Sample records for pb-bi corrosion processes

  1. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  2. Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio

    2018-01-01

    We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.

  3. Effect of nano BiPb-2212 phase addition on BiPb-2223 phase properties

    NASA Astrophysics Data System (ADS)

    Mohammed, N. H.; Abou-Aly, A. I.; Barakat, M. Me.; Hassan, M. S.

    2018-06-01

    BiPb-2212 phase in nanoscale was added to BiPb-2223 phase with a general stoichiometry of (Bi1.7Pb0.4Sr2.1Ca1.1Cu2.1O8+δ)x/Bi1.8Pb0.4Sr2.0Ca2.0Cu3.2O10+δ, 0.0 ≤ x  ≤ 2.5 wt.%. All samples were prepared by the standard solid-state reaction method. The prepared nano BiPb-2212 phase was characterized by X-ray powder diffraction (XRD) and transmission electron microscope (TEM). The prepared samples were characterized by XRD and the scanning electron microscope (SEM). XRD analysis indicated that the sample with x = 1.5 wt.% has the highest relative volume fraction for BiPb-2223 phase. Samples were examined by electrical resistivity and I-V measurements. There is no significant change in the superconducting transition temperature Tc for all samples. The highest critical current density Jc was recorded for the sample with x = 1.5 wt.%. The normalized excess conductivity (Δσ/σroom) was calculated according to Aslamazov-Larkin (AL) model. Four different fluctuating regions were recorded as the temperature decreased. The coherence length along the c-axis at 0 K ξc(0), interlayer coupling strength s, Fermi velocity vF of the carriers and Fermi energy EF were calculated for both samples with x = 0.0 wt.% and 1.5 wt.%.

  4. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb-15.7Li

    NASA Astrophysics Data System (ADS)

    Krauss, Wolfgang; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-01

    In the HCLL blanket design, ferritic-martensitic steels are in direct contact with the flowing liquid breeder Pb-15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb-15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  5. Synthesis of Ba 0.6K 0.4BiO 3 and BaPb 0.75Bi 0.25O 3 superconductors by sol-gel process

    NASA Astrophysics Data System (ADS)

    Rao, G. V. Rama; Varadaraju, U. V.; Mannan, S. L.

    1994-12-01

    We have synthesised Ba 0.6K 0.4BiO 3 (BKB) and BaPb 1-xBi xO 3-y compounds by sol-gel process. IR spectra of gels indicated the bridging type of bonding between metal carboxylates leading to the formation of homogeneous gels. BKB and BaPb 0.75Bi 0.25O 3 compounds exhibited sharp superconducting transitions from R-T and χ-T measurements indicating excellent homogeneity of the samples

  6. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  7. Bi-Sr-Ca-Cu-O and Pb-Bi-Sr-Ca-Cu-O superconductor films via an electrodeposition process

    NASA Astrophysics Data System (ADS)

    Maxfield, M.; Eckhardt, H.; Iqbal, Z.; Reidinger, F.; Baughman, R. H.

    1989-05-01

    A novel electrochemical process has been developed for the formation of superconducting films. Using this process, superconducting films of Bi2Sr2Ca1Cu2O8 and (Pb,Bi)2Sr2Ca1Cu2O8 have been formed. The process consists of simultaneously depositing the metallic constituents of the superconductor from a single electrolyte, and thermally oxidizing the resulting precursors film to form the superconducting phase. Application of -4 to -5 V vs Ag/Ag(+) to a conductive cathode substrate which is immersed in an electrolyte containing salts of all of the metals reduces the metal cations, causing then to deposit on the cathode as a metallic film precursor. Precursor films having desired stoichiometries were obtained by regulating the electrolyte bath composition.

  8. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    NASA Astrophysics Data System (ADS)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  9. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2017-10-01

    Corrosion behavior of two heats of T91 ferritic/martensitic steel, with slightly different Cr content, was investigated in flowing (2 m/s) Pb-Bi with 10-7 mass%O at 450 and 550 °C. The observed corrosion modes are: protective scale formation; accelerated oxidation and solution-based corrosion attack. Accelerated oxidation at 450 °C results in general metal recession of about 10 μm after ∼9000 h exposure and ∼15 μm at 550 °C after 2000 h. More severe and local solution-based corrosion results in a maximum depth of attack of 50-960 μm and 115-190 μm, correspondingly. Incubation period for solution-based corrosion is 500-5000 h at 450 °C and ≤500 h at 550 °C. The slightly higher chromium content in one of the heat of T91 steel prolongs the incubation period by improving the stability of the Cr-based oxide film.

  10. A reinvestigation of the crystal structure of α-Pb 2BiVO 6

    NASA Astrophysics Data System (ADS)

    Labidi, O.; Wignacourt, J. P.; Roussel, P.; Drache, M.; Conflant, P.; Steinfink, H.

    2004-08-01

    A previously reported β phase for Pb 2BiVO 6 has been characterized as a stable phase, and the phase transitions α→ β and β→ δ were identified in the mother phase as well as in Pb 2BiV 1- xM xO 6- y solid solutions (M=Cr, Mn); the high temperature form δ-Pb 2BiVO 6 eventually decomposes at 480 °C to a mixture of PbBiVO 5 and Pb 4BiVO 8 before showing recombination at 650 °C. The related substituted compositions behave the same way. The crystal structure of α-Pb 2BiVO 6 (I) is monoclinic, P2 1/ n, a=7.717(3) Å, b=5.845(3) Å, c=29.081(8) Å, β=94.27(1)°, Z=8. Oxygen atoms are in tetrahedral interstices formed by four Bi and Pb atoms. These tetrahedra articulate by BiPb edge sharing in two dimensions parallel to the b axis to form infinite chains. Mixed O(V Bi Pb) 4 tetrahedra bridge the O(Bi Pb) 4 ribbons by edge sharing to complete the three-dimensional articulation of the structure. α-Pb 2BiV 1- xMn xO 6- y ( x=0.06) (II) is monoclinic, P2 1/ m, a=7.684(3) Å, b=5.822(3) Å, c=14.708(6) Å, β=100.92(1)°, Z=4. Tetrahedral units of O(2Bi 2Pb) are also present in (II). They form dimers O 2Bi 4Pb 4 by BiBi edge sharing. The dimers form a chain along the b axis by sharing BiPb edges. Two independent MO 4 tetrahedra (M=V, Mn) are present in which one has V/Mn mixed occupancy. Both tetrahedra show statistical disorder by rotation around a VO apex. The disordered tetrahedral oxygen atoms are part of the coordination sphere of Bi and Pb. The matrix {-1 0 0, 0 -1 0, 1 0 2} relates the structures and unit cells of [I], and [II].

  11. Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi,Pb)2Ba2O4+/-ω]0.5CoO2

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Karppinen, M.; Chen, J. M.; Liu, R. S.; Sugihara, S.; Yamauchi, H.

    2006-06-01

    We report strongly enhanced thermoelectric characteristics for a misfit-layered oxide, [Bi2Ba2O4±ω]0.5CoO2, in a wide temperature range, as achieved through substituting up to 20% of Bi by Pb. The Pb substitution kept the thermal conductivity (κ) unchanged but decreased the electrical resistivity (ρ) and increased the Seebeck coefficient (S) simultaneously, such that a three-fold enhancement in the thermoelectric figure of merit, Z (≡S2/ρκ), was realized. At the same time x-ray absorption near-edge structure data indicated that the valence and spin states of Co are not affected by the Pb-for-Bi substitution.

  12. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  13. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  14. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  15. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  16. Controlling 212Bi to 212Pb activity concentration ratio in thoron chambers.

    PubMed

    He, Zhengzhong; Xiao, Detao; Lv, Lidan; Zhou, Qingzhi; Shan, Jian; Qiu, Shoukang; Wu, Xijun

    2017-11-01

    It is necessary to establish a reference atmosphere in a thoron chamber containing various ratios of 212 Bi to 212 Pb activity concentrations (C( 212 Bi)/C( 212 Pb)) to simulate typical environmental conditions (e.g., indoor or underground atmospheres). In this study, a novel method was developed for establishing and controlling C( 212 Bi)/C( 212 Pb) in a thoron chamber system based on an aging chamber and air recirculation loops which alter the ventilation rate. The effects of main factors on the C( 212 Bi)/C( 212 Pb) were explored, and a steady-state theoretical model was derived to calculate the ratio. The results show that the C( 212 Bi)/C( 212 Pb) inside the chamber is mainly dependent on ventilation rate. Ratios ranging from 0.33 to 0.83 are available under various ventilation. The stability coefficient of the ratios is better than 7%. The experimental results are close to the theoretical calculated results, which indicates that the model can serve as a guideline for the quantitative control of C( 212 Bi)/C( 212 Pb). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2017-05-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  18. Reference Correlation for the Density and Viscosity of Eutectic Liquid Alloys Al+Si, Pb+Bi, and Pb+Sn

    NASA Astrophysics Data System (ADS)

    Assael, M. J.; Mihailidou, E. K.; Brillo, J.; Stankus, S. V.; Wu, J. T.; Wakeham, W. A.

    2012-09-01

    In this paper, the available experimental data for the density and viscosity of eutectic liquid alloys Al+Si, Pb+Bi, and Pb+Sn have been critically examined with the intention of establishing a reference standard representation of both density and viscosity. All experimental data have been categorized as primary or secondary according to the quality of measurement, the technique employed, and the presentation of the data, as specified by a series of carefully defined criteria. The proposed standard reference correlations for the density of liquid Al+Si, Pb+Bi, and Pb+Sn are, respectively, characterized by deviations of 2.0%, 2.9%, and 0.5% at the 95% confidence level. The standard reference correlations for the viscosity of liquid Al+Si, Pb+Bi, and Pb+Sn are, respectively, characterized by deviations of 7.7%, 14.2%, and 12.4% at the 95% confidence level.

  19. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  20. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  1. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  2. A study of Bi-Pb-Sn-Cd-Sb penta-alloys rapidly quenched from melt

    NASA Astrophysics Data System (ADS)

    Kamal, M.; El-Bediwi, A. B.

    2004-11-01

    Optical microscopy, X-ray diffractometry, the double bridge method, the Vickers microhardness testing and dynamic resonance techniques have been used to investigate structure, electrical resistivity, hardness, internal friction and elastic modulus of quenched Bi-Pb-Sn-Cd-Sb penta-alloys. The properties of these penta-alloys are greatly affected by rapid quenching. The intermetallic compound chi(Pb-Bi) or Bi3Pb7 is obtained after rapid quenching using the melt-spinning technique, and this is in agreement with reports by other authors [Marshall, T.J., Mott, G. T. and Grieverson, M. H. (1975). Br. J. Radiol., 48, 924, Kamal, M., El-Bediwi, A. B. and Karman, M. B. (1998). Structure, mechanical properties and electrical resistivity of rapidly solidified Pb-Sn-Cd and Pb-Bi-Sn-Cd alloys. J. Mater. Sci.: Mater. Electron., 9, 425, Borromee-Gautier, C., Giessen, B. C. and Grrant, N. J. (1968). J. Chem. Phys., 48,1905, Moon, K.-W., Boettinger, W. J., Kanner, U. R., Handwerker, C. A. and Lee, D.-J. (2001). The effect of Pb contamination on the solidification behavior of Sn-Bi solders. J. Electron. Mater, 30, 45.]. The quenched Bi43.5Pb44.5Cd5Sn2Sb5 alloy has important properties for safety devices in fire detection and extinguishing systems.

  3. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  4. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-02-01

    The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  5. Separation of Pb, Bi and Po by cation exchange resin

    DOE PAGES

    Kmak, Kelly N.; Despotopulos, John D.; Shaughnessy, Dawn A.

    2017-09-27

    In this paper, a separation of 209Po, 207Bi and 212Pb using AG 50Wx8 and AG MP 50 cation exchange resins in an HCl medium was developed. A procedure in which Po(IV) elutes first in 0.2 M HCl, followed by Bi(III) in 0.4 M HCl and finally Pb(II) in 2 M HCl was established. The separation using AG 50Wx8 provides a much better elution profile than that of AG MP 50 with no overlap between the elution bands. Finally, this separation has the potential to be used as an isotope generator for producing 210Po from 210Pb.

  6. Investigations in structural morphological and optical properties of Bi-Pb-S system thin films

    NASA Astrophysics Data System (ADS)

    Malika, Boukhalfa; Noureddine, Benramdane; Mourad, Medles; Abdelkader, Outzourhit; Attouya, Bouzidi; Hind, Tabet-derraz

    Bi2S3, PbS and Bi-Pb-S system thin films were grown on glass substrates by the spray pyrolysis technique. The films growth was realized by the reaction of aqueous solutions of bismuth trichloride (BiCl3) and trihydrate Lead Acetate (TLA) (Pb(CH3COO)2.3H2O) with thiourea on heated substrates. The films study was performed as a function of the TLA volume ratio (TLA vol. ratio) in the solution obtained by the mixture of BiCl3 and thiourea used as precursor solution (PrS). X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) were used for structural and compositional analysis of the as deposited films. With the structural investigations, Bi2S3, PbS thin films and PbS-Bi2S3 composite thin films formation was confirmed. Optical properties of the deposited films were obtained using transmittance and reflectance measurements in the wavelength range [200-2500 nm]. The absorption edge shows a shift towards low energy with the increase of the TLA vol. ratio.The optical bandgaps for the films with various TLA vol. ratio are found to lie between those of the Bi2S3 and PbS ones. The optical parameters (extinction coefficient, refractive index, real and imaginary parts if the complex dielectric constant) of the thin films are also investigated. These are found to be dependent on the TLA vol. ratio.

  7. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  8. Superconductivity above 100 K in Bi(Pb)-Ca-Sr-Cu-O films made by thermal decomposition of metal carboxylates

    NASA Astrophysics Data System (ADS)

    Klee, M.; de Vries, J. W. C.; Brand, W.

    1988-11-01

    Superconducting layers in the Bi(Pb)-Ca-Sr-Cu-O system are prepared by thermal decomposition of metal carboxylates. The films are deposited on MgO single crystal and ceramic substrates using a spin-coating and dip-coating process. The Bi-Ca-Sr-Cu-O films consist mainly of the low- Tc phase ( c-axis=3.073 nm), whereas partial substitution of Bi by Pb favours the formation of the high- Tc phase ( c-axis=3.707 nm). Films deposited on MgO (100) are strong c-axis preferentially oriented grown. While the Bi-Ca-Sr-Cu-O films show a step in the resistance versus temperature curve ( Tcf⋍80 K) due to the presence of the low- Tc and the high- Tc phase, the Bi(Pb)-Ca-Sr-Cu-O films have an onset at 110 K and are superconducting at 104 K. The temperature dependence of the critical current indicates that in the Bi-Ca-Sr-Cu-O system weak links of superconductor-isolator-superconductor type are present, while in the Bi(Pb)-Ca-Sr-Cu-O samples the contact is formed by normal-metal barriers. Using magnetic fields up to 5 T, the anisotropy of the resistive transition of the high- Tc phase was studied. In Bi(Pb)-Ca-Sr-Cu-O films the anisotropy ratio is about 18, and the corresponding coherence lengths are ξ ab(0)⋍3.6 nm and ξ c(0)⋍0.2 nm. These values are nearly the same as in the low- Tc phase.

  9. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  10. Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.

    2005-09-01

    The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.

  11. Transport properties of layered Ba(Pb,Bi)O3 thin films

    NASA Astrophysics Data System (ADS)

    Hassink, G. W. J.; Munakata, K.; Hammond, R. H.; Beasley, M. R.

    2012-02-01

    Doped BaBiO3 is a 3D oxide superconductor with a maximum Tc of 30 K for Ba0.6K0.4BiO3. There has been a lot of discussion on whether this high Tc can be explained purely by electron-phonon coupling with a high coupling constant λ. In addition, the presence of real-space paired 6s^2 electrons in the parent compound raise intriguing questions about whether there is an electron-electron coupling interaction as well. This possible negative-U interaction might be used to implement the suggestion by Berg, Orgad and Kivelson [Phys.Rev.B 78, 094509] that for a two-layer system where one layer provides electron pairing interaction and the other layer is conducting, the whole can be superconducting with a high Tc. Here we discuss the transport properties of BaPbO3/BaBiO3 bilayers, where the BaBiO3 layer is thought to act as the pairing layer, while the BaPbO3 acts as the conducting layer. The transport behavior changes to insulating upon decreasing the metallic BaPbO3 layer thickness at values that single films are expected to still be metallic.

  12. Atmospheric residence time of (210)Pb determined from the activity ratios with its daughter radionuclides (210)Bi and (210)Po.

    PubMed

    Semertzidou, P; Piliposian, G T; Appleby, P G

    2016-08-01

    The residence time of (210)Pb created in the atmosphere by the decay of gaseous (222)Rn is a key parameter controlling its distribution and fallout onto the landscape. These in turn are key parameters governing the use of this natural radionuclide for dating and interpreting environmental records stored in natural archives such as lake sediments. One of the principal methods for estimating the atmospheric residence time is through measurements of the activities of the daughter radionuclides (210)Bi and (210)Po, and in particular the (210)Bi/(210)Pb and (210)Po/(210)Pb activity ratios. Calculations used in early empirical studies assumed that these were governed by a simple series of equilibrium equations. This approach does however have two failings; it takes no account of the effect of global circulation on spatial variations in the activity ratios, and no allowance is made for the impact of transport processes across the tropopause. This paper presents a simple model for calculating the distributions of (210)Pb, (210)Bi and (210)Po at northern mid-latitudes (30°-65°N), a region containing almost all the available empirical data. By comparing modelled (210)Bi/(210)Pb activity ratios with empirical data a best estimate for the tropospheric residence time of around 10 days is obtained. This is significantly longer than earlier estimates of between 4 and 7 days. The process whereby (210)Pb is transported into the stratosphere when tropospheric concentrations are high and returned from it when they are low, significantly increases the effective residence time in the atmosphere as a whole. The effect of this is to significantly enhance the long range transport of (210)Pb from its source locations. The impact is illustrated by calculations showing the distribution of (210)Pb fallout versus longitude at northern mid-latitudes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    PubMed Central

    Han, Mi-Kyung; Lee, Da-Hee; Kim, Sung-Jin

    2017-01-01

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping. PMID:29072613

  14. Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV

    NASA Technical Reports Server (NTRS)

    Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.

  15. Role of orthophosphate as a corrosion inhibitor in chloraminated solutions containing tetravalent lead corrosion product PbO2.

    PubMed

    Ng, Ding-Quan; Strathmann, Timothy J; Lin, Yi-Pin

    2012-10-16

    Addition of orthophosphate has been commonly employed to suppress lead levels in drinking water. Its detailed mechanism and time required for it to become effective, however, have not been fully elucidated. In this study, we investigated the mechanistic role of orthophosphate as a corrosion inhibitor in controlling lead release from tetravalent lead corrosion product PbO(2) in chloraminated solutions, a system representing distribution networks experiencing disinfectant changeover from free chlorine to monochloramine. In all experiments with orthophosphate addition of at least 1 mg/L as P, peaking of soluble Pb(II) concentration within the first 24 h was observed before lead concentrations decreased and stabilized at levels lower than 15 μg/L. The variation of soluble Pb(II) concentration could be attributed to the dynamics between the rate of PbO(2) reductive dissolution, primarily induced by monochloramine decomposition, and that of chloropyromorphite (Pb(5)(PO(4))(3)Cl) precipitation, which did not occur until a critical supersaturation ratio of about 2.36 was reached in the solution. Our findings provide insights to how orthophosphate reduces lead levels under drinking water conditions and highlight the potential risk of short-term elevated lead concentrations. Intensive monitoring following the disinfectant changeover may be required to determine the overall lead exposure when using orthophosphate as a corrosion inhibitor.

  16. New dielectric ceramics Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn) with the pyrochlore structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambachri, A.; Monier, M.; Mercurio, J.P.

    1988-04-01

    Dielectric ceramics have been obtained by natural sintering of pyrochlore phases with general formula Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn). Low frequency dielectric characteristics have been studied with respect to the processing conditions: sintering without additive and in the presence of some low melting compounds (PbO, Pb/sub 5/Ge/sub 3/O/sub 11/, Bi/sub 12/PbO/sub 19/ and Bi/sub 12/CdO/sub 19/). The dielectric constants of these ceramics lie between 30 and 60, the dielectric losses range from 10 to 30.10/sup -4/ and the temperature coefficient of the dielectric constants (20 - 100/sup 0/C) can be tailored by means of additives inmore » the +- 30 ppm K/sup -1/ range.« less

  17. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  18. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  19. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  20. The interrelation between mechanical properties, corrosion resistance and microstructure of Pb-Sn casting alloys for lead-acid battery components

    NASA Astrophysics Data System (ADS)

    Peixoto, Leandro C.; Osório, Wislei R.; Garcia, Amauri

    It is well known that there is a strong influence of thermal processing variables on the solidification structure and as a direct consequence on the casting final properties. The morphological microstructural parameters such as grain size and cellular or dendritic spacings will depend on the heat transfer conditions imposed by the metal/mould system. There is a need to improve the understanding of the interrelation between the microstructure, mechanical properties and corrosion resistance of dilute Pb-Sn casting alloys which are widely used in the manufacture of battery components. The present study has established correlations between cellular microstructure, ultimate tensile strength and corrosion resistance of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys by providing a combined plot of these properties as a function of cell spacing. It was found that a compromise between good corrosion resistance and good mechanical properties can be attained by choosing an appropriate cell spacing range.

  1. Investigation of physical and mechanical properties of (BaSnO3)x(Bi,Pb)-2223 composite

    NASA Astrophysics Data System (ADS)

    Habanjar, K.; Barakat, M. M. E.; Awad, R.

    2017-07-01

    The effect of BaSnO3 nanoparticles addition on the structural and mechanical properties of (Bi,Pb)-2223 superconducting phase by means of X-rays diffraction analysis (XRD), scanning electron microscope (SEM), electrical resistance and Vickers microhardness measurement was studied. BaSnO3 nanomaterial and (BaSnO3)x(Bi,Pb)-2223 superconducting samples were prepared using co-precipitation method and standard solid-state reaction techniques, respectively. From XRD data, the addition of BaSnO3 into (Bi,Pb)-2223 phase does not affect the tetragonal structure and the lattice parameters. SEM images indicate that the microstructure of (Bi,Pb)-2223 was enhanced by adding BaSnO3 nanoparticles by filling its pores and voids. The superconducting transition temperature Tc as well as the critical transport current density Jc, estimated from electrical resistivity measurements, are increased up to x = 0.5 wt%, then decreased with further increase in x. Vickers microhardness measurements Hv were carried out at room temperature as a function of applied. The experimental Hv results were analysed in view of Meyer’s law, Hays and Kendall (HK) approach, elastic/plastic deformation (EPD) and proportional specimen resistance (PSR). All samples exhibit normal indentation size effect (ISE), in addition to that, the analysis shows that the Hays and Kendall model is the most suitable one to describe the load independent microhardness for (BaSnO3)x(Bi,Pb)-2223 superconducting samples.

  2. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-directional transport

    NASA Astrophysics Data System (ADS)

    Zartman, Robert E.; Haines, Sara M.

    1988-06-01

    Version IV of plumbotectonics expands and refines the original model of DOE and ZARTMAN (1979) and ZARTMAN and DOE (1981) for explaining Pb (Sr, and Nd) isotopic systematics among major terrestrial reservoirs. A case for bi-directional transport among reservoirs is based on the observed isotopic compositions for different tectonic settings, and finds a rationale in the kinetics of plate tectonics. Chemical fractionation and radioactive decay create isotopic differences during periods of isolation of one reservoir from another, whereas dynamic processes allowing mixing between reservoirs tend to reduce these differences. Observed isotopic characteristics reflect a balance between these opposing tendencies and provide constraints on the extent and timing of fractionation and mixing processes. Plumbotectonics does not require interaction with a lower mantle or core reservoir over most of the Earth's lifetime, and, in fact, achieves a material balance consistent with no such exchange of material. Important evidence of the amount and timing of crustal recycling, and of the residence times of mantle heterogeneities lies in the coupled 207Pb /204Pb- 206 Pb 204Pb systematics. We believe that examination of the published data base fully supports our contention of significant bi-directional transport of material among terrestrial reservoirs. Plumbotectonics allows us to explore many aspects of reservoir interaction, and to identify parameters that provide meaningful constraints on mantle-crust differentiation. We put forth a compromise fit to many of the model variables in version IV, which can serve as a reference for future work.

  3. Pressure induced para-antiferromagnetic switching in BiFeO3-PbTiO3 as determined using in-situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Comyn, Tim P.; Stevenson, Tim; Al-Jawad, Maisoon; Marshall, William G.; Smith, Ronald I.; Herrero-Albillos, Julia; Cywinski, Robert; Bell, Andrew J.

    2013-05-01

    BiFeO3-PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the composition. Moderate hydrostatic pressures have been used at room temperature to transform the crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld refinements, the resultant data showed that, for both compositions, a transformation from para- to G-type antiferromagnetic order accompanied the structural transition. The transformation occurred over the range 0.4-0.77 and 0.67-0.88 GPa for 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end members. The driving force for this pressure induced first order phase transition is a significant difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon removal of the pressure, 0.65BiFeO3-0.35PbTiO3 returned to the paramagnetic tetragonal state, whereas in 0.7BiFeO3-0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase readily reverted back to a tetragonal phase, at temperatures between 100 and 310 °C for 0.7BiFeO3-0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 °C. To our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the literature.

  4. The Effect of Bi Contamination on the Solidification Behavior of Sn-Pb Solders

    NASA Astrophysics Data System (ADS)

    Moon, Kil-Won; Kattner, Ursula R.; Handwerker, Carol A.

    2007-06-01

    This paper presents experimental results and theoretical calculations that evaluate the effects of Bi contamination on the solidification behavior of Sn-Pb alloys. The pasty (mushy) range, the type of solidification path, and the microstructure of the solidified alloys are described. The experimental results are obtained from thermal analysis and metallography, and the solidification calculations are performed using the lever rule and Scheil assumptions. The experimental results show that the solidification behavior of the contaminated solder at cooling rates of 5°C/min and 23°C/min is closer to the predictions of the lever rule calculations than those of the Scheil calculations. Although the freezing range of Bi-contaminated Sn-Pb solders is increased, formation of a ternary eutectic reaction at 95°C is not observed for contamination levels below the Bi mass fraction of 6%.

  5. Absorption edge parameters of the LIII edge for compounds of Hg, Tl, Pb and Bi using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Gurinderjeet; Singh, Amrit; Gupta, Manoj Kumar; Dhaliwal, A. S.; Kahlon, K. S.

    2018-03-01

    The measurement of Absorption edge parameters of the LIII edge of pure elements Hg, Tl, Pb and Bi along with their compounds HgCl2, HgO, HgF2, TlCl, Tl2O3, PbCl2, PbF2, Pb3O4, BiF3, BiCl3 and Bi2O3 has been done using EDXRF technique. In the present measurements 241Am (59.54 keV) radioactive source of activity 100 mCi along with CANBERRA make cryo-cooled Si (Li) detector is used. The measured results are compared with theoretically calculated values from FFAST version 2.1 (Chantler et al., 2005) and shows good agreement with each other within experimental uncertainties within 3.5%. It is observed that the values of absorption edge parameters of the LIII edge depends slightly on the chemical environment and shows almost constant behaviour with effective atomic number (Zeff)

  6. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8 + delta

    NASA Astrophysics Data System (ADS)

    Finnemore, D. K.; Xu, Ming; Kouzoudis, D.; Bloomer, T.; Kramer, M. J.; McKernan, Stuart; Balachandran, U.; Haldar, Pradeep

    1996-01-01

    In the growth of Bi2Sr2Ca2Cu3O10+δ from mixed powders of Pb-doped Bi2Sr2Ca1Cu2O8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi2Sr2Ca1Cu2O8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like ``chicken pox'' growing on the grains at about 700 °C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb)2Sr2Ca1Cu2O8+δ, and are definitely not a Pb rich phase.

  7. The influence of Pb and Ag doping on the Jc(H,T) dependence and the mechanical properties of Bi-2212 textured rods

    NASA Astrophysics Data System (ADS)

    Sotelo, A.; Madre, M. A.; Diez, J. C.; Rasekh, Sh; Angurel, L. A.; Martínez, E.

    2009-03-01

    Textured rods of Bi-2212 based materials with nominal compositions Bi2Sr2CaCu2O8+δ, Bi2Sr2CaCu2O8+δ+1 wt% Ag, Bi1.6Pb0.4Sr2CaCu2O8+δ, and Bi1.6Pb0.4Sr2CaCu2O8+δ+3 wt% Ag were fabricated using a laser floating zone (LFZ) melting method. The electrical, magnetic, and mechanical properties of the resulting rods after annealing were characterized. Pb doping results in the decrease of the transport critical current density, Jc,t (from 4.4 × 107 to 6 × 106 A m-2 at 65 K and self-field) as well as in the worsening of the mechanical properties, by about 35% compared to the undoped samples. In contrast, Ag doping results in the improvement of both the critical current density and mechanical strength. In this regard we have observed an increase of Jc,t (65 K) from 4.4 × 107 for Bi-2212 to 7.2 × 107 A m-2 for Bi-2212/Ag and from 6 × 106 for Bi(Pb)-2212 to 8 × 106 A m-2 for Bi(Pb)-2212/Ag. These described effects are related to the microstructural observations, since Pb doping dramatically reduces the texture while Ag doping improves it. Moreover, for samples with Ag addition, an intergrowth of Bi-2223 inside the Bi-2212 grains is observed, which would explain the improved superconducting properties of these samples.

  8. Degassing dynamics at Mount Etna inferred from radioactive disequilibria (210Pb-210Bi-210Po) in volcanic gases

    NASA Astrophysics Data System (ADS)

    Terray, Luca; Gauthier, Pierre-Jean; Salerno, Giuseppe; La Spina, Alessandro; Giammanco, Salvatore; Sellitto, Pasquale; Briole, Pierre

    2016-04-01

    Volcanic gases are significantly enriched in the last short-half-life radionuclides of the 238U series, namely the so-called Radon daughters 210Pb, 210Bi and 210Po. Because of their contrasted volatilities, these isotopes are strongly fractionated upon degassing, which gives rise to significant radioactive disequilibria between them in the gas phase. These disequilibria carry precious information on shallow degassing processes beneath active volcanoes: they remarkably constrain the magma residence time in the degassing reservoir and the duration of gas extraction from magma to surface. On Mount Etna (Sicily), where the study of these disequilibria was initiated thirty years ago (Lambert et al., EPSL, 1985-86), no measurement of 210Pb, 210Bi and 210Po in the gases has been performed for the last twenty years. Here we present new 210Pb-210Bi-210Po radioactive disequilibria measurements in volcanic plume gases of Mount Etna. Samples were collected in the bulk diluted plume at kilometric distance from the summit area during the May 2015 eruption, then in more concentrated plumes arising from each summit crater of Etna during quiescent degassing in July 2015. We found values of (210Bi/210Pb) = 7.0 ± 0.3 and (210Po/210Pb) = 80 ± 6 during both periods. These results suggest that 210Pb, 210Bi and 210Po are not significantly fractionated during the transport of the plume from the crater rim to close-downslope sites (<1 km). None of the previous degassing models (Lambert et al., EPSL, 1985-86 ; Gauthier et al., JVGR, 2000) satisfactorily explain measured activity ratios. We propose here a new degassing model based on the previous conceptualization designed for basaltic open-conduit volcanoes, like Stromboli. This model considers extreme Radon enrichments in volcanic gases as a source of 210Pb atoms produced by radioactive decay of 222Rn within gas bubbles travelling to surface. We constrain a magma residence time of 470 ± 170 days and an extraction time of the gases of 4

  9. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe) 5(Bi 2Se 3) 3

    DOE PAGES

    Ren, Xiaochen; Singh, Arunima K.; Fang, Lei; ...

