showed that the adsorption of two ions was pH dependent process, and the pH 5.0-6.0 was found to be the optimum condition. The achieved experimental data were analyzed with various kinetic and isotherm models. The kinetic studies displayed that the pseudo-second order kinetic model could describe adsorption processes well with high correlation coefficient, and the Langmuir isotherm model provided the best fit to the equilibrium experimental data. The maximum adsorption capacities calculated from Langmuir equation were 277.8 and 43.10mg/g for Pb(2+) and Cd(2+), respectively, which can compete with other adsorbents. The thermodynamic parameters revealed the adsorption processes were endothermic and spontaneous in nature. In binary adsorption, the amount of Cd(2+) adsorbed on FGD-HAP decreased by 46.0% with increasing concentration of Pb(2+), which was higher than that of Pb(2+)(21.7%), demonstrating the stronger affinity between FGD-HAP and Pb(2+). The highest amount of Pb(2+) and Cd(2+) desorbed from saturated FGD-HAP by EDTA solution confirmed the FGD-HAP was a promising alternative adsorbent in treatment of toxic Pb(2+) and Cd(2+) wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-01-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg−1) set by the State Environmental Protection Administration of China (SEPA), for soils in China. Conversely, Cd concentrations in the soils exceeded the MAL set by SEPA (0.6 mg kg−) and the European Union (1.5 mg kg−1) by 62-74% and 4-34%, respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8-11 mgkg−1. The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg−1) for leafy vegetables and the MAL for fruity and rooty/tuber vegetables (0.1 mg kg−1) set by FAO/WHO-CODEX.. Likewise, all vegetables except Pisum sativum (0.12 mg kg−1) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. PMID:27939659
Should legislation regarding maximum Pb and Cd levels in human food also cover large game meat?
Taggart, Mark A; Reglero, Manuel M; Camarero, Pablo R; Mateo, Rafael
2011-01-01
Game meat may be contaminated with metals and metalloids if animals reside in anthropogenically polluted areas, or if ammunition used to kill the game contaminates the meat. Muscle tissue from red deer and wild boar shot in Ciudad Real province (Spain) in 2005-06 was analysed for As, Pb, Cu, Zn, Se and Cd. Samples were collected from hunting estates within and outside an area that has been historically used for mining, smelting and refining various metals and metalloids. Meat destined for human consumption, contained more Pb, As and Se (red deer) and Pb (boar) when harvested from animals that had resided in mined areas. Age related accumulation of Cd, Zn and As (in deer) and Cd, Cu and Se (in boar) was also observed. Two boar meat samples contained high Pb, at 352 and 2408 μg/g d.w., and these were likely to have been contaminated by Pb ammunition. Likewise, 19-84% of all samples (depending on species and sampling area) had Pb levels > 0.1 μg/g w.w., the EU maximum residue level (MRL) for farm reared meat. Between 9 and 43% of samples exceeded comparable Cd limits. Such data highlight a discrepancy between what is considered safe for human consumption in popular farmed meat (chicken, beef, lamb), and what in game may often exist. A risk assessment is presented which describes the number of meals required to exceed current tolerable weekly intakes (PTWIs) for Pb and Cd, and the potential contribution of large game consumption to such intake limit criteria. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Bingpo; Lu, Ping; Liu, Henan; ...
2015-06-05
Quantum oscillations are observed in the 2DEG system at the interface of novel heterostructures, PbTe/CdTe (111), with nearly identical lattice parameters (a PbTe = 0.6462 nm, a CdTe = 0.648 nm) but very different lattice structures (PbTe: rock salt, CdTe: zinc blende). The 2DEG formation mechanism, a mismatch in the bonding configurations of the valence electrons at the interface, is uniquely different from the other known 2DEG systems. The aberration-corrected scanning transmission electron microscope (AC-STEM) characterization indicates an abrupt interface without cation interdiffusion due to a large miscibility gap between the two constituent materials. As a result, electronic transport measurementsmore » under magnetic field up to 60 T, with the observation of Landau level filling factor ν = 1, unambiguously reveal a π Berry phase, suggesting the Dirac Fermion nature of the 2DEG at the heterostructure interface, and the PbTe/CdTe heterostructure being a new candidate for 2D topological crystalline insulators.« less
Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS.
Dos Santos, Jeferson M; Quináia, Sueli P; Felsner, Maria L
2018-09-15
A simple and fast analytical method for the determination of Cr, Pb and Cd in brown sugar by GF AAS using slurry sampling was developed and in house validated for the first time. Analytical curves were prepared by external standardization for Cr, and by matrix simulation for Pb and Cd and they were linear. Low limits of quantification for Cr (32.8 ng g -1 ), Pb (49.3 ng g -1 ) and Cd (4.5 ng g -1 ) were found. Repeatability and intermediate precision estimates (<10% and <15%, respectively) and recovery rates (95-103%) demonstrated a good precision and accuracy. The levels in brown sugar samples ranged from <32.8 to 160 ng g -1 for Cr, from <49.3 to 211.0 ng g -1 for Pb and from <4.5 to 7.0 ng g -1 for Cd and they may be assigned to anthropogenic activities and the adoption of inadequate practices of production and processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio
2018-02-01
A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mandlate, Jaime S; Soares, Bruno M; Seeger, Tassia S; Vecchia, Paula Dalla; Mello, Paola A; Flores, Erico M M; Duarte, Fabio A
2017-04-15
A DLLME method for extraction and preconcentration of Cd and Pb from soft drinks and further determination by GF AAS was developed. Important parameters of DLLME such as the type and volume of dispersive and extraction solvents, concentration of DDTC (complexing agent) and pH were evaluated. Better results were obtained using 500μL of acetone for Cd and 700μL of acetonitrile for Pb as dispersive solvents, 60μL of CCl 4 as extraction solvent for both analytes and 500μL of 1.5% DDTC solution. Accuracy was evaluated by recovery assays and ranged from 91 to 113% for Cd and from 95 to 108% for Pb, with RSD below 10 and 7%, respectively. The LODs were 0.006 and 0.072ngL -1 for Cd and Pb, respectively. The optimized method was applied for the determination of Cd and Pb in soft drinks with different brands and flavours. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dvořák, Petr; Andreji, Jaroslav; Mráz, Jan; Dvořáková-Líšková, Zuzana; Klufová, Renata
2016-12-18
This study to assess the environmental pollution status in streams (Loutecky, Spicak, Olsina, Trebovicky, Polecnicky and Luzny) from the Boletice area. Were determined of some metal (Hg, Pb, Cd) concentrations in the muscle and correlations among selected metals as well as standard length and total weight in brown trouth - Salmo trutta morpha fario. The contents of the analyzed metals in muscles were Hg 0.19-0.72, Pb 0.01-0.6 and Cd 0.020-0.083 mg/kg wet weight basis and these concentrations did not exceed the limits admissible in the Czech Republic. The Czech republic permissible limit for Hg (0.5 mg/kg to omnivors, 1 mg/kg to predators), Pb (0.3 mg/kg) and Cd (0.05 mg/kg) defined in the Codex Alimentarius for safe human consumption exceeded in 6%, 3%, and 0% of analyzed samples for Hg, Pb and Cd respectively. On an average, the order of metal concentrations in the fish muscle was: Hg>Pb>Cd.
Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato
2013-10-01
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.
Heavy metals in produce from urban farms in the San Francisco Bay Area.
Kohrman, Hannah; Chamberlain, C Page
2014-01-01
Cadmium (Cd) and lead (Pb) concentrations were analysed in 96 samples of produce from seven urban farms, three suburban farms and three grocery stores in the San Francisco Bay Area in 2011-2012. Cd concentrations were highest in urban chard (0.043 mg kg(-1)) and lowest in urban, suburban and grocery squash (0.003 mg kg(-1)). Pb concentrations were highest in urban kale (0.080 mg kg(-1)) and lowest in grocery squash (0.008 mg kg(-1)). The mean heavy metal concentrations for Cd and Pb in all produce types were well below the maximum limits as set by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Individual concentrations of Cd and Pb were below the limits of detection in 26 of 192 analyses. Cd and Pb concentrations in produce from urban farms were not significantly different from produce grown in suburban farms or grocery stores. It was concluded that produce from urban community farms in San Francisco, at least for the farms studied, is safe for human consumption.
Adsorption of Pb(II) and Cd(II) by Squid Ommastrephes bartrami Melanin
Chen, Shiguo; Xue, Changhu; Wang, Jingfeng; Feng, Hui; Wang, Yuming; Ma, Qin; Wang, Dongfeng
2009-01-01
The adsorption of Cd(II) and Pb(II) by squid melanin was investigated. At a metal ion concentration of 2 mM/L, the biosorption efficiency of melanin reached 95% for Cd(II) and Pb(II). The maximum content of bound Cd(II) and Pb(II) was 0.93 mM/g and 0.65 mM/g, respectively. Temperature had no obvious effect on the adsorption of the metals, and in a pH range of 4.0–7.0, the adsorption yield was high and stable. Macrosalts such as NaCl, MgCl2, and CaCl2 had no obvious effect on the binding of Pb(II) but greatly diminished the adsorption of Cd(II), which indicated that different functional groups in squid melanin are responsible for their adsorption. IR analysis of metal ion-enriched squid melanin demonstrated that the possible functional groups responsible for metal binding were phenolic hydroxyl (OH), carboxyl (COOH), and amine groups (NH). This study reports a new material for the removal of heavy metals from low-strength wastewater. PMID:20148082
Assessment of metals content in dandelion (Taraxacum officinale) leaves grown on mine tailings
NASA Astrophysics Data System (ADS)
Levei, Levente; Andrei, Mariana Lucia; Hoaghia, Maria Alexandra; Ozunu, Alexandru
2017-12-01
Dandelion (Taraxacum officinale) is one of the plant species that has the ability to spontaneously grow on mine tailings, due to its high tolerance for harsh environmental conditions (low nutrients level, high metal contents). The concentrations of Cd, Cu, Pb and Zn were determined in tailings and dandelion leaves grown on nonferrous mine tailings from Romania, while the metal accumulation was assessed by transfer factors (TFs) calculated as the ratio between the metal concentration in plant leaves and in tailings underneath. The results showed that the metal concentrations in tailings ranged between 0.4-8.0 mg/kg Cd, 20-1300 mg/kg Cu, 27-570 mg/kg Pb and 48-800 mg/kg Zn, while the metal concentrations in dandelion ranged between 0.2-4.8 mg/kg Cd, 6.2-17 mg/kg Cu, 0.5-75 mg/kg Pb and 27-260 mg/kg Zn. The TFs were below 0.8 for Cd and Zn and below 0.4 for Cu and Pb and decreased in the following order Cd≥Zn>Cu≥Pb, suggesting the Cd and Zn accumulation capability of dandelion.
Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.
Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z
2016-12-01
Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.
Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.
Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia
2018-03-01
Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shiel, Alyssa E.; Weis, Dominique; Orians, Kristin J.
2012-01-01
Environmental monitoring and remediation require techniques to identify the source and fate of metals emissions. The measurement of heavy metal isotopic signatures, made possible by the advent of the MC-ICP-MS, is a powerful new geochemical tool, which may be used to trace the source of these metals in the environment. In a multi-tracer study, Cd, Zn and Pb isotopic compositions (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are used to distinguish between natural and anthropogenic sources of these metals in bivalves collected from western Canada (British Columbia), Hawaii, and the USA East Coast. Variability in the δ 114/110Cd values of bivalves (-1.20‰ to -0.09‰) is attributed to differences in the relative contributions of Cd from natural and anthropogenic sources between sites. Cadmium isotopic compositions (δ 114/110Cd = -0.69‰ to -0.09‰) identify high Cd levels in B.C. oysters as primarily natural (i.e., upwelling of Cd rich intermediate waters in the North Pacific), with some variability attributed to anthropogenic sources (e.g., mining and smelting). Variability in the δ 66/64Zn values exhibited by the B.C. bivalves is relatively small (0.28-0.36‰). Despite the low Pb levels found in B.C. oysters, Pb isotopes are used to identify emissions from industrial processes and the consumption of unleaded gasoline and diesel fuel as significant metal sources. Although the Cd concentrations of the USA East Coast bivalves are primarily lower than those of B.C. oysters, their relatively light Cd isotopic compositions (δ 114/110Cd = -1.20‰ to -0.54‰) indicate the significance of anthropogenic Cd sources and are attributed to the high prevalence of industry on this coast. The δ 114/110Cd values of USA East Coast bivalves include the lightest ever reported, with the exception of values reported for extraterrestrial materials. In addition, the Pb isotopic compositions of bivalves from the USA East Coast indicate Pb emissions from the combustion of coal are an important source of Pb, consistent with the high consumption of coal for power production on this coast. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb "fingerprinting" techniques.
Bing, Haijian; Zhou, Jun; Wu, Yanhong; Luo, Xiaosan; Xiang, Zhongxiang; Sun, Hongyang; Wang, Jipeng; Zhu, He
2018-07-01
Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport. Copyright © 2018 Elsevier B.V. All rights reserved.
He, Shuran; Li, Yongtao; Weng, Liping; Wang, Jinjin; He, Jinxian; Liu, Yonglin; Zhang, Kun; Wu, Qihong; Zhang, Yulong; Zhang, Zhen
2018-10-01
In present study, the feasibility of applying a natural adsorbent with Fe 3+ modification (Fe 3+ -modified argillaceous limestone, FAL) on the competitive adsorption of heavy metals (i.e., Cd 2+ , Pb 2+ and Ni 2+ ) was evaluated. The current results revealed an efficient adsorption on Cd 2+ , Pb 2+ and Ni 2+ in mono-metal system. Further experiments demonstrated a high selectivity of Pb 2+ during the competitive adsorption of Cd 2+ , Pb 2+ and Ni 2+ . The adsorption selectivity of the metal ions followed the order of Pb ≫ Cd > Ni. In addition, both pH and ionic strength are important factors affecting the metal adsorptions. It is interestingly that various NOMs (i.e., humic acid (HA) and glycine (Gly)) exerted different effects on the adsorption behaviors, probably due to the different affinities for Pb 2+ , Cd 2+ and Ni 2+ and the redistribution of newly-formed metal-DOM complexes. X-ray photoelectron spectroscopy (XPS) analysis together with X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analysis revealed that the metal adsorptions were mainly regulated via the synergistic mechanisms of ion exchange by Na + , Ca 2+ , and Al 3+ , precipitation to form CdCO 3 and Pb 2 (OH) 2 (CO 3 ) 2 , as well as complexes of FAL-OPb and FAL-ONi by hydroxyl groups on the surface of FAL. The application of FAL would be a promising option in leading to an efficient heavy metal removal. Copyright © 2018 Elsevier B.V. All rights reserved.
Hashem, Mohamed
2007-01-01
The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084
Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes.
Denys, A; Allain, F; Foxwell, B; Spik, G
1997-08-01
Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway and released in biological fluids. We have recently demonstrated that both free CyPB and CyPB-CsA complex specifically bind to peripheral blood T lymphocytes and are internalized. These results suggest that CyPB might promote the targeting of the drug into sensitive cells. Peripheral blood lymphocytes are subdivided in several populations according to their biological functions and sensitivity to CsA. We have investigated the binding of CyPB to these different subsets using a CyPB derivatized by fluorescein through its single cysteine which retains its binding properties. We have confirmed that only T cells were involved in the interaction with CyPB. The ligand binding was found to be heterogeneously distributed on the different T-cell subsets and surface-bound CyPB was mainly associated with the CD4-positive cells. No significant difference was noted between the CD45RA and CD45RO subsets, demonstrating that CyPB-binding sites were equally distributed between native and memory T cells. CD3 stimulation of T lymphocytes led to a decrease in the CyPB-binding capacity, that may be explained by a down-regulation of the CyPB-receptor expression upon T-cell activation. Finally, we demonstrated that CyPB-receptor-positive cells, isolated on CyPB sulphydryl-coupled affinity matrices, are more sensitive to CyPB-complexed CsA than mixed peripheral blood lymphocytes, suggesting that CyPB potentiates CsA activity through the binding of the complex. Taken together, our results demonstrate that CyPB-binding sites are mainly associated with resting cells of the helper T lymphocyte, and that CyPB might modulate the distribution of CsA through the drug targeting to sensitive cells.
Spin-coating deposition of PbS and CdS thin films for solar cell application
NASA Astrophysics Data System (ADS)
Patel, Jayesh; Mighri, Frej; Ajji, Abdellah; Tiwari, Devendra; Chaudhuri, Tapas K.
2014-12-01
In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 × 1018 cm-3 and 2.16 × 10-3 cm2/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm2 and 0.32, respectively.
CD4+ CD25+ CD127low Regulatory T Cells as Indicator of Rheumatoid Arthritis Disease Activity.
Khattab, Sahar S; El-Saied, Amany M; Mohammed, Rehab A; Mohamed, Eman E
2016-06-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by disturbed immune regulation, inducing a progressive cartilage and bone destruction. Despite enrichment of T regulatory cell (T-regs) in synovial fluid, conflicting results are reported concerning T-regs in peripheral blood (PB) of RA patients. To determine possible correlation between the frequency of PB CD4+ CD25+CD127low (T-regs) with RA disease activity. Forty females with RA, classified according to the Disease Activity Score 28 (DAS-28), as highly active, mild-moderate or low disease activity; and 20 age and sex matched healthy controls, were enrolled to study CD4+ CD25+ CD127low T- regs in PB by flow cytometry. Active RA patients had lower frequency of the CD4+ CD25+ CD127low T- regs compared to those with mild-moderate or low disease activity (P <0.001). The frequencies of the T- regs showed negative correlation with the DAS-28 (P<0.01). In conclusion, CD4+ CD25+ CD127low T-regs is significantly lower in highly active RA patients compared to patients with lower activity or controls. Copyright© by the Egyptian Association of Immunologists.
Wang, N.; Ingersoll, C.G.; Ivey, C.D.; Hardesty, D.K.; May, T.W.; Augspurger, T.; Roberts, A.D.; Van Genderen, E.; Barnhart, M.C.
2010-01-01
Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299??g Pb/L, >227??g Cd/L, 2,685??g Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426??g Pb/L, 199??g Cd/L, 1,700??g Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298??g Pb/L, 16??g Cd/L, 151 and 175??g Zn/L) and Neosho mucket (188??g Pb/L, 20??g Cd/L, 145??g Zn/L). Chronic values for fatmucket were 10??g Pb/L, 6.0??g Cd/L, and 63 and 68??g Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. ?? 2010 SETAC.
Wang, Ning; Ingersoll, Christopher G; Ivey, Christopher D; Hardesty, Douglas K; May, Thomas W; Augspurger, Tom; Roberts, Andy D; van Genderen, Eric; Barnhart, M Chris
2010-09-01
Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. Copyright 2010 SETAC.
Tidal river sediments in the Washington, D.C. area. 1. Distribution and sources of trace metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velinsky, D.J.; Wade, T.L.; Schlekat, C.E.
1994-06-01
Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Crk Cd, Hg, Pb, and Zn) exhibited a wide range in values in the study area. Sediment concentrations of Pb ranged from 32.0{mu}g Pb g {sup -1} to 3,630 {mu}g Pb g{sup -1}, Cd from 0.24more » {mu}g Cd g{sup -1} to 4.1 {mu}g Cd g{sup -1}, and Hg from 0.13 {mu}g g{sup -1} to 9.2 {mu}g Hg g{sup -1}, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River measurements indicate that numerous storm and combined sewers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadmium and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N{sub 2}-purged 1N HCI leach. On average, {le}40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect moderate to highly contaminated area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase containing these metals indicates potential mobility of the sediment-bound metals during either storm events or dredging. 39 refs., 5 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Aziz, N. A. A.; Jayasuriya, N.; Fan, L.
2016-07-01
The effectiveness of plant based materials Moringa oleifera (Moringa) seeds and Musa cavendish (banana peel) for removing heavy metals namely lead (Pb), nickel (Ni) and cadmium (Cd) from contaminated groundwater was studied. Tests were carried out with individual and combined biomass at neutral pH condition on synthetic groundwater samples. The optimum biomass doses were determined as 200 mg/L for single biomass and 400 mg/L (in the ratio of 200 mg/L: 200 mg/L) for combined biomasses and used for adsorption isotherm studies with contact time of 30 minutes. Results showed that combined biomasses was able to met the Pb, Ni and Cd WHO standards from higher Pb, Ni and Cd initial concentrations which were up to 40 µg/L, 50 µg/L 9 µg/L, respectively compared to individual biomass of Moringa seed and banana peel. Moringa seeds exhibited the highest removal of Pb (81%) while the combined biomasses was most effective in removing Ni (74%) and Cd (97%) over wider their initial concentration ranges. The experimental data were linearized with Langmuir and Freundlich adsorption isotherm models. Freundlich model described the Pb adsorption better than the Langmuir model for all the tested biomasses. However, the Langmuir model fit better with the experimental data of Ni adsorption by Moringa seeds. Both models showed negligible differences in the coefficient of determination (R2) when applied for Ni and Cd adsorption on banana peel and combined biomasses, suggesting that there were multiple layers on the biomass interacting with the metals. Chemisorption is suggested to be involved in Pb adsorption for all tested biomasses as the value of nF calculated was lower than one. This type of adsorption could explain the phenomenon of different behavior of Pb removal and the higher Pb adsorption capacity (represented by KF values) compared to Ni and Cd. The study demonstrates that Moringa seeds, banana peel and their combination have the potential to be used as a natural alternative to the other water treatment agents for removing the Pb, Ni and Cd from drinking water.
Saha, Dipendu; Barakat, Soukaina; Van Bramer, Scott E; Nelson, Karl A; Hensley, Dale K; Chen, Jihua
2016-12-14
In this work, sulfur-functionalized ordered mesoporous carbons were synthesized by activating the soft-templated mesoporous carbons with sulfur bearing salts that simultaneously enhanced the surface area and introduced sulfur functionalities onto the parent carbon surface. XPS analysis showed that sulfur content within the mesoporous carbons were between 8.2% and 12.9%. The sulfur functionalities include C-S, C═S, -COS, and SO x . SEM images confirmed the ordered mesoporosity within the material. The BET surface areas of the sulfur-functionalized ordered mesoporous carbons range from 837 to 2865 m 2 /g with total pore volume of 0.71-2.3 cm 3 /g. The carbon with highest sulfur functionality was examined for aqueous phase adsorption of mercury (as HgCl 2 ), lead (as Pb(NO 3 ) 2 ), cadmium (as CdCl 2 ), and nickel (as NiCl 2 ) ions in both noncompetitive and competitive mode. Under noncompetitive mode and at a pH greater than 7.0 the affinity of sulfur-functionalized carbons toward heavy metals were in the order of Hg > Pb > Cd > Ni. At lower pH, the adsorbent switched its affinity between Pb and Cd. In the noncompetitive mode, Hg and Pb adsorption showed a strong pH dependency whereas Cd and Ni adsorption did not demonstrate a significant influence of pH. The distribution coefficient for noncompetitive adsorption was in the range of 2448-4000 mL/g for Hg, 290-1990 mL/g for Pb, 550-560 mL/g for Cd, and 115-147 for Ni. The kinetics of adsorption suggested a pseudo-second-order model fits better than other models for all the metals. XPS analysis of metal-adsorption carbons suggested that 7-8% of the adsorbed Hg was converted to HgSO 4 , 14% and 2% of Pb was converted to PbSO 4 and PbS/PbO, respectively, and 5% Cd was converted to CdSO 4 . Ni was below the detection limit for XPS. Overall results suggested these carbon materials might be useful for the separation of heavy metals.
Le Gac, Stéphane; Fusaro, Luca; Roisnel, Thierry; Boitrel, Bernard
2014-05-07
A bis-strap porphyrin ligand (1), with an overhanging carboxylic acid group on each side of the macrocycle, has been investigated toward the formation of dynamic libraries of bimetallic complexes with Hg(II), Cd(II), and Pb(II). Highly heteroselective metalation processes occurred in the presence of Pb(II), with Hg(II) or Cd(II) bound out-of-plane to the N-core and "PbOAc" bound to a carboxylate group of a strap on the opposite side. The resulting complexes, 1(Hg)·PbOAc and 1(Cd)·PbOAc, display three levels of dynamics. The first is strap-level (interactional dynamics), where the PbOAc moiety swings between the left and right side of the strap owing to a second sphere of coordination with lateral amide functions. The second is ligand-level (motional dynamics), where 1(Hg)·PbOAc and 1(Cd)·PbOAc exist as two degenerate states in equilibrium controlled by a chemical effector (AcO(-)). The process corresponds to a double translocation of the metal ions according to an intramolecular migration of Hg(II) or Cd(II) through the N-core, oscillating between the two equivalent overhanging carbonyl groups, coupled to an intermolecular pathway for PbOAc exchanging between the two equivalent overhanging carboxylate groups (N-core(up) ⇆ N-core(down) coupled to strap(down) ⇆ strap(up), i.e., coupled motion #1 in the abstract graphic). The third is library-level (constitutional dynamics), where a dynamic constitutional evolution of the system was achieved by the successive addition of two chemical effectors (DMAP and then AcO(-)). It allowed shifting equilibrium forward and backward between 1(Hg)·PbOAc and the corresponding homobimetallic complexes 1(Hg2)·DMAP and 1(Pb)·PbOAc. The latter displays a different ligand-level dynamics, in the form of an intraligand coupled migration of the Pb(II) ions (N-core(up) ⇆ strap(up) coupled to strap(down) ⇆ N-core(down), i.e., coupled motion #2 in the abstract graphic). In addition, the neutral "bridged" complexes 1HgPb and 1CdPb, with the metal ions on opposite sides both bound to the N-core and to a carboxylate of a strap, were structurally characterized. These results establish an unprecedented approach in supramolecular coordination chemistry, by considering the reversible interaction of a metal ion with the porphyrin N-core as a new source of self-organization processes. This work should provide new inspirations for the design of innovative adaptative materials and devices.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2009-11-15
We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.
Li, Peizhong; Lin, Chunye; Cheng, Hongguang; Duan, Xiaoli; Lei, Kai
2015-03-01
Anthropogenic emissions of toxic metals from smelters are a global problem. The objective of this study was to investigate the distribution of toxic metals in soils around a 60 year-old Pb/Zn smelter in a town in Yunnan Province of China. Topsoil and soil core samples were collected and analyzed to determine the concentrations of various forms of toxic metals. The results indicated that approximately 60 years of Pb/Zn smelting has led to significant contamination of the local soil by Zn, Pb, Cd, As, Sb, and Hg, which exhibited maximum concentrations of 8078, 2485, 75.4, 71.7, 25.3, and 2.58mgkg(-1), dry wet, respectively. Other metals, including Co, Cr, Cu, Mn, Ni, Sc, and V, were found to originate from geogenic sources. The concentrations of smelter driven metals in topsoil decreased with increasing distance from the smelter. The main contamination by Pb, Zn, and Cd was found in the upper 40cm of soil around the Pb/Zn smelter, but traces of Pb, Zn, and Cd contamination were found below 100cm. Geogenic Ni in the topsoil was mostly bound in the residual fraction (RES), whereas anthropogenic Cd, Pb, and Zn were mostly associated with non-RES fractions. Therefore, the smelting emissions increased not only the concentrations of Cd, Pb, and Zn in the topsoil but also their mobility and bioavailability. The hazard quotient and hazard index showed that the topsoil may pose a health risk to children, primarily due to the high Pb and As contents of the soil. Copyright © 2014 Elsevier Inc. All rights reserved.
Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.
2009-01-01
Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an additional 12% of the total variation in fillet Cd. Collectively, the results indicate that blood sampling could provide reasonably accurate and precise estimates of fillet Pb, Co, and Cd concentrations that would be suitable for identifying contaminated sites and for monitoring, but some fillet sampling might be necessary at contaminated sites for establishing consumption advisories. ?? 2009 US Government.
Lin, Qianglu; Makarov, Nikolay S.; Koh, Weon-kyu; ...
2014-11-26
The unique optical properties exhibited by visible emitting core/shell quantum dots with especially thick shells are the focus of widespread study, but have yet to be realized in infrared (IR) -active nanostructures. We apply an effective-mass model to identify PbSe/CdSe core/shell quantum dots as a promising system for achieving this goal. We then synthesize colloidal PbSe/CdSe quantum dots with shell thicknesses of up to 4 nm that exhibit unusually slow hole intra-band relaxation from shell to core states, as evidenced by the emergence of dual emission, i.e., IR photoluminescence from the PbSe core observed simultaneously with visible emission from themore » CdSe shell. In addition to the large shell thickness, the development of slowed intraband relaxation is facilitated by the existence of a sharp core-shell interface without discernible alloying. Growth of thick shells without interfacial alloying or incidental formation of homogenous CdSe nanocrystals was accomplished using insights attained via a systematic study of the dynamics of the cation-exchange synthesis of both PbSe/CdSe as well as the related system PbS/CdS. Finally, we show that the efficiency of the visible photoluminescence can be greatly enhanced by inorganic passivation.« less
NASA Astrophysics Data System (ADS)
Breton, Jérôme; Daniel, Catherine; Vignal, Cécile; Body-Malapel, Mathilde; Garat, Anne; Plé, Coline; Foligné, Benoît
2016-01-01
Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed.
Cobbina, Samuel J; Duwiejuah, Abudu B; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel
2015-08-28
The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.