    2016-09-07

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less

  10. Corrosion of stainless steels in lead-bismuth eutectic up to 600 °C

    NASA Astrophysics Data System (ADS)

    Soler, L.; Martín, F. J.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    An experimental program has been carried out to understand the differences in the corrosion behaviour between different stainless steels: the austenitic steels 304L and 316L, the martensitic steels F82Hmod, T91 and EM10, and the low alloy steel P22. The influence of oxygen level in Pb-Bi, temperature and exposure time is studied. At 600 °C, the martensitic steels and the P22 steel exhibit thick oxide scales that grow with time, following a linear law for the wet environment and a parabolic law for the dry one. The austenitic stainless steels show a better corrosion behaviour, especially AISI 304L. Under reducing conditions, the steels exhibit dissolution, more severe for the austenitic stainless steels. At 450 °C, all the materials show an acceptable behaviour provided a sufficient oxygen level in the Pb-Bi. At reducing conditions, the martensitic steels and the P22 steel have a good corrosion resistance, while the austenitic steels exhibit already dissolution at the longer exposures.

  11. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  12. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  13. Half-lives of 214Pb and 214Bi.

    PubMed

    Martz, D E; Langner, G H; Johnson, P R

    1991-10-01

    New measurements on chemically separated samples of 214Bi have yielded a mean half-life value of 19.71 +/- 0.02 min, where the error quoted is twice the standard deviation of the mean based on 23 decay runs. This result provides strong support for the historic 19.72 +/- 0.04 min half-life value and essentially excludes the 19.9-min value, both reported in previous studies. New measurements of the decay rate of 222Rn progeny activity initially in radioactive equilibrium have yielded a value of 26.89 +/- 0.03 min for the half-life of 214Pb, where the error quoted is twice the standard deviation of the mean based on 12 decay runs. This value is 0.1 min longer than the currently accepted 214Pb half-value of 26.8 min.

  14. Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBo-SLS glass

    NASA Astrophysics Data System (ADS)

    Syuhada Ahmad, Nor; Shahrim Mustafa, Iskandar; Mansor, Ishak; Malik, Muhammad Fadhirul Izwan bin Abdul; Ain Nabilah Razali, Nur; Nordin, Sufiniza

    2018-05-01

    The radiation shielding and optical properties of x [RmOn] (0.5‑x) [ZnO] 0.2 [B2O3] 0.3 [SLS], where RmOn are Bi2O3 and PbO with x = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.45 have been prepared by using the melt-quenching method at 1200 °C and was investigated on their physical, structural and gamma ray shielding properties. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies is aggregated and irregular in shapes and size. Energy dispersive x-ray spectroscopy (EDS) elemental mapping data confirmed that all mentioned element all present on the prepared glass. Soda Lime Silica (SLS) that is mainly composed of SiO2 has been utilized in this study as the source of SiO2 for fabrication of glass system. From the result, the density and molar volume of both glass samples increased as Bi2O3 and PbO content increased. The gamma ray shielding properties, such as linear attenuation and mass attenuation coefficient, were increased while half value layer (HVL) and mean free path (MFP) were decreased as the increased in Bi2O3 and PbO concentrations. It is recognized that the mass attenuation coefficient value of Bi2O3 and PbO glass are slightly different. From this study, it can be concluded that from the non-toxicity and shielding point of view, the bismuth glass is a good shield to gamma radiation as compared to lead glass.

  15. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, W.; Sobolewski, R.; Gorecka, J.

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb dopingmore » considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.« less

  16. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Ke-Chuan; Wang, Y. K., E-mail: kant@ntnu.edu.tw

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  17. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions

    NASA Astrophysics Data System (ADS)

    Rocca, E.; Bourguignon, G.; Steinmetz, J.

    Since several years, lead calcium-based alloys have supplanted lead antimony alloys as structural materials for positive grids of lead-acid batteries in many applications, especially for VRLA batteries. Nevertheless, the positive grid corrosion probably remains one of the causes of rapid and premature failure of lead-acid batteries. The objective of the present study is to present a comprehensive study of the PbCaSn alloy corrosion in function of their composition, metallographic state and voltage conditions (discharge, overcharge, floating and cycling conditions). For that, four alloys PbCaSn x wt.% (x = 0, 0.6, 1.2, 2) were synthesized in two extreme metallurgical conditions and tested by four electrochemical lab-tests. Weight loss measurements and analyses by SEM, EPMA and XRD allowed to monitor the oxidation tests and to characterize the corrosion layers after the oxidation tests. The results show that the tin level in PbCaSn alloys should be adapted on the calcium concentration and the rate of overageing process, to maintain the beneficial effect of tin in service during the battery lifetime. According to our results, a Sn/Ca ratio of 2.5 gives good corrosion resistance in all potential conditions. Nevertheless, when tin level is too high, the corrosion layers can peel off from the metal, which involves a lack of cohesion between the collector and the paste, in cycling conditions. The anodic potential undergone by the metal is a second main factor determining the corrosion, especially the floating conditions and the frequency of deep discharge and overcharge. Thus the adjustment of the charge controller parameters of a battery system is a necessity to increase the lifetime of the grids and maintain a good rechargeability.

  18. Thermoelectric Properties of the Homologous Compounds Pb5Bi6Se14- x I x ( x = 0.0, 0.025, and 0.05)

    NASA Astrophysics Data System (ADS)

    Sassi, S.; Candolfi, C.; Dauscher, A.; Lenoir, B.

    2018-06-01

    Homologous compounds represent an interesting platform for design of new thermoelectric materials. We report herein on synthesis, structural and chemical characterizations, and high-temperature (300 K to 700 K) transport properties measurements of Pb5Bi6Se14- x I x ( x = 0.0, 0.025, and 0.05) homologous compounds. Successful insertion of iodine into the crystal structure of Pb5Bi6Se14 was confirmed by its influence on the transport properties. The doping effectiveness of iodine was demonstrated by the increase in the electron concentration, resulting in more pronounced metallic character of transport with respect to undoped Pb5Bi6Se14. The peak ZT value of 0.5, which was achieved at 700 K in the x = 0.025 sample, remains similar to that obtained in Pb5Bi6Se14.

  19. Lanthanide Contraction Effect In Magnetic Thermoelectric Materials Of Rare Earth-doped Bi1.5Pb0.5Ca2Co2O8

    NASA Astrophysics Data System (ADS)

    Sutjahja, Inge Magdalena; Akbar, Taufik; Nugroho, Agung

    2010-12-01

    We report in this paper the result of synthesis and crystal structure characterization of magnetic thermoelectric materials of rare-earth-doped Bi1.5Pb0.5Ca2Co2O8, namely Bi1.5Pb0.5Ca1.9RE0.1Co2O8 (RE = La, Pr, Sm, Eu, Gd, Ho). Single phase samples have been prepared by solid state reaction process using precursors of Bi2O3, PbO, CaCO3, RE2O3, and Co3O4. The precursors were pulverized, calcinated, and sintered in air at various temperatures for several hours. Analysis of XRD data shows that Bi1.5Pb0.5Ca1.9RE0.1Co2O8 compound is a layered system consisting of an alternate stack of CoO2 layer and Bi2Sr2O4 block along the c-axis. The misfit structure along b-direction is revealed from the difference of the b-axis length belonging to two sublattices, namely hexagonal CdI2-type CoO2 layer and rock-salt (RS) NaCl-type Bi2Sr2O4 block, while they possess the common a- and c-axis lattice parameters and β angles. The overall crystal structure parameters (a, b, and c) increases with type of doping from La to Ho, namely by decreasing the ionic radii of rare-earth ion. We discuss this phenomenon in terms of the lanthanide contraction, an effect commonly found in the rare-earth compound, results from poor shielding of nuclear charge by 4f electrons. In addition, the values of b-lattice parameters in these rare-earth doped samples are almost the same with those belongs to undoped parent compound (Bi1.5Pb0.5Sr2Co2O8) and its related Y-doped (Bi1.5Pb0.5Ca1.9Y0.1Co2O8) samples, while the c-values reduced significantly in rare-earth doped samples, with opposite trend with those of variation of a-axis length. Morevover, the misfit degree in rare-earth doped compound is higher in compared to parent compound and Y-doped samples. We argue that these structural changes induced by rare-earth doping may provide information for the variation of electronic structure of Co-ions (Co3+ and Co4+), in particular their different spin states of low-spin, intermediate-spin, and high-spin. This, in

  20. Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira

    1999-11-01

    Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.

  1. Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies

    NASA Astrophysics Data System (ADS)

    Çevik, U.; Baltaş, H.

    2007-03-01

    The mass attenuation coefficients for Bi, Pb, Sr, Ca, Cu metals, Bi2O3, PbO, SrCO3, CaO, CuO compounds and solid-state forms of Bi1.7Pb0.3Sr2Ca2Cu3O10 superconductor were determined at 57.5, 65.2, 77.1, 87.3, 94.6, 122 and 136 keV energies. The samples were irradiated using a 57Co point source emitted 122 and 136 keV γ-ray energies. The X-ray energies were obtained using secondary targets such as Ta, Bi2O3 and (CH3COO)2UO22H2O. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The effect of absorption edges on electron density, effective atomic numbers and their variation with photon energy in composite superconductor samples was discussed. Obtained values were compared with theoretical values.

  2. Pb{sub 5}Bi{sub 24}Se{sub 41}: A new member of the homologous series forming topological insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Kouji; Taskin, A.A.; Ando, Yoichi, E-mail: y_ando@sanken.osa-u.ac.jp

    2015-01-15

    We have synthesized Pb{sub 5}Bi{sub 24}Se{sub 41}, which is a new member of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with m=4. This series of compounds consist of alternating layers of the topological insulator Bi{sub 2}Se{sub 3} and the ordinary insulator PbSe. Such a naturally-formed heterostructure has recently been elucidated to give rise to peculiar quasi-two-dimensional topological states throughout the bulk, and the discovery of Pb{sub 5}Bi{sub 24}Se{sub 41} expands the tunability of the topological states in this interesting homologous series. The trend in the resistivity anisotropy in this homologous series suggests an important role of hybridization of themore » topological states in the out-of-plane transport. - Graphical abstract: X-ray diffraction profiles taken on cleaved surfaces of single-crystal samples of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with various m values up to 4, which realizes topological insulator heterostructures. Schematic crystal structure of the new phase, m=4, is also shown. - Highlights: • We have synthesized a new member of the homologous series related to topological insulators. • In this compound, a heterostructure of topological and ordinary insulators naturally forms. • Resistivity anisotropy suggests an important role of hybridization of the topological states. • This compound expands the tunability of the topological states via chemical means.« less

  3. Impact of stoichiometry and disorder on the electronic structure of the PbBi2Te4 -xSex topological insulator

    NASA Astrophysics Data System (ADS)

    Shvets, I. A.; Klimovskikh, I. I.; Aliev, Z. S.; Babanly, M. B.; Sánchez-Barriga, J.; Krivenkov, M.; Shikin, A. M.; Chulkov, E. V.

    2017-12-01

    Detailed comparative theoretical and experimental study of electronic properties and spin structure was carried out for a series of Pb-based quaternary compounds PbBi2Te4 -xSex . For all values of x , these compounds are theoretically predicted to be topological insulators, possessing at high Se content a remarkably large band gap and a Dirac point isolated from bulk states. Using spin- and angle-resolved photoemission spectroscopy, it was shown that the PbBi2Te2Se2 and PbBi2Te1.4Se2.6 compounds are characterized by well-defined spin-polarized topological surface state in the bulk gap. To define the probable distribution of atoms over the atomic sites for these samples, we performed ab initio calculations in ordered and disordered configurations of the unit cell. We found that theoretical calculations better reproduce photoemission data when Te atoms are placed in the outermost layers of the septuple layer block.

  4. Synthesis and structural characterization of a novel Sillén - Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives

    NASA Astrophysics Data System (ADS)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Kazakov, Sergey M.; Kalmykov, Stepan N.; Akinfiev, Victor S.; Gorbachev, Anatoly V.; Batuk, Maria; Abakumov, Artem M.; Teterin, Yury A.; Maslakov, Konstantin I.; Teterin, Anton Yu; Ivanov, Kirill E.

    2018-01-01

    A new Sillén - Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X (X = halogen) synthetic perites and γ-form of Bi2VO5.5 solid electrolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-δCl (δ ≤ 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb - Bi vanadates. This reduction also stabilizes the γ polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M = Nb, Sb) solid solutions.

  5. Crystallographic orientation mapping with an electron backscattered diffraction technique in (Bi, Pb)2Sr2Ca2Cu3O10 superconductor tapes

    NASA Astrophysics Data System (ADS)

    Tan, T. T.; Li, S.; Oh, J. T.; Gao, W.; Liu, H. K.; Dou, S. X.

    2001-02-01

    It is believed that grain boundaries act as weak links in limiting the critical current density (Jc) of bulk high-Tc superconductors. The weak-link problem can be greatly reduced by elimination or minimization of large-angle grain boundaries. It has been reported that the distribution of the Jc in (Bi, Pb)2Sr2Ca2Cu3O10+x (Bi2223) superconductor tapes presents a parabolic relationship in the transverse cross section of the tapes, with the lowest currents occurring at the centre of the tapes. It was proposed that the Jc distribution is strongly dependent on the local crystallographic orientation distribution of the Bi2223 oxides. However, the local three-dimensional crystallographic orientation distribution of Bi2223 crystals in (Bi, Pb)2Sr2Ca2Cu3O10+x superconductor tapes has not yet been experimentally determined. In this work, the electron backscattered diffraction technique was employed to map the crystallographic orientation distribution, determine the misorientation of grain boundaries and also map the misorientation distribution in Bi2223 superconductor tapes. Through crystallographic orientation mapping, the relationship between the crystallographic orientation distribution, the boundary misorientation distribution and the fabrication parameters may be understood. This can be used to optimize the fabrication processes thus increasing the critical current density in Bi2223 superconductor tapes.

  6. Relative L-shell X-ray intensities of Pt, Pb and Bi following ionization by 59.54 keV γ-rays

    NASA Astrophysics Data System (ADS)

    Dhal, B. B.; Padhi, H. C.

    1994-12-01

    Relative L-shell X-ray intensities of Pt, Pb and Bi have been measured following ionization by 59.54 keV photons from an 241 Am point source. The measured ratios have been compared with the theoretical ratios estimated using the photoionization cross-sections of Scofield and different decay yield data. The comparison shows good agreement for Pb and Bi with the decay yield data of Krause, but the decay yield data of Xu and Xu overestimates the ratios, particularly for the {I γ}/{I α} ratio. Our results for Pb and Bi with improved error limits also agree with the previous experimental results of Shatendra et al. For Pt our present results are found to lie between the two theoretical results obtained by using different sets of decay yield data.

  7. Fluctuation conductivity in the superconducting compound Bi1.7Pb0.3Sr2Ca2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Aliev, V. M.; Ragimov, J. A.; Selim-zade, R. I.; Damirova, S. Z.; Tairov, B. A.

    2017-12-01

    A study of how the partial substitution of Bi with Pb impacts the mechanism of excess conductivity in a Bi-Sr-Ca-Cu-O system. It is found that such a substitution leads to an increase in the critical temperature of the Bi1.7Pb0.3Sr2Ca2Cu3Oy(B2) sample, in comparison to Bi2Sr2CaCu2Ox (B1) [Tc (B2) = 100.09 K and Tc (B1) = 90.5 K, respectively]. At the same time, the resistivity ρ of the sample B2 in the normal phase decreases by almost 1.5 times in comparison to B1. The mechanism responsible for the generation of excess conductivity in cuprate HTSCs Bi2Sr2CaCu2Ox and Bi1.7Pb0.3Sr2Ca2Cu3Oy is examined using the local pair model with consideration of the Aslamazov-Larkin theory, near Tc. The temperature T0 of the transition from the 2D fluctuation region to the 3D (i.e., the temperature of the 2D-3D crossover), is also determined. The coherence length ξc(0) along the c axis of fluctuation Cooper pairs is calculated. It is shown that the partial substitution of Bi with Pb in the Bi-Sr-Ca-Cu-O system leads to a decrease in ξc(0) by a factor of 1.3 (4.205 and 3.254 Å, respectively), and that there is a narrowing of both the region of pseudogap existence and the region of superconducting fluctuations near Tc. The temperature dependence of the pseudogap Δ*(T) and the value Δ*(Tc) are determined, and the temperatures Tm, which correspond to the maximum of the pseudogap as a function of temperature in these materials, are estimated. The pseudogap maxima in samples B1 and B2 are found to be 61.06 and 38.18 meV, respectively.

  8. The interaction of Ag with Bi-Pb-Sr-Ca-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Song, K. H.; Liu, H. K.; Sorrell, C. C.; Apperley, M. H.; Gouch, A. J.; Savvides, N.; Hensley, D. W.

    1989-10-01

    Bi-Pb-Sr-Ca-Cu-O superconductor compounds have been doped with up to 30 wt% Ag, sintered under variable oxygen partial pressure, and characterised in terms of the electrical and crystallographic behaviour. In contrast to previous reports that claim that Ag is the only metal non-poisoning to the superconductivity of Bi-Sr-Ca-Cu-O (BSCCO), it has been found that Ag additions to Bi-Pb-Sr-Ca-Cu-O depress Tc and Jc drastically and cause a large decrease in lattice parameters when samples are treated in air or pure oxygen. However, the lattice parameters, Tc and Jc remain unaffected by Ag additions when samples are heat treated in 0.030-0.067 atm oxygen. It is clear that the Ag reacts with and destabilises the superconducting phase when the samples are treated in air or pure oxygen while, when the samples are heat treated in low oxygen partial pressures, the Ag remains as an isolated inert metal phase that improves the weak links between the grains. This discovery clearly shows the feasibility of Ag-clad superconductor wire. For Ag-clad superconductor tape of 0.1 mm 2 cross sectional area heat treated in air, Jc was measured to be 54 A/cm 2. The same specimen sintered in 0.067 atm oxygen showed that the Jc increased to 2078 A/cm 2.

  9. Corrosion of Type 316L stainless steel in Pb-17Li

    NASA Astrophysics Data System (ADS)

    Barker, M. G.; Lees, J. A.; Sample, T.; Hubberstey, P.

    1991-03-01

    Corrosion tests carried out in Pb-17Li in both capsules and a convection loop (hot leg temperature 768 K, cold leg temperature 748 K, flow rate 10 mm/s) have shown that Type 316 stainless steel undergoes almost complete loss of Ni and Mn, and extensive loss of Cr to form a porous ferritic zone. Ferritic zone depths measured on the loop samples exposed between 1000 and 4000 h were in good agreement with previous data. Some evidence was found for the interaction of chromium with oxygen dissolved in Pb-17Li. Examination of the cold leg samples revealed deposition products of iron and chromium but no deposits containing nickels were observed. These observations were rationalised in terms of recent measurements of the solubilities of metals in Pb-17Li.

  10. Superconductivity in the orthorhombic phase of thermoelectric CsPb{sub x}Bi{sub 4−x}Te{sub 6} with 0.3≤x≤1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R.X.; Yang, H.X., E-mail: hxyang@iphy.ac.cn; Tian, H.F.

    2015-12-15

    Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPb{sub x}Bi{sub 4−x}Te{sub 6} (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[Pb{sub m}Bi{sub 3}Te{sub 5+m}], these materials have the layered orthorhombic structure containing infinite anionic [PbBi{sub 3}Te{sub 6}]{sup −} slabs separated with Cs{sup +} cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} occurs at T{sub c}=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructuralmore » phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} with the highest T{sub c} shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors. - Graphical abstract: Bulk superconductivity is discovered in the orthorhombic Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} materials with the superconducting transition T{sub c}=3.1 K. The compound shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. - Highlights: • Bulk superconductivity is discovered in the orthorhombic CsPb{sub x}Bi{sub 4−x}Te{sub 6} materials. • The superconducting transition in Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} occurs at T{sub c}=3.1 K. • Physical property measurements concerning the bulk superconductivity were present. • Structural modulation due to Pb-ordering was observed.« less

  11. Nanocomposites from Solution-Synthesized PbTe-BiSbTe Nanoheterostructure with Unity Figure of Merit at Low-Medium Temperatures (500-600 K).

    PubMed

    Xu, Biao; Agne, Matthias T; Feng, Tianli; Chasapis, Thomas C; Ruan, Xiulin; Zhou, Yilong; Zheng, Haimei; Bahk, Je-Hyeong; Kanatzidis, Mercouri G; Snyder, Gerald Jeffrey; Wu, Yue

    2017-03-01

    A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi 0.7 Sb 1.3 Te 3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An Improved Method to Determine {sup 210}Pb, {sup 210}Bi and {sup 210}Po in air Aerosol Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miguel, E. G. San; Bolivar, J. P.; Teran, T.

    2008-08-07

    {sup 222}Rn daughters (e.g. {sup 210}Pb, {sup 210}Po, {sup 210}Bi) have been widely used to study a variety of atmospheric processes. Many works in literature about {sup 222}Rn daughters do not specify the way by the activities of these radionuclides are calculated. Besides, {sup 210}Po corrections due to the in-growth of {sup 210}Bi, if taken into account, are not indicated. In this work, the increase in uncertainties of radionuclides activities due to delay between air sampling and radionuclides determinations have been evaluated and the influence of neglecting the contribution of {sup 210}Bi in-growth to {sup 210}Po determination has been estimated.more » The results indicate that, in general, ignoring the {sup 210}Bi in-growth in {sup 210}Po determinations lead to significant differences (could reach until 100%) between the estimation of {sup 210}Po activity and its true value.« less

  13. Formation of Multi-Layer Structures in Bi3Pb7 Intermetallic Compounds under an Ultra-High Gravitational Field

    NASA Astrophysics Data System (ADS)

    Mashimo, T.; Iguchi, Y.; Bagum, R.; Sano, T.; Sakata, O.; Ono, M.; Okayasu, S.

    2008-02-01

    Ultra-high gravitational field (Mega-gravity field) can promote sedimentation of atoms (diffusion) even in solids, and is expected to form a compositionally-graded structure and/or nonequilibrium phase in multi-component condensed matter. We had achieved sedimentation of substitutional solute atoms in miscible systems (Bi-Sb, In-Pb, etc.). In this study, a mega-gravity experiment at high temperature was performed on a thin-plate sample (0.7 mm in thickness) of the intermetallic compound Bi3Pb7. A visible four-layer structure was produced, which exhibited different microscopic structures. In the lowest-gravity region layer, Bi phase appeared. In the mid layers, a compositionally-graded structure was formed, with differences observed in the powder X-ray diffraction patterns. Such a multi-layer structure is expected to exhibit unique physical properties such as superconductivity.

  14. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature

  15. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  16. Pb solubility of the high-temperature superconducting phase Bi2Sr2Ca2Cu3O(10+d)

    NASA Technical Reports Server (NTRS)

    Kaesche, Stefanie; Majewski, Peter; Aldinger, Fritz

    1995-01-01

    For the nominal composition of Bi(2.27-x)Pb(x)Sr2 Ca2 Cu3 O(10+d) lead content was varied from x = 0.05 to 0.45. The compositions were examined between 830 and 890 C which is supposed to be the temperature range over which the so-called 2223 phase (Bi2Sr2Ca2Cu3O(10+d)) is stable. Only compositions between x = 0.18 to 0.36 could be synthesized in a single phase state. For x is greater than 0.36 a lead containing phase with a stoichiometry of Pb4(Sr,Ca)5CuO(d) is formed, for x is less than 0.18 mainly Bi2Sr2CaCu2O(10+d) and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830 to 890 C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  17. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3

    PubMed Central

    Kim, Hyun-sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-il; Kim, Sung Wng

    2017-01-01

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction. PMID:28773118

  18. (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, N.; Goretta, K.C.; Lanagan, M.T.

    1998-10-13

    A (BiPb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x}(Bi223) superconductor with high J{sub c}, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi{sub 2}O{sub 3}, PbO, SrCO{sub 3}, CaCo{sub 3} and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840 C. The partially synthesized powder is then milled for 1--4 hours before calcining further for another 50 hours at 855 C to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties. 5 figs.

  19. (Bi, Pb).sub.2, Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor and method of making same utilizing sinter-forging

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Lanagan, Michael T.

    1998-01-01

    A (BiPb).sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (Bi223) superconductor with high J.sub.c, phase purity, density and mechanical strength is formed from Bi2223 powder which is synthesized from a mixture of Bi.sub.2 O.sub.3, PbO, SrCO.sub.3, CaCo.sub.3 and CuO. The mixture is milled, then dried and calcined to synthesize the Bi2223 powder with the desired phase purity. The calcination is performed by heating the dried mixture for 50 hours at 840.degree. C. The partially synthesized powder is then milled for 1-4 hours before calcining further for another 50 hours at 855.degree. C. to complete the synthesis. After calcination, the Bi2223 powder is cold pressed to a predetermined density and sinter forged under controlled temperature and time to form a Bi2223 superconductor with the desired superconducting properties.

  20. Structural and electronic investigations of PbTa4O11 and BiTa7O19 constructed from α-U3O8 types of layers

    NASA Astrophysics Data System (ADS)

    Boltersdorf, Jonathan; Maggard, Paul A.

    2015-09-01

    The PbTa4O11 and BiTa7O19 phases were prepared by ion-exchange and solid-state methods, respectively, and their structures were characterized by neutron time-of-flight diffraction and Rietveld refinement methods (PbTa4O11, R 3 (No. 146), a=6.23700(2) Å, c=36.8613(1) Å; BiTa7O19, P 6 bar c 2 (No. 188), a=6.2197(2) Å, c=20.02981(9) Å). Their structures are comprised of layers of TaO6 octahedra surrounded by three 7-coordinate Pb(II) cations or two 8-coordinate Bi(III) cations. These layers alternate down the c-axis with α-U3O8 types of single and double TaO7 pentagonal bipyramid layers. In contrast to earlier studies, both phases are found to crystallize in noncentrosymmetric structures. Symmetry-lowering structural distortions within PbTa4O11, i.e. R 3 bar c →R3, are found to be a result of the displacement of the Ta atoms within the TaO7 and TaO6 polyhedra, towards the apical and facial oxygen atoms, respectively. In BiTa7O19, relatively lower reaction temperatures leads to an ordering of the Bi/Ta cations within a lower-symmetry structure, i.e., P63/mcm→ P 6 bar c 2 . In the absence of Bi/Ta site disorder, the Ta-O-Ta bond angles decrease and the Ta-O bond distances increase within the TaO7 double layers. Scanning electron microscopy images reveal two particle morphologies for PbTa4O11, hexagonal rods and finer irregularly-shaped particles, while BiTa7O19 forms as aggregates of irregularly-shaped particles. Electronic-structure calculations confirm the highest-energy valence band states are comprised of O 2p-orbitals and the respective Pb 6s-orbital and Bi 6s-orbital contributions. The lowest-energy conduction band states are composed of Ta 5d-orbital contributions that are delocalized over the TaO6 octahedra and layers of TaO7 pentagonal bipyramids. The symmetry-lowering distortions in the PbTa4O11 structure, and the resulting effects on its electronic structure, lead to its relatively higher photocatalytic activity compared to similar structures without

  1. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  2. Corrosion of austenitic and martensitic stainless steels in flowing 17Li83Pb alloy

    NASA Astrophysics Data System (ADS)

    Broc, M.; Flament, T.; Fauvet, P.; Sannier, J.

    1988-07-01

    With regard to the behaviour of 316 L stainless steel at 400°C in flowing anisothermal 17Li83Pb the mass transfer suffered by this steel appears to be quite important without noticeable influence of constant or cyclic stress. Evaluation made from solution-annealed specimens leads to a corrosion rate of approximately 30 μm yr -1 at steady state to which a depth of 25 μm has to be added to take into account the initial period phenomena. On the other hand, with semi-stagnant 17Li83Pb at 400° C, the mass transfer of 316 L steel appears to be lower and more acceptable after a 3000-h exposure; but long-time kinetics data have to be achieved in order to see if that better behaviour is persistent and does not correspond to a longer incubation period. As for the martensitic steels their corrosion rate at 450°C in the thermal convection loop TULIP is constant up to 3000 h and five times lower than that observed for 316 L steel in the same conditions.

  3. Photoluminescence properties of novel KBaBP2O8:M (M = Pb2+ and Bi3+) phosphors

    NASA Astrophysics Data System (ADS)

    Han, Bing; Zhang, Jie; Li, Pengju; Li, Jianliang; Bian, Yang; Shi, Hengzhen

    2014-11-01

    A series of novel inorganic phosphors KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 (0.01 ⩽ x ⩽ 0.08) were synthesized by using a solid-state reaction technique at high-temperature and their photoluminescence properties were investigated. The dependence of the emission intensity on the Pb2+ and Bi3+ concentration for the KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 was studied, in which the optimal concentration as well as the critical transfer distance Rc for Pb2+ and Bi3+ was obtained and determined. The as-prepared phosphors can be effectively excited with ultraviolet (UV), and exhibit UV - blue emission with large Stokes shift. The above work indicates these phosphors could be potential candidates for application in UV lamps industry.

  4. Half-lives of 221Fr, 217At, 213Bi, 213Po and 209Pb from the 225Ac decay series.

    PubMed

    Suliman, G; Pommé, S; Marouli, M; Van Ammel, R; Stroh, H; Jobbágy, V; Paepen, J; Dirican, A; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2013-07-01

    The half-lives of (221)Fr, (217)At, (213)Bi, (213)Po, and (209)Pb were measured by means of an ion-implanted planar Si detector for alpha and beta particles emitted from weak (225)Ac sources or from recoil sources, which were placed in a quasi-2π counting geometry. Recoil sources were prepared by collecting atoms from an open (225)Ac source onto a glass substrate. The (221)Fr and (213)Bi half-lives were determined by following the alpha particle emission rate of recoil sources as a function of time. Similarly, the (209)Pb half-life was determined from the beta particle count rate. The shorter half-lives of (217)At and (213)Po were deduced from delayed coincidence measurements on weak (225)Ac sources using digital data acquisition in list mode. The resulting values: T1/2((221)Fr)=4.806 (6) min, T1/2((217)At)=32.8 (3)ms, T1/2((213)Bi)=45.62 (6)min, T1/2((213)Po)=3.708 (8) μs, and T1/2((209)Pb)=3.232 (5)h were in agreement only with the best literature data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. {bold {ital In situ}} measurements of texture and phase development in (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}{endash}Ag tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, T.R.; Haldar, P.; Wang, Y.L.

    Hard x-rays from a synchrotron source were utilized in diffraction experiments performed at elevated temperatures (up to {approximately}870{degree}C) on (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) tapes {ital completely} encased in silver. The general behavior of the phase and texture development under typical processing conditions was determined, and the effects that several variations in processing conditions had on the phase and texture development were examined. These results and their implications for improving processing conditions are discussed. {copyright} {ital 1997 Materials Research Society.}

  6. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite.

    PubMed

    Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-03-15

    Tetragonal PbTiO(3)-BiFeO(3) exhibits a strong negative thermal expansion in the PbTiO(3)-based ferroelectrics that consist of one branch in the family of negative thermal expansion materials. Its strong negative thermal expansion is much weakened, and then unusually transforms into positive thermal expansion as the particle size is slightly reduced. This transformation is a new phenomenon in the negative termal expansion materials. The detailed structure, temperature dependence of unit cell volume, and lattice dynamics of PbTiO(3)-BiFeO(3) samples were studied by means of high-energy synchrotron powder diffraction and Raman spectroscopy. Such unusual transformation from strong negative to positive thermal expansion is highly associated with ferroelectricity weakening. An interesting zero thermal expansion is achieved in a wide temperature range (30-500 °C) by adjusting particle size due to the negative-to-positive transformation character. The present study provides a useful method to control the negative thermal expansion not only for ferroelectrics but also for those functional materials such as magnetics and superconductors.

  7. Effects of Dopant on Depoling Temperature in Modified BiScO3 - PbTiO3

    NASA Technical Reports Server (NTRS)

    Kowalski, Benjamin; Sehirlioglu, Alp

    2014-01-01

    In recent years there has been a renewed interest for high temperature piezoelectrics for both terrestrial and aerospace applications. These applications are limited in part by the operating temperature, which is usually taken as one half of the Curie temperature (Tc), and is 200C for one of the most widely used commercial piezoelectrics, Pb(Zr,Ti)O3 (PZT). In an effort to increase Tc, subsequent research into high temperature Bi(BB)O3 PbTiO3 piezoelectrics led to the discovery of the morphotropic phase boundary (MPB) in the high-Tc BiScO3 PbTiO3 (BS-PT) system with a Tc of 460C and a d33 of 460 pmV. The Tc marks the ferroelectric to paraelectric phase transformation and while, in general, a phase transformation leads to thermal depoling in piezoelectrics with low or moderate Tcs, for high Tc piezoelectrics thermally assisted dipole rotation can lead to randomization of domains at temperatures below Tc. It becomes necessary to determine the depoling temperature (Td) which dictates the actual working temperature range. By doping for Sc and Ti the Td can be shifted while maintaining similar electromechanical properties as a function of temperature. The effect of this B-site doping on depoling temperature has been explored through the characterization of microstructure and weakhigh field measurements.

  8. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    PubMed

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  9. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review.

    PubMed

    Baskaran, M

    2011-05-01

    Over the past ∼ 5 decades, the distribution of (222)Rn and its progenies (mainly (210)Pb, (210)Bi and (210)Po) have provided a wealth of information as tracers to quantify several atmospheric processes that include: i) source tracking and transport time scales of air masses; ii) the stability and vertical movement of air masses iii) removal rate constants and residence times of aerosols; iv) chemical behavior of analog species; and v) washout ratios and deposition velocities of aerosols. Most of these applications require that the sources and sink terms of these nuclides are well characterized. Utility of (210)Pb, (210)Bi and (210)Po as atmospheric tracers requires that data on the (222)Rn emanation rates is well documented. Due to low concentrations of (226)Ra in surface waters, the (222)Rn emanation rates from the continent is about two orders of magnitude higher than that of the ocean. This has led to distinctly higher (210)Pb concentrations in continental air masses compared to oceanic air masses. The highly varying concentrations of (210)Pb in air as well the depositional fluxes have yielded insight on the sources and transit times of aerosols. In an ideal enclosed air mass (closed system with respect to these nuclides), the residence times of aerosols obtained from the activity ratios of (210)Pb/(222)Rn, (210)Bi/(210)Pb, and (210)Po/(210)Pb are expected to agree with each other, but a large number of studies have indicated discordance between the residence times obtained from these three pairs. Recent results from the distribution of these nuclides in size-fractionated aerosols appear to yield consistent residence time in smaller-size aerosols, possibly suggesting that larger size aerosols are derived from resuspended dust. The residence times calculated from the (210)Pb/(222)Rn, (210)Bi/(210)Pb, and (210)Po/(210)Pb activity ratios published from 1970's are compared to those data obtained in size-fractionated aerosols in this decade and possible reasons for

  10. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  11. Development of oxygen meters for the use in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  12. Magnetoelectric properties of Pb free Bi2FeTiO6: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Patra, Lokanath; Ravindran, P.

    2018-05-01

    The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3c space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 μB at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 µCcm-2 for Bi2FeTiO6.

  13. Theoretical study of high temperature behavior of Pb and Pb-base alloy surfaces

    NASA Astrophysics Data System (ADS)

    Landa, Alexander Ilyich

    1998-11-01

    A recent study of a Pb-Bi-Ni alloy reported a strong co-segregation of Bi and Ni at the alloy surface. The nature of this surface phenomenon has been studied by means of modern ab initio and classical simulation techniques. It was useful to begin by a study of the underlying binaries. We have performed ab initio calculations of the segregation profiles at the (111), (100) and (110) surfaces of random Pbsb{95}Bisb{05} alloys by means of the coherent potential approximation within the context of a tight-binding linear muffin-tin-orbitals method. We have found the segregation profiles to be oscillatory (this effect is most pronounced for the (111) surface) with a strong preference for Bi to segregate to the first atom layer. We have performed Monte Carlo simulations, employing Finnis-Sinclair-type empirical many-body potentials and computed the solubility limits of Pb-Bi and Pb-Ni alloys, as well as the segregation profiles at the (111) surfaces of Pbsb{95}Bisb{05} and Pb-Ni alloys. For Pb-Bi alloys, the concentration profiles have also been found to be oscillatory. Calculations on Pb-Ni showed that within the solubility limit of Ni in Pb, Ni did not segregate to the Pb(111) outermost surface layer. In the ternary Pbsb{95}Bisb{05}{+}Ni alloy ab initio calculations detected a tendency for Ni to segregate to the subsurface from layer due its strong interaction with Bi. Calculations on Pb-Bi-Ni showed strong segregation of Ni to the subsurface atom layer, accompanied by co-segregation of Bi to several of the outermost atom layers. We have also focused our attention on the high temperature behavior of the pure Pb(110) metal surface. Molecular dynamics simulations incorporating a many-body potential have been used to investigate the atomic structure and dynamics of the Pb(110) surface in the range from room temperature up to the bulk melting point. The surface starts to disorder approximately at 360 K via the generation of vacancies and the formation of an adlayer. At

  14. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products tomore » the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.« less

  15. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Müller, G.; Fazio, C.; Gessi, A.; Babayan, S.; Kobzova, A.; Martinelli, L.; Ginestar, K.; Balbaud-Célerier, F.; Martín-Muñoz, F. J.; Soler Crespo, L.

    2011-08-01

    Considering the status of knowledge on corrosion and corrosion protection and especially the need for long term compatibility data of structural materials in HLM a set of experiments to generate reliable long term data was defined and performed. The long term corrosion behaviour of the two structural materials foreseen in ADS, 316L and T91, was investigated in the design relevant temperature field, i.e. from 300 to 550 °C. The operational window of the two steels in this temperature range was identified and all oxidation data were used to develop and validate the models of oxide scale growth in PbBi. A mechanistic model capable to predict the oxidation rate applying some experimentally fitted parameters has been developed. This model assumes parabolic oxidation and might be used for design and safety relevant investigations in future. Studies on corrosion barrier development allowed to define the required Al content for the formation of thin alumina scales in LBE. These results as well as future steps and required improvements are discussed. Variation of experimental conditions clearly showed that specific care has to be taken with respect to local flow conditions and oxygen concentrations.

  16. AC losses in (Bi,Pb) 2Sr 2Ca 2Cu 3O x tapes

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Indenbom, M. V.; André, M.-O.; Benoit, W.; Grivel, J.-C.; Hensel, B.; Flükiger, R.

    1994-05-01

    A double peak structure is observed in the AC losses of (Bi,Pb) 2Sr 2Ca 2Cu 3O x silver-sheathed tapes using a torsion-pendulum oscillator. The low-temperature peak is associated to the intragrain flux expulsion, while the high-temperature peak results from a macroscopic current path around the whole sample due to a well-coupled fraction of the grains. The flux pinning by the dislocations forming small-angle grain boundaries is suggested to control the transport current.

  17. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    NASA Astrophysics Data System (ADS)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  18. Creep Behavior of a Sn-Ag-Bi Pb-Free Solder

    PubMed Central

    Vianco, Paul; Rejent, Jerome; Grazier, Mark; Kilgo, Alice

    2012-01-01

    Compression creep tests were performed on the ternary 91.84Sn-3.33Ag-4.83Bi (wt.%, abbreviated Sn-Ag-Bi) Pb-free alloy. The test temperatures were: −25 °C, 25 °C, 75 °C, 125 °C, and 160 °C (± 0.5 °C). Four loads were used at the two lowest temperatures and five at the higher temperatures. The specimens were tested in the as-fabricated condition or after having been subjected to one of two air aging conditions: 24 hours at either 125 °C or 150 °C. The strain-time curves exhibited frequent occurrences of negative creep and small-scale fluctuations, particularly at the slower strain rates, that were indicative of dynamic recrystallization (DRX) activity. The source of tertiary creep behavior at faster strain rates was likely to also be DRX rather than a damage accumulation mechanism. Overall, the strain-time curves did not display a consistent trend that could be directly attributed to the aging condition. The sinh law equation satisfactorily represented the minimum strain rate as a function of stress and temperature so as to investigate the deformation rate kinetics: dε/dtmin = Asinhn (ασ) exp (−ΔH/RT). The values of α, n, and ΔH were in the following ranges (±95% confidence interval): α, 0.010–0.015 (±0.005 1/MPa); n, 2.2–3.1 (±0.5); and ΔH, 54–66 (±8 kJ/mol). The rate kinetics analysis indicated that short-circuit diffusion was a contributing mechanism to dislocation motion during creep. The rate kinetics analysis also determined that a minimum creep rate trend could not be developed between the as-fabricated versus aged conditions. This study showed that the elevated temperature aging treatments introduced multiple changes to the Sn-Ag-Bi microstructure that did not result in a simple loss (“softening”) of its mechanical strength.

  19. Influence of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Moudane, M., E-mail: m.elmoudane@gmail.com; El Maniani, M.; Sabbar, A.

    2015-12-15

    Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions havemore » been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.« less

  20. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods.

    PubMed

    Seikh, Asiful H; Sherif, El-Sayed M; Khan Mohammed, Sohail M A; Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance.

  1. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    PubMed Central

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  2. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  3. [Using Raman spectrum analysis to research corrosive productions occurring in alloy of ancient bronze wares].

    PubMed

    Jia, La-jiang; Jin, Pu-jun

    2015-01-01

    The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.

  4. Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoru Takahashi; Masayuki Igashira; Toru Obara

    2002-07-01

    Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less

  5. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jason; Kumar, Ravhi S.; Park, Changyong

    2016-01-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid–solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric materialmore » PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. Furthermore, this new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.« less

  6. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris-Edinburgh cell.

    PubMed

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad

    2016-11-01

    A new sample cell assembly design for the Paris-Edinburgh type large-volume press for simultaneous measurements of X-ray diffraction, electrical resistance, Seebeck coefficient and relative changes in the thermal conductance at high pressures has been developed. The feasibility of performing in situ measurements of the Seebeck coefficient and thermal measurements is demonstrated by observing well known solid-solid phase transitions of bismuth (Bi) up to 3 GPa and 450 K. A reversible polarity flip has been observed in the Seebeck coefficient across the Bi-I to Bi-II phase boundary. Also, successful Seebeck coefficient measurements have been performed for the classical high-temperature thermoelectric material PbTe under high pressure and temperature conditions. In addition, the relative change in the thermal conductivity was measured and a relative change in ZT, the dimensionless figure of merit, is described. This new capability enables pressure-induced structural changes to be directly correlated to electrical and thermal properties.

  7. Superconductivity in the 2-Dimensional Homologous Series AMm Bi3 Q5+m (m=1, 2) (A=Rb, Cs; M=Pb, Sn; Q=Se, Te).

    PubMed

    Malliakas, Christos D; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G

    2018-05-17

    Superconductivity in the two-dimensional AM m Bi 3 Q 5+m family of semimetals is reported. The AMBi 3 Te 6 (m=1) and AM 2 Bi 3 Te 7 (m=2) members of the homologous series with A=Rb, Cs and M=Pb, Sn undergo a bulk superconducting transition ranging from 2.7 to 1.4 K depending on the composition. The estimated superconducting volume fraction is about 90 %. Superconducting phase diagrams as a function of chemical pressure are constructed for the solid solution products of each member of the homologous series, AMBi 3-x Sb x Te 6-y Se y and AM 2 Bi 3-x Sb x Te 7-y Se y (0≤x≤3 or 0≤y≤2). The structural flexibility of the ternary AM m M' 3 Te 5+m semiconducting homology to form isostructural analogues with a variety of metals, M=Pb, Sn; M'=Bi, Sb, gives access to a large number of electronic configurations and superconductivity due to chemical pressure effects. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  9. Pb solubility of the high-temperature superconducting phase Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaesche, S.; Majewski, P.; Aldinger, F.

    1994-12-31

    For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for themore » 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.« less

  10. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  11. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  12. The Effect of Sintering Temperature on The Rolled Silver-Sheathed Monofilament Bi,Pb-Sr-Ca-Cu-O Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Hendrik; Sebleku, P.; Siswayanti, B.; Pramono, A. W.

    2017-05-01

    The manufacture of high critical temperature (Tc) Bi, Pb-Sr-Ca-Cu-O (HTS BPSCCO) superconductor wire fabricated by power-in-tube (PIT) is a multi-step process. The main difficulty is that the value of Tc superconductor wire determined by various factors for each step. The objective of this research is to investigate the effect of sintering parameters on the properties of final rolled material. The fabrication process of 1 m rolled-silver sheath monofilament superconductor BPSCCO wire using mechanical deformation process including rolling and drawing has been carried out. The pure silver powders were melted and formed into pure silver (Ag) tube. The tube was 10 mm in diameter with a sheath material: superconductor powders ratio of about 6 : 1. Starting powders, containing the nominal composition of Bi2-Sr2-Cam-1-Cum-Oy, were inserted into the pure silver tube and rolled until it reached a diameter of 4 mm. A typical area reduction ratio of about 5% per step has been proposed to prevent microcracking during the cold-drawing process. The process of rolling of the silver tube was subsequently repeated to obtain three samples and then followed by heat-treated at 820 °C, 840 °C, and 860 °C, respectively. The surface morphology was analyzed by using SEM; the crystal structure was studied by using X-RD, whereas the superconductivity was investigated by using temperature dependence resistivity measurement by using four-point probe technique. SEM images showed the porosity of the cross-sectional surface of the samples. The sample with low heating temperature showed porosity more than the one with high temperature. The value of critical temperature (Tc) of the sample with a dwelling time of heating of 8 hours is 70 K. At above 70 K, it shows the behavior of conductor properties. However, the porosity increased as the heating time increased up to 24 hours. The critical temperature was difficult to be identified due to its porosity. According to XRD results, the Bi-2212

  13. 226Ra, 210Pb, 210Bi and 210Po deposition and removal from surfaces and liquids.

    PubMed

    Wójcik, M; Zuzel, G

    Deposition of 226 Ra from water on nylon was investigated. Measurements performed for different pH and different radium concentrations in the water gave similar absolute activities deposited on the foil surface. Obtained results were used to estimate the amount of 226 Ra plated-out on the nylon scintillator vessel in the solar neutrino experiment BOREXINO during filling of the detector. Another problem studied in the frame of BOREXINO was the removal of 210 Pb from its organic liquid scintillator by applying distillation and water extraction. After several tests had been performed for both methods it was found that after the water extraction the initial lead content in the scintillator sample was reduced only accordingly to the ratio of the volumes of the applied liquids (simple dilution). In contrast to this, distillation was very effective providing in the best case a 210 Pb reduction factor higher than 100. Removal efficiencies of the long-lived 222 Rn daughters during etching from surfaces of standard and high purity germanium were investigated in the frame of the GERDA experiment, which aims to search for neutrino-less double beta decay of 76 Ge. The standard etching procedure of Canberra used during production of high purity n-type germanium diodes was applied to germanium discs, which had been exposed earlier to a strong 222 Rn source for its progenies deposition. In contrast to copper and stainless steel, 210 Pb, 210 Bi and 210 Po was removed from germanium very efficiently. An evidence of a reverse process was also observed-the isotopes were transferred from the etchant to the clean germanium surface.

  14. Synthesis of Bi.sub.1.8 Pb.sub.0.4 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x superconductor

    DOEpatents

    Smith, Michael G.

    1996-01-01

    Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO.sub.x, is a solution-synthesized mixture of Ca.sub.0.45 Cu.sub.0.55 O.sub.2 and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J.sub.c in the range of 20,000 to 26,000 A/cm.sup.2 at 75 K in self-field after annealing less than 200 hours were obtained.

  15. Synthesis of Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor

    DOEpatents

    Smith, M.G.

    1996-10-29

    Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO{sub x}, is a solution-synthesized mixture of Ca{sub 0.45}Cu{sub 0.55}O{sub 2} and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J{sub c} in the range of 20,000 to 26,000 A/cm{sup 2} at 75 K in self-field after annealing less than 200 hours were obtained. 2 figs.

  16. Depth profile of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Kim, Dong-Hyun; Lee, Arim; Bae, Oryun; Lee, Hee-Seock

    2016-11-01

    Experimental and simulation studies on the depth profiles of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions were carried out. Irradiation experiments were performed at the high-intensity proton linac facility (KOMAC) in Korea. The targets, irradiated by 100-MeV protons, were arranged in a stack consisting of natural Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by activation analysis method using 27Al(p, 3p1n)24Na, 197Au(p, p1n)196Au, and 197Au(p, p3n)194Au monitor reactions and also by Gafchromic film dosimetry method. The yields of produced radio-nuclei in the natPb activation foils and monitor foils were measured by HPGe spectroscopy system. Monte Carlo simulations were performed by FLUKA, PHITS/DCHAIN-SP, and MCNPX/FISPACT codes and the calculated data were compared with the experimental results. A satisfactory agreement was observed between the present experimental data and the simulations.

  17. Crystal structure, chemical composition, and extended defects of the high-Tc (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta compounds.

    PubMed

    Eibl, O

    1995-02-15

    This paper summarizes results obtained by high-resolution transmission electron microscopy on the crystal structure and microstructure of the (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta high-Tc superconducting oxides. The experimental basis for the work presented here are high-resolution structure images obtained at ultra-thin (3 nm) areas of carefully prepared transmission electron microscope (TEM) samples. The analysis was carried out on a 400 kV TEM equipped with a pole piece yielding 0.17 nm point-to-point resolution. From the images obtained the projected crystal potential of the cations can be extracted directly, as confirmed by detailed image simulation. Structural analysis of the oxygen sublattice remains an unsolved problem by high-resolution TEM (HRTEM), mainly because of the small scattering factors, and thus the contribution of the oxygen sublattice to the image contrast is small. The (BiPb)2Sr2Ca(n)-1CunO4 + 2n + delta phases are modulated structures that can be understood as an average structure plus a superimposed displacement field. The crystal structure consists of BiO double layers and perovskite-type cuboids (containing Sr, Ca, Cu, and O), which are sandwiched between the BiO double layers. The displacement field can be directly analyzed by HRTEM, and the largest displacement amplitudes of 70 pm were determined for the Bi atoms in the n = 1 compound. The chemical composition of the n = 2 and n = 3 compounds was determined by EDX in the TEM for the cation sublattice. A significant (Ca + Sr) deficiency (approximately 10%) with respect to Cu was found. The (Sr + Ca)/Cu mole fraction ratio was 1.31 for the Bi-2212 phase and 1.14 for the Bi(Pb)-2223 phase. The oxygen content cannot be determined by EDX in the TEM with the accuracy necessary for a correlation with electrical and superconducting properties. The defect structure present in these materials, that is, intergrown lamellae with different crystal structures and equal or different chemical

  18. Enhanced High Temperature Piezoelectrics Based on BiScO3-PbTiO3 Ceramics

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2009-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (TC) and increasing electrical conductivity. BiScO3-PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (greater than 400 C). Bi2O3 was shown to be a good sintering aid for liquid phase sintering resulting in reduced grain size and increased resistivity. Zr doped and liquid phase sintered BS-PT ceramics exhibited saturated and square hysteresis loops with enhanced remenant polarization (37 microC per square centimeter) and coercive field (14 kV/cm). BS-PT doped with Mn showed enhanced field induced strain (0.27% at 50kV/cm). All the numbers indicated in parenthesis were collected at 100 C.

  19. Synthesis and microwave dielectric behavior of (Bi1-xPbx)NbO4 ceramics

    NASA Astrophysics Data System (ADS)

    Butee, S. P.; Kambale, K. R.; Upadhyay, Shaishav; Bashaiah, S.; Raju, K. C. James; Panda, Himanshu

    2016-03-01

    Ceramic samples of (Bi1-xPbx)NbO4 (x=0, 0.025, 0.05, 0.10, 0.15, 0.20) with 0.75wt.% V2O5 addition sintered at 920∘C, 940∘C and 960∘C are investigated. Pb is selected as a substitute for Bi3+ in BiNbO4 ceramics as it exists in two stable valence states of +2 and +4 and the average valency matches to that of Bi3+. The average Shannon radius (for octahedral coordination) of Pb2+ (1.19Å) and Pb4+(0.775Å) cations is 0.9825Å, which is similar to that of Bi3+ ion (1.03Å). The dense (>94%) polycrystalline (Bi1-xPbx)NbO4 samples fabricated mostly reveal orthorhombic (Pnna) phase (α-BiNbO4, Sp. Gp. 52) by powder XRD. Presence of satellite Pb2Nb2O7 phase, the amount of which is increasing with increase in Pb content, is also noticed. The microwave dielectric constant (ɛr‧) values of the niobates are found to increase from 42 to 71, whereas the quality factor (Qu.f) values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb. The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ɛr‧<75.

  20. CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susskind, H.; Hill, F.B.; Green, L.

    1960-06-30

    Corrosion screening tests were carried out on potential materials of construction for use in a fused salt-liquid metal extraction process plant. The corrodents of interest were NaCl--KCl-- MgCl/sub 2/ eutectic, LiCl--KCl eutectic, Bi-- U fuel, and BiCl/sub 3/, either separately or in various combinations. Screening tests to determine the resistance of a wide range of commercial alloys to the corrodents were performed in static and tilting-furnace capsules. Some ceramic materials were tested in static capsules. Largerscale tests of metallic materials were conducted in thermal convection loops and in a forced circulation loop. Some of the tests were conducted isothermally atmore » 500 deg C, and others were performed under 40 to 50 deg C temperature differences at roughly the same teinperature level. On the basis of metallographic examination of exposed test tabs and chemical analyses of corrodents, it was found that the binary and ternary eutectics by themselves produced little attack on any of the materials tested. A wide variety of materials including 1020 mild steel, 2 1/4 Cr--1 Mo alloy steel, types 304 (ELC), 310, 316, 347, 430, and 446 stainless steel, 16-1 Croloy, Inconel, Hastelloy C, Inor-8, Mo, and Ta is, therefore, available for further study. Corrosion by the ternary salt-fuel system was characteristic of that produced by the fuel alone. Alloys such as 1020 mild steel, and 1 1/4 Cr--1/ 2 Mo, and 2 1/4 Cr--1 Mo alloy steel, which are resistant to fuel, would be likely choices at present for container materials. BiCl/sub 3/ produced extensive attack on ternary salt-fuel containers when the fuel contained insufficient concentrations of oxidizable solutes. Au and Al/sub 2/O/sub 3/ were the only materials not attacked by BiCl/sub 3/ in ternary salt alone. (auth)« less

  1. Experimental and numerical study on transverse piezoelectricity of xBiInO3-(1 - x)PbTiO3 films by multilayer cantilevers

    NASA Astrophysics Data System (ADS)

    Sun, Ke-xue; Zhang, Shu-yi; Shui, Xiu-ji; Wasa, Kiyotaka

    2018-02-01

    The effective transverse piezoelectric coefficient of the piezoelectric films xBiInO3-(1 - x)PbTiO3 (x = 0,0.10,0.15,0.20) were studied experimentally and numerically by multilayer cantilevers. The xBiInO3-(1 - x)PbTiO3 thin films were deposited on (101)SrRuO3/(100)Pt/(100)MgO substrates and then covered with Pt electrode by RF-magnetron sputtering method. In experiments, the tip vibration amplitudes of the cantilevers for different x of the films were measured, in which the optimized compositions for maximizing the tip vibration can be found. Meanwhile, based on the bending model of multilayer piezoelectric cantilevers, the tip-deflection and transverse piezoelectricity of the cantilevers were simulated by COMSOL software. By comparing the experimental and numerical results, both are in agreement very well, and the mechanism of the optimized transverse piezoelectricity of the cantilevers was proposed finally.

  2. Measurement of 208Pb(n ,γ )209Pb Maxwellian averaged neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Weissman, L.; Tessler, M.; Arenshtam, A.; Eliyahu, I.; Halfon, S.; Guerrero, C.; Kaizer, B.; Kijel, D.; Kreisel, A.; Palchan, T.; Paul, M.; Perry, A.; Schimel, G.; Silverman, I.; Shor, A.; Tamim, N.; Vaintraub, S.

    2017-07-01

    The doubly magic 208Pb nucleus is a bottleneck at the termination of the s -process path due to its very low neutron capture cross section. This cross section is also important for the decomposition of s , r processes and U/Th radiogenic decay contributions to the Pb-Bi solar abundances. The 208Pb(n ,γ )209Pb cross section was measured at the Soreq Applied Research Accelerator Facility Phase I using an intense quasi-Maxwellian neutron source produced by irradiation of the liquid-lithium target with a 1.5-mA continuous-wave proton beam at 1.94 MeV. The cross section was measured by counting the β activity from the irradiated lead target. The measurement allowed us to evaluate the Maxwellian averaged cross section (MACS) at 30 keV obtaining a value of 0.33(2) mb. This has been compared with the earlier activation and time-of-flight measurements found in the literature. The MACS cross-sectional value of the 63Cu(n ,γ )64Cu reaction was determined in the same experiment and is compared to a recent published value.

  3. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  4. Advances in superconductivity and Co3O4 nanoparticles as flux pinning center in (Bi, Pb)-2223/Ag superconductor tapes

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Jannah, A. N.

    2017-09-01

    Many new superconducting materials have been discovered in recent years. This includes hydrogen sulfide which superconducts at 203 K under high pressure and Fe-As based materials. To this date the copper oxide-based materials remain as the highest transition temperature superconductor under normal pressure. In this paper we discuss the use of nano-sized particle as pinning center in the Ag-sheathed high temperature superconductor tapes to enhance the transport properties. When the size d of the pinning center is between the coherence length ξ and the penetration depth λ (ξ < d < λ), a stronger interaction between the pinning center and flux lines leading to higher transport critical current density, Jc can be expected. The effect of nanoparticle with size between the coherence length and the penetration depth i.e. ξ < d < λ, Co3O4 on superconductor tapes is discussed in this paper. Three types of Bi(Pb)-Sr-Ca-Cu-O starting materials namely from co-precipitation method without Co3O4 and with 30 nm and 50 nm Co3O4 addition have been prepared. The composition of the 30 nm and 50 nm Co3O4 added samples is (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.02 and (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.01, respectively. The tapes (˜2-3 cm long) were heated at 845°C for 100 and 150 h. All nanoparticles added tapes showed higher Jc compared to the non-added tapes. By comparing the current results with our previously reported results, the tapes with 30 nm Co3O4 sintered for 50 h showed the highest Jc at all temperatures. This work also showed that smaller magnetic nanoparticles enhanced Jc better than larger particles, A longer sintering time (> 50 h) degraded Jc.

  5. Temperature-independent ferroelectric property and characterization of high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Linxing; Chen, Jun; Zhao, Hanqing; Fan, Longlong; Rong, Yangchun; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Ferroelectric property stability against elevated temperature is significant for ferroelectric film applications, such as non-volatile ferroelectric random access memories. The high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films show the temperature-independent ferroelectric properties, which were fabricated on Pt(111)/Ti/SiO2/Si substrates via sol-gel method. The present thin films were well crystallized in a phase-pure perovskite structure with a high (100) orientation and uniform texture. A remanent polarization (2Pr) of 77 μC cm-2 and a local effective piezoelectric coefficient d33* of 60 pm/V were observed in the 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films. It is interesting to observe a behavior of temperature-independent ferroelectric property in the temperature range of room temperature to 125 °C. The remanent polarization, coercive field, and polarization at the maximum field are almost constant in the investigated temperature range. Furthermore, the dielectric loss and fatigue properties of 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films have been effectively improved by the Mn-doping.

  6. Numerical Modeling of High-Temperature Corrosion Processes

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1995-01-01

    Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.

  7. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  8. Effect of silver nanoparticles on the fluorescence of Pb2+ and compositional dependence of Sm3+ fluorescence in borate glasses

    NASA Astrophysics Data System (ADS)

    Olumoroti, Akinloluwa T.

    Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a

  9. Carrier doping into a superconducting BaPb0.7Bi0.3O3‑δ epitaxial film using an electric double-layer transistor structure

    NASA Astrophysics Data System (ADS)

    Komori, S.; Kakeya, I.

    2018-06-01

    Doping evolution of the unconventional superconducting properties in BaBiO3-based compounds has yet to be clarified in detail due to the significant change of the oxygen concentration accompanied by the chemical substitution. We suggest that the carrier concentration of an unconventional superconductor, BaPb0.7Bi0.3O3‑δ , is controllable without inducing chemical or structural changes using an electric double-layer transistor structure. The critical temperature is found to decrease systematically with increasing carrier concentration.

  10. Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.

    PubMed

    Hodgkiess, T

    2004-01-01

    The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.

  11. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics: Factors determining Curie temperature

    NASA Astrophysics Data System (ADS)

    Yu, Jian; An, Fei-fei; Cao, Fei

    2014-05-01

    In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.

  12. The Influence of Processing on Strengthening Mechanisms in Pb-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis; Arfaei, Babak; Cotts, Eric J.

    2017-04-01

    The number, and the spacing, of Ag3Sn precipitates in Sn-Ag-Cu/Cu solder joints were related to separate processing parameters. The mechanical properties of an individual solder joint were directly related to the resulting distribution of different dispersoids in the joint. As the number of Ag3Sn precipitates increased, so did solder joint strength and shear fatigue lifetime. The room-temperature shear fatigue lifetime was inversely correlated with the separation between Ag3Sn precipitates. Bi and Sb solid solution strengthening was found to result in significantly larger values of shear strength and shear fatigue lifetime for one Pb-free solder. Room-temperature shear fatigue lifetime tests were identified as a relatively straightforward, yet sensitive means to gain insight into the reliability of Sn-Ag-Cu (SAC) solder joints.

  13. Positive parity states in {sup 208}Pb excited by the proton decay of the isobaric analog intruder resonance j{sub 15/2} in {sup 209}Bi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A.; Graw, G.; Hertenberger, R.

    2010-07-15

    With the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratorium at Muenchen at a resolution of about 3 keV, angular distributions and excitation functions of the reaction {sup 208}Pb(p,p{sup '}) were measured at some scattering angles 20 deg. - 138 deg. for several proton energies 14.8-18.1 MeV. All seven known isobaric analog resonances in {sup 209}Bi are covered. By the excitation near the j{sub 15/2} intruder resonance in {sup 209}Bi, several new positive parity states in {sup 208}Pb with excitation energies 4.6-6.2 MeV are identified by comparison of the mean cross section to the known single particle widths. The dominant configuration formore » 27 positive parity states is determined and compared to the schematic shell model.« less

  14. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  15. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE PAGES

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...

    2018-03-26

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  16. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  17. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  18. Significance of out-of-plane electronic contributions in Bi-cuprates studied by resonant photoelectron spectroscopy at the Cu2p edge

    NASA Astrophysics Data System (ADS)

    Janowitz, Christoph; Schmeißer, Dieter

    2018-04-01

    In high-temperature superconductors with a layered crystal structure, the copper-oxygen planes are commonly considered to dominate the electronic properties around the Fermi energy. As a consequence, out-of-plane contributions are often neglected in the description of these materials. Here we report on a resonant photoemission study of Pb0,4Bi1,6Sr2,0CaCu2O8 ((Pb, Bi)-2212) and Pb0,6Bi1,4Sr1.5La0.5CuO6 ((Pb, Bi)-2201)) single crystals to unravel the resonant decay mechanisms at the Cu2p absorption edge. We find evidence for a pronounced polarization dependence caused by two different Auger processes for in-plane and out-of-plane orientations. We deduce that the lowest energy valence state—which is involved in the two Auger processes—consists of three-dimensional contributions by admixed out-of-plane Sr, Bi, and O2p states. It also suggests that the doping-induced charge density is dynamic, fluctuating within the Cu-O plane, and spills out perpendicular to it. This suggests that out-of-plane electronic degrees of freedom should be included in future consistent theoretical models of these materials.

  19. Assay Methods for 238U, 232Th, and 210Pb in Lead and Calibration of 210Bi Bremsstrahlung Emission from Lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.