Cobbina, Samuel J.; Duwiejuah, Abudu B.; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel
2015-01-01
The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended. PMID:26343702
Positron Lifetime Study on the As-Prepared Cd-Doped Pb-1212 Superconductive Oxides
NASA Astrophysics Data System (ADS)
Zhou, X. Y.; Zhou, X. Y.; Zhao, W. C.; Jin, H.; Cao, L. Z.; Zhai, L. H.; Han, R. D.
1997-12-01
The positron lifetime as a function of the Cd content x was measured for the as-prepared samples of (Pb1 - xCdx)Sr2(Y0.5Ca0.5)Cu2Oy. A constant long-lived lifetime was observed for all samples. The intensity of the long-lived lifetimes has an obvious decrease starting at x = 0.3 and indicated the existence of an impurity phase in the sample with x = 0.3. The monotonous decrease of the bulk lifetime for the single-phase samples implies that Cd mainly substitutes for Pb. The changes of the microstructure with Cd content were discussed.
McBride, Murray B.; Shayler, Hannah A.; Spliethoff, Henry M.; Mitchell, Rebecca G.; Marquez-Bravo, Lydia G.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Casey, Linda; Bachman, Sharon
2014-01-01
Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429
McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon
2014-11-01
Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Fan-Feng; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A. C.
2018-02-01
This paper describes a flow injection vapor generation (VG) method using inductively coupled plasma mass spectrometry (ICP-MS) for determining As, Cd, Sb, Hg, and Pb in nail polish. The samples for VG were prepared as aqueous slurries of a nail polish (0.5% m/v), thiourea (1% m/v), Co(II) (0.75 μg mL- 1), and HCl (1.2% v/v). Chemical VG of As, Cd, Sb, Hg, and Pb ions, by reduction with tetrahydroborate (3% m/v in 0.2% m/v NaOH), enabled their separation from the slurry. With VG sample introduction, As, Cd, Sb and Hg signals were increased by 1-2 orders (except Pb) compared to solution nebulization due to better sample introduction. Quantifications were performed by VG ICP-MS using isotope dilution and standard addition methods as slopes of calibration plots of analytes in the slurries were higher. Using the reported procedure, samples of three nail polishes purchased locally were analyzed for their levels of As, Cd, Sb, Hg, and Pb. The results obtained were in good agreement with those measured using electrothermal vaporization ICP-MS. In the original nail polish sample, the detection limits, calculated as 3σ of blank measurements, for As, Cd, Sb, Hg, and Pb, estimated from standard addition curves, were 0.06, 0.12, 0.14, 0.2, and 12 ng g- 1, respectively.
Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin
2018-01-01
The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.
Chand, Piar; Pakade, Yogesh B
2015-07-01
Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.
Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3
Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin
2018-01-01
The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577
Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S
2015-06-01
In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.
Pastorelli, A A; Baldini, M; Stacchini, P; Baldini, G; Morelli, S; Sagratella, E; Zaza, S; Ciardullo, S
2012-01-01
The presence of selected toxic heavy metals, such as cadmium (Cd), lead (Pb) and mercury (Hg), was investigated in fish and seafood products, namely, blue mussel, carpet shell clam, European squid, veined squid, deep-water rose shrimp, red mullet, European seabass, gilthead seabream, Atlantic cod, European hake, Atlantic bluefin tuna and swordfish so as to assess their human exposure through diet. Metals were detected by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and hydride generation atomic absorption spectrometry (Hg-AAS). Measurements of Cd, Pb and Hg were performed by means of analytical methods validated in compliance with UNI CEI EN ISO/IEC 17025 [2005. General requirements for the competence of testing and calibration laboratories. Milano (Italy): UNI Ente Nazionale Italiano di Unificazione]. The exposure assessment was undertaken matching the levels of Cd, Pb and total Hg with consumption data related to fish and seafood products selected for this purpose. In order to establish human health implications, the estimated weekly intakes (EWIs) for Cd, Pb and Hg were compared with the standard tolerable weekly intakes (TWI) for Cd and provisional tolerable weekly intakes (PTWIs) for Pb and Hg stipulated by the European Food Safety Authority (EFSA) and the Food and Agriculture Organization/World Health Organization (FAO/WHO) Joint Expert Committee on Food Additives (JECFA). The found metal concentrations were largely below the maximum levels (MLs) established at the European Union level with the exception of Cd. This metal exceeded the MLs in squid, red mullet, European hake and Atlantic cod. Squid and blue mussel showed the highest Pb concentrations which accounted for 60% and 10% of the MLs, respectively. Highest Hg levels were found in predatory fish. The concentrations of Hg in swordfish, Atlantic bluefin tuna and red mullet accounted for 50%, 30% and 30% of the MLs, respectively. The EWIs for Cd, Pb and Hg related to the consumption of fish and seafood products by the median of the Italian total population accounted for 20%, 1.5% and 10% of the standard TWI for Cd as well as PTWIs for Pb and Hg, respectively. Furthermore, the EWIs estimated using consumption data concerning Italian consumers did not exceed the standard TWI and PTWIs, except for Cd at 95th percentile.
Encina-Montoya, Francisco; Vega-Aguayo, Rolando; Díaz, Oscar; Esse, Carlos; Nimptsch, Jorge; Muñoz-Pedreros, Andrés
2017-10-26
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L -1 ; Zn = 5.00 μg L -1 ; Pb = 0.03 μg L -1 ; Cd = 0.05 μg L -1 ; Hg = 0.05 μg L -1 ); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brams, E.; Anthony, W.; Weatherspoon, L.
Low-level contamination of a sandy soil with toxicants Cd and Pb at 0.01 to 9.0 and 3.0 to 54.0 mg kg{sup {minus}1} soil induced a significant toxicant accumulation in sudan-sorghum hay (Sorghum sudanense (Piper) Stapf-S. bicolor (L.) Moench) (0.5-5.0 and 0.2-1.5 mg kg{sup {minus}1} dry biomass), respectively. Ingestion of 22 to 222 mg Cd kg{sup {minus}1} body wt. by pregnant dairy goats (Capra hircus) from the consumption of hay over 98 d resulted in a significant, but relatively diminutive accumulation of Cd in the doe livers (0.01-0.02 mg kg{sup {minus}1}) and brain cortex (0.002-0.007 mg kg{sup {minus}1}) fresh wt., butmore » not in doe kidneys and blood averaging 0.028 and 0.002 mg Cd kg{sup {minus}1} fresh tissues, respectively. Fetal blood and liver accumulated 2.0 and 4.0 mg Cd kg{sup {minus}1} fresh tissue, respectively, and fetal kidney exhibited a weak response (0.03-0.47 mg Cd kg{sup {minus}1} fresh tissue) to Cd ingested by the pregnant does. Consumption of 240 to 1230 {mu}g Pb kg{sup {minus}1} body wt. induced 1.0 to 43.0 mg Pb kg{sup {minus}1} fresh tissue in the doe brain cerebellum, but not in the doe liver and blood averaging 0.09 and 0.017 mg Pb kg{sup {minus}1} fresh tissue, respectively, Fetal liver and blood averaged 0.043 and 0.014 mg Pb kg{sup {minus}1} tissue. Only minuscule amounts of soil Cd and Pb were retained in the select animal tissues via the ingestion of this hay. Only one-ten-millionth of labile soil Cd and Pb, respectively, accumulated in the select tissues of the pregnant does via the hay pathway. All these amounts were comparable to the norm. If these select animal tissues were used as food, no deleterious effects to human health should be induced.« less
Gao, Bo; Zhou, Huaidong; Huang, Yong; Wang, Yuchun; Gao, Jijun; Liu, Xiaobo
2014-01-01
The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg) in sediments from the Three Gorges Reservoir (TGR) tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process), and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries. PMID:24624045
1993-09-10
effective dielectric constant appears to decrease upon the substitution of PbO, 1. INRODUCTION In V2 05 - TeO2 glasses several studies on equilibrium... glass increases as TeOg is partially replaced by PbO. Previous studies on V20 5 - TeO2 system 4.5 have reported three Infrared absorption bands at 1010...Laboratory, Dr, K,S. Krishnan Road, New Delhi 110012, India. Th4., REFLECTANCE STUDY OF TM,O. GLASSES - AMemon, M,N.Khan, SAI-Dallal, Department of
Piotrowska, Alicja; Bajguz, Andrzej; Godlewska-Zyłkiewicz, Beata; Zambrzycka, Elzbieta
2010-04-01
The present study investigated the biochemical response of aquatic plant Wolffia arrhiza (Lemnaceae) treated with lead (Pb) and cadmium (Cd) at a range of concentrations from 1 to 1000 microM. W. arrhiza has been identified as good scavenger of heavy metals from aqueous solution. Pb and Cd accumulation was found to be increased in a concentration- and duration-dependent manner. However, the highest biosorption of heavy metals was found in plants exposed to low levels (10 microM) of Cd and Pb in the nutrient medium. In observing the response to heavy-metal stress, we noted inhibited plant growth and decreased photosynthetic pigments, monosaccharides, and proteins. In addition, Cd was found to be more toxic to plants than Pb. Heavy metals also induced oxidative damage as evidenced by increased lipid peroxidation and hydrogen peroxide levels. In contrast, the deleterious effects resulting from the cellular oxidative state can be alleviated by enzymatic (catalase, ascorbate peroxidase, nicotinamide dinucleotide [NADH] peroxidase) and nonenzymatic (ascorbate, glutathione) antioxidant mechanisms activated in W. arrhiza plants exposed to Cd and Pb, especially at 10 microM. These results suggest that W. arrhiza is a promising bioindicator of heavy-metal toxicity.
Naidoo, Kristina; Chuturgoon, Anil; Cliff, Geremy; Singh, Sanil; Ellis, Megan; Otway, Nicholas; Vosloo, Andre; Gregory, Michael
2017-07-01
We studied the possible metal offloading onto the progeny of three pregnant female ragged-tooth sharks (Carcharias taurus) (C. taurus). The presences of five metals, i.e. aluminium (Al), arsenic (As), cadmium (Cd), lead (Pb) and selenium (Se) were validated by mass spectrometry in the maternal plasma as well as the intracapsular and uterine fluids (UF) in which embryos develop. Metals were ranked in a decreasing concentration as follows: Plasma: As > Al > Se > Pb > Cd; ICF: As > Se > Al > Cd > Pb and UF: As > Se > Al > Cd > Pb. As was present in the highest concentration in all three sharks. Al, Pb and Cd were found to be the highest within the plasma, while concentrations of Se were similar in all three fluids. These results indicate that C. taurus embryos are exposed to metals during early development, but the impact of this exposure remains unknown. To the best of our knowledge, this is the first investigation to confirm the presence of metals in the fluids that surround the developing C. taurus embryos, a species that is already listed as vulnerable.
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge.
Torri, S I; Lavado, R S
2008-01-01
A greenhouse experiment was set up to study the distribution of Cd, Cu and Pb in three typical soils of the Pampas Region amended with sewage sludge. A sequential extraction procedure was used to obtain four operationally defined geochemical species: exchangeable, bound to organic matter, bound to carbonates, and residual. Two kinds of sewage sludge were used: pure sewage sludge and sewage sludge containing 30% DM of its own incinerated ash, at rates equivalent to a field application of 150 t DM ha(-1). Pots were maintained at 80% of field capacity through daily irrigation with distilled water. Soil samples were obtained on days 1, 60, 270 and 360, and then air-dried and passed through a 2 mm sieve for analysis. Results showed that sludge application increased the less available forms of Cd, Cu and Pb. The inorganic forms became the most prevalent forms for Cu and Pb, whereas Cd was only found in the residual fraction. The concentrations of OM-Cu and INOR-Cu in the amended soil samples were closely correlated with soil pH, whereas the chemical behavior of Cd and Pb did not depend on soil physico-chemical characteristics.
Gong, Kuanping
2015-07-01
We describe a vertically-aligned array of sandwiched nanowires comprising Prussian blue (PB) nanocoating-carbon nanotube (CNT) core-shell structures with CdS particles positioning at the core/shell interface, viz. PB/CdS/CNT. The PB/CdS/CNT electrode thus constructed are noticeable in synchronically harvesting photon-, ionic-, and chemical-energies, respectively, from visible light radiation, K(+) uptaking and releasing, and the reduction of H2O2. In 0.2 M K2SO4 aqueous solution, the photoelectrocatalytic reduction of 1.5 mM H2O2 at PB/CdS/CNT delivered the current density as high as 1.91 mA/cm(2) at reduced overpotential, that is, three times that at the Pt/C. This superb performance is causally linked to the judicious choice of materials and their assembly into defining sandwich nanostructures wherein the three components closely cooperate with each other in the photoelectrocatalytic reduction of H2O2, including photo-induced charge separation in CdS, spontaneous electron injection into PB due to its relatively low Fermi level, and the electrocatalytic reduction of H2O2 by PB via an electrochemical-chemical-electrochemical reaction mechanism. The structural alignment of PB/CdS/CNT ensures the simplest pathway for the mass diffusion and electron shuttle, and a high surface area accessible to the chemical and electrochemical reactions, so as to minimize the concentration- and electrochemical-polarization and thus ensure the fast overall kinetics of the electrode reaction. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Rui; Bing, Haijian; Wu, Yanhong; Zhou, Jun; Xiang, Zhongxiang
2018-02-01
The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.
Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice
2007-05-01
Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.
Dwyer, F.J.; Schmitt, C.J.; Finger, S.E.; Mehrle, P.M.
1988-01-01
Longear sunfish were collected from a stream contaminated with mine tailings rich in lead (Pb), cadmium (Cd) and zinc (Zn). Blood samples were analysed for δ-aminolevulinic acid dehydratase (ALA-D) activity and Pb concentration. Vertebrae were tested for bone strength and composition, and Pb, Zn, and Cd concentrations were determined in muscle tissue. ALA-D activity was negatively correlated with blood Pb concentration (r=–0.66), and enzyme activity was significantly higher and blood Pb significantly lower at the reference site than at the contaminated sites. Blood Pb was highly correlated with Pb in muscle tissue (r= 0.72), and the concentrations of Pb and Cd in muscle tissues were themselves correlated (r= 0.64). In fish from contaminated sites, two of the mechanical properties of the vertebrae measured (elastic limit and modulus of elasticity) were significantly different from values in fish from the reference site. These properties and one other (stress) were weakly correlated with muscle Cd concentration (0.42 < r < 0.46). Biochemical differences among fish from different sites were also evident; concentrations of calcium, phosphorus and collagen were lower in the vertebrae of fish from some of the contaminated sites than at the reference site, and bone phosphorus was negatively correlated with concentrations of Pb in both muscle (r=– 0.62) and blood (r=– 0.75). Collectively, these results indicate that, in addition to the well-documented effects of Pb on haem synthesis, other important biochemical pathways may be disrupted by continuous low-level exposure to elemental contaminants.
The effect of Pb addition on the morphology of CdSe quantum dot
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2010-08-01
CdSe quantum dots had been synthesized with a hot injection method. It was shown that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals from slightly prolate ellipsoid to branched rod. Photoluminescence (PL) of the branched nanocrystals showed rapid depression of emission intensity due to the morphological development to the branched nanocrystal induced by Pb addition. Low temperature PL spectrum indicated that the surface recombination of charge carrier resulted in the large depression of emission from the branched nanocrystal.
Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G
2015-05-01
The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling
2018-08-01
The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.
Saha, Jayanta Kumar; Panwar, N R; Singh, M V
2010-09-01
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4-150 mg/kg and Cd at 0.02-20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C(ul)) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers' fields. Lead and Cd concentration limits in soil were calculated by dividing C(ul) with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.
Risk of ingesting As, Cd, and Pb in animal products in north Rio de Janeiro state, Brazil.
Caldas, D; Pestana, I A; Almeida, M G; Henry, F C; Salomão, M S M B; de Souza, C M M
2016-12-01
This study evaluated the levels of As, Cd, and Pb in muscle and liver the cattle and chicken. The risk was estimated for the adult population of a midsized city in southeast Brazil, concerning the tolerable ingestion and cancer risk. Samples of muscle and liver (cattle and chicken) were collected (n = 250). Samples of mineral supplements for cattle (n = 4) and chicken feed samples (n = 4) were evaluated as one of many potential source of contamination. Muscle, liver, mineral supplement, and feed samples were dissolved in acid medium and analyzed by ICP-OES. Daily muscle and liver intake was estimated using a questionnaire (N = 427). Daily intake of trace elements by the population based on the consumption of cattle muscle, cattle liver, chicken muscle, and chicken liver was low, corresponding to 2.76%, 0.33%, 2.12%, and 0.22% of the Tolerable Intake defined by the WHO for As; 0.54%, 0.29% 0.55%, 0.01%, for Cd; and 0.80%, 0.07%, 0.62%, 0.02%, for Pb. The mean of total ingestion of As, Cd and Pb was 5.43%, 1.18% and 1.51%, respectively of Tolerable Intake defined by WHO. Cancer risk was lower than 5 × 10 -5 year -1 . The results indicate that the muscle and liver consumption is a source of As, Cd, and Pb. Consumers that ingest cattle and chicken muscle need attention in terms the risk of cancer related to intake of As and Cd. Feed and mineral supplementation remain as one of many sources of exposure of As, Cd, and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang
2015-01-01
Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.
Yan, Xuedong; Zhang, Fan; Gao, Dan; Zeng, Chen; Xiang, Wang; Zhang, Man
2013-01-01
Concentrations of four typical heavy metals (Cu; Zn; Cd and Pb) in roadside soils close to three lakes in the Tibetan Plateau were investigated in this study. The hierarchical tree-based regression method was applied to classify concentrations of the heavy metals and analyze their potential influencing factors. It was found that the Tibetan Plateau meadow soils with higher content of sand lead to higher concentrations of Cu; Zn and Pb. The concentrations of Cd and Pb increase with road traffic volume; and for the road segments with higher traffic volume; the Cd and Pb concentrations significantly decrease with the roadside distance. Additionally; the concentrations of Zn and Pb increase as the altitude of sampling site increases. Furthermore; the Hakanson potential ecological risk index method was used to assess the contamination degree of the heavy metals for the study regions. The results show that accumulations of Cu; Zn and Pb in roadside soils remain an unpolluted level at all sites. However; the Cd indices in the regions with higher traffic volume have reached a strong potential ecological risk level; and some spots with peak concentrations have even been severely polluted due to traffic activities. PMID:23749055
Ultrastructure of kidney of ducks exposed to methylmercury, lead and cadmium in combination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P.V.; Jordan, S.A.; Bhatnagar, M.K.
1989-01-01
Ultrastructural alterations in the kidneys of Pekin ducks exposed to various combinations of methylmercury chloride (MeHgCl), lead acetate (PbAC) and cadmium chloride (CdCl2) for 12 weeks were studied. Eight groups (Gr), each consisting of 6 female ducks, were fed diets containing no heavy metals (control), 8 mg of methylmercury chloride (MeHgCl)/kg of feed (GrII), 80 mg of lead acetate (PbAC)/kg of feed (GrIII), 80 mg of cadmium chloride (CdCl2)/kg of feed (GrIV), 8 mg of MeHgCl + 80 mg of PbAC/kg of feed (GrV), 8 mg of MeHgCl + 80 mg of CdCl2/kg of feed (GrVI), 80 mg of PbACmore » + 80 mg of CdCl2/kg of feed (GrVII), and 8 mg of MeHgCl + 80 mg of PbAC + 80 mg of CdCl2/kg of feed (GrVIII). Renal corpuscles of the ducks treated with methylmercury (MdHg), lead (Pb), the cadmium (Cd), either alone or in two way combinations exhibited minor ultrastructural changes. The thickness of the glomerular basement membrane was significantly different from control only in Grs II, IV, V and VI. Crystallization of granules in the juxtaglomerular cells was also observed in Cd and Pb treated birds. Administration of the three metals in combination caused marked changes in podocytes with fusion of secondary processes and no pedicle differentiation. The proximal tubule cells approximately (PT) accumulated lipid droplets, lysosomal bodies and membrane bound vacuoles in methylmercury treated birds. Lead exposed birds had a large number of secondary lysosomes and swollen mitochondria in PT cells. Cadmium administration caused degenerative changes in PT cells which included accumulation of lysosomal bodies containing degenerating organelles, lipid droplets and vacuoles containing myelin figures. Marked degenerative changes in PT cells and interstitial fibrosis was prominent when cadmium was concomitantly administered with the other metals.« less
Shim, Youn K; Lewin, Michael D; Ruiz, Patricia; Eichner, June E; Mumtaz, Moiz M
2017-01-01
Lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are among the top 10 pollutants of global health concern. Studies have shown that exposures to these metals produce severe adverse effects. However, the mechanisms underlying these effects, particularly joint toxicities, are poorly understood in humans. The objective of this investigation was to identify and characterize prevalent combinations of these metals and their species in the U.S. NHANES population to provide background data for future studies of potential metal interactions. Exposure was defined as urine or blood levels ≥ medians of the NHANES 2007-2012 participants ≥6 years (n = 7408). Adjusted-odds ratios (adj-OR) and 95% confidence intervals were determined for covariates (age, gender, and race/ethnicity, cotinine and body mass index). Species-specific analysis was also conducted for As and Hg including iAs (urinary arsenous acid and/or arsenic acid), met-iAs (urinary monomethylarsonic acid and/or dimethylarsinic acid), and oHg (blood methyl-mercury and/or ethyl-mercury). For combinations of As and Hg species, age- and gender-specific prevalence was determined among NHANES 2011-2012 participants (n = 2342). Data showed that approximately 49.3% of the population contained a combination of three or more metals. The most prevalent unique specific combinations were Pb/Cd/Hg/As, Pb/Cd/Hg, and Pb/Cd. Age was consistently associated with these combinations: adj-ORs ranged from 10.9 (Pb/Cd) to 11.2 (Pb/Cd/Hg/As). Race/ethnicity was significant for Pb/Cd/Hg/As. Among women of reproductive age, frequency of oHg/iAs/met-iAS and oHg/met-iAs was 22.9 and 40.3%, respectively. These findings may help prioritize efforts to assess joint toxicities and their impact on public health.
Food safety of milk and dairy product of dairy cattle from heavy metal contamination
NASA Astrophysics Data System (ADS)
Harlia, E.; Rahmah, KN; Suryanto, D.
2018-01-01
Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.
Chemical fractionation of heavy metals in urban soils of Guangzhou, China.
Lu, Ying; Zhu, Feng; Chen, Jie; Gan, Haihua; Guo, Yanbiao
2007-11-01
Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominantly located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron-Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.
van Genuchten, Case M; Peña, Jasquelin
2016-08-10
Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).
TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenczek-Zajac, Anita, E-mail: anita.trenczek-zajac@agh.edu.pl; Kusior, Anna; Lacz, Agnieszka
Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealingmore » at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.« less
Lee, Joohyun; Bae, Hyunju; Jeong, Jeeyon; Lee, Jae-Yun; Yang, Young-Yell; Hwang, Inhwan; Martinoia, Enrico; Lee, Youngsook
2003-01-01
Large parts of agricultural soil are contaminated with lead (Pb) and cadmium (Cd). Although most environments are not heavily contaminated, the low levels observed nonetheless pose a high risk of heavy metal accumulation in the food chain. Therefore, approaches to develop plants with reduced heavy metal uptake are important. Recently, many transgenic plants with increased heavy metal resistance and uptake of heavy metals were developed for the purpose of phytoremediation. However, to reduce heavy metal in the food chain, plants that transfer less heavy metals to the shoot are required. We tested whether an Escherichia coli gene, ZntA, which encodes a Pb(II)/Cd(II)/Zn(II) pump, could be useful for developing plants with reduced heavy metal content. Yeast cells transformed with this gene had improved resistance to Pb(II) and Cd(II). In Arabidopsis plants transformed with ZntA, ZntA was localized at the plasma membrane and improved the resistance of the plants to Pb(II) and Cd(II). The shoots of the transgenic plants had decreased Pb and Cd content. Moreover, the transgenic protoplasts showed lower accumulation of Cd and faster release of preloaded Cd than wild-type protoplasts. These results show that a bacterial transporter gene, ZntA, can be functionally expressed in plant cells, and that that it may be useful for the development of crop plants that are safe from heavy metal contamination. PMID:14512517
Tabrizi, Leila; Mohammadi, Siavash; Delshad, Mojtaba; Moteshare Zadeh, Babak
2015-01-01
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012-2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil(-1) accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.
Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.
Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa
2007-01-01
Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.
Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun
2006-10-01
Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.
Heavy metals in Mugil cephalus (Mugilidae) from the Ligurian Sea (North-West Mediterranean, Italy).
Squadrone, S; Prearo, M; Gavinelli, S; Pellegrino, M; Tarasco, R; Benedetto, A; Abete, M C
2013-01-01
Pb, Cd and Hg in muscles of flathead mullet (Mugil cephalus), collected from Bocca di Magra, La Spezia (Ligurian Sea, Mediterranean Sea, Italy), were determined using graphite furnace atomic absorption spectrometry after microwave digestion for Pb and Cd and direct mercury analyser for Hg. Average Pb concentrations varied in the range 0.20-0.24 mg/kg, whereas Cd and Hg levels were negligible. None of the tested 200 samples exceeded the European regulatory limits as set by EC 1881/2006 and 420/2011. Metal concentrations in fish muscles were assessed for human consumption according to provisional tolerable weekly intake. The estimated values of Pb, Cd and Hg in M. cephalus's edible parts in this study were below the values established by the Joint WHO/FAO Expert Committee on Food Additives. Therefore, it can be concluded that there is no health problem in human consumption.
Moghadam Zadeh, Hamid Reza; Ahmadvand, Parvaneh; Behbahani, Ali; Amini, Mostafa M; Sayar, Omid
2015-01-01
Graphene oxide nano-sheet was modified with dithizone as a novel sorbent for selective pre-concentration and determination of Cd(II) and Pb(II) in food. The sorbent was characterised by various analytical methods and the effective parameters for Cd(II) and Pb(II) adsorption were optimised during this work. The high adsorption capacity and selectivity of this sorbent makes the method capable of fast determinations of the Cd(II) and Pb(II) content in complicated matrices even at μg l(-1) levels using commonly available instrumentation. The precision of this method was < 1.9% from 10 duplicate determinations and its accuracy verified using standard reference materials. Finally, this method was applied to the determination of Cd(II) and Pb(II) ions in common food samples and satisfactory results were obtained.
Synthesis and application of acrylamide-maleic anhydride copolymer for solid phase extraction
NASA Astrophysics Data System (ADS)
Teng, Xiaoxiao; Niu, Yabo; Xie, Zhihai; Cai, Qing
2018-03-01
A new absorbent of acrylamide-maleic anhydride copolymer (PAMMA) for preconcentration of metal ions was synthesized. This PAMMA was applied for enrichment and determination of Al3+, Cu2+, Cd2+ and Pb2+ in table salt by ICP-OES. The maximum uptake capacities of PAMMA were 6.49, 5.84, 5.34 and 7.49 mg g‑1 for Al3+, Cu2+, Cd2+ and Pb2+, respectively. The limit of detection was 0.31, 0.26, 0.43, and 0.12 μg L‑1, and the RSD (relative standard deviations, n=6) was 1.5%, 3.7%, 3.0% and 2.6% for Al3+, Cu2+, Cd2+ and Pb2+, respectively. The presented method was used for simultaneous detecting of Al3+, Cu2+, Cd2+ and Pb2+ in table salt with the recoveries from 95.0% to 103%.
Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.
Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide
2016-03-01
The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.
Narin, Ibrahim; Surme, Yavuz; Bercin, Erdogan; Soylak, Mustafa
2007-06-25
In the presented work, alpha-benzoin oxime immobilized SP70 chelating resin was synthesized for separation and preconcentration of Pb(II), Cd(II), Co(II) and Cr(III). The optimization procedure for analytical parameters including pH, eluent type, flow rate, etc. was examined in order to gain quantitative recoveries of analyte ions. The effects of foreign ions on the recoveries of studied metal ions were also investigated. The detection limits (3sigma) were found to be 16.0, 4.2, 1.3, 2.4microgL(-1) for Pb, Cd, Co and Cr, respectively. The preconcentration factor was 75 for Pb, 100 for Cd, Co and Cr. The optimized method was validated with certified reference materials and successfully applied to the waters, crops and pharmaceutical samples with good results (recoveries greater than 95%, R.S.D. lower than 10%).