    2016-02-13

    Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less

  20. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, S.B.; Lin, Y.; Mohr, R.K.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less

  1. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  2. Melt processing of Bi--2212 superconductors using alumina

    DOEpatents

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  3. Superconductivity in Bi-(Pb)-Sr-Ca-Cu-O films made by thermal decomposition of metal carboxylates: Preparation, characterisation and magnetisation

    NASA Astrophysics Data System (ADS)

    de Vries, J. W. C.; Klee, M.; Marbach, G.; Stotz, S.

    1989-12-01

    Superconducting films in the system Bi-(Pb)-Sr-Ca-Cu-O are made by thermal decomposition of metal carboxylates. The layers are deposited by dip-coating and spin-coating on ceramic and single-crystal MgO substrates. In lead-free samples a continuous path of the high-T c phase ( Bi2Sr2Ca2Cu33O10 + δ, Tc ≈ 110 K), leading to zero-resistance at 95 K, can be obtained after firing at 878°C for 3 h. From DC magnetisation measurements in an external field of 10 mT, it followed that the relative amount of the high- Tc phase ( Bi2Sr2Ca2Cu3O10 + δ) and the low-T c phase ( Bi2 ( Sr, Ca) 3Cu2O8 + δ, Tc ≈ 80 K) is about 14:86. Substitution of 20% of bismuth by lead yields, after firing at 850°C or 860°C, the high- Tc phase as the major phase, as can be deduced both from X-ray diffraction and DC magnetisation measurements. The resistance is zero at 104 K and the relative quantity of high-T c to low-T c phase is about 60:40 to 75:25.

  4. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    DOE PAGES

    Kametani, F.; Jiang, J.; Matras, M.; ...

    2015-02-10

    Why Bi₂Sr₂CaCu₂O x (Bi2212) allows high critical current density J c in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°)more » c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J c(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J c optimization process appears to be the key step in generating this highly desirable microstructure.« less

  5. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru; Uvarov, N.F.; Slobodyuk, A.B.

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K,more » these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.« less

  6. Ferroelectric enhancement in heterostructured ZnO /BiFeO3-PbTiO3 film

    NASA Astrophysics Data System (ADS)

    Yu, Shengwen; Chen, Rui; Zhang, Guanjun; Cheng, Jinrong; Meng, Zhongyan

    2006-11-01

    The authors have prepared heterostructured ZnO /BiFeO3-PbTiO3 (BFO-PT) composite film and BFO-PT film on Pt /Ti/SiO2/Si substrates by pulsed-laser deposition. The structure and morphologies of the films were characterized by x-ray diffraction (XRD) and scanning electron microscope. XRD results show that both films are perovskite structured last with different orientations. The leakage current density in the ZnO /BFO-PT film was found to be nearly two orders of magnitude lower. This could be due to the introduced ZnO layer behaving as a Schottky barrier between the BFO-PT film and top electrodes. The dramatic ferroelectric enhancement in ZnO /BFO-PT film is mostly ascribed to the improved insulation.

  7. Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1-x Pb x FeO3 (0 ≤ x ≤ 0.3) ceramics

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Aftab, M.; Samad, Abdus; Mumtaz, Fiza; Awan, M. S.; Shah, S. Ismat

    2018-01-01

    Bi1-x Pb x FeO3 (0 ≤ x ≤ 0.3) has been characterized in detail with an aim to identify role of defect such as dopant, various vacancies, grain boundaries etc, and their effect on structural, optical and multiferroic properties. Structural analysis revealed that Pb substitution transforms the rhombohedral phase of BiFeO3 to the pseudocubic phase for x ≥ 0.15, consistently all vibrational Raman modes associated with the rhombohedral phase are found disappeared. Optical response revealed weakening of the d-d transitions with Pb addition indicating change in the Fe atoms environment consistent with the transition from non-centrosymmetric to the centrosymmetric structure. Transport and dielectric responses are explained in terms of hopping due to the presence of defects like oxygen vacancies and grain boundary conduction. In the high temperature regime, grain boundary conduction led to decrease in resistivity with the presence of a hump that is associated with hopping conduction. Extrinsic contributions in the transport properties correlate well with dielectric response. Magnetic and ferroelectric responses are also presented where role of oxygen vacancies defects has been clearly identified.

  8. Physical properties of nanoparticles Nd added Bi1.7Pb0.3Sr2Ca2Cu3Oy superconductors

    NASA Astrophysics Data System (ADS)

    Abbas, Muna; Abdulridha, Ali; Jassim, Amal; Hashim, Fouad

    2018-05-01

    Bi1.7Pb0.3Sr2Ca2Cu3Oy bulks were synthesized, with the addition of Nd2O3 nanoparticles, by the solid state reaction method. The concentrations of Nd were varied from 0.1 to 0.6. The superconducting properties of the samples were investigated and studied to determine the influence of Nd2O3 addition on superconducting properties and microstructural development. The structural characteristics of the synthesized superconductor samples were carried out through X-ray diffractions. DC Four point probe method was used to study the electrical resistivity behavior and to evaluate the transition temperature (TC) for all samples. It was found that: 0.2 weight percentage of Nd2O3 yield the highest TC 123 K for highest volume fraction of 2223-phase, while excessive addition decreased both of them. The results point to compelling indications of correlations between charge carriers and superconductivity. Energy-dispersive X-ray spectroscopy (EDX) analysis for Bi1.7Pb0.3Nd0.2Sr2Ca2Cu3Oy superconductor shows that Nd may be substituted at Ca sites creating point defects, which act as flux pinning centers. Scanning electron microscopy (SEM) was employed to examine the microstructure of some samples. Their results showed precipitation of Nd nanoparticles on the surface as plate-like grains.

  9. Electric field induced cubic to monoclinic phase transition in multiferroic 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com

    2014-10-20

    The results of x-ray diffraction studies on 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution poled at various electric fields are presented. After poling, significant value of planar electromechanical coupling coefficient (k{sub P}) is observed for this composition having cubic structure in unpoled state. The cubic structure of 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} transforms to monoclinic structure with space group Pm for the poling field ≥5 kV/cm. Large c-axis microscopic lattice strain (1.6%) is achieved at 30 kV/cm poling field. The variation of the c-axis strain and unit cell volume with poling field shows a drastic jump similar to that observed for strainmore » versus electric field curve in (1 − x)Pb(Mg{sub 1/3}Nb{sub 2/3}) O{sub 3}-xPbTiO{sub 3} and (1 − x)Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3}.« less

  10. Synthesis, structural and electron paramagnetic resonance studies on Pb0.9Bi0.1Fe0.7W0.3O3 ceramic

    NASA Astrophysics Data System (ADS)

    Shivaraja, I.; Matteppanvar, Shidaling; Dadami, Sunanda T.; Rayaprol, Sudhindra; Angadi, Basavaraj

    2018-04-01

    A single phase Pb0.9Bi0.1Fe0.7W0.3O3 (0.9Pb(Fe2/3W1/3)O3 - 0.1BiFeO3 or PBFW) polycrystalline ceramic was synthesized by the two step solid state reaction method, with low-temperature sintering at 800°C for 30 mins and slow cooling to room temperature (RT). Detailed studies of RT X-ray diffraction (XRD) and Raman spectroscopy measurements confirm the formation of high symmetry cubic structure with Pm-3m space group. The Rietveld refinement was carried out on RT XRD data and the obtained structural parameters are a = b = c = 3.97563(6) Å and unit cell volume = 62.837 (2) Å3. Scanning Electron Microscopy (SEM) images show the uniform distribution of grains with some agglomerated nature. RT Raman spectroscopy reveals the main broad peak at 770 cm-1, related to the A1g mode, which confirms the formation of cubic (ABO3 perovskite) structure. The single symmetric electron paramagnetic resonance (EPR) line shape with g = 2.13985 observed in PBFW was identified to be due to Fe3+ ions.

  11. Preparation and Properties of High-T(sub c) Bi-Pb-Sr-Ca-Cu-O Thick Film Superconductors on YSZ Substrates

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.

    1996-01-01

    An evaluation of four firing profiles was performed to determine the optimum processing conditions for producing high-T(sub c) Bi-Pb-Sr-Ca-Cu-O thick films on yttria-stabilized zirconia substrates. Using these four profiles, the effects of sintering temperatures of 830-850 C and soak times of 0.5 to 12 hours were examined. In this study, T-c, zero values of 100 K were obtained using a firing profile in which the films were sintered for 1.5 to 2 hours at 840 to 845 C and then quenched to room temperature. X-ray diffraction analyses of these specimens confirmed the presence of the high-T(sub c) phase. Films which were similarly fired and furnace cooled from the peak processing temperature exhibited a two-step superconductive transition to zero resistance, with T-c,zero values ranging from 85 to 92 K. The other firing profiles evaluated in this investigation yielded specimens which either exhibited critical transition temperatures below 90 K or did not exhibit a superconductive transition above 77 K.

  12. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi 1.5 Pb 0.55 Sr 1.6 La 0.4 CuO 6 + δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-T c superconductor Bi 1.5Pb 0.55Sr 1.6La 0.4CuO 6+δ (OP-Bi2201, T c ≃ 34 K) are investigated by Cu L 3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, andmore » charge modes in this compound. We also compare the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi 1.5Pb 0.6Sr 1.54CaCu 2O 8+δ (OP-Bi2212, T c ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to T c, not even within the same family of cuprates.« less

  13. Thermoelectric properties of PbTe with indium and bismuth secondary phase

    NASA Astrophysics Data System (ADS)

    Bali, A.; Chetty, R.; Mallik, R. C.

    2016-06-01

    Lead telluride (PbTe) with indium (In) and bismuth (Bi) as micrometer sized secondary phases dispersed throughout the bulk has been prepared by matrix encapsulation method. In and Bi are not found to substitute in PbTe as shown by Rietveld and room temperature Raman studies but are present as secondary phases. Increased values of temperature dependent electrical resistivity and Seebeck coefficient show the effect of interfaces on electronic transport. As expected, thermal conductivity is found to reduce on addition of secondary phases due to a reduced electronic contribution, further confirming that electron scattering at interfaces is more important than phonon scattering in such systems for thermoelectric properties. However, due to the reduction in the power factor of the In and Bi added samples from that of the parent PbTe, the overall thermoelectric figure of merit ( zT) does not increase beyond that of PbTe, for which the highest value of 0.7 is obtained at 778 K.

  14. Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite

    NASA Astrophysics Data System (ADS)

    Satpathy, Santosh Kumar; Mohanty, Nilaya Kumar; Behera, Ajay Kumar; Behera, Banarji; Nayak, Pratibindhya

    2013-09-01

    The composite, 0.5(BiGd0.15Fe0.85O3)-0.5(PbZrO3), was synthesized using the solid-state reaction technique. The formation of the compound was confirmed by XRD with an orthorhombic structure at room temperature. The impedance parameters were studied using an impedance analyzer in a wide range of frequency (102-106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect and a slight indication of grain boundary effect and the bulk resistance decreases with a rise in temperature. The presence of temperature-dependent relaxation process occurs in the material. Electrical modulus reveals the presence of the hopping mechanism in the materials. The value of exponent n, pre-factor A and σ dc were obtained by fitting ac conductivity data with Jonscher's universal power law. The activation energies calculated from the ac conductivity were found to be 0.50, 0.46, 0.44, 0.43, 0.42 and 0.38 eV at 1, 10, 50, 100, 500 kHz and 1 MHz respectively in the temperature region of 110°C-350°C. The dc conductivity was found to increase with the rise in temperature. The activation energy calculated from complex impedance plot and from the fitted Jonscher's power law are very close, which results similar type of charge carrier exist in conduction mechanism of the material.

  15. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  16. High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application

    NASA Astrophysics Data System (ADS)

    Chao, Mingming; Liu, Jingsong; Zeng, Mengshi; Wang, Debin; Yu, Hongtao; Yuan, Ying; Zhang, Shuren

    2018-05-01

    We report herein on the energy storage and discharge properties of the relaxor ferroelectric ceramic Sr0.8Pb0.1Bi0.1TiO3 (SPBT). This material has a slanted hysteresis loop, and all samples show low remnant polarization and low coercive field, which leads to a high discharge efficiency. The maximum polarization is 10.1 μC/cm2, the minimum coercive field is 0.229 kV/cm, and the maximum efficiency is 94.2%. The discharge current waveforms are sinusoidal, the first discharge period is 140 ns, and the power density is approximately 4.2 × 107 W/kg. The high discharge speed and high discharge power density indicate that SPBT ceramics are very promising materials for energy storage applications.

  17. Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing

    NASA Astrophysics Data System (ADS)

    Murdoch, Heather A.; Labukas, Joseph P.; Roberts, Anthony J.; Darling, Kristopher A.

    2017-07-01

    Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.

  18. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Surekha, K.; Murty, B. S.; Prasad Rao, K.

    2009-04-01

    The effect of processing parameters (rotation speed and traverse speed) on the corrosion behaviour of friction stir processed high strength precipitation hardenable AA 2219-T87 alloy was investigated. The results indicate that the rotation speed has a major influence in determining the rate of corrosion, which is attributed to the breaking down and dissolution of the intermetallic particles. Corrosion resistance of friction stir processed alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, salt spray and immersion tests.

  19. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N =126

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Ameil, F.; Ayyad, Y.; Benlliure, J.; Bowry, M.; Calviño, F.; Cano-Ott, D.; Cortès, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A. R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M. B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Yu. A.; Maier, L.; Marganiec, J.; Marta, M.; Martínez, T.; Montes, F.; Mukha, I.; Napoli, D. R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J. L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J. S.; Wood, R.; Woods, P. J.; Yeremin, A.

    2017-06-01

    Background: There have been measurements on roughly 230 nuclei that are β -delayed neutron emitters. They range from 8He up to 150La. Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A =150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N =126 , in order to guide theoretical models and help understand the formation of the third r -process peak at A ˜195 . Purpose: To measure both β -decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bi isotopes beyond N =126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β -decay half-lives are reported for Au-206204, Hg-211208,Tl-216211,Pb-218215 , and Bi-220218, nine of them for the first time. Neutron emission probabilities are reported for Hg,211210 and Tl-216211. Conclusions: The new β -decay half-lives are in good agreement with previous measurements on nuclei in this region. The measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).

  20. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGES

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; ...

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  1. Large-scale one-dimensional Bi x O y I z nanostructures: synthesis, characterization, and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Zhang, Dun

    2015-03-01

    The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.

  2. Colossal Negative Thermal Expansion in Electron-Doped PbVO3 Perovskites.

    PubMed

    Yamamoto, Hajime; Imai, Takashi; Sakai, Yuki; Azuma, Masaki

    2018-07-02

    Colossal negative thermal expansion (NTE) with a volume contraction of about 8 %, the largest value reported so far for NTE materials, was observed in an electron-doped giant tetragonal perovskite compound Pb 1-x Bi x VO 3 (x=0.2 and 0.3). A polar tetragonal (P4mm) to non-polar cubic structural transition took place upon heating. The coefficient of thermal expansion (CTE) and the working temperature could be tuned by changing the Bi content, and La substitution decreased the transition temperature to room temperature. Pb 0.76 La 0.04 Bi 0.20 VO 3 exhibited a unit cell volume contraction of 6.7 % from 200 K to 420 K. Interestingly, further gigantic NTE of about 8.5 % was observed in a dilametric measurement of a Pb 0.76 La 0.04 Bi 0.20 VO 3 polycrystalline sample. The pronounced NTE in the sintered body should be attributed to an anisotropic lattice parameter change. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    NASA Astrophysics Data System (ADS)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  4. The S-Process Branching-Point at 205PB

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-09-01

    Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  5. Chemical corrosion by chlorides on ancient-like bronzes and treatment by hydrogen glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Papadopoulou, O.; Novakovic, J.; Vassiliou, P.; Filippaki, E.; Bassiakos, Y.

    2013-12-01

    Three representative ancient-like bronzes are employed for the chemical synthesis of Cu2(OH)3Cl rich patinas in order to study the influence of the alloying elements in the evolution of the chloride attack and to further conduct stabilization treatment via Hydrogen Glow Discharge Plasma (HGDP) at low temperature and pressure. The corrosion behavior of specimens having Sn and Pb as main alloying elements is governed by a decuprification mechanism and by the formation of Sn-Pb-O enriched barrier layers. In the case of the Zn containing alloy, dezincification is more pronounced at the corrosion initial stages, and copper species predominate the corrosion products evolution. A three-hour HGDP treatment leads to Cu+ production and metallic Cu, Sn, Zn, and Pb redeposition, as a result of metal cation reduction. This process is accompanied by partial removal of Cl species, O diminution, and change in coloration. The further increase of the Cl/O atomic ratio measured on the post-treated surfaces leads to the formation of nantokite and thus to the conclusion that the stabilization of objects with extensive Cl attack is not feasible by HGDP without preliminary chemical treatment.

  6. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  7. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  8. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; Çelikbilek Ersundu, M.; Ersundu, A. E.; Lakshminarayana, G.; Kostka, P.

    2018-03-01

    In this work, glasses in the MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) system, which show a great potential for optoelectronic applications, were used to evaluate their resistance under high energy ionizing radiations. The basic shielding quantities for determining the penetration of radiation in glass, such as mass attenuation coefficient (μ/ρ), half value layer (HVL), mean free path (MFP) and exposure buildup factor (EBF) values were investigated within the energy range 0.015 MeV ‒ 15 MeV using XCOM program and variation of shielding parameters were compared with different glass systems and ordinary concrete. From the derived results, it was determined that MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses show great potentiality to be used under high energy radiations. Among the studied glass compositions, Bi2O3 and WO3 containing glasses were found to possess superior gamma-ray shielding effectiveness.

  9. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  10. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkundato, Artoto; Su'ud, Zaki; Sudarko

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction withmore » liquid metal.« less

  11. Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel.

    PubMed

    Selvam, Karthikeyan; Mandal, Priya; Grewal, Harpreet Singh; Arora, Harpreet Singh

    2018-06-01

    Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  13. Favorable Concurrence of Static and Dynamic Phenomena at the Morphotropic Phase Boundary of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3

    NASA Astrophysics Data System (ADS)

    Datta, K.; Neder, R. B.; Chen, J.; Neuefeind, J. C.; Mihailova, B.

    2017-11-01

    We reveal that concurrent events of inherent entropy boosting and increased synchronization between A - and B -site cation vibrations of an A B O3 -type perovskite structure give rise to a larger piezoelectric response in a ferroelectric system at its morphotropic phase boundary (MPB). It is further evident that the superior piezoelectric properties of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3 in comparison to x BiNi0.5Ti0.5O3-(1 -x )PbTiO3 are due to the absolute flattening of the local potentials for all ferroelectrically active cations with a higher spontaneous polarization at the MPB. These distinctive features are discovered from the analyses of neutron pair distribution functions and Raman scattering data at ambient conditions, which are particularly sensitive to mesoscopic-scale structural correlations. Altogether this uncovers more fundamental structure-property connections for ferroelectric systems exhibiting a MPB, and thereby has a critical impact in contriving efficient novel materials.

  14. High-temperature solution growth and characterization of (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 piezo-/ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2018-03-01

    Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.

  15. Coupled domain wall motion, lattice strain and phase transformation in morphotropic phase boundary composition of PbTiO 3-BiScO 3 piezoelectric ceramic

    DOE PAGES

    Khatua, Dipak Kumar; V., Lalitha K.; Fancher, Chris M.; ...

    2016-10-18

    High energy synchrotron X-ray diffraction, in situ with electric field, was carried out on the morphotropic phase boundary composition of the piezoelectric alloy PbTiO 3-BiScO 3. We demonstrate a strong correlation between ferroelectric-ferroelastic domain reorientation, lattice strain and phase transformation. Lastly, we also show the occurrence of the three phenomena and persistence of their correlation in the weak field regime.

  16. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  17. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Ekberg, J. O.; Brown, C. M.; Feldman, U.; Behring, W. E.

    1986-01-01

    Spectra of very highly charged ions of Au, Pb, Bi, Th, and U have been observed in laser-produced plasmas generated by the OMEGA laser. Line identifications in the region 9-110 A were made for ions in the Fe, Co, Cu, and Zn isoelectronic sequences. Comparison of the measured wavelengths of the Cu-like ions with values calculated with and without QED corrections shows that the inclusion of QED corrections greatly improves the accuracy of the calculated 4s-4p wavelengths. However, significant differences between the observed and calculated values remain.

  18. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes.

    PubMed

    Stewart, John T; Padilha, Lazaro A; Qazilbash, M Mumtaz; Pietryga, Jeffrey M; Midgett, Aaron G; Luther, Joseph M; Beard, Matthew C; Nozik, Arthur J; Klimov, Victor I

    2012-02-08

    Infrared band gap semiconductor nanocrystals are promising materials for exploring generation III photovoltaic concepts that rely on carrier multiplication or multiple exciton generation, the process in which a single high-energy photon generates more than one electron-hole pair. In this work, we present measurements of carrier multiplication yields and biexciton lifetimes for a large selection of PbS nanocrystals and compare these results to the well-studied PbSe nanocrystals. The similar bulk properties of PbS and PbSe make this an important comparison for discerning the pertinent properties that determine efficient carrier multiplication. We observe that PbS and PbSe have very similar biexciton lifetimes as a function of confinement energy. Together with the similar bulk properties, this suggests that the rates of multiexciton generation, which is the inverse of Auger recombination, are also similar. The carrier multiplication yields in PbS nanocrystals, however, are strikingly lower than those observed for PbSe nanocrystals. We suggest that this implies the rate of competing processes, such as phonon emission, is higher in PbS nanocrystals than in PbSe nanocrystals. Indeed, our estimations for phonon emission mediated by the polar Fröhlich-type interaction indicate that the corresponding energy-loss rate is approximately twice as large in PbS than in PbSe. © 2011 American Chemical Society

  19. Corrosion process monitoring by AFM higher harmonic imaging

    NASA Astrophysics Data System (ADS)

    Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.

    2017-11-01

    The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.

  20. Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai

    2016-12-01

    The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.

  1. Reactive sintering process of ferromagnetic MnBi under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Umetsu, Rie Y.; Takahashi, Kohki; Koyama, Keiichi

    2018-05-01

    The magnetic field effect on the reactive sintering process of MnBi was investigated. Magnetic-field-induced enhancement of the reaction was found to be exhibited at the initial stages. The coercivity field decreased with an increase in the in-field annealing time. The kinetics of the reaction were in good agreement with the diffusion-controlled reaction model. It is suggested that the decrease in activation energy at the initial stages of reaction increased the amount of formed MnBi phases, resulting in enhancement of the reaction Mn + Bi to MnBi phase by in-field reactive sintering.

  2. Growth of Nucleation Sites on Pd-doped Bi_2Sr_2Ca1 Cu_2O_8+δ

    NASA Astrophysics Data System (ADS)

    Kouzoudis, D.; Finnemore, D. K.; Xu, Ming; Balachandran

    1996-03-01

    Enviromental Scanning Electron Microscope has shown evidence that during the growth of Bi_2Sr_2Ca_2Cu_3O_10+δ from mixed powders of Pb-doped Bi_2Sr_2Ca_1Cu_2O_8+δ and other oxides, a dense array of hillocks or mesas grow at the interface between an Ag overlay and Pb doped Bi_2Sr_2Ca_1Cu_2O_8+δ grains. These hillocks develop a texture that looks like ''chicken pox'' during the ramp up to the reaction temperature starting at about 700^circ C and they are about 500 to 1000 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurments indicate that the hillocks are re-crystallization of (Bi,Pb)_2Sr_2Ca_1Cu_2O_8+δ and are definetely not a Pb rich phase

  3. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  4. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid

  5. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  6. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  7. Microstructure and corrosion behavior of laser processed NiTi alloy.

    PubMed

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Glass-derived superconducting ceramics with zero resistance at 107 K in the Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) system

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-01-01

    A melt of composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) was fast quenched to form a glass. This was subsequently air annealed and the influence of annealing time and temperature on the formation of various crystalline phases was investigated. X-ray powder diffraction indicate that none of the resulting samples were single phase. However, for an annealing temperature of 840 C, the volume fraction of the high Tc phase (isostructural with Bi2Sr2Ca2Cu3O10) increased with annealing time. A specimen annealed at this temperature for 243 h followed by slow cooling showed a sharp transition and Tc (R = 0) = 107.2 K.

  9. Synthesis and characterization of (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Dwivedi, Saurabh; Pandey, Rishikesh

    2016-05-23

    We present here the comprehensive x-ray diffraction and polarization-electric field hysteresis studies on (1-x)Bi(Mg{sub 2/3}Sb{sub 1/3})O{sub 3}-xPbTiO{sub 3} piezoceramics with x = 0.52, 0.56 and 0.60. The powder x-ray diffraction data reveals the presence of tetragonal phase for all the compositions. The saturation of hysteresis loop is observed for x ≤ 0.56.

  10. [Use of corrosion inhibitors during the presterilization preparation of medical instruments].

    PubMed

    Sverdlov, A I; Sher, L B; Kochanova, L G

    1978-01-01

    Corrosion inhibitors that may be used for pre-sterilization treatment of medical instruments are described and investigated. The investigation included potentiostatic and gravimetric measurements along with the visual control. It was found that in order to reduce the corrosion activity of detergent solutions the use of bi-substituted sodium phosphate is advisable.

  11. Peak Lead Levels and Diagnostics in Lead Service Lines Dominated by PbO2 - abstract

    EPA Science Inventory

    Multiple studies have presented “profiles” of water lead levels from tap to main through lead service lines (LSLs), in systems where the LSLs were coated with common Pb(II) corrosion solids. These Pb(II) solids were either actual Pb(II) minerals or Pb(II) sorbed onto other pipe ...

  12. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  13. Effect of ball milling and heat treatment process on MnBi powders magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung

    The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here,more » we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature« less

  14. Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.

    PubMed

    Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji

    2016-10-01

    Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.

  15. Characteristics of lead corrosion scales formed during drinking water distribution and their potential influence on the release of lead and other contaminants.

    PubMed

    Kim, Eun Jung; Herrera, Jose E

    2010-08-15

    Destabilization of the corrosion scale present in lead pipes used in drinking water distribution systems is currently considered a major problem for municipalities serviced in part by lead pipes. Although several lead corrosion strategies have been deployed with success, a clear understanding of the chemistry of corrosion products present in the scale is needed for an effective lead control. This contribution focuses on a comprehensive characterization of the layers present in the corrosion scale formed on the inner surfaces of lead pipes used in the drinking water distribution system of the City on London, ON, Canada. Solid corrosion products were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Toxic elements accumulated in the corrosion scale were also identified using inductively coupled plasma (ICP) spectrometry after acid digestion. Based on the XRD results, hydrocerussite was identified as the major lead crystalline corrosion phase in most of the pipes sampled, while cerussite was observed as the main crystalline component only in a few cases. Lead oxides including PbO(2) and Pb(3)O(4) were also observed in the inner layers of the corrosion scale. The presence of these highly oxidized lead species is rationalized in terms of the lead(II) carbonate phase transforming into lead(IV) oxide through an intermediate Pb(3)O(4) (2Pb(II)O x Pb(IV)O(2)) phase. In addition to lead corrosion products, an amorphous aluminosilicate phase was also identified in the corrosion scale. Its concentration is particularly high at the outer surface layers. Accumulation of toxic contaminants such as As, V, Sb, Cu, and Cr was observed in the corrosion scales, together with a strong correlation between arsenic accumulation and aluminum concentration.

  16. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    NASA Astrophysics Data System (ADS)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  17. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  18. Corrosion processes of physical vapor deposition-coated metallic implants.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  19. Peculiarities of steel and alloy electrochemical and corrosion behavior after laser processing

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Tat'yana G.; Kosyrev, Feliks K.; Rodin, Anatoly V.; Sayapin, V. P.

    1997-04-01

    Different types of laser processing can significantly increase the corrosion resistance of constructive materials, secure higher levels of metal properties in comparison with standard protection from corrosion and can be successfully used for industrial application. The research carried out in TRINITI during the last 10 years allowed us to create a data base about corrosion behavior in different chemical media of various metals, alloys and steels after welding, melting, surface alloying, etc. on technological continuous-wave carbon-dioxide-laser with average power up to 5 kilowatt. The investigated materials were subdivided into two groups: (1) without changes of phases composition after laser processing (pure metals, stainless steels); and (2) exposed to structural and phase changes under laser-matter interaction (carbon steels with different carbon content). It has allowed us to investigate the peculiarities of corrosion process mechanism depending on matter surface structure and phase composition both on laser irradiation regimes. Our research was based on the high sensitive electrochemical analysis combined with other corrosion and physical methods. The essential principles of electrochemical analysis are next. There are two main processes on metal under the interaction with electrolyte solution: anodic reaction -- which means the metal oxidation or transition of metal kations into solution; cathodic reaction -- the reoxidation of the ions or molecular of the solution. They are characterizing by the values of current densities and the rates of these reactions are dependent upon the potential arising on the metal-solution frontier. The electrochemical reactions kinetic investigations gives a unique possibility for the research of metal structure and corrosion behavior even in the case of small thickness of laser processed layers.

  20. Nature of ferroelectric to paraelectric phase transition in multiferroic 0.8BiFeO3-0.2Pb(Fe1/2Nb1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Patel, Jay Prakash; Singh, Anar; Pandey, Dhananjai

    2010-05-01

    We present here the results of high temperature powder x-ray diffraction study on 0.8BiFeO3-0.2Pb(Fe1/2Nb1/2)O3, which is isostructural with the well known multiferroic BiFeO3 (BF). It is shown that the room temperature ferroelectric phase of 0.8BF-0.2PFN in the R3c space group transforms to the paraelectric/paraelastic cubic (Pm3¯m) phase directly without any intermediate "β" phase reported in the literature for pure BF. This transition is of first order type as confirmed by the coexistence of R3c and Pm3¯m phases over a 100 K range and discontinuous change in the unit cell volume.

  1. Low temperature electrical properties of some Pb-free solders

    NASA Astrophysics Data System (ADS)

    Kisiel, Ryszard; Pekala, Marek

    2006-03-01

    The electronic industry is engaged in developing Pb-free technologies for more than ten years. However till now not all properties of new solders are described. The aim of the paper is to present some electrical properties of new series of Pb-free solders (eutectic SnAg, near eutectic SnAgCu with and without Bi) in low temperature ranges 10 K to 273K. The following parameters were analyzed: electrical resistivity, temperature coefficient of resistance and thermoelectric power. The electrical resistivity at temperatures above 50 K is a monotonically rising function of temperature for Pb-free solders studied. The electrical resistivity of the Bi containing alloys is higher as compared to the remaining ones. The thermoelectric power values at room temperature are about -8 μV/K to -6 μV/K for Pb-free solders studied, being higher as compared to typical values -3 μVK of SnPb solder. The relatively low absolute values as well as the smooth and weak temperature variation of electrical resistivity in lead free solders enable the possible low temperature application. The moderate values of thermoelectric power around and above the room temperature show that when applying the solders studied the temperature should be kept as uniform as possible, in order to avoid spurious or noise voltages.

  2. Superconducting properties of multilayered Ag/Bi(Pb)-2223 tapes prepared using pretextured monolayered tapes

    NASA Astrophysics Data System (ADS)

    Syamaprasad, U.; Sarma, M. S.; Guruswamy, P.; Pillai, S. G. K.; Warrier, K. G. K.; Damodaran, A. D.

    1997-02-01

    Multilayered Ag/Bi(Pb)-2223 tapes with high critical current densities 0953-2048/10/2/005/img1 have been fabricated using partially heat treated, textured monolayered tapes. Cut sections of the monolayered tapes have been stacked one over the other and folded together using high-purity silver foil and further rolled and heat treated to obtain multilayered tapes of different thickness with an HTS layer thickness varying from 9 to 0953-2048/10/2/005/img2. A comparison of the superconducting properties of the multilayered tapes with those of monolayered tapes prepared under identical heat treatment conditions shows that the 0953-2048/10/2/005/img3 ratio at 77 K is as high as 0.57. The ratio is found to decrease with a decrease in the HTS core thickness of the multilayered tapes. XRD studies of `banana peeled' samples show that the monolayered tapes at the folding stage acquire a good degree of texturing. The relatively high value of the 0953-2048/10/2/005/img3 ratio obtained in the present case compared with those reported by the existing techniques is attributed to the use of pretextured monolayered tapes.

  3. Compatibility of materials with liquid metal targets for SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocitymore » are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.« less

  4. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less

  5. Experimental evidence for the lattice instability of Bi-based superconducting systems

    NASA Astrophysics Data System (ADS)

    Yusheng, He; Jiong, Xiang; Hsin, Wang; Aisheng, He; Jincang, Zhang; Fanggao, Chang

    1989-11-01

    Ultrasonic measurements, specific heat and thermal analysis experiments, X-ray diffraction study and infrared investigation revealed that there are anomalous structural changes or lattice instabilities near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O system. Detailed study showed that anomalous changes or lattice instabilities are isothermal-like processes and have the characteristics of a structural phase transition, accompanying with increases in lattice constants. Possible mechanism for this lattice instability is discussed.

  6. Critical current density and microstructure of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick film sandwiched between Ag substrates

    NASA Astrophysics Data System (ADS)

    Oota, A.; Matsui, H.; Funakura, M.; Iwaya, J.; Maeda, J.

    1993-07-01

    A process of combined rolling and uniaxial pressing with intermediate sintering steps for fabrication of screen-printed (Bi,Pb)2Sr2Ca2Cu3O(x) thick films sandwiched between Ag substrates yields c-axis-oriented microstructures with a high critical current density (Jc) of 1.5 x 10 exp 4 A/sq cm (77 K, 0 T) and 9.0 x 10 exp 4 A/sq cm (23 K, 0 T). The measured Jc anisotropy at 77 K, as a function of the angle Theta between B and c axis, is pronounced. An increase in B sharpens a peak at Theta = 90 deg in the Jc vs Theta curve, together with enhancement of the anisotropy ratio. In high fields above 0.5 T, the half-height angular width of the peak approaches an average misalignment angle between the grains with increasing B.

  7. Real-time wetting dynamics and interfacial chemistry in low-melting 57Bi-42Sn-1Ag solder paste on Ni-Au

    NASA Astrophysics Data System (ADS)

    Bozack, M. J.

    2004-11-01

    We report the observation of real-time, in situ, wetting and spreading dynamics for 57Bi-42Sn-1Ag solder paste on Ni-Au surfaces during melting in a scanning electron microscope. The 57Bi-42Sn-1Ag is a low melting (139 °C) Pb-free eutectic alloy currently under consideration by automobile manufacturers for use in instrument displays. We find that, while there is excellent wetting of 57Bi-42Sn-1Ag solder paste on Ni-Au, there is almost no spreading. A large amount of Bi segregates to the surface of 57Bi-42Sn-1Ag solder balls during the sintering process. At melting, excessive flux outgassing and pooling are observed, several melted solder balls float on top of the flux, and substantial elemental segregation occurs during the first minutes of wetting. Neither Ni nor Au fully intermixes throughout the alloy at the interface within seconds of wetting. Bi does not move outward with the expanding alloy front. This combination of detrimental effects forms voids in the solder paste, contributes to low reliability of solder joints, and complicates the materials science at the solder-substrate interface as shown by Auger electron spectroscopy. Reliability work in progress (3000 cycles) shows that 57Bi-42Sn-1Ag on Ni-Au is less reliable than eutectic Sn-37Pb on Ni-Au for 2512 chip resistors cycled from -40 to 125 °C.

  8. Progress in development of tapes and magnets made from Bi-2223 superconductors

    NASA Technical Reports Server (NTRS)

    Balachandran, U.; Iyer, A. N.; Haldar, P.; Hoehn, J. G., Jr.; Motowidlo, L. R.

    1995-01-01

    Long lengths of (Bi,Pb)2Sr2Ca2Cu3O(x) tapes made by powder-in-tube processing have been wound into coils. Performance of the coils has been measured at temperatures of 4.2 to 77 K, and microstructures have been examined by x-ray diffraction and electron microscopy and then related to superconducting properties. A summary of recent results and an overview of future goals are presented.

  9. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  10. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  11. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  12. Corrosion-Resistant Container for Molten-Material Processing

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  13. The flux jumps in high Tc Bi(1.7)Pb(0.3)Sr2 Ca2Cu3O(y) bulk superconductor

    NASA Astrophysics Data System (ADS)

    Cao, Xiaowen; Huang, Sunli

    1989-11-01

    There were giant flux jumps in high T sub c Bi(1.7)Pb(0.3)Sr2Ca2Cu3O(v) bulk superconductor. The relaxation time, tau, decreased with both the increase of magnetic field and the rise of temperature. The maximum tau was about 40 min. The average -dM/dt increased with both the increase of magnetic field and the rise of temperature. The minimum average -dM/dt was about 4.1 x 10(exp -2) G/min. The flux jump weakened with time. It was dependent on the decrease of gradient of magnetic flux density dn/dx in the sample.

  14. Favorable Concurrence of Static and Dynamic Phenomena at the Morphotropic Phase Boundary of x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Kaustuv; Neder, Reinhard; Chen, J.

    We demore » monstrate that the morphotropic phase boundary of the lead-free ferroelectric system x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3 (NBT-xBT) can be uniquely distinguished by a reduced polarizationstate along with a non-uniform attening of the local potential function of A- and B-site cationsof the perovskite-type structure. This establishes a robust structure-property connections based onthe atomic-level structural correlations which elucidates the long-standing question: why the MPBof NBT-xBT does not excel as much as Pb-based materials do; and further help to develop strategyin designing ecient lead-free ferroelectric systems.« less

  15. Favorable Concurrence of Static and Dynamic Phenomena at the Morphotropic Phase Boundary of x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3

    DOE PAGES

    Datta, Kaustuv; Neder, Reinhard; Chen, J.; ...

    2017-11-16

    We demore » monstrate that the morphotropic phase boundary of the lead-free ferroelectric system x BiNi 0.5 Zr 0.5 O 3 - ( 1 - x ) PbTiO 3 (NBT-xBT) can be uniquely distinguished by a reduced polarizationstate along with a non-uniform attening of the local potential function of A- and B-site cationsof the perovskite-type structure. This establishes a robust structure-property connections based onthe atomic-level structural correlations which elucidates the long-standing question: why the MPBof NBT-xBT does not excel as much as Pb-based materials do; and further help to develop strategyin designing ecient lead-free ferroelectric systems.« less

  16. Magnetic properties of solid solutions between BiCrO3 and BiGaO3 with perovskite structures

    NASA Astrophysics Data System (ADS)

    Belik, Alexei A.

    2015-04-01

    Magnetic properties of BiCr1-xGaxO3 perovskite-type solid solutions are reported, and a magnetic phase diagram is established. As-synthesized BiCrO3 and BiCr0.9Ga0.1O3 crystallize in a monoclinic (m) C2/c structure. The Néel temperature (TN) decreases from 111 K in BiCrO3 to 98 K in BiCr0.9Ga0.1O3, and spin-reorientation transition temperature increases from 72 K in BiCrO3 to 83 K in BiCr0.9Ga0.1O3. o-BiCr0.9Ga0.1O3 with a PbZrO3-type orthorhombic structure is obtained by heating m-BiCr0.9Ga0.1O3 up to 573 K in air; it shows similar magnetic properties with those of m-BiCr0.9Ga0.1O3. TN of BiCr0.8Ga0.2O3 is 81 K, and TN of BiCr0.7Ga0.3O3 is 63 K. Samples with x = 0.4, 0.5, 0.6 and 0.7 crystallize in a polar R3c structure. Long-range antiferromagnetic order with weak ferromagnetism is observed below TN = 56 K in BiCr0.6Ga0.4O3, TN = 36 K in BiCr0.5Ga0.5O3 and TN = 18 K in BiCr0.4Ga0.6O3. BiCr0.3Ga0.7O3 shows a paramagnetic behaviour because the Cr concentration is below the percolation threshold of 31%.

  17. Positron annihilation studies of Bi 2CaSr 2Cu 2O x and Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y in the region of the superconducting transition

    NASA Astrophysics Data System (ADS)

    Pujari, P. K.; Datta, T.; Manohar, S. B.; Prakash, Satya; Sastry, P. V. P. S. S.; Yakhmi, J. V.; Iyer, R. M.

    1990-03-01

    Doppler broadened annihilation radiation (DBAR) spectral parameters have been reported- for the first time- between 77 K and 300 K, for several Bi-based oxide superconductors, viz. A: single phase (2122) Bi 2CaSr 2Cu 2O x with Tc=85 K (R=0), B: a mixed phase lead doped sample containing both 2122 and 2223 with a nominal composition Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y, and, C: another 2122+2223 sample with same nominal composition as that of B but synthesised under a different heat-treatment schedule so as to yield a Tc=85 K (R=0). Analyses of these spectra using PAACFIT program yielded two components, of which the intensity of the narrow component, I N, and, the width of the broad component, T B, were seen to be the only temperature dependent parameters. At the onset of superconducting transition both T B and I N were seen to increase to a maximum value and decrease on further cooling. A double peak structure in T B vs temperature profile were observed in sample B and C, similar to one reported by us in Tl-Ca-Ba-Cu-O systems. In addition, presence of a magnetic field (1 KG) yielded no significant change in the DBAR spectral parameters. The results are discussed.

  18. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.

    PubMed

    Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V

    2015-01-21

    The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.

  19. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    NASA Astrophysics Data System (ADS)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  20. All-solution-processed PbS quantum dot solar modules

    NASA Astrophysics Data System (ADS)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade

  1. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    NASA Astrophysics Data System (ADS)

    Minárik, P.; Král, R.; Janeček, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  2. Thermodynamic Description of the Quaternary Ag-Bi-Cu-Sn System

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech

    2018-01-01

    Lead-free soldering is an important part of electronic devices production. New lead-free solders that replace classical Sn-37Pb solder are still under development. Thermodynamic modeling makes the development process faster, cheaper and more environmentally friendly due to predictions of phases stabilities and phases transformations. In this work, the thermodynamic description of quaternary Ag-Bi-Cu-Sn system is presented. The thermodynamic assessment of promising lead-free quaternary solder was prepared using the Calphad approach. A good agreement between available experimental data and calculation was found.

  3. Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay Kumar; Masutani, Hideaki; Sugita, Hidetaka; Kanda, Hiroyuki; Kanaya, Shusaku; Shibayama, Naoyuki; Sanehira, Yoshitaka; Ikegami, Masashi; Numata, Youhei; Yamada, Kouji; Miyasaka, Tsutomu; Umeyama, Tomokazu; Imahori, Hiroshi; Ito, Seigo

    2017-09-01

    Research of CH3NH3PbI3 perovskite solar cells had significant attention as the candidate of new future energy. Due to the toxicity, however, lead (Pb) free photon harvesting layer should be discovered to replace the present CH3NH3PbI3 perovskite. In place of lead, we have tried antimony (Sb) and bismuth (Bi) with organic and metal monovalent cations (CH3NH3 +, Ag+ and Cu+). Therefore, in this work, lead-free photo-absorber layers of (CH3NH3)3Bi2I9, (CH3NH3)3Sb2I9, (CH3NH3)3SbBiI9, Ag3BiI6, Ag3BiI3(SCN)3 and Cu3BiI6 were processed by solution deposition way to be solar cells. About the structure of solar cells, we have compared the normal (n-i-p: TiO2-perovskite-spiro OMeTAD) and inverted (p-i-n: NiO-perovskite-PCBM) structures. The normal (n-i-p)-structured solar cells performed better conversion efficiencies, basically. But, these environmental friendly photon absorber layers showed the uneven surface morphology with a particular grow pattern depend on the substrate (TiO2 or NiO). We have considered that the unevenness of surface morphology can deteriorate the photovoltaic performance and can hinder future prospect of these lead-free photon harvesting layers. However, we found new interesting finding about the progress of devices by the interface of NiO/Sb3+ and TiO2/Cu3BiI6, which should be addressed in the future study.

  4. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliziario Nunes, Sayonara; Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP; Wang, Chun-Hai

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu;more » A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.« less

  5. Influence of defects and dopants on the photovoltaic performance of Bi 2S 3: First-principles insights

    DOE PAGES

    Han, Dan; Du, Mao -Hua; Dai, Chen -Min; ...

    2017-02-23

    Bi 2S 3 has attracted extensive attention recently as a light-absorber, sensitizer or electron acceptor material in various solar cells. Using first-principles calculations, we find that the photovoltaic efficiency of Bi 2S 3 solar cells is limited by its intrinsic point defects, i.e., both S vacancy and S interstitial can have high concentration and produce deep defect levels in the bandgap, leading to non-radiative recombination of electron–hole carriers and reduced minority carrier lifetime. Unexpectedly most of the intrinsic defects in Bi 2S 3, including even the S interstitial, act as donor defects, explaining the observed n-type conductivity and also causingmore » the high p-type conductivity impossible thermodynamically. Doping in Bi 2S 3 by a series of extrinsic elements is studied, showing that most of the dopant elements such as Cu, Br and Cl make the material even more n-type and only Pb doping makes it weakly p-type. Based on this, we propose that the surface region of n-type Bi 2S 3 nanocrystals in p-PbS/n-Bi 2S 3 nano-heterojunction solar cells may be type-inverted into p-type due to Pb doping, with a buried p–n junction formed in the Bi 2S 3 nanocrystals, which provides a new explanation to the longer carrier lifetime and higher efficiency. Lastly, considering the relatively low conduction band and high n-type conductivity, we predict that Cu, Br and Cl doped Bi 2S 3 may be an ideal n-type electron acceptor or counter electrode material, while the performance of Bi 2S 3 as a light-absorber or sensitizer material is intrinsically limited.« less

  6. Anomalous atomic displacement parameters and local dynamics in the Curie range of a Pb-free relaxor ferroelectric system (Bi1-xBax)(Fe1-xTix)O3(0.36 ≤ x ≤ 0.50)

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Pandey, Dhananjai

    2018-04-01

    We report here the relaxor ferroelectric (RFE) behaviour in a multiferroic solid solution system, (Bi1-xBax)(Fe1-xTix)O3, at a critical disorder level of xC ˜ 0.35 in BiFeO3 and 0.65 (i.e., 1-xC = 0.35) in BaTiO3 similar to the 1:2 ratio of Mg2+ and Nb5+ in the canonical RFE Pb(Mg1/3Nb2/3)O3. This Pb-free system, like canonical Pb-based RFEs, does not exhibit macroscopic symmetry breaking and shows only the signatures of ergodicity breaking at Vogel-Fulcher freezing temperature (TVF). The atomic displacement parameters (ADPs) of Fe3+/Ti4+ and O2-, obtained using high wave vector (Q) and high-resolution synchrotron x-ray diffraction data as a function of temperature, show anomalous diffuse peaks in the Curie range. It is shown that the diffuse peak in ADPs is due to softening of the vibrational frequencies of the B-O chain (B = Fe3+/Ti4+ and O = O2-) below the Burns temperature (TB) followed by hardening below the characteristic temperature (T'm), which corresponds to a peak in the dielectric permittivity (ɛ').

  7. Crystal Structure of AgBi2I7 Thin Films.

    PubMed

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  8. Lead effect on the corrosion and passivation behavior of Alloy 600

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongquan

    2005-07-01

    Dissolved Pb is considered as the most aggressive chemical species involved in the initiation and growth of stress corrosion cracking (SCC) in a pressurized water reactor (PWR) power generating system. The results from laboratory studies indicate that Pb-induced SCC (PbSCC) covers a range of potential and pH which is the largest of all the submodes of SCC occurring in steam generators (SG) and it occurs at threshold concentrations as low as 0.1 ppm. It is hypothesized that PbSCC is caused by the incorporation of Pb into the passive film, which reduces the passivity of the film and enhances the selective dissolution of Ni from the base metal. This investigation is focused on studying the effect of Pb on the dissolution and passivation of Alloy 600 MA in order to provide information for understanding the PbSCC mechanism. The effect of Pb on Alloy 600 MA was investigated in the solutions containing 110ppm Cl- and different concentrations of Pb 2+ at 90°C with pH4.5. Potentiodynamic polarization scans, electrochemical impedance spectroscopy, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to study the electrochemical behavior of Alloy 600 MA in the active and passive potential region in the solutions with/without Pb2+ in order to compare the effect of Pb on the dissolution and passivation of Alloy 600. The results indicated that the corrosion of Alloy 600 induced by Pb 2+ was ascribed to the enhanced dissolution of Ni by the reduction of Pb2+ at potentials slightly more cathodic than EPb2+/Pb0G Pb0=1 . The lower boundary of Pb2+ concentration for the occurrence of the displacement reaction is 2.5ppb according to thermodynamic calculations. The passivation of Alloy 600 was retarded by the Pb2+ and it was ascribed to the inhibited growth of NiO at passive potential and the increased conductivity of Cr2O3 by doping Pb 2+ in Cr2O3 lattice.

  9. Theory versus experiment for a family of single-layer compounds with a similar atomic arrangement: (Tl,X )/Si(111 )√{3 }×√{3 }(X =Pb,Sn,Bi,Sb,Te,Se)

    NASA Astrophysics Data System (ADS)

    Matetskiy, A. V.; Kibirev, I. A.; Mihalyuk, A. N.; Eremeev, S. V.; Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.

    2017-08-01

    Two-dimensional compounds made of one monolayer of Tl and one-third monolayer of Pb, Bi, Te, or Se (but not of Sn or Sb) on Si(111) have been found to have a similar atomic arrangement which can be visualized as a √{3 }×√{3 } -periodic honeycomb network of chained Tl trimers with atoms of the second adsorbate occupying the centers of the honeycomb units. Structural and electronic properties of the compounds have been examined in detail theoretically using density functional theory (DFT) calculations and experimentally using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and angle-resolved photoelectron spectroscopy (ARPES) observations. It has been found that though structural parameters of the compounds are very similar for all species, the only common feature of their band structure is a considerable spin-splitting of the surface-state bands, while other basic electronic properties vary greatly with a change of species. The Tl-Pb compound is strongly metallic with two metallic surface-state bands; the Tl-Bi compound is also metallic but with a single metallic band; the Tl-Te and Tl-Se compounds appear to be insulators.

  10. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  11. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  12. The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.

    PubMed

    Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy

    2016-01-01

    Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.

  13. Superconductivity and strong intrinsic defects in LaPd1-xBi2

    NASA Astrophysics Data System (ADS)

    Han, Fei; Malliakas, Christos D.; Stoumpos, Constantinos C.; Sturza, Mihai; Claus, Helmut; Chung, Duck Young; Kanatzidis, Mercouri G.

    2013-10-01

    Two new phases LaPd1-xBi2 and CePd1-xBi2 were obtained by growing single crystals in Bi flux. They adopt the tetragonal ZrCuSi2-type structure and feature Bi-square nets and PbO-type PdBi layers with significant partial Pd occupancy. Bulk superconductivity at 2.1 K and metallic behavior above Tc are observed in LaPd1-xBi2. A small residual resistance ratio (RRR) indicates a strong scattering effect induced by the Pd vacancies, which implies an s-wave pairing symmetry in LaPd1-xBi2. The broadening of the resistivity transition was measured under different magnetic fields demonstrating a high upper critical field of 3 T. Hall effect measurements reveal dominantly electron-like charge carriers and single-band transport behavior in LaPd1-xBi2. The paramagnetic CePd1-xBi2 is nonsuperconducting but shows antiferromagnetic ordering below 6 K.

  14. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    NASA Astrophysics Data System (ADS)

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  15. Factors affecting the silver corrosion performance of jet fuel from the Merox process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viljoen, C.L.; Hietkamp, S.; Marais, B.

    1995-05-01

    The Natref refinery at Sasolburg, South Africa, which is 63,6% owned by Sasol and 36,5% by Total, is producing Jet A-1 fuel at a rate of 80 m{sup 3}/h by means of a UOP Merox process. A substantial part of the crude oil slate is made up from crudes which have been stored for considerable times in underground mines. Since the 1970`s, Natref has experienced sporadic non-conformance of its treated jet fuel to the silver corrosion (IP 227) test. Various causes and explanations for the sporadic silver corrosion occurrence have been put forward but a direct causal link has remainedmore » obscure. The paper addresses these possible causes for silver corrosion and some of the process changes which have been made to alleviate the problem. Emphasis is placed on the most recent approaches which were taken to identify the origin of the sporadic silver corrosion. An inventory of all the potential causes was made, such a bacterial action, elemental sulphur formation in storage, etc. and experiments designed to test the validity of these causes, are discussed. A statistical evaluation which was done of the historical process data over a 2 year period, failed to link the use of mine crudes directly to Ag-corrosion occurrence. However, a correlation between elemental sulphur and H{sub 2}S levels in the feed to the Merox reactor and Ag-corrosion was observed. Finally, the outcome of the experiments are discussed, as well as the conclusions which were reached from the observed results.« less

  16. Positive grid corrosion elongation analysis using CAE with corrosion deformation transformed into thermal phenomenon

    NASA Astrophysics Data System (ADS)

    Mukaitani, Ichiroh; Hayashi, Koji; Shimoura, Ichiro; Takemasa, Arihiko; Takahashi, Isamu; Tsubakino, Harushige

    Valve-regulated lead-acid (VRLA) batteries have been commercially available for more than 20 years and have been enthusiastically embraced by users of uninterruptible power supplies (UPS) because of the anticipated reduction in installation and operating costs, smaller footprint and fewer environmental concerns. In Japan, communication networks are demanding reduced costs and longer life from their batteries. Among the factors limiting the life of VRLA batteries, the corrosion of positive grid material has been proven to cause elongation of the plates, loss of electrical contact and shorter lifetime. The content of Sn is also a key factor and addition of Sn in the grid alloy results in better performance in creep resistance, tensile strength and corrosion resistance [R. David Prenagaman, The Battery Man, vol. 39, September 1997, p. 16. I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. A key point is what the ratio of Sn to Ca should be, since too much Sn may lead to even worse elongation of the plates [I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. We have determined that microstructure control with a composition of lead-calcium-tin (Pb-Ca-Sn) alloy is optimal for better performance of the plates [I. Mukaitani, T. Sakamoto, T. Kikuoka, Y. Yamaguchi, H. Tsubakino, Proceedings of the 40th Battery Symposium in Japan, 1999, p. 99]. We developed a "simulation of current collector corrosion elongation" which is a technique of estimating corrosion elongation from the current collector design [I. Mukaitani, K. Hayashi, I. Shimoura, H. Takabayashi, M. Terada, A. Takemasa, I. Takahashi, K. Okamoto, Proceedings of the 44th Battery Symposium in Japan, 2003, p. 652]. Corrosion elongation occurs as the corrosion material layer grows out of the current collector metal. We resolved this problem using generally CAD

  17. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  18. All-solution-processed PbS quantum dot solar modules.

    PubMed

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-21

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

  19. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less

  20. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    PubMed

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Kinetic study of Bi 1.8Pb 0.4Ca 2Sr 2Cu 3O y superconductor in water

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Wei, T. P.; Kao, H.-C. I.

    1993-10-01

    The reaction of Bi 1.8Pb 0.4Ca 2Sr 2Cu 3O y powder in water was studied quantitatively. It was found that the [H 3O +] ion would act as a catalyst in this reaction and the initial rate equation was R 0 = - {d[A] 0}/{dt } = k[A] 0[ H3O+] 0.20, where [ A] represented the surface area of the superconducting powder. The rate constant, k, obtained at 10, 25 and 40°C was 3.98, 8.8 and 19.6 × 10 -4 mol min -1 cm -2 M 0.8, respectively. The activation energy and pre-exponential factor calculated from the Arrhenius equation were respectively 39.1 kJ mol -1 and 6.4 × 10 3 mol min -1 cm -2 M 0.8.

  2. Computational Discovery of Two Lead Free Halide Double Perovskites with Band Gaps in the Visible Range: Cs2BiAgCl6 and Cs2BiAgBr6

    NASA Astrophysics Data System (ADS)

    Filip, Marina; Volonakis, George; Haghighirad, Amir Abbas; Hillman, Samuel; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry; Giustino, Feliciano

    The perovskite solar cell is emerging as one of the most promising solution processable photovoltaic technologies, with an efficiency that now exceeds the performance of thin-film silicon devices. This performance is exclusively due to the optimum optoelectronic properties of the prototypical methylammonium lead-iodide perovskite (MAPI). However, the presence of lead in MAPI, and its problematic stability in ambient conditions poses concerns for its potential environmental impact. These concerns are motivating the search for novel non-toxic halide perovskites with similar optoelectronic properties to MAPI. In this work we will present the computational search for the homovalent and the heterovalent replacement of Pb in lead-halide perovskites. This search has lead to the computational discovery and experimental synthesis of two stable lead-free halide double perovskites based on Bi and Ag: Cs2BiAgCl6 and Cs2BiAgBr6. These new compounds are highly stable, they are semiconducting and absorb light in the visible range. In this talk we will present the electronic and optical properties of Cs2BiAgCl6 and Cs2BiAgBr6 calculated within DFT and GW and discuss the stability and formability of the entire Cs2BB'X6 family of semiconductors (B = Bi, Sb, B = Cu, Ag, Au, X = Cl, Br, I). This work was supported by the and the Leverhulme Trust (RL-2012-001).

  3. Gamma ray shielding and structural properties of Bi2O3-PbO-B2O3-V2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2014-04-01

    The present work has been undertaken to evaluate the applicability of Bi2O3-PbO-B2O3-V2O5 glass system as gamma ray shielding material. Gamma ray mass attenuation coefficient has been determined theoretically using WinXcom computer software developed by National Institute of Standards and Technology. A meaningful comparison of their radiation shielding properties has been made in terms of their half value layer parameter with standard radiation shielding concrete 'barite'. Structural properties of the prepared glass system have been investigated in terms of XRD and FTIR techniques in order to check the possibility of their commercial utility as alternate to conventional concrete for gamma ray shielding applications.

  4. Potentiodynamic Polarization Studies and Surface Chemical Composition of Bismuth Titanate (Bi x Ti y O z ) Films Produced through Radiofrequency Magnetron Sputtering.

    PubMed

    Alfonso, José E; Olaya, Jhon J; Pinzón, Manuel J; Marco, José F

    2013-10-08

    The applications of Bismuth Titanate (Bi x Ti y O z ) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation Bi x Ti y O z thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti₆Al₄V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi 3+ and Ti 4+ .

  5. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2012-11-01

    The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of

  6. Role of spin-orbit coupling in the physical properties of La X3 (X =In , P, Bi) superconductors

    NASA Astrophysics Data System (ADS)

    Tütüncü, H. M.; Karaca, Ertuǧrul; Uzunok, H. Y.; Srivastava, G. P.

    2018-05-01

    We report a comprehensive and complementary study on structural, elastic, mechanical, electronic, phonon, and electron-phonon interaction properties of La X3 (X = In, Pb, and Bi) using first-principles density functional calculations within the local density approximation with and without the spin-orbit coupling (SOC). The calculated lattice parameters for these intermetallic compounds with and without SOC are found to differ by less than 2 % from their experimental values. The effect of SOC on the elastic, mechanical, electronic, phonon, and electron-phonon interaction properties is more profound for LaPb3 and LaBi3 containing heavier X elements rather than LaIn3 containing lighter X element. The inclusion of SOC considerably removes the degeneracies of some bands near the Fermi level and makes some phonon branches in LaPb3 and LaBi3 softer and increases the strength of dominant peaks in their Eliashberg spectral functions. Thus the SOC related enhancement of their electron-phonon coupling parameter values can be related to both a softening of their phonon dispersion curves and an increase in their electron-phonon coupling matrix elements. The superconducting transition temperature with SOC is computed to be 0.69 K for LaIn3, 4.23 K for LaPb3, and 6.87 K for LaBi3, which agree very well with the respective measured values of 0.70, 4.18, and 7.30 K.

  7. Solution-processed BiI 3 thin films for photovoltaic applications: Improved carrier collection via solvent annealing

    DOE PAGES

    Hamdeh, Umar H.; Nelson, Rainie D.; Ryan, Bradley J.; ...

    2016-08-26

    Here, we report all-inorganic solar cells based on solution-processed BiI 3. Two-electron donor solvents such as tetrahydrofuran and dimethylformamide were found to form adducts with BiI 3, which make them highly soluble in these solvents. BiI 3 thin films were deposited by spin-coating. Solvent annealing BiI 3 thin films at relatively low temperatures (≤100 °C) resulted in increased grain size and crystallographic reorientation of grains within the films. The BiI3 films were stable against oxidation for several months and could withstand several hours of annealing in air at temperatures below 150 °C without degradation. Surface oxidation was found to improvemore » photovoltaic device performance due to the formation of a BiOI layer at the BiI 3 surface which facilitated hole extraction. Nonoptimized BiI 3 solar cells achieved the highest power conversion efficiencies of 1.0%, demonstrating the potential of BiI 3 as a nontoxic, air-stable metal-halide absorber material for photovoltaic applications.« less

  8. A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] (A = K, Cs): New n = 4 and n = 5 Members of the Layered Perovskite Series, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)], and Their Hydrates.

    PubMed

    Gopalakrishnan, J.; Sivakumar, T.; Thangadurai, V.; Subbanna, G. N.

    1999-06-14

    We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi(3)Ti(4)O(13)] and A[Bi(3)PbTi(5)O(16)] for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'(n)()(-)(1)B(n)()O(3)(n)()(+1)]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Å and loses its doubling [for example, the tetragonal lattice parameters of K[Bi(3)Ti(4)O(13)] and its dihydrate are respectively a = 3.900(1) Å, c = 37.57(2) Å; a = 3.885(1) Å, c = 20.82(4) Å]; surprisingly, the cesium analogues do not show a similar change on hydration.

  9. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.

    2015-06-01

    In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.

  10. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shownmore » that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.« less

  11. Bloating in (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055%PbI2 Thermoelectric Specimens as a Result of Processing Conditions

    NASA Astrophysics Data System (ADS)

    Ni, Jennifer E.; Case, Eldon D.; Stewart, Ryan; Wu, Chun-I.; Hogan, Timothy P.; Kanatzidis, Mercouri G.

    2012-06-01

    Lead chalcogenides such as (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055%PbI2 have received attention due to their encouraging thermoelectric properties. For the hot pressing (HP) and pulsed electric current sintering (PECS) techniques used in this study, decomposition reactions can generate porosity (bloating). Porosity in turn can degrade electrical, thermal, and mechanical properties. In this study, microstructural observations (scanning electron microscopy) and room-temperature elasticity measurements (resonant ultrasound spectroscopy) were used to characterize bloating generated during post-densification anneals. Although every HP specimen bloated during post-densification annealing, no bloating was observed for the PECS specimens processed from dry milled only powders. The lack of bloating for the annealed PECS specimens may be related to the electrical discharge intrinsic in the PECS process, which reportedly cleans the powder particle surfaces during densification.

  12. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  13. Influence of the casting processing route on the corrosion behavior of dental alloys.

    PubMed

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. © 2013.

  15. Structure and electrical properties of intergrowth bismuth layer-structured Bi4Ti3O12-CaBi4Ti4O15 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Choi, Gi Ppeum; Cho, Sam Yeon; Bu, Sang Don

    2016-09-01

    Pb-free ferroelectric Bi4Ti3O12-CaBi4Ti4O15 (BIT-CBT) ceramics were manufactured using a solid-state reaction method. Structural analysis by using X-ray diffraction confirmed the presence of a second phase of Bi2Ti2O7, and the surface depth X-ray diffraction analysis revealed that this phase existed only on the surface. This second phase appears to have been caused by the volatilization of Bi ions at high sintering temperatures. For resolution of the issue of volatilization of Bi ions and manufacture of BIT-CBT ceramics with a single phase, Bi2O3 powder was added to the BIT-CBT mixture, and a powder-bed method, in which pellets were covered with BIT-CBT powder, was used to manufacture the ceramic. The piezoelectric coefficient of the single-phase BIT-CBT ceramics was 12.4 pC/N while the residual polarization and the coercive electric field were 11.3 μC/cm2, and 125 kV/cm, respectively. The results suggest that single-phase BIT-CBT ceramics are suitable for the manufacture of elements incorporating these electrical characteristics.