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-02-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg -1 ) set by State Environmental Protection Administration of China (SEPA), for soils in China, while Cd concentrations in the soils were exceeded the MAL (61.7-73.7% and 4.39-34.3%) set by SEPA (0.6 mg kg - ), and European Union, (1.5 mg kg -1 ) respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8 to 11 mg kg -1 . The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg -1 ) for leafy vegetables and the 0.1 mg kg -1 MAL for fruity and rooty/tuber vegetables set by FAO/WHO-CODEX. Likewise, all vegetables except Pisum sativum (0.12 mg kg -1 ) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Stephani; Arora, Monica; Fernandez, Cristina
Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA.more » The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.« less
Taweel, Abdulali; Shuhaimi-Othman, M; Ahmad, A K
2013-07-01
Concentrations of the heavy metals copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) and nickel (Ni) were determined in the liver, gills and muscles of tilapia fish from the Langat River and Engineering Lake, Bangi, Selangor, Malaysia. There were differences in the concentrations of the studied heavy metals between different organs and between sites. In the liver samples, Cu>Zn>Ni>Pb>Cd, and in the gills and muscle, Zn>Ni>Cu>Pb>Cd. Levels of Cu, Cd, Zn and Pb in the liver samples from Engineering Lake were higher than in those from the Langat River, whereas the Ni levels in the liver samples from the Langat River were greater than in those from Engineering Lake. Cd levels in the fish muscle from Engineering Lake were lower than in that from the Langat River. Meanwhile, the Cd, Zn and Pb levels in the fish muscle from the Langat River were lower than in that from Engineering Lake, and the Ni levels were almost the same in the fish muscle samples from the two sites. The health risks associated with Cu, Cd, Zn, Pb and Ni were assessed based on the target hazard quotients. In the Langat River, the risk from Cu is minimal compared to the other studied elements, and the concentrations of Pb and Ni were determined to pose the greatest risk. The maximum allowable fish consumption rates (kg/d) based on Cu in Engineering Lake and the Langat River were 2.27 and 1.51 in December and 2.53 and 1.75 in February, respectively. The Cu concentrations resulted in the highest maximum allowable fish consumption rates compared with the other studied heavy metals, whereas those based on Pb were the lowest. A health risk analysis of the heavy metals measured in the fish muscle samples indicated that the fish can be classified at one of the safest levels for the general population and that there are no possible risks pertaining to tilapia fish consumption. Copyright © 2013 Elsevier Inc. All rights reserved.
Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China.
Liu, Borui; Huang, Qing; Cai, Huajie; Guo, Xiang; Wang, Tingting; Gui, Mingying
2015-12-01
Contamination with heavy metals in several species of edible mushrooms from the Yunnan Province in China was determined. Samples were collected from 16 locations in the Yunnan Province, and the contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results demonstrated that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the mushrooms were at typical levels. The concentrations of potentially toxic metals (As, Pb and Cd) were higher than the national standard values of China (1.0 mg/kg for As, 0.2 mg/kg for Cd, and 2.0 mg/kg for Pb) in most cases. Bio-concentration factors suggested that it was easier for As and Cd to be accumulated in mushrooms than Pb, and a Health Risk Index assessment also suggested that As and Cd are greater risks to health than Pb. In conclusion, heavy metal pollution in wild edible mushrooms is a serious problem in the Yunnan Province. Among the toxic metals, As and Cd in the edible mushrooms in the area are the main sources of risk, as they may cause severe health problems. The local government needs to take measures in the form of concrete policies to protect the wild edible mushroom resources in the Yunnan Province. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nkpaa, K W; Patrick-Iwuanyanwu, K C; Wegwu, M O; Essien, E B
2016-01-01
This study was designed to investigate the human health risk through consumption of seafood from contaminated sites in Kaa, B-Dere, and Bodo City all in Ogoniland. The potential non-carcinogenic health risk for consumers were investigated by assessing the estimated daily intake and target hazard quotients for Cr, Cd, Zn, Pb, Mn, and Fe while carcinogenic health effect from Cr, Cd, and Pb was also estimated. The estimated daily intake from seafood consumption was below the threshold values for Cr, Mn, and Zn while they exceeded the threshold for Cd, Pb, and Fe. The target hazard quotients for Zn and Cr were below 1. Target hazard quotients values for Cd, Pb, Mn, and Fe were greater than 1 except for Fe level in Liza falcipinis from Kaa. Furthermore, estimation of carcinogenic risk for Cr in all samples under study exceeded the accepted risk level of 10E-4. Also, Cd carcinogenic risk level for L. falcipinis and Callinectes pallidus collected from B-Dere and C. pallidus collected from Bodo City was 1.1E-3 which also exceeded the accepted risk level of 10E-4 for Cd. Estimation of carcinogenic risk for Pb was within the acceptable range of 10E-4. Consumers of seafood from these sites in Ogoniland may be exposed to metal pollution.
[Cd, Cu, Zn and Pb contents and forms in soils and rapeseeds around Wuhu Plant].
Wang, Xingming; Liu, Dengyi; Tu, Junfang; Li, Zheng; Wang, Youbao
2005-10-01
The study showed that around Wuhu Plant, soil Cd, Zn and Pb mainly existed in Fe-Mn oxide form, and Cu in residual form, with the percentage of 31.81%, 39.83%, 53.79%, and 46.24%, respectively. Soil exchangeable Cd and Pb had a higher proportion (23.47% and 16.32%) than soil exchangeable Cu and Zn (3.14% and 0.54%). The correlations between soil heavy metals and their forms, as well as their transformation to available form were different. Different heavy metals had different accumulation trends in rapeseed and its hull. Cu easily accumulated in hull, while Cd, Zn and Pb had a higher accumulation in seed. The accumulation rate of heavy metals in rapeseed and hull was also different, being the highest for Cd. There was a significantly negative correlation (P < 0.05) between the accumulation rate of heavy metals and their contents in soil. In rapeseed, Cd, Cu and Pb were mainly in sodium hydroxide form, with the percentage of 32.50%, 22.94% and 34.69%, respectively, while Zn was mainly in EDTA form, with a percentage of 45.97. The existed forms of heavy metals in rapeseed probably affected their toxicity, but the toxicity to human food could not be inferred from this research, and needed to be studied further. There was a weak relation between heavy metals contents and their existed forms in rapeseed.
Muñoz Sevilla, Norma Patricia; Villanueva-Fonseca, Brenda Paulina; Góngora-Gómez, Andrés Martin; García-Ulloa, Manuel; Domínguez-Orozco, Ana Laura; Ortega-Izaguirre, Rogelio; Campos Villegas, Lorena Elizabeth
2017-10-03
The concentrations of Cu, Cd, Pb, Zn, and Hg in diploid and triploid oysters from three farms (Guasave, Ahome, and Navolato) on the north-central coast of Sinaloa, Mexico, were assessed based on samples recovered during a single culture cycle 2013-2014. Metal burdens were more strongly correlated (p < 0.05) with the location of the farm than with either the ploidy or the interaction of both variables. The metal concentration ranking for oysters of both ploidies from the three farms was Zn > Cu > Cd > Pb > Hg. For all three farms, the mean concentrations of Cd and Pb in Crassostrea gigas were high, ranging from 2.52 to 7.98 μg/g wet weight for Cd and from 0.91 to 2.83 μg/g wet weight for Pb. Diploid and triploid oysters from the Guasave farm contained high levels of Cu (76.41 and 68.97 μg/g wet weight, respectively). Cu, Cd, and Zn were highly correlated (p < 0.05), and their concentrations may be influenced by agrochemical inputs. The mean levels of Cu for the Guasave farm and of Cd and Pb for all three farms exceeded permissible limits and represented a threat to human health during the sampling period (July 2014 to July 2014).
Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan
2014-05-01
Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.
Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian
2018-01-01
Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.
Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling
2011-01-01
A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117
Wang, Fei; Lu, Xingwen; Li, Xiao-yan
2016-05-05
A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.
Li, Linhui; Ma, Jincai; Xu, Meng; Li, Xu; Tao, Jiahui; Wang, Guanzhu; Yu, Jitong; Guo, Ping
2016-01-01
Adsorption and desorption are important processes that influence the potential toxicity and bioavailability of heavy metals in soils. However, information regarding adsorption and desorption behavior of heavy metals in soils subjected to freeze-thaw cycles is poorly understood. In the current study, the effect of freeze-thaw cycles with different freezing temperature (-15, -25, -35°C) on soil properties was investigated. Then the adsorption and desorption behavior of Pb(2+) and Cd(2+) in freeze-thaw treated soils was studied. The adsorption amounts of Pb(2+) and Cd(2+) in freeze-thaw treated soils were smaller than those in unfrozen soils (p < 0.05), due to the fact that pH, cation exchange capacity, organic matter content, free iron oxide content, and CaCO3 content in freeze-thaw treated soils were smaller than those in unfrozen soils. The adsorption amounts of Pb(2+) and Cd(2+) in soils treated with lower freezing temperatures were higher than those in soils treated with higher freezing temperatures. Desorption percentages of Pb(2+) and Cd(2+) in unfrozen soils were smaller than those in freeze-thaw treated soils (p < 0.05). The desorption percentages of Pb(2+) and Cd(2+) were smaller in soils treated with lower freezing temperatures than those in soils treated with higher freezing temperatures. The results obtained highlight the change of the adsorption and desorption behavior of typical heavy metals in freeze-thaw treated soils located in seasonal frozen soils zone in northeast China.
Comparative study on the hepatoprotection to heavy metals of Zingiber officinale
Nwokocha, Chukwuemeka R.; Owu, Daniel U.; Nwokocha, Magdalene I.; Ufearo, Chibueze S.; Iwuala, Moses O. E.
2012-01-01
Context: Zingiber officinale (Zingiberaceae) is a herb used for culinary and therapeutic purposes due to its anti-inflammatory and antioxidant potentials. Objectives: We examined its protective ability against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Materials & Methods: Ground Zingiber officinale (7%, w/w of feed) was administered to rats either at the same time with the exposure ofheavy metals (group 2), a week after exposure to heavy metals (group 3) or given a week before heavy metal exposure (group 4) for six weeks. Animals were exposed to either of Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) in drinking water. The heavy metal accumulations in the liver were determined using AAS. Results: Weight losses induced by these metals were not reversed by Zingiber officinale administration. There was a significant (P<0.01) increase in protection to Pb (97%) and Cd (63%) accumulation when compared to Hg (32%) at week 2. The protective ability was significantly (P<0.01) decreased at week 4 when compared to week 2 for Cd and Pb but not to Hg in groups 3 (50%) and 4 (52%). At week 6, hepatoprotection to Hg (44%) and Cd (85%) was significantly (P<0.01) different but not to Pb which was only significant (P<0.05) in week 2 of treatment for all groups. Discussion and Conclusion: Zingiber officinale affected the bioavailability, elimination and uptake of these metals in a time-dependent way with highest beneficial reducing effect to Cd followed by Hg and least protection to Pb in the liver. PMID:23225964
Comparative study on the hepatoprotection to heavy metals of Zingiber officinale.
Nwokocha, Chukwuemeka R; Owu, Daniel U; Nwokocha, Magdalene I; Ufearo, Chibueze S; Iwuala, Moses O E
2012-10-01
Zingiber officinale (Zingiberaceae) is a herb used for culinary and therapeutic purposes due to its anti-inflammatory and antioxidant potentials. We examined its protective ability against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. MATERIALS #ENTITYSTARTX00026; Ground Zingiber officinale (7%, w/w of feed) was administered to rats either at the same time with the exposure ofheavy metals (group 2), a week after exposure to heavy metals (group 3) or given a week before heavy metal exposure (group 4) for six weeks. Animals were exposed to either of Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) in drinking water. The heavy metal accumulations in the liver were determined using AAS. Weight losses induced by these metals were not reversed by Zingiber officinale administration. There was a significant (P<0.01) increase in protection to Pb (97%) and Cd (63%) accumulation when compared to Hg (32%) at week 2. The protective ability was significantly (P<0.01) decreased at week 4 when compared to week 2 for Cd and Pb but not to Hg in groups 3 (50%) and 4 (52%). At week 6, hepatoprotection to Hg (44%) and Cd (85%) was significantly (P<0.01) different but not to Pb which was only significant (P<0.05) in week 2 of treatment for all groups. Zingiber officinale affected the bioavailability, elimination and uptake of these metals in a time-dependent way with highest beneficial reducing effect to Cd followed by Hg and least protection to Pb in the liver.
Sass, F Andrea; Schmidt-Bleek, Katharina; Ellinghaus, Agnes; Filter, Sebastian; Rose, Alexander; Preininger, Bernd; Reinke, Simon; Geissler, Sven; Volk, Hans-Dieter; Duda, Georg N; Dienelt, Anke
2017-05-01
Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Sakellaris, T; Spyrou, G; Tzanakos, G; Panayiotakis, G
2007-11-07
Materials such as a-Se, a-As(2)Se(3), GaSe, GaAs, Ge, CdTe, CdZnTe, Cd(0.8)Zn(0.2)Te, ZnTe, PbO, TlBr, PbI(2) and HgI(2) are potential candidates as photoconductors in direct detectors for digital mammography. The x-ray induced primary electrons inside a photoconductor's bulk comprise the initial signal that propagates and forms the final signal (image) on the detector's electrodes. An already developed model for a-Se has been properly extended to simulate the primary electron production in the materials mentioned. Primary electron characteristics, such as their energy, angular and spatial distributions that strongly influence the characteristics of the final image, were studied for both monoenergetic and polyenergetic x-ray spectra in the mammographic energy range. The characteristic feature in the electron energy distributions for PbI(2) and HgI(2) is the atomic deexcitation peaks, whereas for the rest of the materials their shape can also be influenced by the electrons produced from primary photons. The electrons have a small tendency to be forward ejected whereas they prefer to be ejected perpendicular (theta = pi/2) to the incident beam's axis and at two lobes around phi = 0 and phi = pi. At practical mammographic energies (15-40 keV) a-Se, a-As(2)Se(3) and Ge have the minimum azimuthal uniformity whereas CdZnTe, Cd(0.8)Zn(0.2)Te and CdTe the maximum one. The spatial distributions for a-Se, a-As(2)Se(3), GaSe, GaAs, Ge, PbO and TlBr are almost independent of the polyenergetic spectrum, while those for CdTe, CdZnTe, Cd(0.8)Zn(0.2)Te, ZnTe, PbI(2) and HgI(2) have a spectrum dependence. In the practical mammographic energy range and at this primitive stage of primary electron production, a-Se has the best inherent spatial resolution as compared to the rest of the photoconductors. PbO has the minimum bulk space in which electrons can be produced whereas CdTe has the maximum one.
Almeida Lopes, Ana Carolina Bertinde; Urbano, Mariana Ragassi; Souza-Nogueira, André de; Oliveira-Paula, Gustavo H; Michelin, Ana Paula; Carvalho, Maria de Fátima H; Camargo, Alissana Ester Iakmiu; Peixe, Tiago Severo; Cabrera, Marcos Aparecido Sarria; Paoliello, Monica Maria Bastos
2017-07-01
Metal exposure is associated with increased oxidative stress (OS), which is considered an underlying mechanism of metal-induced toxicity. Malondialdehyde (MDA) is a final product of lipid peroxidation, and it has been extensively used to evaluate metal-induced OS. Pro-oxidant effects produced by metals can be mitigated by paraoxonase 1 (PON1), an antioxidant enzyme known to prevent cardiovascular disease and atherosclerosis. Among other factors, the Q192R polymorphism and the exposure to heavy metals have been known to alter PON1 activity. Here, we evaluated the association of blood lead (Pb), cadmium (Cd) and mercury (Hg) levels with PON1 activity, and with MDA concentrations in a randomly selected sample of Brazilian adults aged 40 years or older, living in an urban area in Southern Brazil. A total of 889 subjects were evaluated for blood Pb and Cd levels, and 832 were tested for Hg. Geometric mean of blood Pb, Cd and Hg was 1.93μg/dL, 0.06μg/L and 1.40μg/L, respectively. PON1 activity was significantly different among various genotypes: QQ (PON1=121.4U/mL), QR (PON1=87.5U/mL), and RR (PON1=55.2U/mL), p<0.001. PON1 genotypes were associated only with Cd blood levels. Those with QR genotype had Cd concentrations higher (0.07μg/L) than those with the RR genotype (0.04μg/L) with p=0.034. However, PON1 activity was not significantly associated with metal concentrations. Cluster analysis showed that men who reported to be current smokers and drinkers with higher blood Pb and Cd levels, had significantly lower PON1 activity than non-smokers or -drinkers, and women with lower Pb and Cd levels. RR genotype carriers had lower PON1 activity than those with the QR genotype, and had higher levels of Pb and Cd compared with other genotype carriers. For blood Hg, no association with PON1 activity or genotype was noted. We found low levels of Pb, Cd and Hg in environmentally exposed Brazilian adults. Cd concentrations were increased in subjects with QR genotype. Those with RR genotype had lower PON1 activity and higher levels of Pb and Cd than other genotype carriers. The results of cluster analysis suggested that smoking status exerts a significant influence on PON1 activity. Other studies with environmentally exposed populations are required to further clarify whether low blood levels of metals influence OS biomarkers. Copyright © 2017 Elsevier Inc. All rights reserved.
Jinming, Luo; Yongjie, Wang; Zhongyan, Gao; Wenfeng, Wang
2017-07-01
The excessive enrichment of trace elements, such as Pb and Cd, from food may contribute to the decline of migratory red-crowned cranes (Grus japonensis) in China. To test this prediction, we determined the concentrations of Pb and Cd, as well as further macro and trace elements (Ca, Mg, Cu, Zn) in the target species and their prey (sediment, reed root, mollusk, arthropods, and common fish species) in both the wintering (Yancheng wetland) and breeding sites (Zhalong wetland) of cranes in China. The maximum concentrations of Pb (130 mg kg -1 dry weight (dw)) and Cd (10.60 mg kg -1 dw) in the sediments of breeding site and the maximum concentration of Cd (4.50 mg kg -1 dw) in the sediments of wintering site exceeded the probable effect level values (91.30 mg kg -1 for Pb and 3.53 mg kg -1 for Cd), suggesting the potential exposure risk of the examined species. Indeed, Pb and Cd contents of essential foods, i.e., aquatic animals, sampled in two sites were above the limit of allowable concentration recommended by the Joint Food and Agriculture Organization of the United Nations/World Health Organization food standards program. Approximately 80, 31.4, and 60.3 mg kg -1 dw of Pb were detected in the eggshells, liver, and kidney, respectively, of the target species, and the values are above the levels of concern (1.7 mg kg -1 for eggshell and 30 mg kg -1 for liver and kidney) in common birds. Nevertheless, the increased Pb and Cd levels in the prey and bodies of the red-crowned cranes did not induce the levels of Ca and Mg depletion. Average contents of the macronutrients, Ca (1.38 g kg -1 dw) and Mg (1.32 g kg -1 dw), in the liver of the examined species exceeded the background concentrations (0.2-0.4 g kg -1 for Ca and 0.4-0.8 g kg -1 for Mg) in the liver of birds. Consumption of Ca-rich foods, e.g., grits and exoskeleton species, may aid in compensating the possible loss caused by the increased Pb and Cd concentrations in the bodies of the cranes.
Abboud, Pauline; Wilkinson, Kevin J
2013-08-01
The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
Using a double-doping strategy to improve physical properties of nanostructured CdO films
NASA Astrophysics Data System (ADS)
Aydin, R.; Sahin, B.
2018-06-01
In this present study nanostructured dually doped samples of Cd1‑x‑yMgxMyO (M: Sn, Pb, Bi) are synthesized by SILAR method. The effects of the mono and dual doping on the structural, morphological and optoelectronic characteristics of CdO nanoparticles are examined. The SEM images verify that deposited CdO films are nano-sized. Also the SEM computations demonstrated that the morphological surface structures of the films were influenced from the Mg mono doping and (Mg, Sn), (Mg, Pb) and (Mg, Bi) dual doping. The XRD designs specified that all the CdO samples have polycrystalline structure exhibiting cubic crystal form with dominant peaks of (111) and (220). The results display that Mg and (Mg, Sn), (Mg, Pb) and (Mg, Bi) ions were successfully doped into CdO film matrix. The UV spectroscopy results show that the optical energy band gap of the CdO films, ranging from 2.21 to 2.66 eV, altered with the dopant materials.
Barrutia, O; Artetxe, U; Hernández, A; Olano, J M; García-Plazaola, J I; Garbisu, C; Becerril, J M
2011-03-01
Plants growing on metalliferous soils from abandoned mines are unique because of their ability to cope with high metal levels in soil. In this study, we characterized plants and soils from an abandoned Pb-Zn mine in the Basque Country (northern Spain). Soil in this area proved to be deficient in major macronutrients and to contain toxic levels of Cd, Pb, and Zn. Spontaneously growing native plants (belonging to 31 species, 28 genera, and 15 families) were botanically identified. Plant shoots and rhizosphere soil were sampled at several sites in the mine, and analyzed for Pb, Zn and Cd concentration. Zinc showed the highest concentrations in shoots, followed by Pb and Cd. Highest Zn concentrations in shoots were found in the Zn-Cd hyperaccumulator Thlaspi caerulescens (mean = 18,254 mg Zn kg(-1) DW). Different metal tolerance and accumulation patterns were observed among the studied plant species, thus offering a wide germplasm assortment for the suitable selection of phytoremediation technologies. This study highlights the importance of preserving metalliferous environments as they shelter a unique and highly valuable metallicolous biodiversity.
Removal of lead from aqueous solutions by Penicillium biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Niu; Xue Shu Xu; Jian Hua Wang
1993-09-05
The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb[sup +2] ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb[sup +2] was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb[sup +2] over other metal ions such as Cd[sup +2], Cu[sup +2], Zn [sup +2], and As[sub +3]. Sorption preference for metals decreased in the following order: Pb > Cd > Cu >more » Zn > As. The sorption uptake of Pb[sup +2] remained unchanged in the presence of Cu[sup +2] and As [sup +3], it decreased in the presence of Zn[sup +2], and increased in the presence of Cd[sup +2].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambachri, A.; Monier, M.; Mercurio, J.P.
1988-04-01
Dielectric ceramics have been obtained by natural sintering of pyrochlore phases with general formula Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn). Low frequency dielectric characteristics have been studied with respect to the processing conditions: sintering without additive and in the presence of some low melting compounds (PbO, Pb/sub 5/Ge/sub 3/O/sub 11/, Bi/sub 12/PbO/sub 19/ and Bi/sub 12/CdO/sub 19/). The dielectric constants of these ceramics lie between 30 and 60, the dielectric losses range from 10 to 30.10/sup -4/ and the temperature coefficient of the dielectric constants (20 - 100/sup 0/C) can be tailored by means of additives inmore » the +- 30 ppm K/sup -1/ range.« less
Gao, Ruili; Zhu, Pengfei; Guo, Guangguang; Hu, Hongqing; Zhu, Jun; Fu, Qingling
2016-11-01
The efficiency of five different single leaching reagents (tartaric acid (TA), citric acid (CA), CaCl 2 , FeCl 3 , EDTA) and two different composite leaching reagents (CA + FeCl 3 , CA + EDTA) on removing Cu, Pb, Zn, and Cd from contaminated paddy soil in Hunan Province (in China) was studied. The results indicated that the efficiencies of CA, FeCl 3 , and EDTA on extracting Cu, Pb, Cd, and Zn from soil were greater than that of TA and CaCl 2 , and their extraction efficiencies were EDTA ≥ FeCl 3 > CA. The efficiencies of CA + FeCl 3 on extracting Cu, Pb, Cd, and Zn were higher than that of single CA or FeCl 3 . The 25 mmol L -1 CA + 20 mmol L -1 FeCl 3 was a promising composite leaching reagent for paddy soil, and it could remove Cu (57.6 %), Pb (59.3 %), Cd (84.8 %), and Zn (28.0 %), respectively. With the same amount of leaching reagent, the efficiency of continuous leaching by several times was higher than that by once. In addition, the easily reducible and oxidizable fractions of heavy metals showed significant decrease during the process of leaching.
Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L
2013-01-01
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.
Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott
2014-05-15
Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. Copyright © 2014 Elsevier B.V. All rights reserved.
Neugschwandtner, Reinhard W; Tlustos, Pavel; Komárek, Michael; Száková, Jirina; Jakoubková, Lucie
2012-09-01
Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.
Nwokocha, Chukwuemeka R; Nwokocha, Magdalene I; Aneto, Imaria; Obi, Joshua; Udekweleze, Damian C; Olatunde, Bukola; Owu, Daniel U; Iwuala, Moses O
2012-06-01
L. esculentum (tomato) contain compounds with anti-oxidant and anti-inflammatory properties, able to synthesize metal chelating proteins. We examined the ability of fruit extract to protect against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Rats were fed on tomato mixed with rat chow (10% w/w), while Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) was given in drinking water. Tomato was administered together with the metals (group 2), a week after exposure (group 3) or a week before metal exposure (group 4) for a period of six weeks. The metal accumulations in the liver were determined using AAS. There was a significant (P<0.05) increase in protection by tomato to Cd and Hg accumulation but not to Pb (P<0.05) in weeks 2 and 4 for groups 2 and 3. The protective ability was significantly (P<0.05) increased for Pb in group 4, but was less comparable to Cd and Hg. Tomato reduces uptake while enhancing the elimination of these metals in a time dependent manner. The highest hepatoprotective effect was to Cd followed by Hg and least to Pb. Its administration is beneficial in reducing heavy metal accumulation in the liver. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhuang, Ping; Lu, Huanping; Li, Zhian; Zou, Bi; McBride, Murray B
2014-01-01
The objective of this study was to investigate the levels of Cd, Pb, Cu and Zn in the environment and several important food sources grown and consumed in the vicinity of Dabaoshan mine in Southern China, and evaluate potential health risks among local residents. The Cd, Pb, Cu and Zn concentrations of arable soils and well water near the mines exceeded the quality standard values. The concentrations of Cd and Pb in some food crops (rice grain, vegetable and soybean) samples were significantly higher than the maximum permissible level. The Cd and Pb concentrations in half of the chicken and fish meat samples were higher than the national standard. The residents living near Dabaoshan mine had higher Cd and Pb levels in hair than those of a non-exposed population. The intake of rice was identified as a major contributor to the estimated daily intake of these metals by the residents. The hazard index values for adults and children were 10.25 and 11.11, respectively, with most of the estimated risks coming from the intake of home-grown rice and vegetables. This study highlights the importance of multiple pathways in studying health risk assessment of heavy metal exposure in China.
Ejidike, Ikechukwu P.; Onianwa, Percy C.
2015-01-01
Tree bark species were randomly collected from 65 sites having different anthropogenic activities, such as industrial, high traffic commercial, residential high and residential low traffic volume areas of Ibadan City, Nigeria. Levels of Cd, Cu, Pb, Zn, Co, and Cr of the dry-ashed bark samples were determined by AAS. The mean metal concentrations (mg kg−1) in samples from industrial zone were found as Pb: 3.67 ± 1.97, Cd: 0.10 ± 0.07, Zn: 30.96 ± 32.05, Cu: 7.29 ± 5.17, Co: 0.91 ± 0.58, and Cr: 2.61 ± 1.84. The trend of mean trace metal concentrations at high traffic commercial zone follows the order: Zn > Pb > Cu > Cr > Co > Cd. Residential high traffic and low traffic zones revealed the same trend as Cd < Co < Cr < Pb < Cu < Zn. Relatively strong positive correlation between the heavy metals at ρ < 0.05, such as Zn versus Cu (r = 0.79) and Co versus Cu (r = 0.77), was observed. The results of the study suggest that tree bark samples could potentially serve as bioindicators for Cu, Pb, Zn, Cr, and possibly Co and Cd. Furthermore, interspecies variation of heavy metal concentrations in plants barks is recommended. PMID:26605104
García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E
2017-07-01
The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.
Arsenic, Lead, and Cadmium in U.S. Mushrooms and Substrate in Relation to Dietary Exposure.
Seyfferth, Angelia L; McClatchy, Colleen; Paukett, Michelle
2016-09-06
Wild mushrooms can absorb high quantities of metal(loid)s, yet the concentration, speciation, and localization of As, Pb, and Cd in cultivated mushrooms, particularly in the United States, are unresolved. We collected 40 samples of 12 types of raw mushrooms from 2 geographic locations that produce the majority of marketable U.S. mushrooms and analyzed the total As, Pb, and Cd content, the speciation and localization of As in select samples, and assessed the metal sources and substrate-to-fruit transfer at one representative farm. Cremini mushrooms contained significantly higher total As concentrations than Shiitake and localized the As differently; while As in Cremini was distributed throughout the fruiting body, it was localized to the hymenophore region in Shiitake. Cd was significantly higher in Royal Trumpet than in White Button, Cremini, and Portobello, while no difference was observed in Pb levels among the mushrooms. Concentrations of As, Pb, and Cd were less than 1 μg g(-1) d.w. in all mushroom samples, and the overall risk of As, Cd, and Pb intake from mushroom consumption is low in the U.S. However, higher percentages of tolerable intake levels are observed when calculating risk based on single serving-sizes or when substrate contains elevated levels of metal(loid)s.
Zhuang, Ping; Lu, Huanping; Li, Zhian; Zou, Bi; McBride, Murray B.
2014-01-01
The objective of this study was to investigate the levels of Cd, Pb, Cu and Zn in the environment and several important food sources grown and consumed in the vicinity of Dabaoshan mine in Southern China, and evaluate potential health risks among local residents. The Cd, Pb, Cu and Zn concentrations of arable soils and well water near the mines exceeded the quality standard values. The concentrations of Cd and Pb in some food crops (rice grain, vegetable and soybean) samples were significantly higher than the maximum permissible level. The Cd and Pb concentrations in half of the chicken and fish meat samples were higher than the national standard. The residents living near Dabaoshan mine had higher Cd and Pb levels in hair than those of a non-exposed population. The intake of rice was identified as a major contributor to the estimated daily intake of these metals by the residents. The hazard index values for adults and children were 10.25 and 11.11, respectively, with most of the estimated risks coming from the intake of home-grown rice and vegetables. This study highlights the importance of multiple pathways in studying health risk assessment of heavy metal exposure in China. PMID:24728502
Abdel-Aty, Azza M; Ammar, Nabila S; Abdel Ghafar, Hany H; Ali, Rizka K
2013-07-01
The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax ) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D-R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.
Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass
Abdel -Aty, Azza M.; Ammar, Nabila S.; Abdel Ghafar, Hany H.; Ali, Rizka K.
2012-01-01
The present work represents the biosorption of Cd(II) and Pb(II) from aqueous solution onto the biomass of the blue green alga Anabaena sphaerica as a function of pH, biosorbent dosage, contact time, and initial metal ion concentrations. Freundlich, Langmuir, and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of both metals by A. sphaerica biomass. The biosorption isotherms studies indicated that the biosorption of Cd(II) and Pb(II) follows the Langmuir and Freundlish models. The maximum biosorption capacities (qmax) were 111.1 and 121.95 mg/g, respectively, at the optimum conditions for each metal. From the D–R isotherm model, the mean free energy was calculated to be 11.7 and 14.3 kJ/mol indicating that the biosorption mechanism of Cd(II) and Pb(II) by A. sphaerica was chemisorption. The FTIR analysis for surface function group of algal biomass revealed the existence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for the biosorption of Cd(II) and Pb(II). The results suggested that the biomass of A. sphaerica is an extremely efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions. PMID:25685442
Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei
2015-05-01
Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.
Tracing Cd, Zn and Pb pollution sources in bivalves using isotopes
NASA Astrophysics Data System (ADS)
Shiel, A. E.; Weis, D. A.; Orians, K. J.
2010-12-01
In a multi-tracer study, Cd, Zn and Pb isotopes (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are evaluated as tools to distinguish between natural and anthropogenic sources of these metals in bivalves from western Canada (British Columbia), the eastern USA, Hawaii and France. High Cd concentrations found in BC oysters have elicited economic and health concerns. The source of these high Cd levels is unknown but thought to be largely natural. High Cd levels in BC oysters are largely attributed to the natural upwelling of Cd-rich intermediate waters in the North Pacific as the δ114/110Cd (-0.69 to -0.09‰) and δ66/64Zn (0.28 to 0.36‰) values of BC oysters fall within the range reported for North Pacific seawater. Different contributions from anthropogenic sources account for the variability of Cd isotopic compositions of BC oysters; the lightest of these oysters are from the BC mainland. These oysters also have Pb isotopic compositions that reflect primarily anthropogenic sources (e.g., leaded and unleaded automotive gasoline and smelting of Pb ores, potentially historical). On the contrary, USA East Coast bivalves exhibit relatively light Cd isotopic compositions (δ114/110Cd = -1.20 to -0.54‰; lighter than reported for North Atlantic seawater) due to the high prevalence of industry on this coast. The Pb isotopic compositions of these bivalves indicate contributions from the combustion of coal. The large variability of environmental health among coastal areas in France is reflected in the broad range of Cd isotopic compositions exhibited by French bivalves (δ114/110Cd = -1.08 to -0.20‰). Oysters and mussels from the Marennes-Oléron basin and Gironde estuary have the lightest Cd isotopic compositions of the French oysters consistent with significant historical Cd emissions from the now-closed proximal Zn smelter. In these bivalves, significant declines in the Cd levels between 1984/7 and 2004/5 are not accompanied by a significant shift in the Cd isotopic composition toward natural values. The Mediterranean samples have isotopic compositions within error of the lighter end of the range reported for Mediterranean seawater. The Zn isotopic compositions of French oysters and mussels (δ66/64Zn = 0.39 to 0.46‰) are identical to those reported for North Atlantic seawater, with the exception of the much heavier compositions of oysters (δ66/64Zn = 1.03 to 1.15‰) from the polluted Gironde estuary. In agreement with Cd and Zn isotopic compositions, the Pb isotopic compositions of the French bivalves indicate primarily industrial (as opposed to automotive) sources; this is consistent with the collection of most of the French bivalve samples in 2004, after the complete phase-out of leaded gasoline in France. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb isotope “fingerprinting” techniques to identify processes contributing metals. Use of these new geochemical tools requires site-specific knowledge of potential metal sources and their isotopic compositions.
Marlicz, Wojciech; Zuba-Surma, Ewa; Kucia, Magda; Blogowski, Wojciech; Starzynska, Teresa; Ratajczak, Mariusz Z
2012-09-01
Developmentally early cells, including hematopoietic stem progenitor cells (HSPCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs), are mobilized into peripheral blood (PB) in response to tissue/organ injury. We sought to determine whether these cells are mobilized into PB in patients with Crohn's disease (CD). Twenty-five patients with active CD, 20 patients in clinical remission, and 25 age-matched controls were recruited and PB samples harvested. The circulating CD133+/Lin-/CD45+ and CD34+/Lin-/CD45+ cells enriched for HSPCs, CD105+/STRO-1+/CD45- cells enriched for MSCs, CD34+/KDR+/CD31+/CD45-cells enriched for EPCs, and small CXCR4+CD34+CD133+ subsets of Lin-CD45- cells that correspond to the population of VSELs were counted by fluorescence-activated cell sorting (FACS) and evaluated by direct immunofluorescence staining for pluripotency embryonic markers and by reverse-transcription polymerase chain reaction (RT-PCR) for expression of messenger (m)RNAs for a panel of genes expressed in intestine epithelial stem cells. The serum concentration of factors involved in stem cell trafficking, such as stromal derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) were measured by enzyme-linked immunosorbent assay (ELISA). Our data indicate that cells expressing markers for MSCs, EPCs, and small Oct-4+Nanog+SSEA-4+CXCR4+lin-CD45- VSELs are mobilized into PB in CD. The mobilized cells also expressed at the mRNA level genes playing a role in development and regeneration of gastrointestinal epithelium. All these changes were accompanied by increased serum concentrations of VEGF and HGF. CD triggers the mobilization of MSCs, EPCs, and VSELs, while the significance and precise role of these mobilized cells in repair of damaged intestine requires further study. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.
Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe
2011-12-01
The study reports for the first time on the heavy metal contamination of the waters surrounding a shipwreck lying on the sea floor. Square wave anodic stripping voltammetry has been used for a survey of the total and dissolved Cd, Pb and Cu contents of the seawater at the site of the sinking of the Nicole M/V (Coastal Adriatic Sea, Italy). Results show that the hulk has a considerable impact as regards all three metals in the bottom water, especially for the particulate fraction concentrations, which increased by factors of ≈ 9 (Cd), ≈ 3 (Pb) and ≈ 5 (Cu). The contaminated plume extended downstream for about 2 miles. Much lower contamination was observed for dissolved bottom concentrations; nevertheless Pb (0.56 ± 0.03 nmol/L) is higher than the Italian legal limits established for 2015 and Cd (0.23 ± 0.03 nmol/L) is very close the limit of Cd will be exceeded if the hulk is not removed. Copyright © 2011. Published by Elsevier Ltd.
Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui
2016-08-01
Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents.
Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng
2016-07-01
China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.
Cai, Li-Mei; Xu, Zhen-Cheng; Qi, Jian-Ying; Feng, Zhi-Zhou; Xiang, Ting-Sheng
2015-05-01
Heavy metal contamination due to mining activity is a global major concern because of its potential health risks to local inhabitants. In the present study, we investigated the levels of Cd, Cu, Pb and As in soil, crop, well water and fish samples collected from the vicinity of the Tonglushan mine in Hubei, China, and evaluated potential health risks among local residents. Results indicate that soils near the mine were heavily contaminated with Cd (2.59 mg kg(-1)), Cu (386 mg kg(-1)), Pb (120 mg kg(-1)) and As (35.4 mg kg(-1)), and exceeded the soil quality standard values of Cd and Cu contamination. The concentrations of Cd, Cu, Pb and As in crop samples grown in mine-affected soils were significantly higher than those of the reference soils. The concentrations of Cd and As in most vegetables grown in mine-affected soils exceeded the maximum allowable level (MAL). The Cd, Pb and As concentration in rice grain collected from mine-affected soils were 2.95, 1.85 and 2.07-fold higher than the MAL, respectively. The concentrations of Cd and As in fish muscle from the mine-affected area were above national MAL in 61% and 34% of analyzed samples, respectively. All measured heavy metals except Pb were significantly greater in well water in the mine-affected area than those in the reference areas. The average estimated daily intakes of Cd and As were beyond the provisional tolerable daily intake, respectively. The intake of rice was identified as a major contributor (⩾72%) to the estimated daily intake among the residents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y
2015-03-01
Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Genuchten, Case M.; Peña, Jasquelin
2016-01-01
Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(II) and Pb(II) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that ofmore » the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(II) and Pb(II) both bind to birnessite layer vacancies, only Pb(II) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(II) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(II) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(II) < Cd(II) < Ni(II) < Zn(II) < Cu(II) < Pb(II).« less
Fang, Yanyan; Nie, Zhiqiang; Liu, Feng; Die, Qingqi; He, Jie; Huang, Qifei
2014-10-01
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.
XAFS studies of metal-ligand interactions at organic surfaces and in solution
NASA Astrophysics Data System (ADS)
Boyanov, Maxim I.
X-ray absorption fine structure spectroscopy (XAFS) was used as a structural probe to determine the mechanism of metal adsorption to organic surfaces. Two specific systems were investigated, Pb adsorption to heneicosanoic acid Langmuir monolayers (CH3(CH2)19COOH), and Cd adsorption to isolated cell walls of the Bacillus subtilis bacterium. Although the study of these systems is important for quite different reasons, the goal in both is metal binding site speciation and structural characterization of the surface complex. The adsorption of aqueous Cd to B. subtilis was studied as a function of pH by fluorescence mode bulk XAFS. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to protonated phosphoryl ligands below pH 4.4, while at higher pH adsorption to carboxyl groups becomes increasingly important. At pH 7.8 we observe the activation of an additional binding site, which we tentatively ascribe to deprotonated phosphoryl ligands. A quantitative Cd speciation diagram for the pH range is presented. Grazing-incidence Pb L3 edge XAFS was used in situ to determine the adsorption complex structure in the Pb-Langmuir monolayer study. The results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb 2+ ions. The data suggest a bidentate binding mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of the metal local environment in aqueous solutions was conducted and used in the above analyses. Perchlorate and acetate salt solutions of Cd, Pb, Mn, Cr, and Cu were characterized as standards of hydrated ions and metal-carboxyl complexes. The utility of XAFS in differentiating between the ionic, monodentate, bridging-bidentate, and bidentate metal-carboxyl complexes through C-C multiple scattering effects and XANES features is demonstrated.
A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations
NASA Astrophysics Data System (ADS)
Ilyas, Bahaa M.; Elias, Badal H.
2017-04-01
The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl3 and CsCdCl3 unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl3 and CsPbCl3 is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl3 is Γ-R indirect band gap insulator, while CsPbCl3 is an insulator with a direct band gap Γ-Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl3, and Cd-p states and Cs-p states for the CsCdCl3 in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0-20 GPa and 0-40 GPa for the CsCdCl3 and CsPbCl3 respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame's constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl3 (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For the optical properties, both the static refractive index and dielectric constant are found to be related proportionally to the indirect band gap of CsCdCl3. The refractive index, extinction coefficient, complex dielectric function, energy loss function, optical conductivity, reflectivity and absorption coefficient for 0-25 eV incident photon energies have been predicted. The phonon properties were investigated using response functions to predict the phonon lattice dispersion and the density of states. The thermal effect on the heat capacities, entropy, enthalpy and Free energy were predicted and compared using both the quasi-harmonic Debye model and response functions, the latter provided far better results. To the best of the authors' knowledge, most of the studied properties have not been experimentally reported so far. Generally, the computed results for both CsCdCl3 and CsPbCl3 are very satisfactory and show good agreement with other calculations.
NASA Astrophysics Data System (ADS)
Seisuma, Z.; Kulikova, I.
2012-11-01
The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.
Qing, Xiao; Yutong, Zong; Shenggao, Lu
2015-10-01
The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe
2016-12-01
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.
Miyakoda, Mana; Kimura, Daisuke; Honma, Kiri; Kimura, Kazumi; Yuda, Masao; Yui, Katsuyuki
2012-11-01
Conditions required for establishing protective immune memory vary depending on the infecting microbe. Although the memory immune response against malaria infection is generally thought to be relatively slow to develop and can be lost rapidly, experimental evidence is insufficient. In this report, we investigated the generation, maintenance, and recall responses of Ag-specific memory CD8(+) T cells using Plasmodium berghei ANKA expressing OVA (PbA-OVA) as a model system. Mice were transferred with OVA-specific CD8(+) T (OT-I) cells and infected with PbA-OVA or control Listeria monocytogenes expressing OVA (LM-OVA). Central memory type OT-I cells were maintained for >2 mo postinfection and recovery from PbA-OVA. Memory OT-I cells produced IFN-γ as well as TNF-α upon activation and were protective against challenge with a tumor expressing OVA, indicating that functional memory CD8(+) T cells can be generated and maintained postinfection with P. berghei ANKA. Cotransfer of memory OT-I cells with naive OT-I cells to mice followed by infection with PbA-OVA or LM-OVA revealed that clonal expansion of memory OT-I cells was limited during PbA-OVA infection compared with expansion of naive OT-I cells, whereas it was more rapid during LM-OVA infection. The expression of inhibitory receptors programmed cell death-1 and LAG-3 was higher in memory-derived OT-I cells than naive-derived OT-I cells during infection with PbA-OVA. These results suggest that memory CD8(+) T cells can be established postinfection with P. berghei ANKA, but their recall responses during reinfection are more profoundly inhibited than responses of naive CD8(+) T cells.
Xue, Mianqiang; Yang, Yichen; Ruan, Jujun; Xu, Zhenming
2012-01-03
The crush-pneumatic separation-corona electrostatic separation production line provides a feasible method for industrialization of waste printed circuit boards (PCBs) recycling. To determine the potential environmental contamination in the automatic line workshop, noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line have been evaluated in this paper. The mean noise level in the workshop has been reduced from 96.4 to 79.3 dB since the engineering noise control measures were employed. Noise whose frequency ranged from 500 to 1000 Hz is controlled effectively. The mass concentrations of TSP and PM(10) in the workshop are 282.6 and 202.0 μg/m(3), respectively. Pb (1.40 μg/m(3)) and Cu (1.22 μg/m(3)) are the most enriched metals in TSP samples followed by Cr (0.17 μg/m(3)) and Cd (0.028 μg/m(3)). The concentrations of Cu, Pb, Cr, and Cd in PM(10) are 0.88, 0.56, 0.12, and 0.88 μg/m(3), respectively. Among the four metals, Cr and Pb are released into the ambience of the automatic line more easily in the crush and separation process. Health risk assessment shows that noncancerous effects might be possible for Pb (HI = 1.45), and noncancerous effects are unlikely for Cr, Cu, and Cd. The carcinogenic risks for Cr and Cd are 3.29 × 10(-8) and 1.61 × 10(-9), respectively. It indicates that carcinogenic risks on workers are relatively light in the workshop. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCBs recycling industry.
NASA Astrophysics Data System (ADS)
Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.
2016-04-01
High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).
Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying
2013-09-01
The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.
Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children.
Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin
2013-10-01
There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. © 2013 Published by Elsevier Inc.
Lead, Mercury, and Cadmium Exposure and Attention Deficit Hyperactivity Disorder in Children
Kim, Stephani; Arora, Monica; Fernandez, Cristina; Caruso, Joseph; Landero, Julio; Chen, Aimin
2013-01-01
Background There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed Attention Deficit Hyperactivity Disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and Others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using Inductively Coupled Plasma Mass Spectrometry. Results Inside the LIA, the 27 cases had blood Pb Geometric Mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. PMID:24034783
Toxic metals in children's toys and jewelry: coupling bioaccessibility with risk assessment.
Cui, Xin-Yi; Li, Shi-Wei; Zhang, Shu-Jun; Fan, Ying-Ying; Ma, Lena Q
2015-05-01
A total of 45 children's toys and jewelry were tested for total and bioaccessible metal concentrations. Total As, Cd, Sb, Cr, Ni, and Pb concentrations were 0.22-19, 0.01-139, 0.1-189, 0.06-846, 0.14-2894 and 0.08-860,000 mg kg(-1). Metallic products had the highest concentrations, with 3-7 out of 13 samples exceeding the European Union safety limit for Cd, Pb, Cr, or Ni. However, assessment based on hazard index >1 and bioaccessible metal showed different trends. Under saliva mobilization or gastric ingestion, 11 out of 45 samples showed HI >1 for As, Cd, Sb, Cr, or Ni. Pb with the highest total concentration showed HI <1 for all samples while Ni showed the most hazard with HI up to 113. Our data suggest the importance of using bioaccessibility to evaluate health hazard of metals in children's toys and jewelry, and besides Pb and Cd, As, Ni, Cr, and Sb in children's products also deserve attention. Published by Elsevier Ltd.
Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming
2008-12-01
One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.
Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan
2012-04-01
One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Shuang; Zhou, Qixing; Chao, Lei
2007-01-01
The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.
Mashroofeh, Abdulreza; Bakhtiari, Alireza Riyahi; Pourkazemi, Mohammad; Rasouli, Sana
2013-01-01
The accumulations of Cd, Pb and Zn were determined in edible and inedible tissues of Persian sturgeon (Acipenser persicus; n=27), stellate sturgeon (Acipenser stellatus; n=5) and beluga (Huso huso; n=4) collected from coastal waters of the South Caspian Sea from March to April 2011. Concentrations of metals evaluated in the caviar, muscle, liver, kidney, gills, ovary and heart of the three species of sturgeons have been assessed using the flame and graphite furnace atomic absorption spectrophotometer. Concentrations of Zn, Pb and Cd in the edible and inedible tissues were apparently different among the three species of sturgeons. Especially, beluga heart showed the highest concentrations of Zn and Pb and Cd in Persian sturgeon liver. The analyzed metals were found in the caviar and muscle samples of Persian sturgeon and likewise muscle samples two other sturgeon species at mean concentrations under the permissible limits proposed by MAFF (2000). Copyright © 2012 Elsevier Ltd. All rights reserved.
Obaidat, Mohammad M; Massadeh, Adnan M; Al-Athamneh, Ahmad M; Jaradat, Qasem M
2015-04-01
This study determined the levels of As, Cu, Pb, and Cd in fish from Red Sea, Arabian Sea, and Indian Ocean by graphite furnace atomic absorption spectrophotometry. Metal levels were compared with international standards. The levels among fish types and origin, the relationship among metals, and the correlation between the levels and fish size were statistically tested. Fish type and origin significantly affected the levels. None of the fish contained As, Cu, and Pb above the FAO and EU codes. However, Cd exceeded the Jordanian, FAO, and EC codes from the three origins. As and Cd positively correlated with each other in Arabian Sea fish. As and Pb correlated negatively, but Cu and Cd did not correlate with fish size. This study indicates that Cd is common in fish from the three origins regardless the fish size. This warrants continuous monitoring for heavy metals, especially Cd, in internationally traded fish.
Henriques, Bruno; Rocha, Luciana S; Lopes, Cláudia B; Figueira, Paula; Duarte, A C; Vale, Carlos; Pardal, M A; Pereira, E
2017-04-15
Metal uptake from contaminated waters by living Ulva lactuca was studied during 6 days, under different relevant contamination scenarios. In mono-metallic solutions, with concentrations ranging from 10 to 100 μg L -1 for Hg, 10-200 μg L -1 for Cd, and 50-1000 μg L -1 for Pb, macroalgae (500 mg L -1 , d.w.) were able to remove, in most cases 93-99% of metal, allowing to achieve water quality criteria regarding both surface and drinking waters. In multi-metallic solutions, comprising simultaneously the three metals, living macroalgae still performed well, with Hg removal (c.a. 99%) not being significantly affected by the presence of Cd and Pb, even when those metals were in higher concentrations. Removal efficiencies for Cd and Pb varied between 57 and 96%, and 34-97%, respectively, revealing an affinity of U. lactuca toward metals: Hg > Cd > Pb. Chemical quantification in macroalgae, after bioaccumulation assays demonstrated that all Cd and Hg removed from solution was really bound in macroalgae biomass, while only half of Pb showed to be sorbed on the biomass. Overall, U. lactuca accumulated up to 209 μg g -1 of Hg, up to 347 μg g -1 of Cd and up to 1641 μg g -1 of Pb, which correspond to bioconcentration factors ranging from 500 to 2200, in a dose-dependent accumulation. Pseudo-first order, pseudo-second order and Elovich models showed a good performance in describing the kinetics of bioaccumulation, in the whole period of time. In the range of experimental conditions used, no mortality was observed and U. lactuca relative growth rate was not significantly affected by the presence of metals. Results represent an important contribution for developing a macroalgae-based biotechnology, applied for contaminated saline water remediation, more "green" and cost-effective than conventional treatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Situation and assessment of heavy metal pollution in river and mud in one city in Henan Province].
Xi, Jingzhuan; Li, Cuimei; Wang, Shouying; Jiang, Zhigang; Zhang, Miaomiao; Han, Guangliang
2010-11-01
To study the heavy metal contamination status in river water and mud in the suburb of a city in Henan Province. Typical sampling method is used to select a farmland irrigation river of the suburb of a city. Use the atomic absorption spectrophotometry, and measure the heavy metal cadmium (Cd), copper (Cu), lead (Pb) in the river water samples and mud samples by graphite furnace method and flame method, respectively. The results of water were compared with GB 3838-2002, Environmental Quality Standards for Surface Water, and GB 5084-2005, Standards for Irrigation Water Quality. The results of mud were compared with national soil background value. The contents of Cu and Cd in the river samples do not exceed the standard, and that of Pb is 3 to 6 times higher than the standard. According to the single factor pollution index method, the single factor pollution indice of Cu, and Cd in the river are less than 0.2 and are of clean level, while that of Pb reaches 6.84, indicating the Pb pollution in river water is severe. Cu in mud is more than 4 times of the soil background value, and that of Cd is more than 69 times of the soil background value, and that of Pb is more than 2 times of the soil background value. The single item pollution index indicates, in mud, the pollution index of Pb is 2.5, medium level pollution. The pollution indice of Cu and Cd in mud are more than 3, is severe pollution, and the Cd pollution is especially heavy, and the single pollution index reaches 67.76. The comprehensive pollution indice of the river and the mud are 5.346 and 84.115, respectively, indicating that both are at heavy pollution level. The main pollution source of the river originates from Pb, and that of the mud is from Cd and it is required to take measure and control as early as possible.
Dix-Cooper, Linda; Kosatsky, Tom
2018-04-01
Biomarkers of the reproductive and neuro-developmental toxicants mercury (Hg), lead (Pb) and cadmium (Cd) have been found at higher concentrations in women born outside Canada than in Canadian-born women. We measured blood Hg, Pb and Cd in women ages 19 to 45years living in greater Vancouver (Canada) within five years of their arrival from South Asia (India) or East Asia (mainland China, Hong Kong and Taiwan) and related their biomarker concentration levels with exposures and behaviors since their coming to Canada. Participants were recruited through advertisements in relevant ethnic media, locations and groups. Concentrations of blood Hg, Pb and Cd were analyzed by inductively coupled plasma-mass spectrometry (ICP-Q-MS) and compared with population values. Biomarker concentrations were regressed against exposures and behaviors assessed by culturally-relevant questionnaire. The study recruited 53 South and 111 East Asian women. Median (95th percentile) blood Pb in South Asians was 1.15 (2.71) μg/dL compared with 1.01 (1.81) μg/dL in East Asians. On the other hand, blood Hg at 2.5 (7.3) μg/L was higher in East Asians compared to 0.20 (0.83) μg/L in South Asians. Blood Cd was also higher in the East Asian group: East 0.53 (1.1) μg/L; South 0.27 (0.82) μg/L. Higher blood Hg was associated with seafood consumption, dental amalgams and traditional remedies; blood Pb with home renovations, sucking on metal jewelry, and cosmetics. Blood Pb and Cd concentrations were inversely associated with dairy consumption. Asian women recently arrived in Vancouver had higher blood Hg, Pb and Cd concentrations than same-age Canadian women measured in a national survey. Among South Asian newcomer women of reproductive age, exposure to Cd may continue after arrival. Local exposures to Hg occur through seafood and potentially through ingestion of imported traditional remedies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lu, Yayin; Luo, Dinggui; Lai, An; Liu, Guowei; Liu, Lirong; Long, Jianyou; Zhang, Hongguo; Chen, Yongheng
2017-01-01
Chelator-assisted phytoextraction is an alternative and effective technique for the remediation of heavy metal-contaminated soils, but the potential for heavy metal leaching needs to be assessed. In the present study, a soil column cultivation-leaching experiment was conducted to investigate the Cd and Pb leaching characteristics during assisted phytoextraction of metal-contaminated soils containing different particle-size soil aggregates. The columns were planted with Zea mays "Zhengdan 958" seedlings and treated with combined applications of EDTA and simulated rainfall (pH 4.5 or 6.5). The results were as follows: (1) The greatest uptake of Cd and Pb by Z. mays was observed after treatment with EDTA (2.5 mmol kg -1 soil) and soil aggregates of <1 mm; uptake decreased as the soil aggregate size increased. (2) Simulated rainfall, especially acid rain (pH 4.5), after EDTA applications led to the increasing metal concentrations in the leachate, and EDTA significantly increased the concentrations of both Cd and Pb in the leachate, especially with soil aggregates of <1 mm; metal leachate concentrations decreased as soil particle sizes increased. (3) Concentrations of Cd and Pb decreased with each continuing leachate collection, and data were fit to linear regression models with coefficients of determination (R 2 ) above 0.90 and 0.87 for Cd and Pb, respectively. The highest total amounts of Cd (22.12%) and Pb (19.29%) were observed in the leachate of soils treated with EDTA and artificial acid rain (pH 4.5) with soil aggregates of <1 mm. The application of EDTA during phytoextraction method increased the leaching risk in the following order: EDTA 2.5-1 (pH 4.5) > EDTA 2.5-1 (pH 6.5) > EDTA 2.5-2 (pH 4.5) > EDTA 2.5-4 (pH 4.5) > EDTA 2.5-2 (pH 6.5) > EDTA 2.5-4 (pH 6.5).
Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits
Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong
2016-01-01
Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538
Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng
2017-05-01
Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.
Lee, Seungbae; An, Jinsung; Kim, Young-Jin; Nam, Kyoungphile
2011-02-28
In situ stabilization of sediment-bound heavy metals has been proposed as an alternative to ex situ treatment due to the concerns on ecosystem disturbance and remediation cost. The present study was conducted to test the performance of birnessite, hydroxyapatite, and zeolite as stabilizing agents for Pb and Cd in sediment. The heavy metal binding capacity and strength of the stabilizing agents were determined by analyzing Langmuir model parameters. The three agents showed the similar binding capacity (i.e., maximum monolayer sorption constant, K(a)) ranging from 1.13 to 3.62×10(5) mg/kg for Pb and 1.07 to 1.33×10(5) mg/kg for Cd. In contrast, binding strength (i.e., binding energy constant, b) of birnessite and hydroxyapatite was about one order higher than that of zeolite. This is further supported by five-step sequential extraction data: more than 99 and 70% of freshly spiked Pb and Cd were present as not-readily extractable fractions in birnessite and hydroxyapatite, respectively while the fractions were 17.9 and 14.1% in zeolite. Toxicity Characteristic Leaching Procedure (TCLP) test was also conducted to verify the effectiveness of the heavy metal-stabilizing ability of birnessite and hydroxyapatite. Birnessite successfully retained both Pb and Cd against the leaching solution, satisfying the TCLP extract concentration limits (i.e., 5 and 1 mg/L, respectively). However, hydroxyapatite released about 223.7 mg/L of Cd into the solution, which greatly exceeded the limit. The toxicity test with Hyalella azteca showed that their survival rate increased by 92.5-100% when birnessite or hydroxyapatite was added to Pb- or Cd-spiked sediment as a stabilizing agent. Our data demonstrate the potential use of birnessite and hydroxyapatite as an effective in situ remediation means for heavy metal-contaminated sediment with minimal risk to the aquatic ecosystem. Copyright © 2011 Elsevier B.V. All rights reserved.
Toxic metals in cigarettes and human health risk assessment associated with inhalation exposure.
Benson, Nsikak U; Anake, Winifred U; Adedapo, Adebusayo E; Fred-Ahmadu, Omowunmi H; Ayejuyo, Olusegun O
2017-11-08
This study evaluated the concentrations of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn) in 10 branded cigarettes commonly consumed in Nigeria. Chemical sequential extraction method and pseudo-total metal digestion procedure were used for extraction of metals from filler tobacco and filter samples. Samples were analyzed using flame atomic absorption spectrometry (FAAS). The filler tobacco of cigarettes had Cd, Cu, Fe, Mn, Pb, and Zn concentrations in the ranges of 5.90-7.94, 18.26-34.94, 192.61-3494.05, 44.67-297.69, 17.21-74.78, and 47.02-167.31 μg/cigarette, respectively. The minimum and maximum concentrations in the filter samples were 8.67-12.34 μg/g of Cd, 1.77-36.48 μg/g of Cu, 1.83-15.27 μg/g of Fe, 3.82-7.44 μg/g of Mn, 4.09-13.78 μg/g of Pb, and 30.07-46.70 μg/g of Zn. The results of this study showed that the concentrations of heavy metals in the filler tobacco samples were consistently higher than those obtained for the cigarette filters except for Cd. Toxic metals were largely found in the most labile chemical fractions. Moderate to very high risks are found associated with potential exposure to Cd and Pb. The carcinogenic risks posed by Cd and Pb ranged between 1.87E-02 and 2.52E-02, 1.05E-03 and 4.76E-03, respectively, while the non-carcinogenic risk estimates for Cd and Pb were greater than 1.0 (HI > 1). Toxic metals in cigarette may have significant carcinogenic and non-carcinogenic health effects associated with inhalation exposure. Continuous monitoring and regulations of the ingredients of imported and locally produced tobacco products are advocated.