  16. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe-Cu oxides

    NASA Astrophysics Data System (ADS)

    Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J. M.

    2016-12-01

    Immiscible sulfide liquids in basaltic magmas play an important role in trace metal transport and the sulfur budget of volcanic eruptions. However, sulfides are transient phases, whose origin and fate are poorly constrained. We address these issues by analyzing sulfide destabilization products preserved in lavas from La Réunion Island. Iron oxide globules and coatings, typically 20-80 μm in size, were found to occur in vesicles of differentiated lavas from Piton des Neiges, and recent pumice samples from Piton de la Fournaise. Field and mineralogical evidence indicates that the iron oxides are syn-eruptive phases not resulting from hydrothermal processes. Samples were first studied by Scanning Electron Microscopy. The globules were separated, whereas the smaller spherules and coatings were concentrated by magnetic sorting and acid leaching, and samples were processed through wet chemistry. The Fe oxide phases comprise 49-74 wt.% Fe, 26-40 wt.% O, and up to 6 wt.% Cu, 811 ppm Ni, 140 ppm Bi, and 8.5 ppm Pb. Compared to the host lava, Cu, Ni, and Bi are enriched by a factor of 101-103. Systematic Pb isotope disequilibrium (between 500 ppm and 2.9% for 206Pb/204Pb) exists between Fe oxides and host rocks, with Fe oxides generally displaying less radiogenic ratios. Unradiogenic Pb is a typical signature of sulfide, which tends to concentrate Pb, but not its parent elements U and Th. Thus, both the chemical and isotopic compositions of the vesicle-hosted Fe oxides suggest that they are more or less direct products of the destabilization of immiscible sulfide liquids. Although Pb dominantly partitions into the gas phase during sulfide breakdown, the original Pb isotope signature of sulfide is preserved in the residual oxide. The composition estimated for the parent sulfides (206Pb/204Pb = 18.20-18.77, 207Pb/204Pb = 15.575, and 208Pb/204Pb = 38.2-38.8) precludes a genetic link with the La Réunion plume, and suggests a lithospheric or crustal origin. It is estimated

  17. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption

    USGS Publications Warehouse

    Viets, J.G.; Clark, J.R.; Campbell, W.L.

    1984-01-01

    A solution of dilute hydrochloric acid, ascorbic acid, and potassium iodide has been found to dissolve weakly bound metals in soils, stream sediments, and oxidized rocks. Silver, Bi, Cd, Cu, Mo, Pb, Sb, and Zn are selectively extracted from this solution by a mixture of Aliquat 336 (tricaprylyl methyl ammonium chloride) and MIBK (methyl isobutyl ketone). Because potentially interfering major and minor elements do not extract, the organic separation allows interference-free determinations of Ag and Cd to the 0.05 ppm level, Mo, Cu, and Zn to 0.5 ppm, and Bi, Pb, and Sb to 1 ppm in the sample using flame atomic absorption spectroscopy. The analytical absorbance values of the organic solution used in the proposed method are generally enhanced more than threefold as compared to aqueous solutions, due to more efficient atomization and burning characteristics. The leaching and extraction procedures are extremely rapid; as many as 100 samples may be analyzed per day, yielding 800 determinations, and the technique is adaptable to field use. The proposed method was compared to total digestion methods for geochemical reference samples as well as soils and stream sediments from mineralized and unmineralized areas. The partial leach showed better anomaly contrasts than did total digestions. Because the proposed method is very rapid and is sensitive to pathfinder elements for several types of ore deposits, it should be useful for reconnaissance surveys for concealed deposits. ?? 1984.

  18. Evaluation of neutron capture cross section on 205Pb with photonuclear data

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki; Shizuma, Toshiyuki

    2018-05-01

    The neutron capture cross section of long-lived radioactive 205Pb is derived by using the nuclear reaction calculation code CCONE, based on photonuclear data. The present result is smaller than that of TENDL-2015 by a factor of 4. The derived Maxwellian averaged capture cross section (MACS) is the smallest compared to the existing data. The produced amount of 205Pb is explored with a simulated neutron flux in the Pb-Bi eutectic (LBE) target. The continuous use of the system in 25 years creates 205Pb with about 6 kg at maximum in the LBE (including natural Pb of 103 kg). The impact of the derived MACS on the stellar nucleosynthesis is investigated. It is found that the abundance of Tl is slightly enhanced due to the increase in the remaining abundance of 205Pb.

  19. Effect of neutron irradiation on the London penetration depth for polycrystalline Bi(1.8)Pb(0.3)Sr2Ca2Cu3O10 superconductor

    NASA Technical Reports Server (NTRS)

    Ossandon, J. G.; Thompson, J. R.; Sun, Yang Ren; Christen, D. K.; Chakoumakos, B. C.

    1995-01-01

    Magnetization studies of polycrystalline Bi(1.8)Pb(0.3)Sr2Ca2Cu3O10 superconductor, prior to and after neutron irradiation, showed an increase in J(sub c) due to irradiation damage. Analysis of the equilibrium magnetization revealed significant increases in other more fundamental properties. In particular, the London penetration depth increased by approximately 15 percent following irradiation with 8 x 10(exp 16) neutrons/sq cm. Corresponding changes were observed in the upper critical magnetic field H(sub c2). However, the most fundamental thermodynamic property, the superconductive condensation energy F(sub c), was unaffected by the moderate level of neutron-induced damage.

  20. Highly Enhanced Thermoelectric Properties of Bi/Bi2S3 Nanocomposites.

    PubMed

    Ge, Zhen-Hua; Qin, Peng; He, DongSheng; Chong, Xiaoyu; Feng, Dan; Ji, Yi-Hong; Feng, Jing; He, Jiaqing

    2017-02-08

    Bismuth sulfide (Bi 2 S 3 ) has been of high interest for thermoelectric applications due to the high abundance of sulfur on Earth. However, the low electrical conductivity of pristine Bi 2 S 3 results in a low figure of merit (ZT). In this work, Bi 2 S 3 @Bi core-shell nanowires with different Bi shell thicknesses were prepared by a hydrothermal method. The core-shell nanowires were densified to Bi/Bi 2 S 3 nanocomposite by spark plasma sintering (SPS), and the structure of the nanowire was maintained as the nanocomposite due to rapid SPS processing and low sintering temperature. The thermoelectric properties of bulk samples were investigated. The electrical conductivity of a bulk sample after sintering at 673 K for 5 min using Bi 2 S 3 @Bi nanowire powders prepared by treating Bi 2 S 3 nanowires in a hydrazine solution for 3 h is 3 orders of magnitude greater than that of a pristine Bi 2 S 3 sample. The nanocomposite possessed the highest ZT value of 0.36 at 623 K. This represents a new strategy for densifying core-shell powders to enhance their thermoelectric properties.

  1. Dating of sediments from four Swiss prealpine lakes with (210)Pb determined by gamma-spectrometry: progress and problems.

    PubMed

    Putyrskaya, V; Klemt, E; Röllin, S; Astner, M; Sahli, H

    2015-07-01

    In this paper the most important problems in dating lake sediments with unsupported (210)Pb are summarized and the progress in gamma-spectrometry of the unsupported (210)Pb is discussed. The main topics of these studies concern sediment samples preparation for gamma-spectrometry, measurement techniques and data analysis, as well as understanding of accumulation and sedimentation processes in lakes. The vertical distributions of artificial ((137)Cs, (241)Am, (239)Pu) and natural radionuclides ((40)K, (210,214)Pb, (214)Bi) as well as stable trace elements (Fe, Mn, Pb) in sediment cores from four Swiss lakes were used as examples for the interpretation, inter-comparison and validation of depth-age relations established by three (210)Pb-based models (CF-CSR, CRS and SIT). The identification of turbidite layers and the influence of the turbidity flows on the accuracy of sediment dating is demonstrated. Time-dependent mass sedimentation rates in lakes Brienz, Thun, Biel and Lucerne are discussed and compared with published data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fluctuation conductivity effects on thermoelectric power of granular Bi/sub 1. 75/Pb/sub 0. 25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/ superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, C.; Patapis, S.K.; Luo, H.L.

    1989-04-10

    The authors report precise measurements of the thermoelectric power (TEP) of granular superconducting Bi/sub 1.75/Pb/sub 0.25/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub 10/. The TEP is strictly linear at high temperature. Superconductivity fluctuations set in at about 140 K. From the temperature derivative of the excess TEP (with respect to a straight line at ''high temperature''), the critical behavior is obtained in the mean field regime, and is found identical to that of the temperature derivative of the excess electrical resistivity.

  3. Primordial Pb, radiogenic Pb and lunar soil maturation

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1978-01-01

    Pb-204 is directly correlated with the reduced Fe measured by ferromagnetic resonance. A similar correlation has been noted for hydrolyzable carbon (Pillinger et al., 1974). An enrichment of these elements appears to have occurred during soil maturation. In contrast to Pb-204, radiogenic Pb is reported to be lost during soil maturation (Church et al., 1976). Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. Pb-204 coating grain surfaces acts as a reservoir to provide the Pb-204 being extracted in the reduced Fe formation process. Venting or some other volatile release mechanism may replenish the surface-related Pb-204.

  4. Synchrotron x-ray scattering measurements of bulk structural properties in superconducting (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}{endash}Ag tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, T.R.; Wildgruber, U.; Jisrawi, N.

    The structural properties of superconducting (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}{endash}Ag (2223) tapes have been measured using synchrotron x-ray scattering techniques. The x-ray photon energy was tuned just below the silver {ital K} absorption edge so the penetration depth was large, which allowed the measurements to be performed in a transmission geometry without removing the silver cladding. Analysis of the peaks in 2{theta} scans indicates that residual (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (2212) superconductor starting material is present in all samples studied. The amount of 2212 varied widely among the tapes, and was not homogeneous along the length of eachmore » individual tape. Residual 2212 content increased near the ends of most samples, suggesting that 2223 phase development is sensitive to whether the superconducting material is encased in silver or not. The bulk {ital c}-axis alignment was measured in {approximately}100 mono- and multifilament samples, and correlations between {ital c}-axis alignment and current carrying capacity at 77 K were found. Multifilament samples generally had better alignment than monofilament samples. The {ital c}-axis alignment along the length of the tapes was uniform, and the superconducting material within {approximately}1 {mu}m of the Ag was better textured than the bulk of the sample. Intermediate pressings were directly shown to have an adverse affect on {ital c}-axis alignment. Finally, the evolution of texture and phase development was examined in a series of samples annealed for varying times. The 2212 starting material acquired the final {ital c}-axis alignment state after brief heating times, and only after much longer heating times did the 2212 transform into the 2223 phase. These results and their implications for improving processing procedures are discussed. {copyright} {ital 1996 American Institute of Physics.}« less

  5. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less

  6. Grain boundary misorientations and percolative current paths in high-{ital J}{sub {ital c}} powder-in-tube (Bi,Pb){sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 3}O{sub {ital x}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.

    1995-05-22

    Grain orientations and grain boundary misorientations in high-{ital J}{sub {ital c}}, powder-in-tube (PIT) (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} (Bi-2223) were determined using electron backscatter Kikuchi diffraction and x-ray microdiffraction. Data collected from over 113 spatially correlated grains, resulting in 227 grain boundaries, show that over 40% of the boundaries are {Sigma}1 or small angle (less than 15{degree}). In addition, 8% of the boundaries are within the Brandon criterion for CSLs (sigma larger than 1 and less than 50). Grain boundary ``texture maps`` derived from the electron microscope image and orientation data reveal the presence of percolative paths betweenmore » low energy boundaries.« less

  7. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. Copyright © 2015. Published by Elsevier B.V.

  8. Comparison of three corrosion inhibitors in simulated partial lead service line replacements.

    PubMed

    Kogo, Aki; Payne, Sarah Jane; Andrews, Robert C

    2017-05-05

    Partial lead service line replacements (PLSLR) were simulated using five recirculating pipe loops treated with either zinc orthophosphate (1mg/L as P), orthophosphate (1mg/L as P) or sodium silicate (10mg/L). Two pipe loops served as ⿿inhibitor-free⿿ (Pb-Cu) and ⿿galvanic free⿿ (Pb-PVC) controls. Changes in water quality (CSMR [0.2 or 1], conductivity [⿿330mS/cm or ⿿560mS/cm], chlorine [1.4mg/L]) were not observed to provide a significant impact on lead or copper release, although galvanic corrosion was shown to be a driving factor. Generally, both orthophosphate and zinc orthophosphate provided better corrosion control for both total and dissolved lead (30min, 6h, 65h) and copper (30min, 6h), when compared to either the inhibitor-free control or the sodium silicate treated system. This work highlights the importance of understanding the complex interplay of corrosion inhibitors on particulate and dissolved species when considering both lead and copper. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials.

    PubMed

    Ghosh, Biplab; Wu, Bo; Mulmudi, Hemant Kumar; Guet, Claude; Weber, Klaus; Sum, Tze Chien; Mhaisalkar, Subodh G; Mathews, Nripan

    2018-01-17

    Lead (Pb) halide perovskites have attracted tremendous attention in recent years due to their rich optoelectronic properties, which have resulted in more than 22% power conversion efficient photovoltaics. Nevertheless, Pb-metal toxicity remains a huge hurdle for extensive applications of these compounds. Thus, alternative compounds with similar optoelectronic properties need to be developed. Bismuth possesses similar electronic structure as that of lead with the presence of ns2 electrons that exhibit rich structural variety as well as interesting optical and electronic properties. Herein, we critically assess Cs3Bi2I9 as a candidate for thin-film solar cell absorber. Despite a reasonable optical bandgap (~2eV) and absorption coefficient, the power conversion efficiency of the Cs3Bi2I9 mesoscopic solar cells was found to be severely lacking, limited by poor photocurrent density. The efficiency of the Cs3Bi2I9 solar cell can be slightly improved by changing the stoichiometry of the precursor solutions. We have investigated the possible reasons behind the poor performance of Cs3Bi2I9 by transient absorption and luminescence spectroscopy. Comparison between thin-films and single crystals highlights the presence of intrinsic defects in thin-films which act as nonradiative recombination centers.

  10. Thin-Film Transformation of NH4 PbI3 to CH3 NH3 PbI3 Perovskite: A Methylamine-Induced Conversion-Healing Process.

    PubMed

    Zong, Yingxia; Zhou, Yuanyuan; Ju, Minggang; Garces, Hector F; Krause, Amanda R; Ji, Fuxiang; Cui, Guanglei; Zeng, Xiao Cheng; Padture, Nitin P; Pang, Shuping

    2016-11-14

    Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH 4 PbI 3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH 3 NH 3 PbI 3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH 4 PbI 3 -to-CH 3 NH 3 PbI 3 transformation process. The chemical origins of this transformation are studied at various length scales. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy

    PubMed Central

    Melchers, Robert E.

    2015-01-01

    Due to their good corrosion resistance, copper and copper alloys such as 90:10 Cu-Ni are used extensively in high-quality marine and industrial piping systems and also in marine, urban, and industrial environments. Their corrosion loss and pitting behaviour tends to follow a bi-modal trend rather than the classic power law. Field data for 90:10 copper nickel immersed in natural seawater are used to explore the effect of water pollution and in particular the availability of critical nutrients for microbiologically induced corrosion. It is shown, qualitatively, that increased dissolved inorganic nitrogen increases corrosion predominantly in the second, long-term, mode of the model. Other, less pronounced, influences are salinity and dissolved oxygen concentration. PMID:28793696

  12. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  13. In Vitro Corrosion Study of Friction Stir Processed WE43 Magnesium Alloy in a Simulated Body Fluid

    PubMed Central

    Cao, Genghua; Zhang, Datong; Zhang, Weiwen; Zhang, Wen

    2016-01-01

    Corrosion behavior of friction stir processing (FSP) WE43 alloy in a simulated body fluid (SBF) was investigated. Micro-galvanic corrosion was the dominated corrosion behavior, and the corrosion resistance of FSP WE43 alloy was improved compared to the cast counterpart. Furthermore, due to the fine-grained and homogeneous microstructure, uniform corrosion morphology was observed on FSP WE43 alloy. According to the tensile properties of specimens with different immersion time intervals, FSP WE43 alloy shows better performance to maintain the mechanical integrity in SBF as compared to the as-cast alloy. PMID:28773664

  14. Giant Polarization and High Temperature Monoclinic Phase in a Lead-Free Perovskite of Bi(Zn 0.5Ti 0.5)O 3-BiFeO 3

    DOE PAGES

    Pan, Zhao; Chen, Jun; Yu, Runze; ...

    2016-09-15

    Lead-free piezoelectrics have attracted increasing attention due to the awareness of lead toxicity to the environment. Here, a new Bi-based lead-free perovskite of (1-x)Bi(Zn 0.5Ti 0.5)O 3-xBiFeO 3 has been synthesized via high-pressure and high-temperature method. It exhibits interest-ing properties of giant polarization, morphotropic phase boundary (MPB), and monoclinic phase. In particular, large tetragonality ( c/a = 1.228) and giant spontaneous polariza-tion of 110 μC/cm 2 has been obtained in 0.6Bi(Zn 0.5Ti 0.5)O 3-0.4BiFeO 3, which is much higher than most available lead-free materials and conventional Pb(Zr,Ti)O 3. MPB is clearly identified to be constituted by tetragonal and monoclinic phasesmore » at x = 0.5. Notably, a single monoclinic phase has been observed at x = 0.6, which exhibits an intriguing high temperature property. In conclusion, the present results are helpful to explore new lead-free MPB systems in bismuth-based compounds.« less

  15. Synthesis, Crystal Structure, and Physical Properties of New Layered Oxychalcogenide La2O2Bi3AgS6

    NASA Astrophysics Data System (ADS)

    Hijikata, Yudai; Abe, Tomohiro; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Goto, Yosuke; Miura, Akira; Tadanaga, Kiyoharu; Wang, Yongming; Miura, Osuke; Mizuguchi, Yoshikazu

    2017-12-01

    We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) Å and c = 19.412(1) Å, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ˜ 20 Å). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.

  16. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  17. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water.

    PubMed

    Stets, E G; Lee, C J; Lytle, D A; Schock, M R

    2018-02-01

    Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL -1 , 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL -1 , 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters. Published by

  18. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  19. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  20. Investigations on Bi{sub 25}FeO{sub 40} powders synthesized by hydrothermal and combustion-like processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köferstein, Roberto, E-mail: roberto.koeferstein@chemie.uni-halle.de; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-09-15

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi{sub 25}FeO{sub 40}) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi{sub 25}FeO{sub 40} after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi{sub 25}FeO{sub 40} was calculated as 48(9) kJ mol{sup −1}. The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature andmore » field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10{sup −6} m{sup 3} K mol{sup −1} for sample 1 and C=57.82×10{sup −6} m{sup 3} K mol{sup −1} for sample 2a resulting in magnetic moments of µ{sub mag}=5.95(8) µ{sub B} mol{sup −1} and µ{sub mag}=6.07(4) µ{sub B} mol{sup −1}. The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi{sub 25}FeO{sub 40} powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi{sub 25}FeO{sub 40} powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi{sub 25}FeO{sub 40} powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on

  1. Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.

    PubMed

    Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N

    2015-04-15

    Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Study Neutronic of Small Pb-Bi Cooled Non-Refuelling Nuclear Power Plant Reactor (SPINNOR) with Hexagonal Geometry Calculation

    NASA Astrophysics Data System (ADS)

    Nur Krisna, Dwita; Su'ud, Zaki

    2017-01-01

    Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.

  3. Phase homology in new layered mixed Li, M (M=Mg, Cu, Cd, Pb, Bi) bismuth oxophosphates and oxoarsenates

    NASA Astrophysics Data System (ADS)

    Kozin, M. S.; Colmont, M.; Endara, D.; Aliev, A.; Huvé, M.; Siidra, O. I.; Krivovichev, S. V.; Mentré, O.

    2013-03-01

    Single crystals of two novel bismuth oxocompounds were grown from melts and the corresponding pure powders obtained from solid state reactions. Both compounds were structurally characterized using X-Ray diffraction techniques. [Bi7O7][BiO]7Cd1Li2(PO4)6 (1) is monoclinic, C2/m, a=26.9234(23), b=5.2926(5), c=12.3024(10) Å, β=106.45(5)°, R1=0.042 and ωR2=0.062. The crystal structure of 1 is related to that of [Bi7O7][BiO]7Bii0.66Li2(PO4)6 and consists of the [Bi7O7]7+ tetrahedral layers with the [(BiO)7CdLi2(PO4)6]7- interlayer blocks, where [BiO]+ denotes units attached to the layers of oxocentered tetrahedra. [Bi4O4][BiO]4Cu1Li2(AsO4)4 (2) is monoclinic, P21/c, a=8.8133(4), b=24.346(1), c=5.4056(2) Å, β=106,93(2)°, R1=0.031 and ωR2=0.035. The crystal structure of 2 is based upon layers similar to those observed in 1, but with the modified topology of the interlayer block. Both compounds can be considered as derivatives from the parent δ-Bi2O3 fluorite-like structure, where phosphorus and arsenic atoms substitute for some Bi sites. The arrangement of the [BiO]+ layers and the XO4 (X=P, As) interlayer groups is significantly modified compared to the previously known Cd compound. The comparison and review of the related structures is given. The variety of aliovalent cations able to incorporate in the interlayer as well as the strong structural resemblance with the Aurivillius series compounds establishes the new routes for the further prospective syntheses of novel but related phases with various important applications.

  4. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  5. s-Process in low metallicity Pb stars.

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Käppeler, F.; Aoki, W.

    We consider a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy, and some recent spectroscopic data of C+s-rich stars obtained at moderate resolution. The spectroscopic data of these stars are interpreted with AGB theoretical models of different 13C-pocket efficiencies, initial mass and initial r-enrichment. When lead is not measured we give our theoretical prediction. The observed stars are not on the AGB phase, but are main sequence or giant stars. They acquired the C and s enrichments by mass transfer in a close binary system from the more massive companion while on the AGB (now a white dwarf). A considerable fraction of the stars show both high s and r enrichments. To explain the s+r enriched stars we assume a parental cloud already enriched in r-elements. The measurement of Nb is an indicator of an extrinsic AGB in a binary system. The intrinsic indicator [hs/ls] constrains the initial mass, while [Pb/hs] and [Pb/ls] are a measure of the s-process efficiency. The apparent discrepancies of C and N abundances may be reconciled by assuming a strong cool bottom process occurring during the AGB. An important primary production of light elements, from Ne to Si, increasing with the star mass, is predicted for AGB models at very low metallicity, induced by n capture on primary 22Ne and its progenies.

  6. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  7. Electrochemical corrosion behaviour of nickel chromium-chromium carbide coating by HVOF process

    NASA Astrophysics Data System (ADS)

    Amudha, A.; Nagaraja, H. S.; Shashikala, H. D.

    2018-04-01

    To overcome the corrosion problem in marine industry, coatings are one of the most economical solutions. In this paper, the corrosion behaviour of 25(NiCr)-75Cr3C2 cermet coating on low carbon steel substrate by HVOF process is studied. Different phases such as Cr7C3 and Cr3C2, along with Ni and chromium oxide(Cr3O2) constituents present in the coating were revealed by X-Ray Diffraction (XRD) analysis. The morphology of the coating obtained by scanning electron microscope (SEM) gave confirmation for the XRD analysis. Electrochemical corrosion techniques such as Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) were used to study the corrosion behaviour of the cermet in 3.5wt% NaCl electrolyte solution. The corrosion current density of the coated sample and substrate were found to be 6.878µA/cm-2 and 21.091µA/cm-2 respectively. The Nyquist Impedance spectra were used to derive an equivalent circuit to analyze the interaction between the coating and electrolyte. The Bode Impedance plots obtained by EIS for the coating showed a typical passive material capacitive behaviour, indicated by medium to low frequency with phase angle approaching -60o, suggesting that a stable film is formed on the tested material in the electrolyte used.

  8. Study of the back recombination processes of PbS quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Badawi, Ali; Al-Hosiny, N.; Merazga, Amar; Albaradi, Ateyyah M.; Abdallah, S.; Talaat, H.

    2016-12-01

    In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage Voc, short circuit current density Jsc, fill factor FF and efficiency η) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm2 (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (τ) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination.

  9. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  10. The role of fluoride on the process of titanium corrosion in oral cavity.

    PubMed

    Noguti, Juliana; de Oliveira, Flavia; Peres, Rogério Correa; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2012-10-01

    Titanium is known to possess excellent biocompatibility as a result of corrosion resistance, lack of allergenicity when compared with many other metals. Fluoride is well known as a specific and effective caries prophylactic agent and its systemic application has been recommended widely over recent decades. Nevertheless, high fluoride concentrations impair the corrosion resistance of titanium. The purpose of this article is to summarize the current data regarding the influence of fluoride on titanium corrosion process in the last 5 years. These data demonstrate noxious effects induced by high fluoride concentration as well as low pH in the oral cavity. Therefore, such conditions should be considered when prophylactic actions are administrated in patients containing titanium implants or other dental devices.

  11. A study of the effect of clinical washing decontamination process on corrosion resistance of Martensitic Stainless Steel 420.

    PubMed

    Xu, Yunwei; Huang, Zhihong; Corner, George

    2016-09-28

    Corrosion of surgical instruments provides a seat for contamination and prevents proper sterilisation, placing both patients and medical staff at risk of infection. Corrosion can also compromise the structural integrity of instruments and lead to mechanical failure in use. It is essential to understand the various factors affecting corrosion resistance of surgical instruments and how it can be minimised.This paper investigates the effect on corrosion resistance from the clinical washing decontamination (WD) process, specifically by studying the changes in surface roughness and Cr/Fe ratio. Results indicate that the WD process provides a positive effect on smooth polished samples, while a lesser positive effect was observed on rough reflection reduced samples.

  12. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  13. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    DTIC Science & Technology

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  14. Highly oriented Bi-based thin films with zero resistance at 106 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, W.; Sobolewski, R.; Gorecka, J.

    1991-03-01

    This paper reports on fabrication and characterization of nearly single-phase superconducting Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} thin films. The films were dc magnetron sputtered from heavily Pb-doped (Pb/Bi molar ratios up to 1.25), sintered targets on unheated MgO, SrTiO{sub 3}, CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals. For the films grown on the (100) oriented MgO substrate, less than 1 hour of annealing in air at 870{degrees} C was sufficient to obtain more than 90% of the 110-K-phase material, with highly c-axis oriented crystalline structure and zero resistivity at 106 K. The films fabricated on the other substrates alsomore » exhibited a narrow superconducting transition and were fully superconducting above 100 K, but they consisted of a mixed-phase material with a large percentage of the 80 K phase.« less

  15. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    PubMed

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effect of polishing process on corrosion behavior of 308L stainless steel in high temperature water

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Han, En-Hou; Peng, Qunjia; Ke, Wei

    2018-06-01

    Effect of change in surface composition and roughness by different polishing processes on corrosion of 308L stainless steel in high temperature water was investigated. The investigation was conducted by comparing the corrosion behavior of electropolished specimens with that of the 40 nm-colloidal silica slurry polished specimens. The result revealed that the electropolished specimens had a higher corrosion rate than the colloidal silica slurry polished specimens, which was attributed to formation of an amount of chromium hydroxide and higher roughness of the electropolished surface. Moreover, the ferrite in 308L stainless steel was found to have a higher resistance to corrosion than the austenite matrix.

  17. Enhanced photoelectrochemical performance of inorganic-organic hybrid consisting of BiVO4 and PEDOT:PSS

    NASA Astrophysics Data System (ADS)

    Trzciński, K.; Szkoda, M.; Siuzdak, K.; Sawczak, M.; Lisowska-Oleksiak, A.

    2016-12-01

    The PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) was electrodeposited on a thin layer of bismuth vanadate (BiVO4) prepared using the pulsed laser deposition technique onto FTO. The inorganic-organic junction was characterized by Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy. Chronoamperometry curves, recorded under simulated solar light illumination, were performed to determine generated photocurrent during water and hydroquinone oxidation at the electrode surface. Experiments were performed for three types of electrode materials: (i) FTO/BiVO4, (ii) FTO/PEDOT:PSS and (iii) FTO/BiVO4/PEDOT:PSS in aqueous electrolyte. Almost 5 times higher photocurrent in electrolyte containing hole scavenger was generated after modification of BiVO4 photoanode with electrodeposited polymer. It is noteworthy that anodic photocurrent was stable even after 4 h of illumination. Cyclic voltammetry curves of FTO/BiVO4/PEDOT:PSS recorded before and after experiments performed under electrode illumination indicated that the organic part in tested junction is photo-corrosion resistant.

  18. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  19. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    NASA Astrophysics Data System (ADS)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  20. The synergy of corrosion and fretting wear process on Inconel 690 in the high temperature high pressure water environment

    NASA Astrophysics Data System (ADS)

    Wang, Zihao; Xu, Jian; Li, Jie; Xin, Long; Lu, Yonghao; Shoji, Tetsuo; Takeda, Yoichi; Otsuka, Yuichi; Mutoh, Yoshiharu

    2018-04-01

    The synergistic effect of corrosion and fretting process of the steam generator (SG) tube was investigated by using a self-designed high temperature test rig in this paper. The experiments were performed at 100°C , 200°C and 288°C , respectively. The fretting corrosion damage was studied by optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Raman spectroscopy and auger electron spectroscopy (AES). The results demonstrated that the corrosion process in high temperature high pressure (HTHP) water environment had a distinct interaction with the fretting process of Inconel 690. With the increment of temperature, the damage mechanism changed from a simple mechanical process to a mechanochemical process.

  1. Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.

    PubMed

    Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John

    2017-08-01

    A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .

  2. Degassing processes at Stromboli volcano inferred from short-lived disequilibria ( 210Pb- 210Bi- 210Po) in volcanic gases

    NASA Astrophysics Data System (ADS)

    Gauthier, P.-J.; Le Cloarec, M.-F.; Condomines, M.