Zhou, Yun; Ning, Xun-an; Liao, Xikai; Lin, Meiqing; Liu, Jingyong; Wang, Jianghui
2013-09-01
The environmental risk of exposure to six heavy metals (Cu, Pb, Zn, Cr, Ni, and Cd) found in fly ashes from waste filter bags obtained from a steel plant was estimated based on the mineralogical compositions, total concentrations and speciation of the metals in the fly ashes. The results indicated that the fly ashes mainly consisted of hematite, magnetite, cyanite, spinel, coesite and amorphous materials. The concentrations of Zn and Pb were much higher than that of other materials. After Zn and Pb, Ni was present in the highest concentration, followed by Cu, Cr and Cd. Each heavy metal was distributed differently in fly ashes. The levels of Zn, Cd and Pb in the active fraction were very high, and ranged from 64.83 to 81.96%, 34.48 to 82.4% and 6.92 to 79.65% respectively, while Cu, Cr and Ni were mainly present in the residual fraction. The risk assessment code (RAC) values of fly ashes showed that the Zn and Cd present in the H3 sample presented a very high risk, with RAC values greater than 50%. The Cu present in the H3 sample, Cd in the H2 sample and Zn in the H4 and H5 samples presented a high risk. The Pb present in the H2 sample, Cd in the H4 sample, Ni in the H1 and H5 samples, and Zn in the H1 sample presented a medium risk. A low risk was presented by the Cu present in the H1, H2, H4 and H5 samples, the Pb in the H1, H3 and H5 samples, the Cd in the H1 and H5 samples, and the Ni in the H2 sample. No risk was presented by Cr in any sample. Copyright © 2013 Elsevier Inc. All rights reserved.
2014-06-01
unacceptable levels of the toxic metal(loid)s arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). With the exception of Pb contaminated soils, human...remediation and closure. Lead (Pb), arsenic (As), chromium (Cr), and cadmium (Cd) are toxic (i.e., capable of producing an unwanted, deleterious effect...lagoon are contaminated with high concentrations of lead , chromium, and cadmium . 14 Deseret Chemical Depot: The Deseret Chemical Depot is
NASA Astrophysics Data System (ADS)
Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto
2013-09-01
The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.
Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil.
Pociecha, Maja; Kastelec, Damijana; Lestan, Domen
2011-08-30
Recycling of chelant decreases the cost of EDTA-based soil washing. Current methods, however, are not effective when the spent soil washing solution contains more than one contaminating metal. In this study, we applied electrochemical treatment of the washing solution obtained after EDTA extraction of Pb, Zn and Cd contaminated soil. A sacrificial Al anode and stainless steel cathode in a conventional electrolytic cell at pH 10 efficiently removed Pb from the solution. The method efficiency, specific electricity and Al consumption were significantly higher for solutions with a higher initial metal concentration. Partial replacement of NaCl with KNO(3) as an electrolyte (aggressive Cl(-) are required to prevent passivisation of the Al anode) prevented EDTA degradation during the electrolysis. The addition of FeCl(3) to the acidified washing solution prior to electrolysis improved Zn removal. Using the novel method 98, 73 and 66% of Pb, Zn and Cd, respectively, were removed, while 88% of EDTA was preserved in the treated washing solution. The recycled EDTA retained 86, 84 and 85% of Pb, Zn and Cd extraction potential from contaminated soil, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Massive plasmablast response elicited in the acute phase of hantavirus pulmonary syndrome.
García, Marina; Iglesias, Ayelén; Landoni, Verónica I; Bellomo, Carla; Bruno, Agostina; Córdoba, María Teresa; Balboa, Luciana; Fernández, Gabriela C; Sasiain, María Del Carmen; Martínez, Valeria P; Schierloh, Pablo
2017-05-01
Beside its key diagnostic value, the humoral immune response is thought to play a protective role in hantavirus pulmonary syndrome. However, little is known about the cell source of these antibodies during ongoing human infection. Herein we characterized B-cell subsets circulating in Andes-virus-infected patients. A notable potent plasmablast (PB) response that increased 100-fold over the baseline levels was observed around 1 week after the onset of symptoms. These PB present a CD3 neg CD19 low CD20 neg CD38 hi CD27 hi CD138 +/- IgA +/- surface phenotype together with the presence of cytoplasmic functional immunoglobulins. They are large lymphocytes (lymphoblasts) morphologically coincident with the 'immunoblast-like' cells that have been previously described during blood cytology examinations of hantavirus-infected patients. Immunoreactivity analysis of white blood cell lysates suggests that some circulating PB are virus-specific but we also observed a significant increase of reactivity against virus-unrelated antigens, which suggests a possible bystander effect by polyclonal B-cell activation. The presence of this large and transient PB response raises the question as to whether these cells might have a protective or pathological role during the ongoing hantavirus pulmonary syndrome and suggest their practical application as a diagnostic/prognostic biomarker. © 2017 John Wiley & Sons Ltd.
González, M A; Trócoli, R; Pavlovic, I; Barriga, C; La Mantia, F
2016-01-21
Two different hydrotalcite-like compounds were prepared and used as substrates for the electrochemical removal of extremely toxic pollutant cations, such as Cd(ii) and Pb(ii), from aqueous solutions, and their subsequent recovery for further potential applications. By deposition on the hydrotalcite electrode, it was possible to remove 75% of Cd(ii) contained in a starting 5.2 mM solution of CdCl2, which was subsequently recovered and concentrated up to 14.3 mM in a single step. A removal of almost 100% was obtained in the case of Pb(ii). Its recovery was largely hindered by the formation of several inert phases, among which is some stable formation of hydroxycarbonate. Our results suggest that the removal of these contaminants by hydrotalcite-like compounds occurs by the combination of two parallel processes: electro-deposition and adsorption. It was possible to achieve a removal capacity for Cd(ii) and Pb(ii) equal to 763 mg ga.m.(-1) and 1039 mg ga.m.(-1), respectively. These removal capacities, accompanied by an excellent posterior eluent-free recovery of Cd(ii), suggest that this new method could be an environmentally friendly alternative to the conventional adsorption wastewater treatment.
MANOVA statistical analysis of inorganic compounds in groundwater Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanty, Heruna, E-mail: herunatanty@yahoo.com; Bekti, Rokhana Dwi, E-mail: groo-jgroo@yahoo.com; Herlina, Tati, E-mail: tatat-04her@yahoo.com, E-mail: nurlelasari@unpad.ac.id
2014-10-24
The present study was carried out to determine levels of inorganic compounds contained in the ground water and Reverse Osmosis (RO) water filtration result. The data in groundwater samples was collected from Bekasi, Tangerang and Jakarta in Indonesia. A total of 30 samples were collected and analyzed for the determine Cadmium (Cd), Chromium (Cr), Manganese (Mn), Cyanide (CN) and Lead (Pb). The results of the study revealed that in groundwater, the average of Cd 0.0058 mg / l, Mn 1.5233 mg / l, Cr 0.0127 mg/l, Pb 0.0060 mg / l, and CN 0.0040 mg / l. The level ofmore » RO result were: Cd 0.0027 mg / l, Mn 0.1767 mg / l, Cr 0.0024 mg / l, Pb 0.0021 mg / l, and CN 0.0023 mg / l . This means that Cd and Mn in ground water were higher than the values recommended by PAK-EPA and WHO or the standard of Indonesian Ministry of Health. But after filtration Reverse Osmosis (RO) Mn and Cd levels decreased to levels below the standardized value. By comparing of mean in MANOVA and nonparametric MANOVA in α=5%, there are differences in average levels of inorganic substances Mn, Cr, Cd, Pb, and CN between before and after RO filtration.« less
Ashrafi, Mehrnaz; Mohamad, Sharifah; Yusoff, Ismail; Shahul Hamid, Fauziah
2015-01-01
Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève
2002-03-05
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPB(KKK-), a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of alpha4beta1 and alpha4beta7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB-GAG interaction in the chemokine-like activity of this protein.
Liu, Jing-Yong; Sun, Shui-Yu
2012-11-01
Fly ash sample was collected from a MSW co-combustion with sewage sludge plant and the volatilization of heavy metals Pb, Cd, Cu and Zn was investigated before and after the water washing of fly ash, meanwhile, the influence of adding different sulphur compounds (S, NaS, Na2 SO3, Na2 SO4) on the volatilization of heavy metals was studied. The results showed that the contents of Zn, Pb and Mn were high, the Ni content was low and the Cd content reached 29.4 mg x kg(1). The contents of Pb, Cu, Zn increased, while that of Cd reduced in the fly ash after water washing. TG-DTG curves of fly ash showed highest weight loss in ranges of 579-732 degrees C and 949-1 200 degrees C, with 690 degrees C and 1 154 degrees C as the inflection point temperatures. The volatilization of different heavy metals showed great difference in the volatilization rate, following the order of Pb > Cd > Zn > Cu, in which the volatilization rate of Pb was more than 80% and that of Cu was less than 30%. After water washing, the volatilization of different heavy metals showed great difference in the volatilization rate, with the order of Zn > Pb > Cd > Cu, in which the volatilization rate of Zn was more than 20%. With the pretreatment of adding Na2 SO3 and Na2 SO4, the evaporation rates of heavy metals (Cu, Pb, Zn, Cd) were significantly decreased. After adding S, the evaporation rate of Zn was reduced, whereas the addition of Na2S reduced the evaporation rates of Cd and Zn. The evaporation rates of the four heavy metals were all reduced after adding Na2S in the washed fly ash. The evaporation rates of Cu and Zn were reduced with addition of S and Na2SO3 and the evaporation rate of Cd was reduced by adding the four sulfides. The results can provide a basis for the harmless disposal and maximized resource utilization and recycling of fly ash.
Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats.
Yuan, Guiping; Dai, Shujun; Yin, Zhongqiong; Lu, Hongke; Jia, Renyong; Xu, Jiao; Song, Xu; Li, Li; Shu, Yang; Zhao, Xinghong
2014-03-01
The exposure to chemical mixtures is a common and important determinant of toxicity and receives concern for their introduction by inhalation and ingestion. However, few in vivo mixture studies have been conducted to understand the health effects of chemical mixtures compared with single chemicals. In this study, the acute and 90day sub-chronic toxicity tests of combined Pb and Cd were conducted. In the acute toxicity test, the LD50 value of Pb(NO3)2 and CdCl2 mixture by the oral route was 2696.54mg/kg by Bliss method. The sub-chronic treatment revealed that the low-dose combination of Pb and Cd exposures can significantly change the physiological and biochemical parameters of the blood of Sprague-Dawley (SD) rats with dose-response relationship and causes microcytic hypochromic anemia and the damages of liver and kidney of the SD rats to various degrees. Histopathological exams showed that the target organs of Pb and Cd were testicle, liver, and kidneys. These observations suggest that Pb and Cd are practically additive-toxic for the SD rats in oral acute toxicity studies. The lowest observed adverse-effect level in rats may be lower than a dose of 29.96mg/(kgbwday) when administered orally for 90 consecutive days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell
NASA Astrophysics Data System (ADS)
Ezeokonkwo, Mercy A.; Ofor, Okechukwu F.; Ani, Julius U.
2017-12-01
The adsorption of Cd(II) and Pb(II) ions on adsorbents prepared from sub-bituminous coal, lignite and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3 and SiO2 as being responsible for binding the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the removal of Cd(II) and Pb(II) ions from aqueous media were 80.93% and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II) and Cd(II) was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with Irvingia gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II) was preferentially adsorbed than Cd(II) in all cases. Adsorption of Cd(II) and Pb(II) ions followed Langmuir isotherm. The kinetics of adsorption was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (Irvingia gabonensis seed shell) was found to be a viable alternative for removal of toxic heavy metals from aqueous solutions.
Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020
Lu, Mingmei; Li, Zhefei; Liang, Jianqiang; Wei, Yibing; Rensing, Christopher; Wei, Gehong
2016-01-01
The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020. PMID:27378600
Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.
Divisekara, T; Navaratne, A N; Abeysekara, A S K
2018-05-01
Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Contamination of food crops grown on soils with elevated heavy metals content.
Dziubanek, Grzegorz; Piekut, Agata; Rusin, Monika; Baranowska, Renata; Hajok, Ilona
2015-08-01
The exposure of inhabitants from 13 cities of The Upper Silesia Industrial Region to cadmium and lead has been estimated on the basis of heavy metals content in commonly consumed vegetables. The samples were collected from agricultural fields, allotments and home gardens in these cities. Cadmium and lead concentrations in samples of soil and vegetables - cabbage, carrots and potatoes were determined. High content of heavy metals in the arable layer of soil in Upper Silesia (max. 48.8 and 2470mgkg(-1) d.w. for Cd and Pb, respectively) explained high Cd and Pb concentrations in locally cultivated vegetables which are well above the permissible level. Three exposure scenarios with different concentrations of Pb and Cd in vegetables were taken into consideration. In the Scenario I where the content of heavy metals was equal to maximum permissible level, the value of hazard quotient (HQ) for Pb and Cd was 0.530 and 0.704, respectively. In the scenarios where were assumed consumption of contaminated vegetables from Upper Silesia the value of hazard quotient (HQ) for Pb and Cd was 0.755 and 1.337 for Scenario II and 1.806 and 4.542 for Scenario III. The study showed that consumption of vegetables cultivated in Upper Silesia Region on the agricultural fields, allotments and in home gardens may pose a significant health risk. Copyright © 2015 Elsevier Inc. All rights reserved.
Gajbhiye, Triratnesh; Pandey, Sudhir Kumar; Kim, Ki-Hyun; Szulejko, Jan E; Prasad, Satgur
2016-12-15
In order to investigate possible foliar transfer of toxic heavy metals, concentrations of Cd, Pb, and Fe were measured in samples of: Cassia siamea leaves (a common tree) Cassia siamea foliar dust, nearby road dust, and soil (Cassia siamea tree roots) at six different sites in/around the Bilaspur industrial area and a control site on the university campus. Bilaspur is located in a subtropical central Indian region. The enrichment factor (EF) values of Pb and Cd, when derived using the crustal and measured soil Fe data as reference, indicated significant anthropogenic contributions to Pb and Cd regional pollution. Based on correlation analysis and scanning electron microscopy (SEM) observations, it was evident that Pb and Cd in foliar part of Cassia siamea were largely from airborne sources. The SEM studies of leaf confirmed that leaf morphology (epidermis, trichome, and stomata) of Cassia siamea helped accumulate the toxic metals from deposited particulate matter (PM). There is a line of evidence that the leaf of Cassia siamea was able to entrap PM in respirable suspended particulate matter (RSPM) range (i.e., both in fine and coarse fractions). The overall results of this study suggest that Cassia siamea can be a potential plant species to control the pollution of PM and PM-bound metals (Pb and Cd) in affected areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey
2017-01-01
Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.
Total mercury, cadmium and lead levels in main export fish of Sri Lanka.
Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I
2014-01-01
Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb.
Aiman, Umme; Mahmood, Adeel; Waheed, Sidra; Malik, Riffat Naseem
2016-02-01
The present study was designed to probe the levels of heavy metals (Cd, Pb, Cr, Mn, Cu, Ni, Zn and Fe) for different environmental matrices (ground water, wastewater, sediment, soil, dust and leachates). Impact of solid waste dumping site on nearby human population has also been assessed. The results revealed that concentration of Pb, Fe, Cd, Mn and Cu surpassed the permissible limits of World Health Organization (WHO) and US Environmental Protection Agency (USEPA) in water, soil, sediments, while aforesaid metals in wastewater were above the National Environmental Quality Standards (NEQS). Our results for enrichment factor (EF) and geo-accumulation (I(geo)) values revealed that soils and sediments were contaminated with Cd, Pb, Ni and Mn. The Cd content caused a considerably high potential ecological risk (E(r)(i) ≥ 320) in soil and sediments. Pb and Cd caused high health risk (HR > 1) to local residents via dust and drinking water intake. Potential cancer risk for Pb was higher than USEPA standard values (1.0E-06-1.0E-04) through water intake. The Mehmood Booti dumping site is a potential source of toxic pollutants contamination to the surrounding population. It is recommended to take proper actions for its management to resolve this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Park, Heejin; Lee, Kyoungho; Moon, Chan-Seok; Woo, Kyungsook; Kang, Tack-Shin; Chung, Eun-Kyung; Son, Bu-Soon
2015-01-01
A survey was conducted to evaluate the multi-exposure level and correlation among toxic metal biomarkers (Cd, Pb, and Hg). A total of 592 individuals who participated in the survey were residents near an industrial complex in Gwangyang and Yeosu (exposed group) and of Hadong and Namhae (control group) in southern Korea from May 2007 to November 2010. The Gwangyang and Yeosu area exposed groups had slightly higher blood Pb (2.21 and 1.90 µg/dL), urinary Cd observed values (2.20 and 1.46 µg/L), urinary Cd with a urinary creatinine correction (1.43 and 1.25 µg/g Cr), and urinary Hg observed values (2.26 and 0.98 µg/L) in women participants than those in the Hadong and Namhae area (control group). Blood Pb (3.18 and 2.55 µg/dL), urinary Hg observed values (1.14 and 0.92 µg/L), and urinary Hg with a urinary creatinine correction (1.06 and 0.96 µg/L) for male participants were also slightly higher than those in the Hadong and Namhae area (control group). The correlation among urinary Cd, Hg and Pb concentrations in the blood was significant. We suggest that the exposed group of residents were simultaneously exposed to Pb, Cd, and Hg from contaminated ambient air originating from the iron manufacturing industrial complex. PMID:26024361
Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash
2014-02-01
Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.
Pociecha, Maja; Lestan, Domen
2010-02-15
Electrocoagulation with an Al sacrificial anode was tested for the separation of chelant and heavy metals from a washing solution obtained after leaching Pb (3200 mg kg(-1)), Zn (1100 mg kg(-1)), and Cd (21 mg kg(-1)) contaminated soil with EDTA. In the electrochemical process, the sacrificial anode corroded to release Al(3+) which served as coagulant for precipitation of chelant and metals. A constant current density of 16-128 mAc m(-2) applied between the Al anode and the stainless-steel cathode removed up to 95% Pb, 68% Zn and 66% Cd from the soil washing solution. Approximately half of the initial EDTA remained in the washing solution after treatment, up to 16.3% of the EDTA was adsorbed on Al coagulant and precipitated, the rest of the EDTA was degraded by anodic oxidation. In a separate laboratory-scale remediation experiment, we leached a soil with 40 mmol EDTA per kg of soil and reused the washing solution (after electrocoagulation) in a closed loop. It removed 53% of Pb, 26% of Zn and 52% of Cd from the soil. The discharge solution was clear and colourless, with pH 7.52 and 170 mg L(-1) Pb, 50 mg L(-1) Zn, 1.5 mg L(-1) Cd and 11 mM EDTA.
Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed; Lindsay, James
2001-01-01
(Fe), manganese (Mn), arsenic (As), and cadmium (Cd). In general inter-laboratory correlations are better for samples within the compositional range of the Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Analyses by EWU are the most accurate relative to the NIST standards (mean recoveries within 1% for Pb, Fe, Mn, and As, 3% for Zn and 5% for Cd) and are the most precise (within 7% of the mean at the 95% confidence interval). USGS-EDXRF is similarly accurate for Pb and Zn. XRAL and ACZ are relatively accurate for Pb (within 5-8% of certified NIST values), but were considerably less accurate for the other 5 elements of concern (10-25% of NIST values). However, analyses of sample splits by more than one laboratory reveal that, for some elements, XRAL (Pb, Mn, Cd) and ACZ (Pb, Mn, Zn, Fe) analyses were comparable to EWU analyses of the same samples (when values are within the range of NIST SRMs). These results suggest that, for some elements, XRAL and ACZ dissolutions are more effective on the matrix of the CdA samples than on the matrix of the NIST samples (obtained from soils around Butte, Montana). Splits of CdA samples analyzed by CHEMEX were the least accurate, yielding values 10-25% less than those of EWU.
Hussain, Tahziba; Kulshreshtha, K K; Yadav, V S; Katoch, Kiran
2015-01-01
In this study, we estimated the CD4+, CD8+, CD3+ cell counts and the CD4/CD8 ratio among normal healthy controls (adults and children), leprosy patients (without any complications and during reactional states), TB patients (with and without HIV), and HIV-positive patients (early infection and full-blown AIDS) and correlated the changes with disease progression. In our study, it was observed that among adults, CD4+ cell counts ranged from 518-1098, CD8+ from 312-952, whereas CD4/CD8 ratio from 0.75-2.30. Among children, both CD4+ and CD8+ cells were more and the CD4/CD8 ratio varied from 0.91-3.17. With regard to leprosy patients, we observed that CD4+ and CD8+ cell counts were lower among PB (pauci-bacillary) and MB (multi-bacillary) patients. CD4/CD8 ratio was 0.99 ± 0.28 among PB patients while the ratio was lower, 0.78 ± 0.20, among MB patients. CD4+ cell counts were raised during RR (reversal reactions) and ENL (erythema nodosum leprosum) among the PB and MB patients whereas the CD8+ cell counts were lower among PB and MB patients. CD4/CD8 ratio doubled during reactional episodes of RR and ENL. Among the HIV-negative tuberculosis (TB) patients, both the CD4+ and CD8+ cell counts were found to be less and the CD4/CD8 ratio varied between 0.53-1.75. Among the HIV-positive TB patients and HIV-positive patients, both the CD4+ and CD8+ cells were very less and ratio drops significantly. In the initial stages of infection, as CD4+ counts drop, an increase in the CD8+ cell counts was observed and the ratio declines. In full-blown cases, CD4+ cell counts were very low, 3-4 to 54 cells, CD8+ cells from 12-211 and the ratio drops too low. This study is the first of its kind in this region of the country and assumes importance since no other study has reported the values of CD4+ and CD8+ T-lymphocyte counts among patients with mycobacterial diseases (leprosy and TB), HIV infections along with normal healthy individuals of the region, and correlation with clinical presentations of patients.
Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.
Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien
2004-08-01
Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have decreased since the introduction of nonleaded petrol, is also discussed.
Epidemiological Study on Metal Pollution of Ningbo in China
Li, Zhou; Su, Hong; Wang, Li; Hu, Danbiao; Zhang, Lijun; Fang, Jian; Jin, Micong; Song, Xin; Shi, Hongbo; Mao, Guochuan
2018-01-01
Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), chromium (Cr), nickel (Ni), zinc (Zn), and mercury (Hg) in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS). Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1) Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2) The pollution index (PI) of Cd and Zn in soil (1.069, 1.584, respectively) suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3) A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4) Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5) Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China. PMID:29495631
Shen, Zhang Jun; Xu, De Cong; Chen, Yan Song; Zhang, Zhen
2017-09-01
Fengdan (Paeonia ostii) is one of Chinese 34 famous medicinal materials. This study investigated the concentrations of Arsenic (As), Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Iron (Fe), Manganese (Mn), and Zinc (Zn) in rhizosphere soils, cortex mouton and seeds of Fengdan planted in a metal mining area, China. The mean concentrations of As, Cd, Cu, and Zn in the rhizosphere soils were above the limits set by the Chinese Soil Environmental Quality Standard (GB 15618-1995). The contamination factor (CF) of Cd was >5, while it was >2for As, Cu, Pb, and Zn in all the soils. The integrated pollution index for all the soils was >3 and ˂ 5. Metal concentrations in the edible parts of Fengdan were in the following decreasing order: Mn>Fe>Zn>Cu>Pb>As>Cr≥Cd. The transfer factor mean values for As, Cu, Cd and Fe in the cortex moutan of old Fengdan (over 6 years) were significantly higher than in young Fengdan. Available metal concentrations, pH and soil organic matter content influenced the metal concentrations of the cortex moutan. The results indicated that mining and smelting operations have led to heavy metals contamination of soils and medicinal parts of Fengdan. The major metal pollutants were elemental Cd, Cu, Pb, and Zn. Heavy metals mainly accumulated in the cortex moutan of Fengdan. The mean concentrations of Cd, Cu, and Pb in the old cortex moutan (over 6 years) were above those of the Chinese Green Trade Standards for Medicinal Plants and Preparations in Foreign Trade (WM/T2-2004). Copyright © 2017. Published by Elsevier Inc.
Highway increases concentrations of toxic metals in giant panda habitat.
Zheng, Ying-Juan; Chen, Yi-Ping; Maltby, Lorraine; Jin, Xue-Lin
2016-11-01
The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.
Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang
2015-06-01
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.
Andrade, María Luisa; Vega, Flora A.
2015-01-01
Sorption and desorption experiments were performed by the batch method on the B horizons of five natural soils: Umbric Cambisol, Endoleptic Luvisol, Mollic Umbrisol, Dystric Umbrisol, and Dystric Fluvisol. Individual and competitive sorption and desorption capacity and hysteresis were determined. The results showed that Pb2+ was sorbed and retained in a greater quantity than Cd2+ and that the hysteresis of the first was greater than that of the second. The most influential characteristics of the sorption and retention of Pb2+ were pH, ECEC, Fe and Mn oxides and clay contents. For Cd2+ they were mainly pH and, to a lesser extent, Mn oxides and clay content. The combined use of TOF-SIMS, FE-SEM/EDS and sorption and desorption analyses was suitable for achieving a better understanding of the interaction between soil components and the two heavy metals. They show the preferential association of Pb2+ with vermiculite, chlorite, Fe and Mn oxides, and of Cd2+ with the same components, although to a much lesser extent and intensity. This was due to the latter’s higher mobility as it competed unfavourably with the Pb2+ sorption sites. TOF-SIMS and FE-SEM/EDS techniques confirmed the results of the sorption experiments, and also provided valuable information on whether the soil components (individually or in association) retain Cd2+ and / or Pb2+; this could help to propose effective measures for the remediation of contaminated soils. PMID:25893518
NASA Astrophysics Data System (ADS)
Osayande, D. A.; Azi, E. D.; Obayagbona, N.; Ovwasa, O. M.; Anegbe, B.
2016-12-01
Twenty (20) soil samples were collected from several abandoned old Pb - Zn mines located in Enyigba, Ameri, Ameka villages in the Abakaliki district of Ebonyi State, South-Eastern Nigeria. The soils were analyzed for Fe, Mn, Cu, Zn, Pb, Cd, Ni, Cr, V, pH, organic carbon and Electrical Conductivity using routine procedures. The physic-chemical analyses showed that pH values were generally low. The Electrical conductivity of the soils were high while organic carbon content in the soil was generally low. The heavy metal mean trend indicated that Pb (86) > Zn (64) > Cu (20) > Cd (15) > Ni (7) > Cr (6) > V (1). Fe and Mn values were also high. The variations observed for the heavy metal suggested both geogenic and anthropogenic activities were responsible for their distribution. Soil contamination was assessed on the basis of contamination factor (CF) and enrichment factor (EF). The CF values for the soil revealed moderate contamination for Ni, Cr, V, Zn and Mn, while Pb and Cd showed high contamination. The results of enrichment factor (EF) showed that using Fe concentration in the background value, Ni, Cr, V and Mn had moderate enrichment, Pb and Zn showed significant enrichment while Cd indicated high enrichment. The results of the principal component and cluster analyses showed that Zn, Cu, Cd, Pb metal originated from similar source but may have been significantly influenced by anthropogenic activities, while Ni, Cr, V were attributable to geogenic sources.
The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.
Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I
2000-10-02
The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.
Polarized Infrared Absorption of Dipole Centers in Cadmium Halide and PbI2 Crystals
NASA Astrophysics Data System (ADS)
Terakami, Mitsushi; Nakagawa, Hideyuki
2004-03-01
Polarized infrared (IR) absorption measurements on CN- or OH- centers in cadmium halide and PbI2 crystals were carried out at 6 K with a high spectral resolution of 0.025 cm-1 at 2000 cm-1 by using a FTIR spectrometer. Several sharp absorption lines with widths less than 0.1 cm-1 are observed in the energy region of the stretching vibration, i.e. 2000 to 2250 cm-1 for CN- and 2500 to 4500 cm-1 for OH-. These lines are classified into several groups attributed to (1) an isolated center simply substituted for a halogen ion, (2) an interstitial center located between the cadmium and halogen ion sheets and (3) a coupled center with an anion vacancy or a host metal ion. Almost all of the dipole axes (bond axes) of the CN- ions doped in MI2 (M = Cd or Pb) are parallel to the crystal c-axes, while those of the isolated and coupled CN- centers in CdX2 (X = Cl or Br) lean away from the direction of the c-axis. The most OH- ions doped in CdX2 (X = Cl, Br or I) and PbI2 are arranged in the halogen-ion planes with their dipole axes parallel to the crystal c-axes. The first overtone yields values of χe and ωeχe for CN- and OH- in CdX2 and PbI2. These values explain well the isotope shift of the main stretching band in CdX2 and PbI2.
Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos
2014-01-01
In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.
Essential and toxic elements in honeys from a region of central Italy.
Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L
2015-01-01
Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.
Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...
EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS
Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...
Oustriere, Nadège; Marchand, Lilian; Rosette, Gabriel; Friesl-Hanl, Wolfgang; Mench, Michel
2017-03-01
In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.