    2000-10-01

    Volcanic aerosols and gases released by three active craters at Stromboli volcano have been regularly collected since 1985. In this paper, we present new evidence of the high volatility of some nuclides among radon daughters (210Pb, 210Bi and 210Po), which are strongly fractionated, leading to significant radioactive disequilibria in volcanic exhalations. The very low volcanic activity in October 1996 allowed a separate sampling of each crater plume for the first time; remote sampling of the bulk plume were also performed. These data show that the chemical composition of volcanic aerosols remains constant within the first few hundred meters from their source vents, ensuring the validity of remote sampling when the activity does not allow one to approach the active craters. Moreover, it appears that there is no differentiation of gases from one crater to another suggesting that the geometry of the upper plumbing system of the volcano is rather simple, gases being directly emitted from a shallow magma chamber without significant cooling inside the edifice. On the basis of the assumption of a continuously replenished shallow magma reservoir in steady state, we propose a dynamic model of degassing accounting for the variations of radionuclide contents and ratios observed in the gas phase since 1985. This model allows us to relate these variations to changes in the magma chamber dynamics, namely the magma residence time inside the chamber and the escape time of gases from it, both parameters being closely linked to the volcanic activity. While gases are always emitted within a few hours after bubble nucleation, suggesting that the chamber is no deeper than a few hundred meters, magma residence time varies from less than 20 days during eruptive periods (highly explosive or effusive periods) to more than 200 days before the 1985 eruption. The latter figure is explained by the storage at shallow depth of a poorly renewed magma batch that fed the eruption. The variations of

  3. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  4. Nitric acid measurements in connection with corrosion studies

    NASA Astrophysics Data System (ADS)

    Ferm, Martin; De Santis, Franco; Varotsos, Costas

    Atmospheric nitric acid does not only contribute to acidification and eutrophication but causes also deterioration of many materials. Material belonging to our cultural heritage is irreplaceable and its lifetime can depend on the corrosion rate. Nowadays, only very few long-term measurements of nitric acid concentration in Europe and elsewhere have been published so far. Due to the fact that atmospheric corrosion is a long-term effect, the relevant research does not necessarily require monitoring of nitric acid on a daily basis. Moreover, power supply is often not available at sites where it is of interest to study the corrosion rate of objects belonging to our cultural heritage. Besides, such measurements must not disturb the impression of the objects. In this context, the diffusive sampling technique provides average concentrations over long-term periods at a low cost. In addition, the samplers used are noiseless, comparatively small in size, and thus, their ambient exposure can be made inconspicuously and with discretion. The present paper is focussed on an intensive corrosion study, which was performed at 11 rural and 23 urban sites in Europe and one rural site in Canada during 2002/2003. For the above-mentioned reasons, the diffusive sampler's technique was employed for the nitric acid monitoring, where the diffusive samplers were first tested against the denuder technique and bi-monthly measurements of nitric acid were thus obtained. The bi-monthly concentrations varied from 0.05 to 4.3 μg m -3 and the annual averages from 0.16 to 2.0 μg m -3. The observations collected, depicted a summertime maximum and a wintertime minimum in the nitric acid concentrations, except at the northern rural sites, where a maximum in the winter was observed. Furthermore, the observed nitric acid concentrations in Southern Europe were higher than in Northern Europe. In a few places, close to the sites of urban measurements, rural measurements of nitric acid were also performed

  5. Anoxic Corrosion of Steel and Lead in Na - Cl ± Mg-Dominated Brines in Atmospheres Containing CO2

    NASA Astrophysics Data System (ADS)

    Roselle, G. T.; Johnsen, S.; Allen, C.; Roselle, R.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geologic repository developed by the U.S. Department of Energy for the disposal of transuranic radioactive waste in bedded salt (Permian Salado Fm.). In order to minimize radionuclide release from the repository it is desirable to maintain these species in their least-soluble form (i.e., low oxidation states). Post-closure conditions in the WIPP will control the speciation and solubility of radionuclides in the waste. Microbially-produced CO2 from cellulosic, plastic and rubber materials in the waste may acidify any brine present and increase the actinide solubilities. Thus, the DOE emplaces MgO in the repository to buffer fCO2 and pH within ranges favoring lower actinide solubilities. Large quantities of low-C steel and Pb present in the WIPP may also consume CO2. We present initial results from a series of multiyear experiments investigating the corrosion of steel and Pb alloys under WIPP-relevant conditions. The objective is to determine the extent to which these alloys consume CO2 via the formation of carbonates or other phases, potentially supporting MgO in CO2 sequestration. In these experiments steel and Pb coupons are immersed in brines under WIPP-relevant conditions using a continuous gas flow-through system. The experimental apparatus maintains the following conditions: pO2 < 5 ppm; temperature of 26 °C; relative humidity at 78%±10%; and a range of pCO2 values (0, 350, 1500 and 3500 ppm, balance N2). Four high-ionic-strength-brines are used: Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine associated with the Salado Fm.; Energy Research and Development Administration WIPP Well 6 (ERDA-6), a predominately Na-Cl brine; GWB with organic ligands (EDTA, acetate, citrate, and oxalate); and ERDA-6 with the same organic ligands. Steel coupons removed after 6 months show formation of several phases dependent on the pCO2. SEM analysis with EDS shows the presence of a green Fe (±Mg)-chlori-hydroxide phase at p

  6. 270GHz SiGe BiCMOS manufacturing process platform for mmWave applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Preisler, Edward J.; Talor, George; Yan, Zhixin; Booth, Roger; Zheng, Jie; Chaudhry, Samir; Howard, David; Racanelli, Marco

    2011-11-01

    TowerJazz has been offering the high volume commercial SiGe BiCMOS process technology platform, SBC18, for more than a decade. In this paper, we describe the TowerJazz SBC18H3 SiGe BiCMOS process which integrates a production ready 240GHz FT / 270 GHz FMAX SiGe HBT on a 1.8V/3.3V dual gate oxide CMOS process in the SBC18 technology platform. The high-speed NPNs in SBC18H3 process have demonstrated NFMIN of ~2dB at 40GHz, a BVceo of 1.6V and a dc current gain of 1200. This state-of-the-art process also comes with P-I-N diodes with high isolation and low insertion losses, Schottky diodes capable of exceeding cut-off frequencies of 1THz, high density stacked MIM capacitors, MOS and high performance junction varactors characterized up to 50GHz, thick upper metal layers for inductors, and various resistors such as low value and high value unsilicided poly resistors, metal and nwell resistors. Applications of the SBC18H3 platform for millimeter-wave products for automotive radars, phased array radars and Wband imaging are presented.

  7. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.

    Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They range from 8He up to 150La . Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A = 150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N = 126 , in order to guide theoretical models and help understand the formation of the third r-process peak at A ~ 195. Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bimore » isotopes beyond N = 126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β-decay half-lives are reported for 204-206Au, 208 – 211Hg, 211 – 216Tl , 215 – 218Pb, and 218 – 220Bi, nine of them for the first time. Neutron emission probabilities are reported for 210, 211Hg and 211 – 216Tl . Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this region. Lastly, the measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).« less

  8. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126

    DOE PAGES

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; ...

    2017-06-23

    Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They range from 8He up to 150La . Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A = 150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N = 126 , in order to guide theoretical models and help understand the formation of the third r-process peak at A ~ 195. Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bimore » isotopes beyond N = 126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β-decay half-lives are reported for 204-206Au, 208 – 211Hg, 211 – 216Tl , 215 – 218Pb, and 218 – 220Bi, nine of them for the first time. Neutron emission probabilities are reported for 210, 211Hg and 211 – 216Tl . Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this region. Lastly, the measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).« less

  9. Positive current collector for Li||Sb-Pb liquid metal battery

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Sadoway, Donald R.

    2017-07-01

    Corrosion in grid-scale energy storage devices adversely affects service lifetime and thus has a significant economic impact on their deployment. In this work, we investigate the corrosion of steel and stainless steels (SSs) as positive current collectors in the Li||Sb-Pb liquid metal battery. The erosion and formation of new phases on low-carbon steel, SS301, and SS430 were evaluated both in static conditions and under cell operating conditions. The cell performance is not adversely affected by the dissolution of iron or chromium but rather nickel. Furthermore, the in situ formation of a Fe-Cr-Sb layer helps mitigate the recession of SS430.

  10. Investigation of Pb Li compatibility issues for the dual coolant blanket concept

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Moser, J. L.; Tortorelli, P. F.

    2007-08-01

    One proposed blanket concept uses advanced ferritic alloys and a SiC/SiC composite flow channel insert with both Pb-17 at.%Li and He coolants. As the first step in determining the long-term compatibility of SiC/SiC in Pb-Li, specimens of high-purity, chemical vapor deposited (CVD) SiC were exposed in capsules for up to 5000 h at 800 °C and 1000 h at 1200 °C. Dissolved Si was detected in the Pb-Li after the highest temperature exposures suggesting that SiC may be limited to <1100 °C in Pb-Li. Aluminide coatings are being considered for corrosion resistant coatings for the tubing between the first wall and the heat exchanger. Initial results indicate that, in Pb-Li at 700 °C, FeCrAl, Fe 3Al and NiAl form a protective alumina layer which reduces dissolution compared to type 316 stainless steel.

  11. Percolation effect in thick film superconductors: Using a Bi(Pb)SrCaCuO based paste to prepare a superconducting planar transformer

    NASA Technical Reports Server (NTRS)

    Sali, Robert; Harsanyi, Gabor

    1995-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  12. Long-range ordering in the Bi 1-xAe xFeO 3-x/2 perovskites: Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75

    NASA Astrophysics Data System (ADS)

    Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M.

    2008-10-01

    Two-ordered perovskites, Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a≈ b≈2 ap and c≈3 ap (S.G.: Pb2 n or Pbmn) for the Sr-based compound and one with a≈ b≈2 ap and c≈8 ap (S.G.: B222, Bmm2, B2 mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeO x] ∞ layer, suggesting that Bi 1/3Sr 2/3FeO 2.67 and Bi 1/2Ca 1/2FeO 2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi 1/3Sr 2/3FeO 2.67 and a smooth reversible transition between 590 and 650 K for Bi 1/2Ca 1/2FeO 2.75.

  13. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Wei; Wang, Tsang-Hsiu; Chan, Tsung-Cheng; Chen, Pei-Ju; Chung, Chih-Chun; Yaghoubi, Alireza; Liao, Chien-Neng; Diau, Eric Wei-Guang; Chueh, Yu-Lun

    2014-06-01

    Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1.12% efficiency of quantum dot-sensitized solar cells with Bi2Te3 NSAs for counter electrode has been demonstrated, indicating that Bi2Te3 NSAs from top-down processing with a high ratio of surface area to volume are a promising candidate for possible applications such as thermoelectrics, dye-sensitized solar cells (DSSCs), and lithium-ion batteries.Nanolizing of thermoelectric materials is one approach to reduce the thermal conductivity and hence enhance the figure of merit. Bismuth telluride (Bi2Te3)-based materials have excellent figure of merit at room temperature. For device applications, precise control and rapid fabrication for the nanostructure of thermoelectric materials are essential issues. In the present study, we demonstrate a one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of bulk Bi2Te3 with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ m, respectively. The formation mechanism of NSAs has been proposed. A 1

  14. Structural, vibrational and dielectric studies of (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Dwivedi, R. K., E-mail: rk.dwivedi@jiit.ac.in

    2014-04-24

    (0.95)Pb(Zr{sub x}Ti{sub 1−x})O{sub 3}-(0.05)BiFeO{sub 3} nanoceramics with x=0.51, 0.53 and 0.55 were synthesized by sol-gel route. Rietveld refined X-ray powder diffraction pattern of the samples confirm the single phase formation of compounds with tetragonal structure (P4mm). FT-IR studies revealed that slight shift of phonon modes towards the lower wave number and increase in the bond length with increasing Zr{sup 4+} concentration. Room temperature dielectric properties of system revealed that relaxor characteristics of these samples. Ferroelectric hysteresis curve shows the decrease in polarization values with Zr concentration.

  15. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    PubMed

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  16. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times

    PubMed Central

    Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. PMID:27907163

  17. Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Wei

    Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism

  18. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    NASA Astrophysics Data System (ADS)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  19. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  20. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.

    PubMed

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-09

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  1. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance

    PubMed Central

    Salahshoor, Meisam; Guo, Yuebin

    2012-01-01

    Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized. PMID:28817036

  2. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane

    2016-01-01

    Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.

  3. Texturation à froid sous contraintes triaxiales de phase à haute T_c de Bi(Pb)SrCaCuO préréagie

    NASA Astrophysics Data System (ADS)

    Langlois, P.; Massat, H.; Suryanarayanan, R.

    1994-11-01

    The alignment of grains in isostatically precompacted samples of prereacted Bi{1,8}Pb{0,4}Sr{2,0}Ca{2,2}Cu{3,0}O{10,3 + x} powder has been achieved by compressive plastic deformation under isostatic pressure at room temperature. Isostatic pressures were in the range 0.1 to 1 GPa and deformation rates were led up to 57 %. Prior to sintering, X-ray diffraction measurements corroborate an expected high- T_c phase purity of nearly 85 % and indicate that the as-deformed samples have been textured with the (c-axes parallel to the pressing direction whilst a.c. susceptibility measurements ascertain a high transition temperature around 107 K. Intergranular connection does not occur until sintering at 850 ^{circ}C for 80 h and measurements indicate then that the texture has been retained. Superconducting properties themselves show sensitivity to texture through anisotropy-related distinctive irreversibility lines. L'alignement de grains de poudre Bi{1,8}Pb{0,4}Sr{2,0}Ca{2,2}Cu{3,0}O{10,3 + x} préréagie a été réalisé par déformation plastique à température ambiante d'échantillons précompactés isostatiquement et comprimés sous pression isostatique, la gamme des pressions isostatiques allant de 0,1 à 1 GPa et les taux de déformation atteignant 57 %. Les mesures de diffraction de rayons X corroborent la pureté de phase à haute T_c proche de 85 % attendue et indiquent que les échantillons ainsi déformés ont été texturés avec les plans ab perpendiculaires à la direction de compression. Les mesures de susceptibilité alternative avèrent une température élevée de transition à environ 107 K mais la connexion intergranulaire n'est assurée qu'après un frittage à 850 ^{circ}C pendant 80 h dont on vérifie qu'il conserve la texture. Enfin, la sensibilité des propriétés supraconductrices à la texturation est évaluée par le biais de lignes d'irréversibilité distinctes en fonction de l'anisotropie.

  4. Diffusive-like effects and possible non trivial local topology on the half-Heusler YPdBi compound

    NASA Astrophysics Data System (ADS)

    Souza, J. C.; Lesseux, G. G.; Urbano, R. R.; Rettori, C.; Pagliuso, P. G.

    2018-05-01

    The non-ambiguous experimental identification of topological states of matter is one of the main interesting problems regarding this new quantum state of matter. In particular, the half-Heusler family RMT (R = rare-earth, T = Pd, Pt or Au and T = Bi, Sb, Pb or Sn) could be a useful platform to explore these states due to their cubic symmetry and the topological properties tunable via their unit cell volume and/or the nuclear charges of the M and T atoms. In this work, we report electron spin resonance (ESR) and complementary macroscopic measurements in the Nd3 + -doped putative topologically trivial semimetal YPdBi. Following the Nd3 + ESR lineshape as a function of microwave power, size of the particle and temperature, we have been able to observe an evolution from a Dysonian lineshape to a diffusive-like lineshape. Furthermore, the Nd3 + ESR intensity saturation is concentration dependent, which could be due to a phonon-bottleneck process. Comparing these results with the Nd3 + -doped YPtBi, we discuss a possible scenario in which the Nd3 + ions could locally tune the topological properties of the system.

  5. Current understanding of structure-processing-property relationships in BaTiO 3-Bi( M)O 3 dielectrics

    DOE PAGES

    Beuerlein, Michaela A.; Kumar, Nitish; Usher, Tedi -Marie; ...

    2016-09-01

    Here, as part of a continued push for high permittivity dielectrics suitable for use at elevated operating temperatures and/or large electric fields, modifications of BaTiO 3 with Bi( M)O 3, where M represents a net-trivalent B-site occupied by one or more species, have received a great deal of recent attention. Materials in this composition family exhibit weakly coupled relaxor behavior that is not only remarkably stable at high temperatures and under large electric fields, but is also quite similar across various identities of M. Moderate levels of Bi content (as much as 50 mol%) appear to be crucial to themore » stability of the dielectric response. In addition, the presence of significant Bi reduces the processing temperatures required for densification and increases the required oxygen content in processing atmospheres relative to traditional X7R-type BaTiO 3-based dielectrics. Although detailed understanding of the structure–processing–property relationships in this class of materials is still in its infancy, this article reviews the current state of understanding of the mechanisms underlying the high and stable values of both relative permittivity and resistivity that are characteristic of BaTiO 3-Bi( M)O 3 dielectrics as well as the processing challenges and opportunities associated with these materials.« less

  6. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    NASA Astrophysics Data System (ADS)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  7. Polyethylene imine-grafted ACF@BiOI0.5Cl0.5 as a recyclable photocatalyst for high-efficient dye removal by adsorption-combined degradation

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Li, Najun; Chen, Dongyun; Xu, Qingfeng; Lu, Jianmei

    2017-05-01

    A recyclable photocatalyst with adsorption property was prepared for high-efficient complete removal of anionic dyes from water by synergetic adsorption and photocatalytic degradation. Firstly, binary bismuth oxyhalide composed as BiOI0.5Cl0.5 was immobilized on activated carbon fibers (ACF) to get a recyclable photocatalyst (ACF@BiOI0.5Cl0.5) via one-step solvothermal method. Then it was modified with branched polyethylene imine (PEI) whose abundant amino groups can adsorb contaminants from water by electrostatic interaction. SEM images showed that the nanosheets-based flower-like photocatalytic microspheres uniformly distributed on the ACF surface after grafting of small amount of PEI. But from TGA results we can deduce that the percentage of PEI grafted onto ACF@BiOI0.5Cl0.5 is about 18 wt%. During the synergistic process, the grafted PEI and immobilized BiOI0.5Cl0.5 are worked as the adsorbent and the photocatalyst, respectively. In addition, ACF, as flexible, conductive and corrosion-resistant supports, are beneficial to the photocatalytic degradation process. So the obtained composite PEI-g-ACF@BiOI0.5Cl0.5 has a high removal efficiency of contaminants under visible light irradiation with the synergistic effect of adsorption and photocatalytic degradation. And after facial separation without centrifuge, it can be reused without regeneration because of the real-time complete degradation of the adsorbed contaminants on the surface of the composite photocatalyst.

  8. High-performance Ti/Sb-SnO(2)/Pb(3)O(4) electrodes for chlorine evolution: preparation and characteristics.

    PubMed

    Shao, Dan; Yan, Wei; Cao, Lu; Li, Xiaoliang; Xu, Hao

    2014-02-28

    Chlorine evolution via electrochemical approach has wide application prospects in drinking water disinfection and wastewater treatment fields. Dimensional stable anodes used for chlorine evolution should have high stability and adequate chlorine evolution efficiency. Thus a novel and cost-effective Ti/Sb-SnO(2)/Pb(3)O(4)electrode was developed. The physicochemical and electrochemical properties as well as the chlorine evolution performances of the electrodes were investigated. The electrocatalytic activity and deactivation course of the electrodes were also explored. Results showed that this novel electrode had strong chlorine evolution ability with high current efficiency ranging from 87.3% to 93.4% depending on the operational conditions. The accelerated service life of Ti/Sb-SnO(2)/Pb(3)O(4) electrode could reach 180 h at a current density of 10,000 A m(-2) in 0.5 molL(-1) H(2)SO(4). During the electrolysis process, it was found that the conversion of Pb(3)O(4) into β-PbO(2) happened gradually on the electrode surface, which not only inhibited the leakage of hazardous Pb(2+) ion but also increased the anti-corrosion capacity of the electrode effectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range.

    PubMed

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  10. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  11. Growth structure and superconductivity of Bi1.7Bi0.3Sr2Ca2Cu3O10+δ ceramics synthesized from glass-crystal precursors processed in solar type ovens

    NASA Astrophysics Data System (ADS)

    Acrivos, J. V.; Gulamova, D. D.; Chigvinadze, J. G.; Loy, D.

    2010-03-01

    The growth structure as well as the superconductivity of Bi/Pb2223 alloys is reported. Periodic lattice distortions (PLD) along the ab plane diagonal, direction of superconducting transport at the transition temperature, Tc=107K are found to dominate the growth. Trransport induced by the PLD may be responsible for the sharp Tc transitions, and the bursts of frequency and Abrikosov oscillations observed above the transition temperature up to 150K. Chemical synthesis in a heliostat oven was followed by fast quenching of the melt and annealing at 840-850K, XRD near the Cu K-edge, and Tc measured by axial-torsional vibrations in transverse magnetic fields. Tc and phaase purity obtained by green solid state chemistry, in a solar spectrum, will be discussed.

  12. Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.

    PubMed

    Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong

    2016-09-01

    A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  15. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  16. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  17. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  18. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  19. Control of PbI2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

    NASA Astrophysics Data System (ADS)

    Yang, Chongqiu; Peng, Yanke; Simon, Terrence; Cui, Tianhong

    2018-04-01

    Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI2) solution deposition process. We conclude that the quality of the PbI2 film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI2 spin coating procedure can increase supersaturation concentration to form denser PbI2 nuclei and a more suitable PbI2 film. Moreover, airflow-assisted PbI2 drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.

  20. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  1. The Unexplored Domains of the s-Process

    NASA Astrophysics Data System (ADS)

    Roederer, Ian

    2016-10-01

    Understanding the origin of the elements is one of the major challenges of modern astrophysics. Abundance measurements in late-type stars are used to test nucleosynthesis models, and the models in turn reveal the nature of the progenitor star(s) that produced the metals observed today. Elements listed along the bottom two-thirds of the periodic table are produced by neutron-capture reactions, such as the r-process or s-process. Previous studies have expanded the chemical inventory of individual r-process-enhanced stars to >50 elements per star. Here, we propose to do the same for an s-process-enhanced star.We propose new high-resolution STIS/E230H observations (2024-2301 Angstroms) of the star HD 196944, the UV-brightest s-process-enhanced metal-poor star in the sky. Lines of Se I, Mo II, Cd I, Cd II, Sn I, Sb I, Te I, Yb II, W II, Re II, Os II, Pt I, Pb II, and Bi I should be detectable in these observations because of the high spectral resolution and S/N. No star offers the opportunity to simultaneously detect all of these elements, and several of them could be detected for the first time. We will combine these NUV detections with optical detections to test many specific predictions of the s-process nucleosynthesis models in a way that has not been possible until now. This is particularly timely, for example, because s-process models have recently been shown to be uncertain at the termination point around Pb-Bi.

  2. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  3. A green preparation method of battery grade α-PbO based on Pb-O2 fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Pingyuan; Pan, Junqing; Gong, Shumin; Sun, Yanzhi

    2017-08-01

    In order to solve the problem of high pollution and high energy consumption of the current lead oxide (PbO) preparation processes, a new clean and energy saving preparation method for high purity α-PbO via discharge of a Pb-O2 fuel cell is reported. The fuel cell with metallic lead anode, oxygen cathode, and 30% NaOH electrolyte can provide a discharge voltage of 0.66-0.38 V corresponding to discharge current range of 5-50 mA cm-2. PbO is precipitated from the NaHPbO2-containing electrolyte through a cooling crystallization process after discharge process, and the XRD patterns indicate the structure is pure α-PbO. The mother liquid after crystallization can be recycled for the next batch. The obtained PbO mixed with 60% Shimadzu PbO is superior to the pure Shimadzu PbO in discharge capacity and cycle ability.

  4. Electromechanical properties of Na0.5Bi0.5TiO3-SrTiO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Svirskas, Šarūnas; Dunce, Marija; Birks, Eriks; Sternberg, Andris; Banys, Jūras

    2018-03-01

    Thorough studies of electric field-induced strain are presented in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 (NBT-ST-PT) ternary solid solutions. The increase of concentration of lead x induces crossover from relaxor to ferroelectric. Strain in a relaxor state can be described by electrostrictive behavior. The electrostrictive coefficients correspond to other well-known relaxor ferroelectrics. The concentration region with a stable ferroelectric phase revealed that the polarization dependence of strain does not exhibit nonlinearity, although they are inherent to the electric field dependence of strain. In this case, electric field dependence of strain is described in terms of the Rayleigh law and the role of domain wall contribution is extracted. Finally, the character of strain at the electric field-induced phase transition between the nonpolar and the ferroelectric states is studied. The data shows that in the vicinity of the electric field induced phase transition the strain vs. electric field displays electrostrictive character.

  5. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  6. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  7. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  8. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  9. Theoretical investigation of the magnetoelectric properties of Bi2NiTiO6

    NASA Astrophysics Data System (ADS)

    Patra, Lokanath; Ravindran, P.

    2018-04-01

    We report the first principle investigations on the structural, electronic, magnetic and ferroelectric properties of a Pb free double perovskite multiferroic Bi2NiTiO6 using density functional theory within the general gradient approximation (GGA) and GGA+U method. Our results show that Bi2NiTiO6 will be an insulator with G-type magnetic ordering in its ground state with Ni2+ in a high spin state and a spin moment of 1.741μB. The paraelectric phase stabilizes in nonmagnetic state with Ni2+ in low spin configuration showing that spin state transition plays an important role in strong magnetoelectric coupling in Bi2NiTiO6. The bonding characteristics of the constituents are analyzed with the help of partial density of states and Born effective charges. The presence of Ti ions at Ni sites suppresses the disproportionation observed in case of BiNiO3 and results in a noncentrosymmetric crystal structure. The coexistence of Bi 6s lone pair and Ti4+ d0 ions which brings covalency produces a polarization of 32 µCcm-2.

  10. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  11. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    PubMed

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  12. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    PubMed Central

    Hosseinpour, Saman; Johnson, Magnus

    2017-01-01

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm. PMID:28772781

  13. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  14. Speciation And Distribution Of Vanadium In Drinking Water Iron Pipe Corrosion By-Products

    EPA Science Inventory

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 µg L-1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+

  15. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    PubMed

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).

    PubMed

    Weijma, Jan; De Hoop, Klaas; Bosma, Wobby; Dijkman, Henk

    2002-01-01

    Lead paste, a solid mixture containing PbSO(4), PbO(2), PbO/Pb(OH)(2) precipitate, and elemental Pb, is one of the main waste fractions from spent car batteries. Biological sulfidation represents a new process for recovery of lead from this waste. In this process the lead salts in lead paste are converted to galena (PbS) by sulfate-reducing bacteria. This paper investigates a continuous process for sulfidation of anglesite (PbSO(4)), the main constituent of lead paste, and lead paste, consisting of a laboratory-scale gas-lift bioreactor to which a slurry of anglesite or lead paste was supplied. Sulfate or elemental sulfur was added as an additional sulfur source. Hydrogen gas served as an electron donor for the biological reduction of sulfate and elemental sulfur to sulfide by sulfate- and sulfur-reducing bacteria. Anglesite was almost completely converted to galena at a loading rate of 19 kg of PbSO(4) m(-)(3) day(-)(1), producing a sludge of which the crystalline lead phases consisted of >98% PbS (galena) and 1-2% elemental Pb. With lead paste, stable sulfidation rates of up to 17 kg of lead paste m(-)(3) day(-)(1) were demonstrated, producing a sludge of which the crystalline lead phases consisted of an estimated >96% PbS, 1-2% elemental Pb, and 1-2% PbO(2).

  17. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  18. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph

    PubMed Central

    Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J.; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M. Lourdes

    2016-01-01

    The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450–667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a –Bi–O–Bi– continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases. PMID:27996042

  19. Investigation on the influence of nitrogen in process atmospheres on the corrosion behavior of brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Uhlig, T.; Wagner, G.; Langohr, A.; Holländer, U.

    2018-06-01

    Brazing of stainless steels is commonly carried out using nickel-based brazing fillers, which provide a high corrosion and oxidation resistance of the resulting joints. These brazed stainless steel joints are mostly used for manufacturing of heat exchangers for energy and air conditioning technologies. The joints of the study were produced at temperatures of 1000 °C, 1125 °C and 1150 °C in vacuum furnaces or continuous furnaces. In both cases, the parts interact with process gases like nitrogen within the brazing process, especially during cooling. The amount of nitrogen in the braze metal as well as in the base material was determined by the carrier gas hot extraction technique. The occurring diffusion of nitrogen into the braze metal and the base material causes a shift in the corrosion potentials. In this work, the influence of the nitrogen enrichment on the corrosion behavior was investigated using a capillary microcell. The corrosion measurements were carried out on the braze metal and the base material. The results of samples, brazed with and without the influence of nitrogen, were compared.

  20. Influence of nitrogen immersion on the mechanical properties of (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite

    NASA Astrophysics Data System (ADS)

    Rahal, H. T.; Awad, R.; Abdel-Gaber, A. M.

    2018-05-01

    (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite, where 0.0 ≤ x ≤ 0.2 wt%., were prepared using solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). Vickers microhardness measurements (HV) were carried out at room temperature under different applied loads varying from 0.49 to 9.8 N, and dwell times (40 and 59 s). It was noted that dwell time and Vickers microhardness were inversely proportional. HV values increase as x increases up to 0.1 wt%, and then they decrease with further increases in x. All samples exhibit indentation size effect (ISE) with normal trend, as Vickers microhardness decreases by increasing the applied loads. Also, Vickers microhardness measurements of the prepared samples were done during both loading forces up to 9.8 N and unloading downwards to 0.49 N. It was noted that unloading values of Vickers microhardness are slightly greater than loading values. The elastic/plastic deformation model (EPD) was used to interpret the loading and unloading Vickers microhardness results. It is clearly noted that values of do, the added elastic component the measured plastic indentation semi-diagonal (d),in the unloading results are much higher than those for loading data. The effect of liquid nitrogen immersion for 16 h on Vickers microhardness values was examined. A significant improvement in the Vickers microhardness of (Bi, Pb)-2223 samples immersed in liquid nitrogen was observed. Such behavior is attributed to the fact that nitrogen immersion increases the volume contraction of the superconductor matrix, causing the shrink of the pores and voids present in the samples. Different models were used to analyze the obtained results such as Meyer's law, Hays-Kendall (HK) approach, elastic/plastic deformation (EPD) model, and modified proportional specimen resistance (MPSR) model. The experimental results of Vickers microhardness

  1. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  2. Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light

    NASA Astrophysics Data System (ADS)

    Lahmar, H.; Benamira, M.; Akika, F. Z.; Trari, M.

    2017-11-01

    The CuBi2O4/TiO2 heterojunction was tested with success for the photo-catalytic reduction of chromate ions under sunlight. CuBi2O4, prepared by nitrate process, was characterised photo-electrochemically. The oxide is stable against photo corrosion by consumption of holes in presence of oxalic acid. The light absorption promotes electrons in the conduction band of the sensitizer (CuBi2O4) with a very negative potential (-1.74 VSCE) to participate in the exchange of the electron with HCrO4-. The enhanced activity is due to electron injection of activated CuBi2O4 into TiO2-CB (-0.97 VSCE). The band gap of the semiconductor CuBi2O4 is 1.50 eV with a direct optical transition. This compound is a p-type semiconductor with a flat band potential of -0.39 VSCE and activation energy of 0.18 eV. The electrochemical impedance spectroscopy was undertaken to study the semiconductor/electrolyte interfacial phenomena. The photoactivity on the heterojunction is strongly enhanced. A remarkable performance is obtained in less than 4 h for a concentration of 30 mg in (Cr (VI)) at pH ∼ 4 and a dose of 1 mg/mL; a 98% reduction has been obtained. The kinetic of chromate photoreduction is well described by the Langmuir-Hinshelwood model. The chromate elimination obeys to a pseudo-first order kinetic with an apparent rate constant of 0.014 min-1.

  3. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  4. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  5. Development of Low-Cost Remote-Control Generators Based on BiTe Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Juanicó, Luis E.; Rinalde, Fabián; Taglialavore, Eduardo; Molina, Marcelo

    2013-07-01

    This paper presents a new thermogenerator based on moderate-temperature (up to 175°C) BiTe modules available on the open market. Despite this handicap relative to commercial thermogenerators based on high-temperature proprietary-technology PbBi modules (up to 560°C), this new design may become economically competitive due to its innovative thermal sink. Our thermal sink is based on a free-convection water loop built with standard tubing and household hot-water radiators, leading to a more practical, modular design. So, the specific cost of about 55,000 USD/kW obtained for this 120-W prototype is improved to 33,000 USD/kW for a 1-kW unit, which represents about half the price of commercial thermogenerators. Moreover, considering recently launched BiTe modules (that withstand up to 320°C), our proposition could have an even more favorable outlook.

  6. Zero Thermal Expansion and Semiconducting Properties in PbTiO3-Bi(Co, Ti)O3 Ferroelectric Solid Solutions.

    PubMed

    Pan, Zhao; Chen, Jun; Jiang, Xingxing; Lin, Zheshuai; Zhang, Linxing; Fan, Longlong; Rong, Yangchun; Hu, Lei; Liu, Hui; Ren, Yang; Kuang, Xiaojun; Xing, Xianran

    2017-03-06

    Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Until now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in a semiconducting ferroelectric of 0.6PbTiO 3 -0.4Bi(Co 0.55 Ti 0.45 )O 3-δ . Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied by negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ion (Ti 3+ ) to another (Ti 4+ ). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relatively lower band gap (E g ) value of 1.5 eV, while the ferroelectric property can be well-maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. The present multifunctional material containing ZTE, semiconducting, and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.

  7. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    DTIC Science & Technology

    2016-06-01

    Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC

  8. The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate.

    PubMed

    Lytle, Darren A; Schock, Michael R; Scheckel, Kirk

    2009-09-01

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 degrees C, pH 7.75-8.1, 3 mg Cl2/L goal), Pb(IV) oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb5(PO4)3OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb5(PO4)3Cl, could not be ruled out The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.

  9. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    PubMed

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  11. Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II).

    PubMed

    Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-09-21

    An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.