Chen, Zhu; Myers, Robert; Wei, Taiyin; Bind, Eric; Kassim, Prince; Wang, Guoying; Ji, Yuelong; Hong, Xiumei; Caruso, Deanna; Bartell, Tami; Gong, Yiwei; Strickland, Paul; Navas-Acien, Ana; Guallar, Eliseo; Wang, Xiaobin
2015-01-01
There is an emerging hypothesis that exposure to cadmium (Cd), mercury (Hg), lead (Pb), and selenium (Se) in utero and early childhood could have long-term health consequences. However, there are sparse data on early life exposures to these elements in US populations, particularly in urban minority samples. This study measured levels of Cd, Hg, Pb, and Se in 50 paired maternal, umbilical cord, and postnatal blood samples from the Boston Birth Cohort (BBC). Maternal exposure to Cd, Hg, Pb, and Se was 100% detectable in red blood cells (RBCs), and there was a high degree of maternal–fetal transfer of Hg, Pb, and Se. In particular, we found that Hg levels in cord RBCs were 1.5 times higher than those found in the mothers. This study also investigated changes in concentrations of Cd, Hg, Pb, and Se during the first few years of life. We found decreased levels of Hg and Se but elevated Pb levels in early childhood. Finally, this study investigated the association between metal burden and preterm birth and low birthweight. We found significantly higher levels of Hg in maternal and cord plasma and RBCs in preterm or low birthweight births, compared with term or normal birthweight births. In conclusion, this study showed that maternal exposure to these elements was widespread in the BBC, and maternal–fetal transfer was a major source of early life exposure to Hg, Pb, and Se. Our results also suggest that RBCs are better than plasma at reflecting the trans-placental transfer of Hg, Pb, and Se from the mother to the fetus. Our study findings remain to be confirmed in larger studies, and the implications for early screening and interventions of preconception and pregnant mothers and newborns warrant further investigation. PMID:24756102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, G.E.; Borchard, R.E.
1982-12-01
Grass hay produced in the Coeur d'Alene River Basin of northern Idaho was fed to a group of 4 ponies. The hay contained Pb in concentration of 423 +/- 82 mg/kg and Cd in concentration of 10.8 +/- 1.4 mg/kg, resulting in daily exposures of the ponies to approximately 7.4 mg of Pb/kg and 0.19 mg of Cd/kg/day. The results in this group of ponies were compared with those from a group fed noncontaminated grass hay and given a daily dose of 10 mg of Pb/kg of body weight, in the form of lead acetate. Clinical toxicologic signs, hematologic changes,more » and blood and tissue Pb concentrations were similar in the 2 groups. However, the severity of the disease process appeared to be greater in the ponies fed the Pb- and Cd-contaminated hay. This was shown clearly by the shorter interval between onset of clinical changes and death in the ponies fed contaminated hay. The possibility of multiple heavy metal effects is discussed. Clinical toxicologic signs observed include incoordination, labial paresis, pharyngeal paresis, CNS depression, anorexia, and body weight loss. Anemia or marginal anemia was common and was often accompanied by the appearance of nucleated RBC and Howell-Jolly bodies in peripheral blood. Neither the hematologic response nor the blood Pb concentrations were reflective of the severity of poisoning, although blood Pb concentrations were greater than 0.35 micrograms/ml once clinical signs of toxicity were observed. Liver, kidney, spleen, brain, and bone Pb concentrations and liver, kidney, and brain Cd concentrations were increased in both the ponies fed contaminated hay and the ponies given lead acetate.« less
Dedeoglu, B; de Weerd, A E; Huang, L; Langerak, A W; Dor, F J; Klepper, M; Verschoor, W; Reijerkerk, D; Baan, C C; Litjens, N H R; Betjes, M G H
2017-05-01
Ageing is associated with changes in the peripheral T cell immune system, which can be influenced significantly by latent cytomegalovirus (CMV) infection. To what extent changes in circulating T cell populations correlate with T cell composition of the lymph node (LN) is unclear, but is crucial for a comprehensive understanding of the T cell system. T cells from peripheral blood (PB) and LN of end-stage renal disease patients were analysed for frequency of recent thymic emigrants using CD31 expression and T cell receptor excision circle content, relative telomere length and expression of differentiation markers. Compared with PB, LN contained relatively more CD4 + than CD8 + T cells (P < 0·001). The percentage of naive and central memory CD4 + and CD8 + T cells and thymic output parameters showed a strong linear correlation between PB and LN. Highly differentiated CD28 null T cells, being CD27 - , CD57 + or programmed death 1 (PD-1 + ), were found almost exclusively in the circulation but not in LN. An age-related decline in naive CD4 + and CD8 + T cell frequency was observed (P = 0·035 and P = 0·002, respectively) within LN, concomitant with an increase in central memory CD8 + T cells (P = 0·033). Latent CMV infection increased dramatically the frequency of circulating terminally differentiated T cells, but did not alter T cell composition and ageing parameters of LN significantly. Overall T cell composition and measures of thymic function in PB and LN are correlated strongly. However, highly differentiated CD28 null T cells, which may comprise a large part of circulating T cells in CMV-seropositive individuals, are found almost exclusively within the circulation. © 2017 British Society for Immunology.
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Wardiatno, Yusli; Kawaroe, Mujizat; Mursalin; Fauzia Lestari, Dea
2017-01-01
The surface sediments were identified from west part of Java Sea to evaluate spatial distribution and ecological risk potential of heavy metals (Hg, As, Cd, Cr, Cu, Pb, Zn and Ni). The samples were taken from surface sediment (<0.5 m) in 26 m up to 80 m water depth with Eikman grab. The average material composition on sediment samples were clay (9.86%), sand (8.57%) and mud sand (81.57%). The analysis showed that Pb (11.2%), Cd (49.7%), and Ni (59.5%) exceeded of Probably Effect Level (PEL). Base on ecological risk analysis, {{Cd }}≤ft( {E_r^i:300.64} \\right) and {{Cr }}≤ft( {E_r^i:0.02} \\right) were categorized to high risk and low risk criteria. The ecological risk potential sequences of this study were Cd>Hg>Pb>Ni>Cu>As>Zn>Cr. Furthermore, the result of multivariate statistical analysis shows that correlation among heavy metals (As/Ni, Cd/Ni, and Cu/Zn) and heavy metals with Risk Index (Cd/Ri and Ni/Ri) had positive correlation in significance level p<0.05. Total variance of analysis factor was 80.04% and developed into 3 factors (eigenvalues >1). On the cluster analysis, Cd, Ni, Pb were identified as fairly high contaminations level (cluster 1), Hg as moderate contamination level (cluster 2) and Cu, Zn, Cr with lower contamination level (cluster 3).
Tracing source pollution in soils using cadmium and lead isotopes.
Cloquet, C; Carignan, J; Libourel, G; Sterckeman, T; Perdrix, E
2006-04-15
Tracing the source of heavy metals in the environment is of key importance for our understanding of their pollution and natural cycles in the surface Earth reservoirs. Up to now, most exclusively Pb isotopes were used to effectively trace metal pollution sources in the environment. Here we report systematic variations of Cd isotope ratios measured in polluted topsoils surrounding a Pb-Zn refinery plant in northern France. Fractionated Cd was measured in soil samples surrounding the refinery, and this fractionation can be attributed to the refining processes. Despite the Cd isotopic ratios being precisely measured, the obtained uncertainties are still large compared to the total isotopic variation. Nevertheless, for the first time, Cd isotopically fractionated by industrial processes may be traced in the environment. On the same samples, Pb isotope systematics suggested that materials actually used by the refinery were not the major source of Pb in soils, probably because refined ore origins changed over the 100 years of operation. On the other hand, Cd isotopes and concentrations measured in topsoils allowed identification of three main origins (industrial dust and slag and agriculture), assuming that all Cd ores are not fractionated, as suggested by terrestrial rocks so far analyzed, and calculation of their relative contributions for each sampling point. Understanding that this refinery context was an ideal situation for such a study, our results lead to the possibility of tracing sources of anthropogenic Cd and better constrain mixing processes, fluxes, transport, and phasing out of industrial input in nature.
Tête, Nicolas; Afonso, Eve; Bouguerra, Ghada; Scheifler, Renaud
2015-11-01
Small mammal populations living on contaminated sites are exposed to various chemicals. Lead (Pb) and cadmium (Cd), two well-known nonessential trace metals, accumulate in different organs and are known to cause multiple adverse effects. To develop nonlethal markers in ecotoxicology, the present work aimed to study the relationships between blood parameters (hematocrit, leukocyte levels and granulated erythrocyte levels) and Cd and Pb concentrations in the soil and in the liver and kidneys of wood mice (Apodemus sylvaticus). Individuals were trapped along a pollution gradient with high levels of Cd, Pb and zinc (Zn) contamination. The results indicated that hematological parameters were independent of individual characteristics (age and gender). Blood parameters varied along the pollution gradient, following a pattern similar to the accumulation of Cd in the organs of the wood mice. No relationship was found between the blood parameters studied and Pb concentrations in the organs or in the environment. The hematocrit and leukocyte number decreased with increasing concentrations of Cd in the kidneys and/or in the liver. Moreover, the hematocrit was lower in the animals that were above the thresholds (LOAELs) for Cd concentrations in the liver. These responses were interpreted as a warning of potential negative effects of Cd exposure on the oxygen transport capacity of the blood (e.g., anemia). The present results suggest that blood parameters, notably hematocrit, may offer a minimally invasive biomarker for the evaluation of Cd exposure in further ecotoxicological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui
2015-04-01
Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0.83 and 0.75 between soil available and total Cd with maize. Therefore, the chemical factory contributed to the accumulation of heavy metals in the soil around it, but the contribution to the crop was limited, and thus temporarily caused no threat to human health. The reason for the lower accumulation was the high soil pH and low soil organic matter content. But more attentions should be paid to the higher accumulation of Pb in the maize caused by the vehicle and dust.
Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève
2002-01-01
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPBKKK−, a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of α4β1 and α4β7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB–GAG interaction in the chemokine-like activity of this protein. PMID:11867726
Serum trace metal levels in Alzheimer's disease and normal control groups.
Park, Jun-Hyun; Lee, Dong-Woo; Park, Kyung Su; Joung, Hyojee
2014-02-01
To determine whether serum trace metals are related to abnormal cognition in Alzheimer's disease (AD). We studied serum lead (Pb), cadmium (Cd), mercury (Hg), and arsenic(As) in 89 patients with AD and in 118 cognitively normal individuals. We analyzed the results of the blood tests and the food intake. Serum Pb levels correlated with word list recall (P = .039) and word list recognition (P = .037). Without age adjustment, serum Cd levels (P = .044) were significantly higher in the AD group. After stratified age adjustment, the levels of selected trace metals did not differ significantly between AD and normal individuals. Food intakes regarding selected trace metals were not significantly different between the 2 groups. In this study, serum Pb, Cd, Hg, and As levels were not directly related to abnormal cognition in AD. Serum Pb levels were significantly negatively correlated with verbal memory scores.
Heavy metals in sediment and their accumulation in commonly consumed fish species in Bangladesh.
Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md
2017-01-02
Six heavy metals (chromium [Cr], nickel [Ni], copper [Cu], arsenic [As], cadmium [Cd], and lead [Pb]) were measured in sediments and soft tissues of eleven commonly consumed fish species collected from an urban river in the northern part of Bangladesh. The abundance of heavy metals in sediments varied in the decreasing order of Cr > Ni > Cu > Pb > As > Cd. The ranges of mean metal concentrations in fish species, in mg/kg wet weight (ww), were as follows: Cr, 0.11-0.46; Ni, 0.77-2.6; Cu, 0.57-2.1; As, 0.43-1.7; Cd, 0.020-0.23; and Pb, 0.15-1.1. Target hazard quotients (THQs) and target carcinogenic risk (TR) showed the intake of As and Pb through fish consumption were higher than the recommended values, indicating the consumption of these fish species is associated with noncarcinogenic and carcinogenic health risks.
Heltai, Miklós; Markov, Georgi
2012-10-01
Our aim were to establish the metal (Cu, Ni, Zn, Co, Cd, and Pb) levels of red fox liver and the kidney samples (n = 10) deriving from central part of Hungary and compare the results with other countries' data. According to our results the concentrations of residues of the targeted elements (mg/kg dry weight) in liver and kidney samples were, respectively in liver: Cu: 21.418, Zn: 156.928, Ni: 2.079, Co: 1.611, Pb: 1.678 and Cd: 0.499; and kidney samples: Cu: 9.236; Zn: 87.159; Ni: 2.514; Co: 2.455; Pb: 2.63 and Cd: 0.818. Pb levels of Hungarian red fox liver samples significantly exceed the values of Italian specimens' samples, whilst the same element's concentrations of Hungarian red fox kidney samples were higher than the results published in Germany.
Toxicity of Metals to a Freshwater Ostracod: Stenocypris major
Shuhaimi-Othman, Mohammad; Yakub, Nadzifah; Ramle, Nur-Amalina; Abas, Ahmad
2011-01-01
Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed, and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni). Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean. PMID:21559091
Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon
2012-01-01
A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry
Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh
2012-08-15
50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.
Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir
2012-01-01
Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb), cadmium (Cd) and nickel (Ni) whereas muscle showed the lowest total metal accumulation of Zn, Pb, copper (Cu), Cd and Ni. Based on the Malaysian Food Regulation, the levels of Zn and Cu in edible parts (muscle and skin) were within the safety limits. However, Cd, Pb and Ni exceeded the permissible limits. By comparing with the maximum level intake (MLI), Pb, Ni and Cd in edible parts can still be consumed. This investigation indicated that M. albus from paddy fields of Kelantan are safe for human consumption with little precaution. PMID:24575231
Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir
2013-12-01
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?
Warming, Marlies; Hansen, Mette G; Holm, Peter E; Magid, Jakob; Hansen, Thomas H; Trapp, Stefan
2015-07-01
This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentrations (mg/kg dw) of As were 0.002-0.21, Cd 0.03-0.25, Cr < 0.09-0.38, Cu 1.8-8.7, Ni < 0.23-0.62, Pb 0.05-1.56, and Zn 10-86. Generally, elemental concentrations in the crops do not reflect soil concentrations, nor exceed legal standards for Cd and Pb in food. Hazard quotients (HQs) were calculated from soil ingestion, vegetable consumption, measured trace element concentrations and tolerable intake levels. The HQs for As, Cd, Cr, Cu, Ni, and Zn do not indicate a health risk through urban gardening in Copenhagen. Exposure to Pb contaminated sites may lead to unacceptable risk not caused by vegetable consumption but by unintentional soil ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Chang; Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Zhang, Jiachao; Peng, Bo; Xie, Xia; Lai, Cui; Long, Beiqing; Zhu, Jingjing
2016-01-01
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with self-doped polyaniline nanofibers (SPAN)/mesoporous carbon nitride (MCN) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV) are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM), and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV). Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3). Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination. PMID:28344264
Saleem, Muhammad; Iqbal, Javed; Shah, Munir H.
2014-01-01
The present study is carried out for the assessment of water quality parameters and selected metals levels in surface water from Mangla Lake, Pakistan. The metal levels (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were determined by flame atomic absorption spectrophotometry. Average levels of Cd, Co, Cr, Ni, and Pb were higher than the allowable concentrations set by national and international agencies. Principal component analysis indicated significant anthropogenic contributions of Cd, Co, Cr, Ni, and Pb in the water reservoir. Noncarcinogenic risk assessment was then evaluated using Hazard Quotient (HQing/derm) and Hazard Index (HIing/derm) following USEPA methodology. For adults and children, Cd, Co, Cr, and Pb (HQing > 1) emerged as the most important pollutants leading to noncarcinogenic concerns via ingestion route, whereas there was no risk via dermal contact of surface water. This study helps in establishing pollutant loading reduction goal and the total maximum daily loads, and consequently contributes to preserve public health and develop water conservation strategy. PMID:24744690
Legind, Charlotte N.; Rein, Arno; Serre, Jeanne; Brochier, Violaine; Haudin, Claire-Sophie; Cambier, Philippe; Houot, Sabine; Trapp, Stefan
2012-01-01
The water budget of soil, the uptake in plants and the leaching to groundwater of cadmium (Cd) and lead (Pb) were simulated simultaneously using a physiological plant uptake model and a tipping buckets water and solute transport model for soil. Simulations were compared to results from a ten-year experimental field study, where four organic amendments were applied every second year. Predicted concentrations slightly decreased (Cd) or stagnated (Pb) in control soils, but increased in amended soils by about 10% (Cd) and 6% to 18% (Pb). Estimated plant uptake was lower in amended plots, due to an increase of Kd (dry soil to water partition coefficient). Predicted concentrations in plants were close to measured levels in plant residues (straw), but higher than measured concentrations in grains. Initially, Pb was mainly predicted to deposit from air into plants (82% in 1998); the next years, uptake from soil became dominating (30% from air in 2006), because of decreasing levels in air. For Cd, predicted uptake from air into plants was negligible (1–5%). PMID:23056555
Heidari, Behnam; Riyahi Bakhtiari, Alireza; Shirneshan, Golshan
2013-12-01
This study examines concentrations of Cd, Cu, Pb and Zn in the soft tissue of Saccostrea cucullata in the intertidal zones of Lengeh Port, Persian Gulf, Iran, to survey whether heavy metals are within the acceptable limits for public health? The results revealed that the average metal concentrations (μg/g dry weight) ranged from 10.28 to 12.03 for Cd, 294.10 to 345.80 for Cu, 20.64 to 58.23 for Pb and 735.60 to 760.40 for Zn in the soft tissue of oysters. From the human public health point of view, comparison between the mean concentrations of the metals in the soft tissue of oyster and global guidelines clearly indicates that nearly in all cases concentrations are higher than the permissible amounts for human consumption. In addition, levels of Zn, Pb and Cu were well below their recommended oral maximum residue level (MRLs), whereas levels of Cd were observed two times higher. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Dongyue; Jia, Jianbo; Wang, Jianguo
2010-12-15
A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Shi, Jian-Jun; Zhu, Jing-Chun; Zhao, Ming; Wang, Yan; Yang, Ping; He, Jie
2018-06-01
An ultrasensitive photoelectrochemical (PEC) aptasensor for lead ion (Pb 2+ ) detection was fabricated based on MoS 2 -CdS:Mn nanocomposites and sensitization effect of CdTe quantum dots (QDs). MoS 2 -CdS:Mn modified electrode was used as the PEC matrix for the immobilization of probe DNA (pDNA) labeled with CdTe QDs. Target DNA (tDNA) were hybridized with pDNA to made the QDs locate away from the electrode surface by the rod-like double helix. The detection of Pb 2+ was based on the conformational change of the pDNA to G-quadruplex structure in the presence of Pb 2+ , which made the labeled QDs move close to the electrode surface, leading to the generation of sensitization effect and evident increase of the photocurrent intensity. The linear range was 50 fM to 100 nM with a detection limit of 16.7 fM. The recoveries of the determination of Pb 2+ in real samples were in the range of 102.5-108.0%. This proposed PEC aptasensor provides a new sensing strategy for various heavy metal ions at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang
2014-08-01
This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa
2011-07-15
The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period. Copyright © 2011 Elsevier B.V. All rights reserved.
Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A
2018-05-25
The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.
Saher, Noor Us; Siddiqui, Asmat Saleem
2016-04-15
Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toxic heavy metal contamination assessment and speciation in sugarcane soil
NASA Astrophysics Data System (ADS)
Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang
2018-01-01
The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.
Ruelas-Inzunza, Jorge; Soto-Jiménez, Martín Federico; Ruiz-Fernández, Ana Carolina; Bojórquez-Leyva, Humberto; Pérez-Bernal, Hascibe; Páez-Osuna, Federico
2012-12-01
Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of (210)Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g(-1) dw) and Cu (1.85 μg g(-1) dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g(-1) dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. (210)Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.
Zhu, Bo; Gao, Kun-Shan; Wang, Ke-Jian; Ke, Cai-Huan; Huang, He-Qing
2012-04-01
As mercury and lead, cadmium (Cd) is one of the highly toxic metals in both the ocean and land environments, but its toxicological mechanism in organisms including human is still unclear because of the complex toxicological pathways in vivo. Here, the alga Chlorella vulgaris were cultivated at room temperature under the stress of cadmium (1 mg L(-1)) to obtain a toxic food, and then the contaminated food were directly supplied to oyster (Saccostrea cucullata) in seawater. After feeding with C. vulgaris contaminated with Cd (C. vulgaris-Cd), the differential proteins in the oyster gonad (OG) were effectively separated and identified with proteomic approaches. Eleven protein spots were observed to be significantly changed in the OG feeding with C. vulgaris-Cd, which seven spots of these differential proteins were down-regulated while four spots were up-regulated. These altered spots were further excised in gels and identified by a combined technique of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and database searching. A portion of these differential proteins were further proofed by real-time PCR and Western blotting. The results indicate that the major functions of these differential proteins were described as follows: binding, protein translocation, catalysis, regulation of energy metabolism, reproductive function and skeleton structure. These differential proteins in part may effectively provide a few novel biomarkers for the evaluation of Cd pollution level via a food pathway for harming halobios, mammal and human health, and for understanding the complex mechanisms of Cd toxicity in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe
2015-02-01
The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.
Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng
2014-12-01
A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.
Chen, Zhaoqiong; Wang, KeXiu; Ai, Ying Wei; Li, Wei; Gao, Hongying; Fang, Chen
2014-02-01
Heavy metal contamination in the artificial soils on the railway cut slopes may have great influence on the revegetation of the cut slopes. The purpose of this study was to assess the variation of heavy metal contamination levels with railway operation time and analyze their possible resources. A total of 100 soil samples from four cut slopes, which were affected by railway transportation for different years, were analyzed for metal pollution (Cd, Pb, Cr, Cu, Zn, Fe). The concentrations of Cd, Pb showed increasing trend with increasing operation time of railways, while such trend was not found in Cr, Cu, Zn, Fe. According to the soil quality standard of China, Cd was considered to have considerable contamination, while Pb has less, but Cr, Cu, Zn, Fe have none. Moreover, cadmium exhibited remarkably higher levels rather than those reported in other studies. Enrichment factors and ecological index showed that Cd and Pb showed a moderate enrichment and a considerable ecological risk in most of the soil samples. The results of descriptive statistic, principal component analysis, cluster analysis and correlation analysis were totally consistent with each other. Their results revealed that Cr, Cu, Zn and Fe had common origins, and they may come from natural resources. While Cd and Pb were significantly influenced by railway transportation, leaked cargos, fuel combustion, the use of lubricate oils and sleeper impregnation oils during railway transportation may be their main resources.
Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan
2013-01-01
The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.
Tuning the structural and electronic properties of heterogeneous chalcogenide nanostructures
NASA Astrophysics Data System (ADS)
Giberti, Federico; Voros, Marton; Galli, Giulia
Heterogeneous nanostructures, such as quantum dots (QDs) embedded in solid matrices, are promising platforms for solar energy conversion. Unfortunately, there is scarce information on the structure of the interface between the dots and their embedding matrix, thus hampering the design of functional materials with desired optoelectronic properties. Here, we developed a hierarchical computational strategy to obtain realistic models of semiconductor QDs embedded in matrices using enhanced sampling classical molecular dynamics simulations and predicted their electronic structure using first-principles electronic structure methods. We investigated PbSe/CdSe systems which are promising materials for solar cell applications and found a favorable quasi-type-II band alignments both for PbSe QDs in CdSe matrices and for CdSe embedded in PbSe. However, in the former case, we found the presence of detrimental intra-gap states, while in the latter no defect states are present. Hence we predict that embedding CdSe in PbSe leads to a more efficient platform for solar energy conversion. In addition, we showed that the structure of CdSe QD and in turn its band gap might be tuned by applying pressure to the PbSe matrix, providing a way to engineer the properties of new functional materials. Work by F. Giberti was supported by MICCoM funded by the U.S. Department of Energy (DOE), DOE/BES 5J-30161-0010A; work by M. Voros was supported by the U.S. DOE, under Award DE-AC02-06CH11357.
Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D
2014-08-15
We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural
Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan
2016-10-01
Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO 3 ) 2 (200 μM), ZnSO 4 ·7H 2 O (100 μM), CuSO 4 ·5H 2 O (25 μM), and CdCl 2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.
Aldawsari, Abdullah; Khan, Moonis Ali; Hameed, B H; Alqadami, Ayoub Abdullah; Siddiqui, Masoom Raza; Alothman, Zeid Abdullah; Ahmed, A Yacine Badjah Hadj
2017-01-01
A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
Gupta, Vineeta; Ansari, Nasreen Ghazi; Garg, Ravindra Kumar; Khattri, Sanjay
2017-09-01
Various uses of metals in industries, including the domestic sphere, agriculture, medicine and technology, have led to their wide distribution in the environment. These result in raising concerns over their potential effects on human health and the environment. Because of their high degree of toxicity, Cd, Cr and Pb are some of the priority metals that are of public health significance. The levels of Cd, Cr, Pb and Ni were measured in Parkinson's disease (PD) patients. Blood samples were collected from 40 patients and 40 healthy controls, and stored at -80 °C until assayed. Atomic absorption spectrophotometry was used to determine the levels of metals. The level of Pb was significantly decreased in patients than in controls. However, the difference in the level of Ni between patients and controls failed to reach significance. Cr was not detectable in patients, but it was measurable in 12 controls (controls = 0.056-2.397 µg/ml). Similarly, Cd was not detectable in patients, but it was measurable in all the controls (controls = 0.004-1.268 µg/ml). Pb was the only metal that was found in all study participants (PD = 0.012-2.758 µg/ml and controls = 0.779-9.840 µg/ml). Ni could be measured only in six patients and in all the controls (PD = 0.154-0.754 µg/ml and controls = 0.034-1.691 µg/ml). Patients exhibited significantly decreased levels of Pb than in controls. However, Cd, Cr and Ni were too low to be measured among the patients. This indicates that these metals might play a probable role in PD.
NASA Astrophysics Data System (ADS)
Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng
2008-07-01
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.
da Silva, William Ramos; da Silva, Fernando Bruno Vieira; Araújo, Paula Renata Muniz; do Nascimento, Clístenes Williams Araújo
2017-10-01
Soils impacted by metallurgy activities pose serious risks to the health of exposed populations, whether by ingestion of soil or contaminated food and water. The municipality of Santo Amaro, Bahia state, presents the most important case of human lead contamination in Brazil. It occurred because of inadequate slag disposal. The aims of this research were to: (i) determine the environmentally available concentrations and the distribution of As, Cd, Pb, and Zn in soil fractions; (ii) estimate the non-carcinogenic and carcinogenic risks of these elements for children; and (iii) to evaluate the use of corn (Zea mays) and castor bean (Ricinus communis) either for phytoextraction induced by chelating agents or phytostabilization. Our data demonstrated that the environmentally available concentrations of As, Cd, Pb, and Zn in soils surrounding the Pb smelting plant are among the highest that have been reported. Apart from Cd, sequential extraction demonstrated that most metals are in recalcitrant forms in the soil. However, the daily exposure of children to Pb, Zn, Cd, and As exceeded the acceptable daily intake as established by the World Health Organization. Non-carcinogenic risk modeling indicated probable adverse health effects from chronic exposure to soil Pb. The mean estimated time for remediation of the area using phytoextraction was high, ranging from 76 to 259 years; therefore, this is not a viable alternative for remediating soils in the studied area. However, good development in the contaminated soil along with restriction of the metal(oid) translocation to shoots enables castor bean to phytostabilize metal(oid)s. Additionally, castor bean cultivation may be an alternative for an economic return because of biofuel production. Copyright © 2017. Published by Elsevier Inc.
Welt, Marc; Mielke, Howard W; Gonzales, Chris; Cooper, Kora M; Batiste, Corey G; Cresswell, Lawrence H; Mielke, Paul W
2003-12-01
This research examines the pattern of sediment contamination of an urban bayou of New Orleans (formerly a natural waterway) and the potential for human exposure from consumption of fish caught in the bayou. Sediments and soils of Bayou Saint John were evaluated for lead (Pb), zinc (Zn), and cadmium (Cd). Sediment cores were collected at bridges (n = 130) and sites between the bridges (n = 303) of the bayou. In addition, soil samples (n = 66) were collected along the banks of the bayou. Sediments below the bridges contain significantly more (p-value approximately 10(-7)) Pb and Zn (medians of 241 and 230 mg kg(-1), respectively) than bayou sediments located between bridges (medians of 64 and 77 mg kg(-1), respectively). Sediments below bridges of the upper reaches of the bayou contain significantly larger amounts of metals (p < 10(-14) for Pb and Zn and p approximately 10(-8) for Cd) (medians of 329, 383 and 1.5, respectively) than sediments below bridges in the lower reaches of the bayou (medians of 43, 31 and 0.5 for Pb, Zn and Cd, respectively). Likewise, medians for sediments located between bridges contain significantly (p < 10(-14)) higher quantities of Pb, Zn and Cd (170, 203 and 1.8 mg kg(-1), respectively) in the upper bayou than Pb, Zn, and Cd (48, 32, and 0.8 mg kg(-1), respectively) in the lower reaches of the bayou. The potential risk for human exposure may be magnified by the fact that fishing generally occurs from the numerous bridges that cross the bayou. Poor and minority people do most of the fishing. Most people (87%) indicated they ate fish they caught from the Bayou.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei
2017-07-01
Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei
2018-06-01
Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.
Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin
2017-01-01
Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goix, Sylvaine; UMR 5245 CNRS-INP-UPS, EcoLab; Lévêque, Thibaut
2014-08-15
This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score duemore » to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.« less
Biosorption of lead, copper, and cadmium with continuous hollow-fiber microfiltration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.S.; Chen, C.C.
1999-06-01
A hollow-fiber crossflow microfiltration membrane was utilized to retain a biomass of Pseudomonas aeruginosa PU21 for continuous biosorption of lead (Pb), copper (Cu), and cadmium (Cd) ions in single or ternary metal systems. The results obtained from the microfiltration systems showed that in both single and ternary biosorption, the metal removal efficiency based on a molar basis was clearly Pb > Cu > Cd. For a single-membrane process with an influent metal concentration of 200 {micro}M and a flow rate of 350 mL/h, the effluent concentration of Pb and Cu satisfied the national regulations for an influent volume of 6.3more » L. With a three-metal influent, the adsorption capacity of the biomass for Pb, Cu, and Cd was reduced 4, 50, and 74% compared to that for single-metal adsorption. Selective biosorption with a three-column sequential microfiltration operation exhibited an enhancement of 40 and 57% of total metal removal for Cu and Cd, respectively, over the results from single-membrane operation. The multimembrane operation also enabled locally optimal accumulation of Pb, Cu, and Cd at the first, second, and third stage, respectively. The regeneration efficiency of the biomass was 70% after three repetitive adsorption desorption cycles, whereas the Pb recovery efficiency was maintained at nearly 90%. A rapid-equilibrium model (Model A) and a mass-transfer model (Model B) were used to describe the results of single- and multimetal biosorption with the microfiltration processes. Model A exhibited excellent prediction for the results of single-metal biosorption, while Model B was more applicable to interpret the multimetal biosorption data.« less
Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.; Miller, Elisa M.; Zhang, Jianbing; Beard, Matthew C.; Luther, Joseph M.
2015-01-01
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%. PMID:25910183
Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells.
Crisp, Ryan W; Kroupa, Daniel M; Marshall, Ashley R; Miller, Elisa M; Zhang, Jianbing; Beard, Matthew C; Luther, Joseph M
2015-04-24
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl(-) with I(-). The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.
Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; ...
2015-04-24
We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI 2, PbCl 2, CdI 2, or CdCl 2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI 2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting amore » deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI 2 with power conversion efficiencies above 7%.« less
Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe
2012-08-01
The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator.
Hassanein, Naziha M.; Abd El-Hay Ibrahim, Hussein; Abd El-Baky, Doaa H.
2017-01-01
The ability of dead cells of endophytic Drechslera hawaiiensis of Morus alba L. grown in heavy metals habitats for bioremoval of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+) in aqueous solution was evaluated under different conditions. Whereas the highest extent of Cd2+ and Cu2+ removal and uptake occurred at pH 8 as well as Pb2+ occurred at neutral pH (6–7) after equilibrium time 10 min. Initial concentration 30 mg/L of Cd2+ for 10 min contact time and 50 to 90 mg/L of Pb2+ and Cu2+ supported the highest biosorption after optimal contact time of 30 min achieved with biomass dose equal to 5 mg of dried died biomass of D. hawaiiensis. The maximum removal of Cd2+, Cu2+, and Pb2+ equal to 100%, 100%, and 99.6% with uptake capacity estimated to be 0.28, 2.33, and 9.63 mg/g from real industrial wastewater, respectively were achieved within 3 hr contact time at pH 7.0, 7.0, and 6.0, respectively by using the dead biomass of D. hawaiiensis compared to 94.7%, 98%, and 99.26% removal with uptake equal to 0.264, 2.3, and 9.58 mg/g of Cd2+, Cu2+, and Pb2+, respectively with the living cells of the strain under the same conditions. The biosorbent was analyzed by Fourier Transformer Infrared Spectroscopy (FT-IR) analysis to identify the various functional groups contributing in the sorption process. From FT-IR spectra analysis, hydroxyl and amides were the major functional groups contributed in biosorption process. It was concluded that endophytic D. hawaiiensis biomass can be used potentially as biosorbent for removing Cd2+, Cu2+, and Pb2+ in aqueous solutions. PMID:28781539
Razagui, Ibrahim B-A; Ghribi, Ibrahim
2005-07-01
Postpartum scalp hair samples from 82 term-pregnancy mother/ neonate pairs were analyzed for their concentrations of zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb), using inductively coupled plasma-mass spectrometry. Maternal and neonatal Zn concentrations had geometric means (and 99% confidence intervals) of 122.5 microg/g (117.9--131.5 microg/g) and 146.9 microg (141.5--156.7 microg/g) respectively. Corresponding Cu values were 18.4 microg/g (17.6--23.8 microg/g) and 6.7 microg/g (6.3--7.6 microg/g). Those of Cd were 0.49 microg/g (0.47--0.69 microg/g) in the mothers and 0.57 microg/g (0.55--0.86 microg/g) in the neonates. For Pb, they were 7.95 microg/g (7.60--9.32 microg/g) and 4.56 microg/g (4.39--5.56 microg/g). Cigarette smoking, despite its relatively low prevalence (19.5%), was associated with lower Zn and higher Cd and Pb concentrations and in lower Zn/Cd and Zn/Pb molar concentration ratios. Smoking also altered interelemental relationships, particularly those of Zn with Cd and Pb and those between Cd and Pb. Smoking frequency appeared to show negative dose-response effects on maternal and neonatal Zn concentrations, Zn/Pb molar concentration ratios, and birth weight. Mothers with a history of oral contraceptive (OC) usage had significantly higher Cu concentrations and lower Zn/Cu molar concentration ratios than non users, with the highest Cu concentrations and lowest Zn/Cu values being associated with third-generation OCs. No similar effects were elicited in the respective neonatal Cu concentrations. Neither alcohol consumption nor prenatal supplementation with iron and/or folic acid had discernible effects on the maternal or neonatal elemental concentrations. The data from this study suggest that in a given population of term-pregnancy mothers and neonates, significant interindividual variations in hair trace element concentrations can occur, irrespective of commonality of general environment, and that lifestyle factors, including cigarette smoking and OC usage history, can be significant contributory factors to such variations. The data are discussed in relation to the effects of smoking-associated exposure to Cd and Pb exposure on Zn availability for placental transfer, as well as on the quantitative maternal Zn supply levels to the fetus resulting from the known tendency of smokers to have lower dietary intakes of Zn.
NASA Astrophysics Data System (ADS)
Fitamo, Daniel; Itana, Fisseha; Olsson, Mats
2007-02-01
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.
Jalali, Mohsen; Khanlari, Zahra V
2007-11-01
Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Tissue distribution of metals in white-fronted geese and spot-billed ducks from Korea.
Kim, Jungsoo; Oh, Jong-Min
2013-07-01
This study presents concentrations of Fe, Zn, Mn, Cu, Pb and Cd in livers, kidneys, muscles and bones of white-fronted geese Anser albifrons (geese) and spot-billed ducks Anas poecilorhyncha (ducks). Iron in livers, kidneys and muscles, Zn in muscles, Mn and Cd in every tissue, Cu in livers, muscles and bones and Pb in bones differed between species, and there were significant differences among tissues in both species. Essential elements such as Fe, Zn, Mn and Cu concentrations were within the background levels. Lead concentrations in livers of 7 of 14 geese and 7 of 19 ducks and in bones of 4 of 19 ducks exceeded background concentrations for waterfowl (5 μg/g dw for the liver, 10 μg/g dw for the bone). Almost all samples of both species had the background Cd concentrations in the liver (33 of 33 geese and ducks) and kidney (14 geese and 18 ducks). Tissue concentrations of Cd were greater in geese than ducks. In contrast, tissue concentrations of Pb in bones were greater in ducks than in geese. These different trends for Cd and Pb reflect a short and/or long term difference in exposure and degree of accumulation of these metals.
Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang
2017-05-01
A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.
2004-04-01
A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.
El Missiry, Mohamed; Adnan Awad, Shady; Rajala, Hanna L; Al-Samadi, Ahmed; Ekblom, Marja; Markevän, Berit; Åstrand-Grundström, Ingbritt; Wold, Maren; Svedahl, Ellen Rabben; Juhl, Birgitte Ravn; Bjerrum, Ole Weis; Haulin, Inger; Porkka, Kimmo; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu
2016-05-01
Tyrosine kinase inhibitors (TKIs) used in the treatment of chronic myeloid leukaemia have been reported to induce immunomodulatory effects. We aimed to assess peripheral blood (PB) and bone marrow (BM) lymphocyte status at the diagnosis and during different TKI therapies and correlate it with treatment responses. BM and PB samples were acquired from 105 first-line TKI-treated patients. Relative number of BM lymphocytes was evaluated from MGG-stained BM aspirates, and immunophenotypic analyses were performed with multicolour flow cytometry. Early 3-month expansion of BM lymphocytes was found during all different TKIs (imatinib n = 71, 20 %; dasatinib n = 25, 21 %; nilotinib n = 9, 22 %; healthy controls n = 14, 12 %, p < 0.0001). Increased PB lymphocyte count was only observed during dasatinib therapy. The BM lymphocyte expansion was associated with early molecular response; patients with 3-month BCR-ABL1 <10 % showed higher lymphocyte counts than patients with BCR-ABL1 >10 % (23 vs. 17 %, p < 0.05). Detailed phenotypic analysis showed that BM lymphocyte expansion consisted of various lymphocyte subclasses, but especially the proportion of CD19+ B cells and CD3negCD16/56+ NK cells increased from diagnostic values. During dasatinib treatment, the lymphocyte balance in both BM and PB was shifted more to cytotoxic direction (increased CD8+CD57+ and CD8+HLA-DR+ cells, and low T regulatory cells), whereas no major immunophenotypic differences were observed between imatinib and nilotinib patients. Early BM lymphocytosis occurs with all current first-line TKIs and is associated with better treatment responses. PB and BM immunoprofile during dasatinib treatment markedly differs from both imatinib- and nilotinib-treated patients.
Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C
2017-04-01
Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.
Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim
2012-07-01
Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.
Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.
Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen
2010-11-01
Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.
Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast
NASA Astrophysics Data System (ADS)
Minkina, T. M.; Fedorov, Yu. A.; Nevidomskaya, D. G.; Pol'shina, T. N.; Mandzhieva, S. S.; Chaplygin, V. A.
2017-09-01
Natural and anthropogenic factors determining the distribution and accumulation features of Pb, Cu, Zn, Cr, Ni, Cd, Mn, and As in the soil-plant system of the Don River estuary and the northern and southern Russian coasts of Taganrog Bay estuary have been studied. High mobility of Cu, Zn, Pb, and Cd has been revealed in alluvial soils. This is confirmed by the significant bioavailability of Cu, Zn, and, to a lesser degree, Cd and the technophily of Pb, which are accumulated in tissues of macrophytic plants. Statistically significant positive correlations have been found between the mobile forms of Cu, Zn, Cd, and Mn in the soil and the accumulation of metals in plants. Impact zones with increased metal contents in aquatic ecosystems can be revealed by bioindication from the morphofunctional parameters of macrophytic plants (with Typha L. as an example).
Ruelas-Inzunza, J; Green-Ruiz, C; Zavala-Nevárez, M; Soto-Jiménez, M
2011-08-15
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g ⁻¹ dry weight) and Cr (0.01 μg g⁻¹) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g⁻¹) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g⁻¹) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g⁻¹) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g⁻¹) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g⁻¹) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g⁻¹) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p<0.025), Cr (p<0.10) and Hg (p<0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...
Tuning and synthesis of semiconductor nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.
Eusden, J D; Gallagher, L; Eighmy, T T; Crannell, B S; Krzanowski, J R; Butler, L G; Cartledge, F K; Emery, E F; Shaw, E L; Francis, C A
2002-01-01
The use of soluble PO4(3-) and lime as a heavy metal chemical stabilization agent was evaluated for mine tailings from Leadville, Colorado. The tailings are from piles associated with the Wolftone and Maid of Erin mines; ore material that was originally mined around 1900, reprocessed in the 1940s, and now requires stabilization. The dominant minerals in the tailings are galena (PbS), cerrusite (PbCO3), pyromorphite (Pb5(PO4)3Cl), plumbojarosite (Pb0.5Fe3(SO4)2(OH)6), and chalcophanites ((Pb,Fe,Zn,Mn)Mn2O5 x 2H2O). The tailings were treated with soluble PO4(3-) and lime to convert soluble heavy metals (principally Pb, Zn, Cu, Cd) into insoluble metal phosphate precipitates. The treatment process caused bulk mineralogical transformations as well as the formation of a reaction rind around the particles dominated by Ca and P. Within the mineral grains, Fe-Pb phosphosulfates, Fe-Pb sulfates (plumbojarosite), and galena convert to Fe-Ca-Pb hydroxides. The Mn-Pb hydroxides and Mn-(+/-Fe)-Pb hydroxides (chalcophanites) undergo chemical alteration throughout the grains during treatment. Bulk and surface spectroscopies showed that the insoluble reaction products in the rind are tertiary metal phosphate (e.g. (Cu,Ca2)(PO4)2) and apatite (e.g. Pb5(PO4)3Cl) family minerals. pH-dependent leaching (pH 4,6,8) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 150 for many metals; particularly Pb2+, Zn2+, Cd2+, and Cu2+. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, PO4(3-) Pb2+, Zn2+, Cd2+, and Cu2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids.
Wang, Bo; Zhang, Congyang; Huang, Shouqiang; Li, Zhichun; Kong, Long; Jin, Ling; Wang, Junhui; Wu, Kaifeng; Li, Liang
2018-06-15
Lead halide perovskite nanocrystals (NCs) as promising optoelectronic materials are intensively researched. However, the instability is one of the biggest challenges needed to overcome before fulfill their practical applications. To improve their stability, we present a postsynthetic controlled phase transformation of CsPbBr3 toward CsPbBr3/Rb4PbBr6 core/shell structure triggered by rubidium oleate treatment. The resulted core/shell NCs show exceptional photostability both in solution and on-chip. The solution of CsPbBr3/Rb4PbBr6 NCs can remain over 90% of the initial emission photoluminescence quantum yields (PLQY) after 42 h of intense light-emitting diodes illumination (450 nm, 175 mW/cm2), which is even better than the conventional CdSe/CdS quantum dots whose emission drop to 50% after 18 h under the same condition. We believe that the exceptional photostability should be resulted from the protection of the robust Rb4PbBr6 shell on CsPbBr3 NCs.
Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
Liu, Hongyu; Probst, Anne; Liao, Bohan
2005-03-01
In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical-chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg(-1), respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg(-1) in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg(-1) for Cd and 9 mg kg(-1) for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem, and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.
Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities.
Kováčik, Jozef; Dudáš, Matej; Hedbavny, Josef; Mártonfi, Pavol
2016-11-01
Accumulation of selected heavy metals (Cd, Pb, Ni, Cr, Fe, and Zn) and phenolic metabolites (total soluble phenols, cichoric and caftaric acid) in dandelion organs (leaves, roots, inflorescences/anthodia) collected from six localities within the industrial town Košice (eastern Slovakia) were studied. Localities from the vicinity of a steel factory (Cd, Fe) and heavy traffic (Pb, Ni, Cr, Zn) contained the highest amount of individual metals in the soil but a significant correlation between soil and organ metal content was found only for Cr in the leaves (r 2 = 0.7679). The amount of Cd and partially Pb differed among localities in all organs and especially in the leaves and anthodia, indicating probably the impact of atmospheric pollution. The bioaccumulation factor was <1 for almost all metals, suggesting that given dandelion species is not metal accumulator. Translocation factor did not reach values close to or over 1 only for Cd, indicating a root-to-shoot movement of Pb, Ni and Zn though the impact of air pollution on leaves cannot be excluded. A strong correlation between leaf Cd and leaf total phenols, cichoric and caftaric acids was observed (r 2 = 0.7926, 0.8682 and 0.8830, respectively), indicating that phenolic metabolites act in the protection of dandelion against Cd excess. Overall, our data indicate low pollution of urban soil by Cd (5.53-113.8 ng g -1 ) and partially by Cr and the suitability of above-ground organs of dandelion species for the monitoring of air pollution mainly by Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng
2017-01-01
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.
Influence of the layer parameters on the performance of the CdTe solar cells
NASA Astrophysics Data System (ADS)
Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir
2018-03-01
Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.
Fuchinoue, Kohei; Fukui, Atsushi; Chiba, Hitomi; Kamoi, Mai; Funamizu, Ayano; Taima, Ayako; Fukuhara, Rie; Mizunuma, Hideki
2016-11-01
Recently, NK22 cells, a subset of interleukin (IL)-22-producing natural killer (NK) cells, were identified. We have previously reported the higher percentage of NK22 cells in women suffering recurrent pregnancy loss (RPL). Moreover, we have also reported lower expression of NKp46, a kind of natural cytotoxicity receptor (NCR), on NK cells and the changes of NK cell producing cytokines in women who experience RPL. NK22 cells express NCRs, such as NKp44 or NKp46. Retinoid-related orphan receptor γt (RORγt) is known as a regulator of NK22 cells; however, in NK22 cells of peripheral blood (PB) and the uterine endometrium (UE), the relationship between NCRs and RORγt is unclear. We investigate RORγt expression NK22 cells in the PB and UE of women with unexplained infertility (uI) or unexplained RPL (uRPL). Lymphocytes were extracted from PB and UE, derived from women with uI or uRPL. Expression of RORγt and NCRs in NK cells and NK cell-produced cytokines were analyzed by flow cytometry. CD56 + /NKp46 + /RORγt + cells were positively correlated with CD56 + /IL-22 + cells in both PB and UE. CD56 bright /NKp46 bright /RORγt + cells were significantly higher in uRPL than in uI, and endometrial CD56 bright /NKp46 bright /RORγt + cells were positively correlated with PB. In UE, CD56 bright /RORγt + cells were negatively correlated with CD56 bright /interferon-γ + and CD56 bright /tumor necrosis factor-α + cells of uRPL. RORγt may be associated with NK22 cells in reproduction. Particularly, higher expression of RORγt may be associated with elevated NK22 cells in uRPL. © 2016 Japan Society of Obstetrics and Gynecology.
Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes.
Bloom, Michael S; Kim, Keewan; Kruger, Pamela C; Parsons, Patrick J; Arnason, John G; Steuerwald, Amy J; Fujimoto, Victor Y
2012-12-01
We previously reported associations between trace concentrations of Hg, Cd and Pb in blood and urine and reproductive outcomes for women undergoing in-vitro fertilization (IVF). Here we assess measurements in single follicular fluid (FF) specimens from 46 women as a presumably more relevant marker of dose for reproductive toxicity. FF specimens were analyzed for Hg, Cd and Pb using sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). Variability sources were assessed by nested ANOVA. Multivariable regression was used to evaluate associations for square root transformed metals with IVF outcomes, adjusting for confounders. An inverse association is detected for FF Pb and fertilization (relative risk (RR) = 0.68, P = 0.026), although positive for Cd (RR = 9.05, P = 0.025). While no other statistically significant associations are detected, odds ratios (OR) are increased for embryo cleavage with Hg (OR = 3.83, P = 0.264) and Cd (OR = 3.18, P = 0.644), and for embryo fragmentation with Cd (OR = 4.08, P = 0.586) and Pb (OR = 2.22, P = 0.220). Positive estimates are observed for Cd with biochemical (RR = 19.02, P = 0.286) and clinical pregnancies (RR = 38.80, P = 0.212), yet with very low precision. We have identified associations between trace amounts of Pb and Cd in FF from a single follicle, and oocyte fertilization. Yet, the likelihood of biological variation in trace element concentrations within and between follicles, coupled with levels that are near the limits of detection suggest that future work should examine multiple follicles using a 'one follicle-one oocyte/embryo' approach. A larger study is merited to assess more definitively the role that these environmental factors could play with respect to egg quality in IVF programs.
Lv, Lu; Wang, Kean; Zhao, X S
2007-01-15
The breakthrough behavior of Pb2+ in an ETS-10 fixed bed was experimentally examined at various operating conditions. Results showed that the adsorption amount of Pb2+ ions per unit mass of ETS-10 particles in a column is about 1.68 mmol/g under the experimental conditions. This amount was not markedly affected by the operating conditions because of the rapid adsorption rate of Pb2+ ions on ETS-10. In the presence of competitive metal ions, the amount of Pb2+ adsorbed on ETS-10 was slightly reduced. An overshoot of the effluent concentrations of competitive metal ions Cu2+ and Cd2+ was observed in the adsorption systems of binary and ternary solutions. This is ascribed to the replacement of pre-adsorbed Cu2+ and Cd2+ ions by Pb2+ ions. The ETS-10 column broken up by Pb2+ ions can be regenerated by using an EDTA-Na2 solution and the regenerated column can be reused.
Vestibular dysfunction in the adult CBA/CaJ mouse after lead and cadmium treatment
Klimpel, Katarina E. M.; Lee, Min Young; King, W. Michael; Raphael, Yehoash; Schacht, Jochen; Neitzel, Richard L.
2017-01-01
OBJECTIVES The vestibular system allows the perception of position and motion and its dysfunction presents as motion impairment, vertigo and balance abnormalities, leading to debilitating psychological discomfort and difficulty performing daily tasks. Although declines and deficits in vestibular function have been noted in rats exposed to lead (Pb) and in humans exposed to Pb and cadmium (Cd), no studies have directly examined the pathological and pathophysiological effects upon the vestibular apparatus of the inner ear. METHODS Eighteen young adult mice were exposed through their drinking water (3 mM Pb, 300 μM Cd, or a control treatment) for 10 weeks. Before and after treatment, they underwent a vestibular assessment, consisting of a rotarod performance test and a novel head stability test to measure the vestibulocolic reflex. At the conclusion of the study, the utricles were analyzed immunohistologically for condition of hair cells and nerve fibers. RESULTS Increased levels of Pb exposure correlated with decreased head stability in space; no significant decline in performance on rotarod test was found. No damage to the hair cells or the nerve fibers of the utricle was observed in histology. CONCLUSIONS The young adult CBA/CaJ mouse is able to tolerate occupationally-relevant Pb and Cd exposure well, but the correlation between Pb exposure and reduced head stability suggests that Pb exposure causes a decline in vestibular function. PMID:27257108
Assessment of the Spatial Distribution of Metal(Oid)s in Soils Around an Abandoned Pb-Smelter Plant
NASA Astrophysics Data System (ADS)
dos Santos, Nielson Machado; do Nascimento, Clístenes Williams Araújo; Matschullat, Jörg; de Olinda, Ricardo Alves
2017-03-01
Todos os Santos (All Saints) Bay area, NE-Brazil, is known for one of the most important cases of urban lead (Pb) contamination in the world. The main objective of this work was to assess and interpret the spatial distribution of As, Cd, Hg, Pb, and Zn in "background" soils of this environmentally impacted bay area, using a combination of geostatistical and multivariate analytical methods to distinguish between natural and anthropogenic sources of those metal(oid)s in soils. We collected 114 topsoil samples (0.0-0.2 m depth) from 38 sites. The median values for trace metal concentrations in soils (mg kg-1) followed the order Pb (33.9) > Zn (8.8) > As (1.2) > Cd (0.2) > Hg (0.07), clearly reflecting a Pb-contamination issue. Principal component analysis linked Cd, Pb, and Zn to the same factor (F1), chiefly corroborating their anthropogenic origin; yet, both Pb and Zn are also influenced by natural lithogenic sources. Arsenic and Hg concentrations (F2) are likely related to the natural component alone; their parent material (igneous-metamorphic rocks) seemingly confirm this hypothesis. The heterogeneity of sources and the complexity of the spatial distribution of metals in large areas such as the Todos os Santos Bay warrant, the importance of multivariate and geostatistical analyses in the interpretation of environmental data.
Biosurfactant technology for remediation of cadmium and lead contaminated soils.
Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar
2007-08-01
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.
Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei
2017-02-01
Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta
2018-07-01
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC 10 -IC 30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
NASA Astrophysics Data System (ADS)
Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin
2011-09-01
A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.
Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam
2016-11-01
Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.
Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands.
Garrido, Alan E; Strosnider, William H J; Wilson, Robin Taylor; Condori, Janette; Nairn, Robert W
2017-06-01
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1-71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2-34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.
NASA Astrophysics Data System (ADS)
Kamogawa, Marcos Y.; Nogueira, Ana Rita A.; Costa, Letícia M.; Garcia, Edivaldo E.; Nóbrega, Joaquim A.
2001-10-01
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l -1 for the determination of Cu and Pb, and 5.0 g l -1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l -1 HNO 3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l -1 Cd 2+, 30 μg l -1 Pb 2+, and 10 μg l -1 Cu 2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.
Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun
2017-04-01
The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.
NASA Astrophysics Data System (ADS)
Yona, D.; Febriana, R.; Handayani, M.
2018-04-01
This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap tides from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap tides due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap tide in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring tide, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring tide, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap tide (0.159 and 0.165 ml/L in spring tide and neap tide, respectively), but in the sediment, the concentration was a little higher during spring tide (0.09 and 0.05 mg/kg during spring and neap tide, respectively). This study shows that water movement during spring and neap tides has significant effect on the distribution of heavy metals.
Leaching of Metal Pollutants from Four Well Casings Used for Ground-Water Monitoring
1989-09-01
Atomic Spectroscopy, 4:126-128. 10 APPENDIX A : LEVELS OF CD, PB, CR, BA AND CU DETERMINED IN GROUND-WATER SOLUTIONS (MG/L). Time Pqle R:ph’itc (day1s...7 Conclusion ................................................... 9 Literature cited ................................................ 9 Appendix A ... Levels of Cd, Pb, Cr, Ba and Cu determined in ground-water solutions .................................................. 11 ILLUSTRATIONS Figure 1. Ground
Zheng, Liu-Gen; Liu, Gui-Jian; Kang, Yu; Yang, Ren-Kang
2010-07-01
The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.
Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution.
Cui, Jia; Halbrook, Richard S; Zang, Shuying; Han, Shuang; Li, Xinyu
2018-03-01
Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.
Wang, Maolan; Liu, Ronghao; Lu, Xiuying; Zhu, Ziyi; Wang, Hailin; Jiang, Lei; Liu, Jingjing; Wu, Zhihua
2018-05-01
Heavy metal are often added to animal fodder and accumulate in the soils with swine manure. In this study, heavy metal (Cu, Pb, Cd, Zn, As and Cr) concentrations were determined in agricultural soils irrigated with swine manure in Jiangxi Province, China. Results showed that the average concentrations of Cu, Zn, As and Cr (32.8, 93.7, 21.3 and 75.8 mg/kg, respectively) were higher than the background values, while Pb and Cd (15.2 and 0.090 mg/kg, respectively) were lower than the background values. Contamination factors [Formula: see text] indicated that they were generally moderate for Cu, Zn, As and Cr and generally low for Pb and Cd. The contamination degree (C d ) was calculated to be 7.5-10.0 indicating a moderate degree of contamination. The geoaccumulation index (I geo ) indicated that the soils were unpolluted with Zn, Cd and Pb, while unpolluted to moderately pollute with Cr, Cu and As. The single ecological risk factor [Formula: see text] revealed that the six heavy metals all belonged to low ecological risk. The ecological risk indices suggested that all the sampling sites were at low risk level.
Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.
Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu
2013-10-01
The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.
Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan.
Wu, Chin-Ching; Sung, Fung-Chang; Chen, Yi-Chun
2018-04-05
There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men's arsenic (As), cadmium (Cd) and lead (Pb) contents in hair samples and their associations with immunological indicators, including white blood cell (WBC), lymphocyte and monocyte counts, and the immunoglobulin (Ig) levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03) ug/g] was lower than means of As [0.86 (SD = 0.16) ug/g] and Pb [0.91 (SD = 0.22) ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman's correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.
Lin, Mei-Ling; Jiang, Shiuh-Jen
2013-12-01
Inductively coupled plasma mass spectrometry coupled with ultrasonic slurry sampling electrothermal vaporisation (USS-ETV-ICP-MS) has been applied to determine As, Cd, Hg and Pb in 0.5% m/v slurries of several herb samples. 1% m/v 8-Hydroxyquinoline was used as the modifier to enhance the ion signals. The influences of instrument operating conditions, slurry preparation and interferences on the ion signals were reported. This method has been applied to the determination of As, Cd, Hg and Pb in NIST SRM 1547 peach leaves and SRM 1573a tomato leaves reference materials and three herb samples purchased from the local market and ground to 150 μm. The analysis results of the standard reference materials agreed with the certified values which are at sub μg g(-1) levels. Precision between sample replicates was better than 4% for all the determinations. The method detection limits estimated from standard addition curves were about 0.3, 0.1, 0.1 and 0.2 ng g(-1) for As, Cd, Hg and Pb, respectively, in original herb samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
Chatterjee, S K; Bhattacharjee, I; Chandra, G
2010-03-15
The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.
Zheng, Jing; Luo, Xiao-Jun; Yuan, Jian-Gang; He, Luo-Yiyi; Zhou, Yi-Hui; Luo, Yong; Chen, She-Jun; Mai, Bi-Xian; Yang, Zhong-Yi
2011-11-01
Heavy metals were measured in hair from occupationally and nonoccupationally exposed populations in an e-waste recycling area and from residents from a control rural town. The levels of five heavy metals were in the following order of Zn > Pb, Cu > Cd > Ni, with the highest levels found in the occupationally exposed workers. The levels of Cd, Pb, and Cu were significantly higher in residents from the e-waste recycling area than in the control area. Elevated Cd, Pb, and Cu contents along with significant positive correlations between them in hair from the e-waste recycling area indicated that these metals were likely to have originated from the e-waste recycling activities. The similarity in heavy metal pattern between children and occupationally exposed workers indicated that children are particularly vulnerable to heavy metal pollution caused by e-waste recycling activities. The increased Cu exposure might be a benefit for the insufficient intake of Cu in the studied area. However, the elevated hair Cd and Pb levels implied that the residents in the e-waste area might be at high risk of toxic metal, especially for children and occupationally exposed workers.
Distribution and enrichment of heavy metals in Sabratha coastal sediments, Mediterranean Sea, Libya
NASA Astrophysics Data System (ADS)
Nour, Hamdy E.; El-Sorogy, Abdelbaset S.
2017-10-01
In order to assess heavy metal pollutants in Sabratha coastal sediments, Mediterranean Sea, Libya, 30 sediment samples were collected for Fe, Cu, Pb, Mn, Cd, Co, Ni and Zn analysis using Atomic Absorption Spectrometry. The analysis indicated that, the Sabratha 's coastal sediments were enriched with Cd, Pb, Cu, Ni, Co and Zn (EF = 81.48, 17.26, 12.80, 11.42, 9.85 and 8.56 respectively). The highest levels of Mn, Cu, Ni, Pb and Co were recorded nearby the Mellitah complex oil and gas station in the western Libyan region, while the highest levels of Zn and Cd were recorded at the central part of the study area nearby fishing port and Sabratha hospital. Average values of Cd, Pb and Co were mostly higher than the ones recorded from the Arabian and Oman gulfs, the Red Sea, the Gulf of Aqaba, the Caspian Sea, coast of Tanzania and the background shale and the earth's crust. The high levels of most of the studied heavy metals suggested significant anthropogenic sources along Sabratha coast. The results of the present study provide a useful background for further marine studies on the Mediterranean area.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2010-10-01
The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.
Wu, L H; Luo, Y M; Christie, P; Wong, M H
2003-02-01
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.
Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media
NASA Astrophysics Data System (ADS)
Barsbay, Murat; Kavaklı, Pınar Akkaş; Tilki, Serhad; Kavaklı, Cengiz; Güven, Olgun
2018-01-01
The main objective of this work is to prepare a renewable cellulosic adsorbent by γ-initiated grafting of poly(glycidyl methacrylate) (PGMA) from cellulose substrate and subsequent modification of PGMA with chelating species, iminodiacetic acid (IDA), for Cd (II), Pb(II) and Cu(II) removal from aqueous media. Modification of PGMA grafted cellulose with IDA in aqueous solution under mild conditions has proceeded efficiently to yield a natural-based and effective porous adsorbent with well-defined properties as provided by the controlled polymerization technique, namely RAFT, applied during the radiation-induced graft copolymerization step and with sufficient degree of IDA immobilization as confirmed by XPS, FTIR, contact angle measurements and elemental analysis. In order to examine the Cd (II), Pb(II) and Cu(II) removing performance of the resulting adsorbent, batch experiments were carried out by ICP-MS. The adsorption capacities were determined as 53.4 mg Cd(II)/g polymer, 52.0 mg Pb(II)/g polymer and 69.6 mg Cu(II)/g polymer at initial feed concentration of 250 ppm, showing the promising potential of the natural-based adsorbent to steadily and efficiently chemisorb toxic metal ions.
Li, Po-Chien; Jiang, Shiuh-Jen
2006-07-01
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS-ETV-DRC-ICP-MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC-ICP-MS. The precision between sample replicates was better than 17% with the USS-ETV-DRC-ICP-MS method. The method detection limits, estimated from standard addition curves, were about 6-9, 1-2 and 8-11 ng g(-1) for Cr, Cd and Pb, respectively, in the original plastic samples.
Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata
Shuhaimi-Othman, M.; Nur-Amalina, R.; Nadzifah, Y.
2012-01-01
Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals. PMID:22666089
Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su
2018-09-01
This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Matos, Cristina Teixeira; Berg, Louise; Michaëlsson, Jakob; Felländer-Tsai, Li; Kärre, Klas; Söderström, Kalle
2007-01-01
Natural killer (NK) cells are activated early during inflammatory events and contribute to the shaping of the ensuing adaptive immune response. To further understand the role for NK cells in inflammation, we investigated the phenotype and function of synovial fluid (SF) NK cells from patients with chronic joint inflammation, as well as from patients with transient inflammation of the knee following trauma. We confirm that synovial NK cells are similar to the well-characterized CD56bright peripheral blood (PB) NK-cell subset present in healthy individuals. However, compared to this PB subset the synovial NK cells express a higher degree of activation markers including CD69 and NKp44, the latter being up-regulated also on CD56bright NK cells in the PB of patients. Activated synovial NK cells produced interferon-γ and tumour necrosis factor, and the production was further up-regulated by antibody masking of CD94/NKG2A, and down-regulated by target cells expressing human leucocyte antigen-E in complex with peptides known to engage CD94/NKG2A. We conclude that synovial NK cells have an activated phenotype and that CD94/NKG2A is a key regulator of synovial NK-cell cytokine synthesis. PMID:17521371
Sorption of cadmium and lead by clays from municipal incinerator ash- water suspensions
Roy, W.R.; Krapac, I.G.; Steele, J.D.
1993-01-01
The effect of Cl complexation in extracts of a flue gas-scrubber incinerator fly ash sample on the sorption of Cd and Pb by kaolinite and illite was investigated using batch-sorption methods. In the pH range of 5 to 9, Cl complexation may reduce sorption and thus increase the mobility of these metals. When an ash-water suspension was acidified to pH 6.85, the dissolution of Cl and Ca essentially eliminated Cd sorption because of complexation and cationic competition. Cadmium would be considered as either mobile or very mobile under these conditions. Lead was not soluble in the pH- 6.85 suspension. At pH 12, the approximate pH of water in contact with flue gas-scrubber fly ash, Cd was essentially insoluble and Pb occurred as anionic Pb hydroxide. Anionic Pb was sorbed by the two clays, and the extent of sorption was not influenced by Cl or carbonate complexation. Sorption constants, derived from isotherms, suggested that Pb would be relatively immobile in saturated soil-water systems. The recent concern that highly alkaline, flue gas-scrubber fly ash may release environmentally significant concentrations of mobile Pb when placed in an ash-disposal site with a soil liner should be reevaluated in light of this study.
A novel fractionation approach for water constituents - distribution of storm event metals.
McKenzie, Erica R; Young, Thomas M
2013-05-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.
A novel fractionation approach for water constituents – distribution of storm event metals
McKenzie, Erica R.; Young, Thomas M.
2014-01-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891
Trace metals in Bermuda rainwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jickells, T.D.; Knap, A.H.; Church, T.M.
1984-02-20
The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less
Bastami, Kazem Darvish; Afkhami, Majid; Mohammadizadeh, Maria; Ehsanpour, Maryam; Chambari, Shahrokh; Aghaei, Sina; Esmaeilzadeh, Marjan; Neyestani, Mahmoud Reza; Lagzaee, Farahnaz; Baniamam, Mehrnaz
2015-05-15
The concentrations of some heavy metals (Cu, Zn, Pb and Cd) were investigated in the sediments and in the mullet Liza klunzingeri from the northern part of the Persian Gulf. The levels of Cu, Zn and Pb in the sediment varied significantly among the sampling sites (P<0.05). Sediments from the northern part of the Persian Gulf had serious ecological risk when considering PER. The ranges of the average concentrations of Cu, Zn, Pb, and Cd in the tissue of L. klunzingeri were 10.00-16.66 mg/kg, 18.75-32.50 mg/kg, 3.25-14.16 mg/kg and 0.37-3.33 mg/kg, respectively. The health risk analysis of individual heavy metals in the fish tissue indicated dangerous levels of Pb and Cd for the general population at some sampling sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Das, Aparajita; Deepa, Melepurath; Ghosal, Partha
2017-04-05
Lead-sulfide-selenide (PbSSe) quantum dots (QDs) and gold-copper (AuCu) alloy nanoparticles (NPs) were incorporated into a cadmium sulfide (CdS)/titanium oxide (TiO 2 ) photoanode for the first time to achieve enhanced conversion of solar energy into electricity. PbSSe QDs with a band gap of 1.02 eV extend the light-harvesting range of the photoanode from the visible region to the near-infrared region. The conduction band (CB) edge of the PbSSe QDs is wedged between the CBs of TiO 2 and CdS; this additional level coupled with the good electrical conductivity of the dots facilitate charge transport and collection, and a high power conversion efficiency (PCE) of 4.44 % is achieved for the champion cell with the TiO 2 /PbSSe/CdS electrode. Upon including AuCu alloy NPs in the QD-sensitized electrodes, light absorption is enhance by plasmonic and light-scattering effects and also by the injection of hot electrons to the CBs of the QDs. Comparison of the incident photon-to-current conversion efficiency enhancement factors in addition to fluorescence decay and impedance studies reveal that the PbSSe QDs and AuCu alloy NPs promote charge injection to the current collector and increase the photogenerated charges produced, which thus enables the TiO 2 /PbSSe/CdS/AuCu cell to deliver the highest PCE of 5.26 % among all the various photoanode compositions used. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing
2016-08-01
Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.
Blood biomonitoring of metals in subjects living near abandoned mining and active industrial areas.
Madeddu, Roberto; Tolu, Paola; Asara, Yolande; Farace, Cristiano; Forte, Giovanni; Bocca, Beatrice
2013-07-01
A human blood biomonitoring campaign to detect the environmental exposure to metals (Cd, Cu, Cr, Mn, Pb and Zn) in 265 subjects was performed in the South-Western part of Sardinia (an Italian island) that is a particular area with a great history of coal and metal mining (Pb/Zn mainly) activities and large industrial structures (as metallurgy). Subjects living near the industrial plant area had geometric means (GM) of blood Cd (0.79 μg/l), Cu (971 μg/l), Mn (12.2 μg/l), and Pb (55.7 μg/l) significantly higher than controls (Cd, 0.47 μg/l; Cu, 900 μg/l; Mn 9.98 μg/l; Pb, 26.5 μg/l) and than people living nearby the past mining sites. Subjects living next to one dismissed mine were statistically higher in blood Cu (GM, 1,022 μg/l) and Pb (GM, 41.4 μg/l) concentrations than controls. No differences were observed in people living in the different mining sites, and this might be related to the decennial disclosure of mines and the adoption of environmental remediation programmes. Some interindividual variables influenced blood biomonitoring data, as smoke and age for Cd, gender for Cu, age, sex and alcohol for Pb, and age for Zn. Moreover, blood metal levels of the whole population were similar to reference values representative of the Sardinian population and acceptably safe according to currently available health guidelines.
Li, Xinyu; Li, Zhonggen; Lin, Che-Jen; Bi, Xiangyang; Liu, Jinling; Feng, Xinbin; Zhang, Hua; Chen, Ji; Wu, Tingting
2018-06-04
Smelting of nonferrous metals is an important source of heavy metals in surface soil. The crops/vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the contamination level of five heavy metals (Hg, Pb, Zn, Cd and Cu) in ten types of vegetables grown nearby a large scale Pb/Zn smelter in Hunan Province, China and the health risk associated with their consumption are assessed. Based on the data obtained from 52 samples, we find that Pb and Cd contributed to the greatest health risk and leafy vegetables tend to be more contaminated than non-leafy vegetables. Within 4 km radius of the smelter, over 75% of vegetable samples exceeded the national food standard for Pb; over 47% exceeded the Cd standard; and 7% exceeded the Hg standard. Heavy metal concentrations in vegetables measured within the 4 km radius are on average three times more elevated compared to those found at the control area 15 km away. Heavy metals in vegetables have dual sources of root absorption from soil and leaf adsorption from atmosphere. Health risk in terms of the hazard index (HI) at contaminated areas are 3.66 and 3.14 for adults and children, respectively, suggesting adverse health effects would occur. HI for both groups are mainly contributed by Pb (48%) and Cd (40%). Fortunately, vegetable samples collected at the control area are considered safe to consume. Copyright © 2018 Elsevier Inc. All rights reserved.
Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang
2018-03-07
The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.
Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh
Lion, Leonard W.
1982-01-01
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.
Harrison, G.; Martin, E.A.
1982-01-01
In a preliminary survey, Crassostrea virginica from areas of the Corpus Christi Bay system of Texas show significant concentrations of Cd, Cu, Pb, and Zn in their tissues and shells; concentrations of these same metals in associated sediments are also high in certain areas of the bay system. Zn and Cd concentrations in tissue show a high negative correlation to each other, whereas Zn and Pb in tissue and shell show a high positive correlation to one another. Sediment contents of Pb and Zn best reflect tissue values of the heavy metals; sediment concentrations of Cd and Cu show a poor inverse correlation to tissue concentrations. Some possible factors influencing these correlations are suspended-sediment type, physiological changes, water quality, and Ca intake.
Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent
NASA Astrophysics Data System (ADS)
Ibrahim, Hanan S.; Ammar, Nabila S.; Soylak, Mustafa; Ibrahim, Medhat
2012-10-01
Possible usages of dried water hyacinth as biosorbent for metal ions were investigated. A model describing the plant is presented on density functional theory DFT and verified experimentally with FTIR. The model shows that water hyacinth is a mixture of cellulose and lignin. Dried shoot and root were found as good sorbent for Cd(II) and Pb(II) at optimum dosage of 5.0 g/l and pH 5.0; equilibrium time was attained within 30-60 min. The removal using root and shoot were nearly equal and reached more than 75% for Cd and more than 90% for Pb. Finally the second-order kinetics was the applicable model. Hydrogen bonds of reactive functional groups like COOH play the key role in the removal process.
Michelutti, Alessandro; Gremese, Elisa; Morassi, Francesca; Petricca, Luca; Arena, Vincenzo; Tolusso, Barbara; Alivernini, Stefano; Peluso, Giusy; Bosello, Silvia Laura; Ferraccioli, Gianfranco
2011-01-01
The aim of the present study was to determine whether different subsets of B cells characterize synovial fluid (SF) or synovial tissue (ST) of seropositive or seronegative rheumatoid arthritis (RA) with respect to the peripheral blood (PB). PB, SF and ST of 14 autoantibody (AB)-positive (rheumatoid factor [RF]-IgM, RF-IgA, anti-citrullinated peptide [CCP]), 13 negative RA and 13 no-RA chronic arthritides were examined for B-cell subsets (Bm1-Bm5 and IgD-CD27 classifications), zeta-associated protein kinase-70 (ZAP70) expression on B cells and cytokine levels (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, IL-6, IL-8 and monocyte chemotactic protein [MCP]-1). Synovial tissues were classified as aggregate and diffuse patterns. No differences were found in B-cell percentages or in subsets in PB and SF between AB(+) and AB(-) RA and no-RA. In both AB(+) and AB(-) RA (and no-RA), the percentage of CD19(+)/ZAP70(+) was higher in SF than in PB (AB(+): P = 0.03; AB(-): P = 0.01; no-RA: P = 0.01). Moreover, SF of both AB(+) and AB(-) RA (and no-RA) patients was characterized by a higher percentage of IgD-CD27(+) and IgD-CD27(-) B cells and lower percentage of IgD(+)CD27(-) (P < 0.05) B cells compared to PB. In SF, ZAP70 positivity is more represented in B cell CD27(+)/IgD(-)/CD38(-). The aggregate synovitis pattern was characterized by higher percentages of Bm5 cells in SF compared with the diffuse pattern (P = 0.05). These data suggest that no difference exists between AB(+) and AB(-) in B-cell subset compartmentalization. CD27(+)/IgD(-)/ZAP70(+) memory B cells accumulate preferentially in the joints of RA, suggesting a dynamic maturation of the B cells in this compartment.
Xiao, Minsi; Zhang, Jingdong; Liu, Chaoyang; Qiu, Zhenzhen; Cai, Ying
2018-01-01
Spatial concentrations and chemical fractions of heavy metals (Cr, Cu, Pb, Zn and Cd) in 16 sampling sites from the Honghu Lake were investigated using an atomic absorption spectrophotometer and optimized BCR (the European Community Bureau of Reference) three-stage extraction procedure. Compared with the corresponding probable effect levels (PELs), adverse biological effects of the studied five sediment metals decreased in the sequence of Cr > Cu > Zn > Pb > Cd. Geo-accumulation index (Igeo) values for Cr, Cu, Pb and Zn in each sampling site were at un-contamination level, while the values for Cd varied from un-contamination level to moderate contamination level. Spatially, the enrichment degree of Cd in lower part of the South Lake, the west part of the North Lake and the outlet were higher than the other parts of Honghu Lake. For metal chemical fractions, the proportions of the acid-extractable fraction of five metal contents were in the descending order: Cd, Cu, Zn, Pb and Cr. Cd had the highest bioaccessibility. Being the above indexes focused always on heavy metals’ total content or chemical fraction in deterministic assessment system, which may confuse decision makers, the fuzzy comprehensive risk assessment method was established based on PEI (Potential ecological risk index), RAC (Risk assessment code) and fuzzy theory. Average comprehensive risks of heavy metals in sediments revealed the following orders: Cd (considerable risk) > Cu (moderate risk) > Zn (low risk) > Pb > Cr. Thus, Cd and Cu were determined as the pollutants of most concern. The central part of South Honghu Lake (S4, S5, S6, S9, S12 and S14), east part of the North Honghu Lake (S1) and outlet of outlet of the Honghu Lake (S10) were recommended as the priority control areas. Specifically, it is necessary to pay more attention to S1, S4, S5, S6, S9 and S16 when decision making for their calculated membership values (probabilities) of adjacent risk levels quite close. PMID:29373483
Rehman, Inayat Ur; Ishaq, Muhammad; Ali, Liaqat; Khan, Sardar; Ahmad, Imtiaz; Din, Imran Ud; Ullah, Hameed
2018-06-15
This study focuses on enrichment, spatial distribution, potential ecological risk index (PERI) and human health risk of various toxic metals taken via soil and surface water in the vicinity of Sewakht mines, Pakistan. The samples of soils (n = 54) of different fields and surface water (n = 38) were analyzed for toxic metals including cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), zinc (Zn) and molybdenum (Mo). Soil pollution level was evaluated using pollution indices including geo-accumulation index (Igeo), contamination factor (CF), degree of contamination (CD), enrichment factor (EF) and PERI. CF showed moderate contamination of soil with Cd, Co, Fe and Mo, while Igeo values indicated moderate accumulation of Cu. For Cd, EF> 1.5 was found in agricultural soils of the study area. PERI findings presented a very high ecological risk (PERI > 380) at two sites (4%), considerable ecological risk at four sites (7.4%). Non-carcinogenic risk from exposure to Fe in soil was higher than limit (HI > 1) for both children and adults. Moreover, carcinogenic risk postured by soil contaminants i.e. Cd, Cr, Co and Ni in children was higher than their limits (except Pb), while in adults only Co posed higher risk of cancer than the limit (10 -4 ) through soil exposure. Non-carcinogenic risks in children due to Cd, Co, Mo via surface water intake were higher than their safe limits (HQ > 1), while in adults the risk order was Cr > Cd > Cu > Pb > Co > Mo. Moreover, carcinogenic risk exposure due to Co > Cd > Cr > Ni from surface water (except Pb) was higher than the tolerable limit (1 × 10 -4 ) both for children and adults. However, Pb concentrations in both soil and surface water exposure were not likely to cause cancer risk in the local population. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jin; Peng, Li-Li; Tang, Ying; Wu, Huijie
2017-06-01
Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.
Gauthier, Maxime; Aras, Philippe; Jumarie, Catherine; Boily, Monique
2016-02-01
Several hypotheses have been proposed to explain the abnormally high mortality rate observed in bee populations in Europe and North America. While studies based on the effects of pesticides are paramount, the metals present in agroecosystems are often overlooked. Sources of metals are linked to the nature of soils and to agricultural practices, namely the use of natural or chemical nutrients as well as residual materials from waste-water treatment sludge. The aim of this study was to investigate the effects of metals on honey bees exposed for 10 days to environmentally realistic concentrations of Al, Pb and Cd (dissolved in syrup). The monitoring of syrup consumption combined with the quantification of metals in bees revealed the following order for metal bioconcentration ratios: Cd > Pb > Al. Alpha-tocopherol, metallothionein-like proteins (MTLPs) and lipid peroxidation were quantified. When bees were exposed to increasing amounts of Cd, a marked augmentation of MTLPs levels was found. Lead (Pb) and Cd caused an increase in α-tocopherol content, while alteration of lipid peroxidation was observed only with Al exposure. These findings raise concerns about the bioavailability and the additional threat posed by metals for pollinators in agricultural areas while providing new insights for potential use of the honey bee as a sentinel species for metal exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.
2017-01-01
Background Metal mining and waste discharge lead to regional heavy metal contamination and attract major concern because of the potential risk to local residents. Methods This research was conducted to determine lead (Pb), cadmium (Cd), arsenic (As), manganese (Mn), and antimony (Sb) concentrations in soil and brown rice samples from three heavy metal mining areas in Hunan Province, central China, and to assess the potential health risks to local inhabitants. Results Local soil contamination was observed, with mean concentrations of Cd, Pb, Sb, and As of 0.472, 193.133, 36.793, and 89.029 mg/kg, respectively. Mean concentrations of Cd, Pb, Sb, Mn, and As in brown rice were 0.103, 0.131, 5.175, 6.007, and 0.524 mg/kg, respectively. Daily intakes of Cd, As, Sb, Pb, and Mn through brown rice consumption were estimated to be 0.011, 0.0002, 0.004, 0.0001, and 0.0003 mg/(kg/day), respectively. The combined hazard index for the five heavy metals was 22.5917, and the total cancer risk was 0.1773. Cd contributed most significantly to cancer risk, accounting for approximately 99.77% of this risk. Conclusions The results show that potential noncarcinogenic and carcinogenic health risks exist for local inhabitants and that regular monitoring of pollution to protect human health is urgently required. PMID:29065598
Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu
2017-10-01
Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.
Interleukin-12 in patients with cancer is synthesized by peripheral helper T lymphocytes.
Michelin, Marcia A; Montes, Leticia; Nomelini, Rosekeila S; Abdalla, Douglas R; Aleixo, Andre A R; Murta, Eddie F C
2015-09-01
The production of cytokines by helper T lymphocytes is a critical event in the immune response, as alterations in the regulation of this process may result in an appropriate immune response, persistent infection or the development of autoimmune disease. Previously, this group has used flow cytometry to demonstrate the expression of interleukin-12 (IL-12) in peripheral blood CD4+ T lymphocytes from patients and mice with advanced cancer. The aim of the present study was to investigate whether CD4+ T lymphocytes from the peripheral blood (PB) of patients with cancer produce IL-12, using molecular approaches, flow cytometry and cellular imaging techniques. CD3+ and CD4+ cells, and cells producing IL-12, were isolated from the PB obtained from patients with cancer, using a cell sorting flow cytometry technique. The positivity of cells for CD3, CD4 and IL-12, which were identified by cell sorting, was visualized using immunofluorescent cellular imaging. Total RNA was extracted from the CD3+CD4+IL-12+ cells, obtained by cell sorting, for confirmation of the presence of IL-12 mRNA, using reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR demonstrated the presence of IL-12 mRNA in all patients (n=14), in contrast to the control group, in whom IL-12 expression was not detected. Immunofluorescent analysis of CD4+ T lymphocytes showed positive intracytoplasmatic IL-12 staining. These results demonstrated that CD3+CD4+ T lymphocytes in the PB of patients with cancer have the capacity to synthesize and express IL-12.
Interleukin-12 in patients with cancer is synthesized by peripheral helper T lymphocytes
MICHELIN, MARCIA A.; MONTES, LETICIA; NOMELINI, ROSEKEILA S.; ABDALLA, DOUGLAS R.; ALEIXO, ANDRE A. R.; MURTA, EDDIE F. C.
2015-01-01
The production of cytokines by helper T lymphocytes is a critical event in the immune response, as alterations in the regulation of this process may result in an appropriate immune response, persistent infection or the development of autoimmune disease. Previously, this group has used flow cytometry to demonstrate the expression of interleukin-12 (IL-12) in peripheral blood CD4+ T lymphocytes from patients and mice with advanced cancer. The aim of the present study was to investigate whether CD4+ T lymphocytes from the peripheral blood (PB) of patients with cancer produce IL-12, using molecular approaches, flow cytometry and cellular imaging techniques. CD3+ and CD4+ cells, and cells producing IL-12, were isolated from the PB obtained from patients with cancer, using a cell sorting flow cytometry technique. The positivity of cells for CD3, CD4 and IL-12, which were identified by cell sorting, was visualized using immunofluorescent cellular imaging. Total RNA was extracted from the CD3+CD4+IL-12+ cells, obtained by cell sorting, for confirmation of the presence of IL-12 mRNA, using reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR demonstrated the presence of IL-12 mRNA in all patients (n=14), in contrast to the control group, in whom IL-12 expression was not detected. Immunofluorescent analysis of CD4+ T lymphocytes showed positive intracytoplasmatic IL-12 staining. These results demonstrated that CD3+CD4+ T lymphocytes in the PB of patients with cancer have the capacity to synthesize and express IL-12. PMID:26622702
NASA Astrophysics Data System (ADS)
Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki
2014-05-01
Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt sediment at 13m depth which is just above the upper aquifer. This potential mobility may pose a threat to upper aquifer and riverbed aquatic system. The overall geochemical analysis revealed that the dissolution of Fe-Mn oxide is the most effective mechanism for As, Pb in groundwater however the mobility of Cd is mainly carbonate bound. In the present study, the pollution level is much below from leaching environmental standards (0.01 mg/L) for all three elements and the total content is within the natural abundance of As, Pb and Cd in sediment. The potential mobility of these elements in oxidized fine silty sediment and the possible further effect to the aquifer suggest that shallow groundwater abstraction should be restricted to protect seasonal groundwater fluctuation. Moreover marine sediment containing high total toxic element contents and mobility tendency at changing oxidation and reduction environments requires proper management when sediments are excavated for construction purpose.
Kuo, S; Lai, M S; Lin, C W
2006-12-01
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.
Th17 and Th22 cells in psoriatic arthritis and psoriasis
2013-01-01
Introduction The aim of this study was to characterize interleukin 17 (IL-17) and interleukin 22 (IL-22) producing cells in peripheral blood (PB), skin, synovial fluid (SF) and synovial tissue (ST) in patients with psoriasis (Ps) and psoriatic arthritis (PsA). Methods Flow cytometry was used to enumerate cells making IL-22 and IL-17, in skin and/or SF and PB from 11 patients with Ps and 12 patients with PsA; skin and PB of 15 healthy controls and SF from rheumatoid arthritis (RA) patients were used as controls. Expression of the interleukin 23 receptor (IL-23R) and chemokine receptors CCR4 and CCR6 was examined. Secretion of IL-17 and IL-22 was measured by ELISA. ST was analysed by immunohistochemical staining of IL-17 and IL-22. Results Increased frequencies of IL-17+ and IL-22+ CD4+ T cells were seen in PB of patients with PsA and Ps. IL-17 secretion was significantly elevated in both PsA and Ps, whilst IL-22 secretion was higher in PsA compared to Ps and healthy controls. A higher proportion of the CD4+ cells making IL-17 or IL-22 expressed IL-23R and frequencies of IL-17+, CCR6+ and CCR4+ T cells were elevated in patients with Ps and those with PsA. In patients with PsA, CCR6+ and IL-23R + T cells numbers were elevated in SF compared to PB. Increased frequencies of IL-17+ and IL-22+ CD4+ T cells were demonstrated in Ps skin lesions. In contrast, whilst elevated frequencies of CD4+ IL-17+ cells were seen in PsA SF compared to PB, frequencies of CD4+ IL-22+ T cells were lower. Whereas IL-17 expression was equivalent in PsA, osteoarthritis (OA) and RA ST, IL-22 expression was higher in RA than either OA or PsA ST, in which IL-22 was strikingly absent. Conclusions Elevated frequencies of IL-17 and IL-22 producing CD4+ T cells were a feature of both Ps and PsA. However their differing distribution at disease sites, including lower frequencies of IL-22+ CD4+ T cells in SF compared to skin and PB, and lack of IL-22 expression in ST suggests that Th17 and Th22 cells have common, as well as divergent roles in the pathogenesis of Ps and PsA. PMID:24286492
Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong
2017-01-15
Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (<0.25 mm and <1 mm), were applied at three rates (0, 1, and 5% w/w). Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p < 0.05) lower in the bamboo and rice straw biochar treated soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p < 0.01). The EUBCR sequential extraction procedure revealed that the acid extractable fractions of Cd, Cu, Pb and Zn decreased significantly (p < 0.05) with biochar addition. Rice straw biochar was more effective than bamboo biochar in decreasing the acid extractable metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd < Cu < Pb < Zn, and reduced the acid extractable pool of Cd, Cu, Pb and Zn by 11, 17, 34 and 6%, respectively, compared to the control. In the same 5% rice straw biochar treatments, the organic bound fraction increased by 37, 58, 68 and 18% for Cd, Cu, Pb and Zn, respectively, compared to the control, indicating that the immobilized metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.