  12. Characterisation of the aqueous corrosion process in NdFeB melt spun ribbon and MQI bonded magnets

    NASA Astrophysics Data System (ADS)

    McCain, Stephen

    A major factor limiting the use and longevity of rare earth based magnetic materials is their susceptibility to aqueous corrosion and associated detrimental effects upon the magnetic properties of the material. This process was investigated through a combination of exposure to simulated environmental conditions and hydrogen absorption/desorption studies (HADS) in conjunction with magnetic characterisation. This study utilises NdFeB MQP-B melt-spun ribbon manufactured by Magnequench, in the form of MQI bonded magnets and also in its unbonded state as MQ powder. Specifically, it was concerned with how effective a variety of bonding media (epoxy resin,PTFE, zinc) and surface coatings (PTFE, Qsil, zinc LPPS, Dex-Cool) were at limiting the impact of aqueous corrosion in MQI bonded magnets. To characterise the effect of hydrogen absorption upon the magnetic properties of the MQP-B, hydrogen uptake was induced followed by a series of outgassing heat treatments with subsequent magnetic characterisation accompanied by HADS techniques performed after each outgas. This allowed comparisons to be made between the effects of aqueous corrosion process and hydrogen absorption upon the magnetic properties of the alloy.. This study has clearly demonstrated the link between the abundance of environmental moisture and rate of Hci losses in MQI bonded magnets. In addition to this the key mechanism responsible for the degradation of magnetic properties has been identified. These losses have been attributed to the absorption of hydrogen generated by the dissociation of water in the presence of NdFeB during the aqueous corrosion process. It has been shown that the use of a bonding media that is impermeable to water can limit the effects of aqueous corrosion by limiting water access to the Magnequench particles (MQP) and also the positive effects of the use of suitable surface coatings has been shown to be effective for the same reason..

  13. All-Ambient Processed Binary CsPbBr3-CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs-Pb-Br-Based Solar Cells.

    PubMed

    Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Bai, Dongliang; Bian, Hui; Wang, Kang; Sun, Jie; Wang, Qian; Liu, Shengzhong Frank

    2018-02-28

    All-inorganic CsPbBr 3 perovskite solar cells display outstanding stability toward moisture, light soaking, and thermal stressing, demonstrating great potential in tandem solar cells and toward commercialization. Unfortunately, it is still challenging to prepare high-performance CsPbBr 3 films at moderate temperatures. Herein, a uniform, compact CsPbBr 3 film was fabricated using its quantum dot (QD)-based ink precursor. The film was then treated using thiocyanate ethyl acetate (EA) solution in all-ambient conditions to produce a superior CsPbBr 3 -CsPb 2 Br 5 composite film with a larger grain size and minimal defects. The achievement was attributed to the surface dissolution and recrystallization of the existing SCN - and EA. More specifically, the SCN - ions were first absorbed on the Pb atoms, leading to the dissolution and stripping of Cs + and Br - ions from the CsPbBr 3 QDs. On the other hand, the EA solution enhances the diffusion dynamics of surface atoms and the surfactant species. It is found that a small amount of CsPb 2 Br 5 in the composite film gives the best surface passivation, while the Br-rich surface decreases Br vacancies (V Br ) for a prolonged carrier lifetime. As a result, the fabricated device gives a higher solar cell efficiency of 6.81% with an outstanding long-term stability.

  14. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    PubMed

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  15. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    PubMed

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  16. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM

    PubMed Central

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-01-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr40,Ti60)O3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 1010 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method. PMID:27877349

  17. Magnetically recyclable Bi/Fe-based hierarchical nanostructures via self-assembly for environmental decontamination

    NASA Astrophysics Data System (ADS)

    Hu, Zhong-Ting; Chen, Zhong; Goei, Ronn; Wu, Weiyi; Lim, Teik-Thye

    2016-06-01

    Pristine bismuth ferrite usually possesses weak magnetic properties (e.g., saturation magnetization Ms < 3 emu g-1) for practical magnetic separation applications. Herein, a superparamagnetic bismuth ferrite with coral-like hierarchical morphology (BFO-M) was fabricated through methanol solvothermal treatment of the as-prepared Bi2Fe4O9 nanoclusters (P-BFO). The BFO-M shows a higher Ms of ~31 emu g-1 compared to that of P-BFO treated in water (BFO-A), in ethanol (BFO-E) and in ethylene glycol (BFO-G). Compared to single-crystalline Bi2Fe4O9 (PS) and Bi2Fe4O9 clusters (NSP), BFO-M shows an excellent organic pollutant removal rate by virtue of its high adsorption capacity and catalytic activity when methyl orange (MO) is used as the model organic pollutant. BFO-M also exhibits good visible light photo-Fenton oxidation rates for pharmaceuticals and pesticides. Even at a low catalyst loading of 0.12 g L-1, the removal rate of organic pollutants (e.g., 5-fluorouracil, isoproturon) can be ~99% in 100 min under visible light irradiation. Besides, BFO-M is also a good adsorbent for different kinds of heavy metal ions (Pb(ii), Cr(iii), Cu(ii), As(v), etc.). For example, its maximal adsorption capacity for Pb(ii) is 214.5 mg g-1. The used BFO-M can be recovered via magnetic separation. The outstanding performances of BFO-M can be ascribed to its coral-like hierarchical morphology which consists of the self-assembly of 1D nanowires (~6 nm in diameter) and 2D ultrathin nanoflakes (~4.5 nm in thickness). A schematic illustration of its morphology formation is proposed.Pristine bismuth ferrite usually possesses weak magnetic properties (e.g., saturation magnetization Ms < 3 emu g-1) for practical magnetic separation applications. Herein, a superparamagnetic bismuth ferrite with coral-like hierarchical morphology (BFO-M) was fabricated through methanol solvothermal treatment of the as-prepared Bi2Fe4O9 nanoclusters (P-BFO). The BFO-M shows a higher Ms of ~31 emu g-1 compared to

  18. Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Masi, G.; Chiavari, C.; Avila, J.; Esvan, J.; Raffo, S.; Bignozzi, M. C.; Asensio, M. C.; Robbiola, L.; Martini, C.

    2016-03-01

    Gilded bronzes are often affected by severe corrosion, due to defects in the Au layer and Au/Cu alloy galvanic coupling, stimulated by large cathodic area of the gilded layer. Galvanic corrosion, triggered by gilding defects, leads to products growth at the Au/bronze interface, inducing blistering or break-up of the Au layer. In this context, fire-gilded bronze replicas prepared by ancient methods (use of spreadable Au-Hg paste) was specifically characterised by compiling complementary spectroscopic and imaging information before/after accelerated ageing with synthetic rain. Fire-gilded bronze samples were chemically imaged in cross-section at nano-metric scale (<200 nm) using high energy and lateral resolution synchrotron radiation photoemission (HR-SRPES) of core levels and valence band after conventional characterisation of the samples by Glow Discharge optical Emission Spectroscopy (GD-OES) and conventional X-ray photoelectron spectroscopy (XPS). We have found a net surface enrichment in Zn and Sn after fire-gilding and presence of metallic Hg, Pb and Cu within the Au layer. Moreover, the composition distribution of the elements together with their oxidation has been determined. It was also revealed that metallic phases including Hg and Pb remain in the gilding after corrosion. Moreover, selective dissolution of Zn and Cu occurs in the crater due to galvanic coupling, which locally induces relative Sn species enrichment (decuprification). The feasibility advantages and disadvantages of chemical imaging using HR-SRPES to study artworks have been investigated on representative replicas.

  19. Bi flux-dependent MBE growth of GaSbBi alloys

    DOE PAGES

    Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.; ...

    2015-03-05

    The incorporation of Bi in GaSb 1-xBi x alloys grown by molecular beam epitaxy is investigated as a function of Bi flux at fixed growth temperature (275 °C) and growth rate (1 μm h⁻¹). The Bi content is found to vary proportionally with Bi flux with Bi contents, as measured by Rutherford backscattering, in the range 0 < x ≤ 4.5%. The GaSbBi samples grown at the lowest Bi fluxes have smooth surfaces free of metallic droplets. The higher Bi flux samples have surface Bi droplets. The room temperature band gap of the GaSbBi epitaxial layers determined from optical absorptionmore » decreases linearly with increasing Bi content with a reduction of ~32 meV/%Bi.« less

  20. Synthesis of PbS/TiO2 nanocomposite materials using the sol-gel process via the incorporation of lead thiolates

    NASA Astrophysics Data System (ADS)

    Patel, Khushikumari

    PbS/TiO2 nanocomposites were prepared by two methods using the sol-gel process: a one step process and a multi-step process. The incorporation of 3-mercaptopropionic acid, followed by the addition of Pb2+ generated covalently incorporated lead thiolate precursors which can then be converted to PbS/TiO2 nanocomposites by controlled thermal decomposition. Various ratios of bifunctional linker to matrix were used to monitor the incorporation of functional groups of the ceramic matrix, and the sol-gel process was used to produce a high yield ceramic materials. This allows solutions to chemically bind and form solid state ceramics, while allowing complex compounds to combine with a high degree of homogeneity. 3-mercaptoproprionic acid, was added to the titania gel, and as a source of sulfur component to bind to the titania. PbS/TiO2 nanocomposites were studied using FTIR spectroscopy. The covalent bonding between PbS and the titania ceramics was also confirmed with the signal intensity in the infrared spectra. The success of the covalent bond between the thiolate and ceramics led to possibility of nanocomposites. X-ray diffraction was used analyze the structure of the nanocomposites X-ray diffraction results showed lead sulfide nanocrystals in the ceramic matrix as well as the size of the particles. The presence of crystalline PbS and particle size was determined using powder X-ray diffraction.

  1. Mn-Doped CaBi4Ti4O15/Pb(Zr,Ti)O3 Ultrasonic Transducers for Continuous Monitoring at Elevated Temperatures

    PubMed Central

    Kibe, Taiga; Nagata, Hajime

    2017-01-01

    Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910

  2. Vibrational contributions to the phase stability of PbS-PbTe alloys

    NASA Astrophysics Data System (ADS)

    Doak, Jeff W.; Wolverton, C.; OzoliĆš, Vidvuds

    2015-11-01

    The thermoelectric figure of merit (Z T ) of semiconductors such as PbTe can be improved by forming nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-rich nanostructures to precipitate from the solid solution, scattering phonons and increasing Z T . Understanding the thermodynamics of this process is crucial to optimizing the efficiency gains of this technique. Previous calculations of the thermodynamics of PbS-PbTe alloys [(J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012), 10.1103/PhysRevB.86.144202] found that mixing energetics alone were not sufficient to quantitatively explain the thermodynamic driving force for phase separation in these materials: first-principles calculations of the thermodynamics of phase separation overestimate the thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS-PbTe alloys. In this work, we re-examine the thermodynamics of PbS-PbTe, including the effects of vibrational entropy in the free energy through frozen-phonon calculations of special quasirandom structures (SQS) to explain this discrepancy between first-principles and experimental phase stability. We find that vibrational entropy of mixing reduces the calculated maximum miscibility gap temperature TG of PbS-PbTe by 470 K, bringing the error between calculated and experimental TG down from 700 to 230 K. Our calculated vibrational spectra of PbS-PbTe SQS exhibit dynamic instabilities of S ions that corroborate reports of low-T ferroelectriclike phase transitions in solid solutions of PbS and PbTe, which are not present in either of the constituent compounds. We use our calculated vibrational spectra to obtain phase transition temperatures, which are in qualitative agreement with experimental results for PbTe-rich alloys, as well as to predict the existence of a low-T displacive phase transition in PbS-rich PbS-PbTe, which has not yet been experimentally investigated.

  3. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface

    NASA Astrophysics Data System (ADS)

    Liu, L. Y.; Xing, Y. T.; Merino, I. L. C.; Micklitz, H.; Franceschini, D. F.; Baggio-Saitovitch, E.; Bell, D. C.; Solórzano, I. G.

    2018-01-01

    Bi/Ni bilayers with varying Bi and Ni layer thicknesses have been prepared by (a) pulsed-laser deposition (PLD) at 300 K and (b) thermal evaporation at 4.2 K. A two-step superconducting transition appears on the electrical transport measurements in the samples prepared by PLD. High-resolution transmission and scanning transmission electron microscopy, supported by energy-dispersive x-ray spectroscopy (EDXS) analysis, reveal that two superconducting intermetallic alloys, namely NiBi and NiBi3, are formed by interdiffusion, if the bilayers are prepared at 300 K. The Tc of the two phases behaves very differently in an external magnetic field and the upper critical magnetic fields at zero temperature [Bc 2(0 ) ] were estimated as 1.1 and 7.4 T, respectively. The lower value corresponds to the Bc 2(0) of NiBi3 phase and the higher one is supposed to be of NiBi. These alloys are responsible for the superconductivity and the two-step transition appearing in the Bi/Ni bilayer system. Surprisingly, the Bi-rich phase (NiBi3) is formed near the Ni layer, while the Ni-rich phase (NiBi) is formed far from the Ni layer. The EDXS analysis at nanometer scale clearly shows an unusual increase of Ni concentration near the interface of Bi/substrate. The limited thickness of Bi layer in the interdiffusion process results in an unexpected distribution of Ni concentration. Samples prepared at 4.2 K after annealing at 300 K do not show any superconductivity, which indicates that a nonepitaxial Bi/Ni interface does not induce superconductivity in the case interdiffusion does not occur. These results offer a deeper understanding of the superconductivity in the Bi/Ni bilayer system.

  4. Electrochemical Interpretation of a Stress Corrosion Cracking of Thermally Treated Ni base Alloys in a Lead Contaminated Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Seong Sik; Lim, Yun Soo; Kim, Hong Pyo

    2007-08-20

    Since the PbSCC(Lead stress corrosion cracking) of alloy 600 tubing materials was reported by Copson and Dean in 1965, the effect of lead on a corrosion film and cracking morphology have been continually debated. An electrochemical interaction of lead with the alloying elements of SG tubings was studied and the corrosion products were analyzed. It was found that lead enhanced the anodic dissolution of alloy 600 and alloy 690 in the electrochemical test. The lead preferentially dissolved the Cr from the corrosion film of alloy 600 and alloy 690 in alkaline water. The lead ion seemed to penetrate into themore » TG crack tip and react with the corrosion film. A selective Cr depletion was observed to weaken the stability of the passive film on the alloys. Whereas passivity of Ni became stable in lead containing solution, Cr and Fe passivity became unstable.« less

  5. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    PubMed

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  7. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  8. The Inhibition of Pb(IV) Oxide Formation in Chlorinated Water by Orthophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, Darren A.; Schock, Michael R.; Scheckel, Kirk

    2009-10-05

    Historically, understanding lead solubility and its control in drinking water has been based on Pb(II) chemistry. Unfortunately, there is very little information available regarding the nature of Pb(IV) oxides in finished drinking water and water distribution systems, and the conditions under which they persist. The objective of this research was to explore the impact of orthophosphate on the realistic pathways that lead to the formation of Pb(IV) oxides in chlorinated water. The results of XRD and XANES analysis showed that, in the absence of orthophosphate (DIC = 10 mg C/L, 24 C, pH 7.75-8.1, 3 mg Cl{sub 2}/L goal), Pb(IV)more » oxides formed with time following a transformation from the Pb(II) mineral hydrocerussite. Under the same experimental conditions, orthophosphate dosing inhibited the formation of Pb(IV) oxides. The Pb(II) mineral hydroxypyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}OH, was the only mineral phase identified during the entire study of over 600 days, although the presence of some chloropyromorphite, Pb{sub 5}(PO{sub 4}){sub 3}Cl, could not be ruled out. The conclusions were further supported by SEM, TEM, and XANES analysis of lead colloids, and lead precipitation experiments conducted in the absence of free chlorine. The findings provide an important explanation for the absence of Pb(IV) oxides in some water systems that have used, or currently use, orthophosphate for corrosion control when otherwise, based on disinfection practices and water quality, its presence would be anticipated, as well as why the conversion from free chlorine to chloramines was not observed to increase lead release.« less

  9. L i ( i=1,2,3) subshell X-ray production cross-sections and fluorescence yields for Ir, Pt, Pb and Bi

    NASA Astrophysics Data System (ADS)

    Singh, P.; Sharma, M.; Shahi, J. S.; Mehta, D.; Singh, N.

    2003-09-01

    The L i ( i=1,2,3) subshell X-ray production (XRP) cross-sections were measured for 77Ir, 78Pt, 82Pb and 83Bi following direct ionization in the L i ( i=1,2,3) subshells by the 59.54 keV γ-rays and the L 3 subshell by the Br/Rb/Sr/Y K X-rays. The photon sources consisting of an 241Am source in (i) the direct excitation mode and (ii) the secondary excitation mode together with the KBr/RbNO 3/SrCO 3 /Y secondary exciter and an Si(Li) detector were used. The L i ( i=1,2,3) subshell fluorescence yields ( ωi) for these elements were deduced using the measured XRP cross-sections and the L i subshell photoionization cross-sections based on the Hartree-Fock-Slater model. The measured ω1 values are found to be higher upto 50% than those based on the relativistic Dirac-Hartree-Slater (RDHS) calculations, while the ω2 and ω3 values exhibit good agreement. The predicted jump in the RDHS based ω1 values from 77Ir to 78Pt due to onset of intense L 1-L 3M 4 CK transition is not observed.

  10. Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.

    In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less

  11. Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene

    DOE PAGES

    Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.

    2016-12-30

    In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less

  12. The effects of insulation defects on the corrosion of sub-sea super duplex stainless steel process pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, R.; Irwin, J.; Byrne, G.

    1995-10-01

    There is an increasing use of CRAs (corrosion resistant alloys) for subsea flowlines. These pipes carry corrosive fluids at high temperatures and pressures, and insulation is usually, applied to prevent excessive cooling of the process fluids. The present tests were undertaken to investigate the effect of insulation defects on the susceptibility to localized corrosion of a super duplex stainless steel at different internal temperatures. Four different commercial coating systems were tested, Neoprene, EPDM, Polyurethane and Polyurethane foam. The results show that pitting occurred at an average temperature of 55 C for neoprene and EPDM, and at lower temperatures for themore » other two coatings. The reasons for this are discussed, and the implications for service applications.« less

  13. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  14. Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.

  15. Events as power source: wireless sustainable corrosion monitoring.

    PubMed

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  16. Zero thermal expansion and semiconducting properties in PbTiO 3 –Bi(Co, Ti)O 3 ferroelectric solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhao; Chen, Jun; Jiang, Xingxing

    Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less

  17. Zero thermal expansion and semiconducting properties in PbTiO 3 –Bi(Co, Ti)O 3 ferroelectric solid solutions

    DOE PAGES

    Pan, Zhao; Chen, Jun; Jiang, Xingxing; ...

    2017-02-16

    Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Up to now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in semiconducting ferroelectric of 0.6PbTiO 3-0.4Bi(Co 0.55Ti 0.45)O 3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied bymore » negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ionic (Ti 3+) to another (Ti 4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relative lower band-gap (E g) value of 1.5 eV, while ferroelectric property can be well maintained with large polarization. The first-principles calculations reveal that the drastically narrowed E g is related to the Co-Ti substitution. Finally, the present multifunctional material containing ZTE, semiconducting and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.« less

  18. Corrosion of aluminium in soft drinks.

    PubMed

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  19. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    NASA Astrophysics Data System (ADS)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  20. The Role of Deformation and Microchemistry in the Corrosion Processes of Type 304 Stainless Steel in Simulated Pressurized Water Reactor Environments

    NASA Astrophysics Data System (ADS)

    Fisher, Kevin B.

    Degradation of structural components in nuclear environments is a limiting factor in the lifetime of nuclear power plants. Despite decades of research on the topic, there are still aspects of the degradation phenomena that are not well understood, leading to premature failure of components that can be both expensive to repair and potentially dangerous. The current work addresses the role of material deformation on the corrosion phenomena of 304 SS in a simulated nuclear reactor environment by studying the relationship of the material microstructure and microchemistry with the resulting corrosion products using a multiscale analysis approach. The general corrosion phenomenon was studied in relation to the surface deformation of the material, and it was determined that surface deformation not only increases the rate of oxidation, but also has a pronounced impact on the microchemical structure of the oxide film when compared to undeformed material. These findings were applied to understanding the role of deformation in the more complex corrosion phenomena of stress corrosion cracking (SCC) and corrosion fatigue cracking (CFC). In SCC experiments, material deformation in the form of cold work played a synergistic role with unique microchemical features of the materials studied to promote the cracking process under certain environmental and material heat treatment conditions. Despite the fact that the materials studied were low carbon heats of 304L SS thought to be immune to the sensitization and therefore resistant to SCC, elevated boron and delta ferrites in the material were implicated in the SCC susceptibility after heat treatment. On the other hand, low levels of residual deformation played only a minor role in the corrosion processes occurring during CFC experiments over a wide range of rise times. Instead, deformation was suspected to play a larger role in the mechanical cracking response of the material. By studying multiple corrosion processes of 304 SS a

  1. Lead-induced stress corrosion cracking of Alloy 600 and 690 in high temperature water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, T.; Senjuh, T.; Aoki, K.

    1992-12-31

    Lead is one of the potential contributing impurities to the degradation of PWR steam generator tubing. Recent laboratory testing has shown that lead is a corrosive material for Alloy 600 steam generator tubing. However, it is still unknown how lead influences the corrosion of steam generator tubing, including the effect of lead concentration, solution pH, stress level and material characteristics. In this study, two kinds of experiments were performed. One was to investigate the thin film characteristic and selectively dissolved base metal elements of Alloy 600MA in high temperature solutions of different lead concentrations and pH. The other investigated themore » dependency of degradation of Alloy 600MA and Alloy 690TT on lead concentration and stress level in mild acidic environment, at 340{degrees}C for 2500 hrs. It was firstly demonstrated that lead-enhanced selective dissolution of nickel from alloy base metal, as a result of electrochemical reaction between lead and nickel, might cause the initiation and propagation of corrosion. Secondly, we showed that Alloy 690TT, generally very corrosion resistant material, also suffered from Pb-induced corrosion. The difference of the lead-induced stress corrosion morphology of Alloy 600MA and Alloy 690TT was also clarified.« less

  2. Cathodic Corrosion at the Bismuth-Ionic Liquid Electrolyte Interface under Conditions for CO 2 Reduction

    DOE PAGES

    Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul; ...

    2018-03-08

    Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic

  3. Cathodic Corrosion at the Bismuth-Ionic Liquid Electrolyte Interface under Conditions for CO 2 Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul

    Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic

  4. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped and lead-free Bi-2212 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Maroni, V. A.

    1996-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made on lead-doped and lead-free Bi 2- zPb zSr 2Ca 1Cu 2O x superconducting ceramics in the temperature range ≈ 700-815°C by means of an oxygen-titration techique that employs an yttria-stabilized zirconia electrolyte. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Thermodynamic assessments of the partial molar quantities Δ overlineH(O 2) and Δ overlineS(O 2) for lead-doped Bi-2212 and lead-free Bi-2212 indicate that the solid-state decomposition of these bismuth cuprates at low oxygen partial pressure can be represented by the diphasic CuOCu 2O system.

  5. In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Park, Mira; Kim, Hak Yong; Ding, Bin; Park, Soo-Jin

    2016-10-01

    In this work, BiOClx/BiOBry/BiOIz (x + y + z = 1) composite nanofibers were prepared through electrospinning and the sol-gel methods. Photocatalytic degradation of trichloroethylene (TCE) by BiOClx/BiOBry/BiOIz/PAN nanofibers was systematically investigated via gas chromatography (GC). Optimum photocatalytic activity was achieved with BiOCl0.3/BiOBr0.3/BiOI0.4 fibers under solar light irradiation. X-ray photoelectron spectroscopy (XPS) peaks due to Csbnd O and Cdbnd O were observed at 286.0 and 288.3 eV, respectively, it indicated that the BiOClx/BiOBry/BiOIz mixture had been successfully doped on the polyacrylonitrile (PAN) fibers. Furthermore, X-ray diffraction (XRD) results also confirmed that we had synthesized the as-prepared composite nanofibers successfully. Photocatalytic activities of BiOCl0.3/BiOBr0.3/BiOI0.4 were up to 3 times higher than the pure BiOCl, BiOBr and BiOI samples, respectively.

  6. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-04-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

  7. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.

  8. Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel.

    PubMed

    Rouvre, Ingrid; Gauquelin, Charles; Meynial-Salles, Isabelle; Basseguy, Régine

    2016-06-01

    The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1 M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35 mV 24 h after the injection of 300 μL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5 mM dithionite, 7.5 mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  10. Corrosion-resistant high-entropy alloys: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yunzhu; Yang, Bin; Liaw, Peter

    Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less

  11. Corrosion-resistant high-entropy alloys: A review

    DOE PAGES

    Shi, Yunzhu; Yang, Bin; Liaw, Peter

    2017-02-05

    Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less

  12. Single phase Pb0.7Bi0.3Fe0.65Nb0.35O3 multiferroic: Neutron diffraction, impedance and modulus studies

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj

    2018-04-01

    The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.

  13. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-12-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  14. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  15. Influence of piezoelectric strain on the Raman spectra of BiFeO 3 films deposited on PMN-PT substrates

    DOE PAGES

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; ...

    2016-01-27

    In this study, BiFeO 3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg 1/3Nb 2/3)O 3-0.28PbTiO 3 (PMN-PT) substrates with a conductive buffer layer (La 0.7Sr 0.3MnO 3 or SrRuO 3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poissonmore » number for BiFeO 3 one can determine the volume change induced by strain, and therefore the Gr neisen parameters for specific phonon modes.« less

  16. Effect of doping in the Bi-Sr-Ca-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Akbar, S. A.; Wong, M. S.; Botelho, M. J.; Sung, Y. M.; Alauddin, M.; Drummer, C. E.; Fair, M. J.

    1991-01-01

    The results of the effect of doping on the superconducting transition in the Bi-Sr-Ca-Cu-O system are reported. Samples were prepared under identical conditions with varying types (Pb, Sb, Sn, Nb) and amounts of dopants. All samples consisted of multiple phases, and showed stable and reproducible superconducting transitions. Stabilization of the well known 110 K phase depends on both the type and amount of dopant. No trace of superconducting phase of 150 K and above was observed.

  17. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  18. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  19. Subcellular Distribution and Chemical Forms of Pb in Corn: Strategies Underlying Tolerance in Pb Stress.

    PubMed

    Sun, Jianling; Luo, Liqiang

    2018-06-22

    Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.

  20. Control of metallic corrosion through microbiological route.

    PubMed

    Maruthamuthu, S; Ponmariappan, S; Mohanan, S; Palaniswamy, N; Palaniappan, R; Rengaswamy, N S

    2003-09-01

    Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted.

  1. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  2. On atomic mechanisms governing the oxidation of Bi2Te3.

    PubMed

    Music, Denis; Chang, Keke; Schmidt, Paul; Braun, Felix N; Heller, Martin; Hermsen, Steffen; Pöllmann, Peter J; Schulzendorff, Till; Wagner, Cedric

    2017-11-09

    Oxidation of Bi 2 Te 3 (space group R [Formula: see text] m) has been investigated using experimental and theoretical means. Based on calorimetry, x-ray photoelectron spectroscopy and thermodynamic modelling, Bi 2 Te 3 is at equilibrium with Bi 2 O 3 and TeO 2 , whereby the most stable compound is Bi 2 Te 3 , followed by Bi 2 O 3 . The reactivity of Bi towards oxygen is expected to be higher than that of Te. This notion is supported by density functional theory. The strongest bond is formed between Bi and Te, followed by Bi-O. This gives rise to unanticipated atomic processes. Dissociatively adsorbed oxygen diffuses through Bi and Te basal planes of Bi 2 Te 3 (0 0 0 1) and preferably interacts with Bi. The Te termination considerably retards this process. These findings may clarify conflicting literature data. Any basal plane off-cut or Bi terminations trigger oxidation, but a perfect basal cleavage, where only Te terminations are exposed to air, may be stable for a longer period of time. These results are of relevance for applications in which surfaces are of key importance, such as nanostructured Bi 2 Te 3 thermoelectric devices.

  3. On atomic mechanisms governing the oxidation of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Music, Denis; Chang, Keke; Schmidt, Paul; Braun, Felix N.; Heller, Martin; Hermsen, Steffen; Pöllmann, Peter J.; Schulzendorff, Till; Wagner, Cedric

    2017-12-01

    Oxidation of Bi2Te3 (space group R \\overline{3} m) has been investigated using experimental and theoretical means. Based on calorimetry, x-ray photoelectron spectroscopy and thermodynamic modelling, Bi2Te3 is at equilibrium with Bi2O3 and TeO2, whereby the most stable compound is Bi2Te3, followed by Bi2O3. The reactivity of Bi towards oxygen is expected to be higher than that of Te. This notion is supported by density functional theory. The strongest bond is formed between Bi and Te, followed by Bi-O. This gives rise to unanticipated atomic processes. Dissociatively adsorbed oxygen diffuses through Bi and Te basal planes of Bi2Te3(0 0 0 1) and preferably interacts with Bi. The Te termination considerably retards this process. These findings may clarify conflicting literature data. Any basal plane off-cut or Bi terminations trigger oxidation, but a perfect basal cleavage, where only Te terminations are exposed to air, may be stable for a longer period of time. These results are of relevance for applications in which surfaces are of key importance, such as nanostructured Bi2Te3 thermoelectric devices.

  4. [Effects of soil properties on the stabilization process of cadmium in Cd alone and Cd-Pb contaminated soils].

    PubMed

    Wu, Man; Xu, Ming-Gang; Zhang, Wen-Ju; Wu, Hai-Wen

    2012-07-01

    In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.

  5. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  6. Phase transformation, improved ferroelectric and magnetic properties of (1 − x) BiFeO{sub 3}–xPb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in, E-mail: subhash1jiit@gmail.com; Singh, Vikash; Dwivedi, R. K., E-mail: rk.dwivedi@jiit.ac.in, E-mail: subhash1jiit@gmail.com

    2014-06-14

    The authors prepared (1 − x)BiFeO{sub 3} – (x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} for x ≤ 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x ≤ 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content maymore » be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO{sub 3.} The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics.« less

  7. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  8. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  9. Multiplicity evolution of identified particle charge-dependent correlations in Pb-Pb, p-Pb and pp collisions at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Pan, Jinjin; Alice Collaboration

    2017-09-01

    The charge pair creation and transport processes in heavy-ion collisions are investigated experimentally by measurements of charge-dependent correlations of identified particle pairs, related to the Balance Function. The produced pair separation in rapidity is expected to be larger for hadrons arising from quark-antiquark pair creation in the early stages of the collision than for hadrons emerging from the later hadronization stage. Correlations are reported for charged-pion pairs in Pb-Pb, p-Pb and pp collisions at √{sNN } = 2.76, 5.02 and 7 TeV, respectively; and for charged-kaon pairs in Pb-Pb collisions at √{sNN } = 2.76 TeV. The correlations are measured as a function of relative rapidity Δy and azimuthal angle Δϕ , and are dominated by a peak centered at Δy = Δϕ = 0. We observe that the peak widths in Δy and Δϕ are narrower in higher multiplicity events in Pb-Pb, p-Pb, and pp collisions, which is consistent with the effects of radial flow, as well as the two-wave quark production mechanism. We investigate the charge transport and system evolution further by studying the Δϕ width of the peak as a function of Δy. Funded by the US Department of Energy.

  10. Biologically active nanocomposite of DNA-PbS nanoparticles: A new material for non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Murgunde, B. K.; Rabinal, M. K.; Kalasad, M. N.

    2018-01-01

    Composite films of deoxyribonucleic acid (DNA) and lead sulfide (PbS) nanoparticles are prepared to fabricate biological memory devices. A simple solution based electrografting is developed to deposit large (few cm2) uniform films of DNA:PbS on conducting substrates. The films are studied by X-ray photoelectron spectroscopy, field emission SEM, FTIR and optical spectroscopy to understand their properties. Charge transport measurements are carried out on ITO-DNA:PbS-metal junctions by cyclic voltage scans, electrical bi-stability is observed with ON/OFF ratio more than ∼104 times with good stability and endurance, such performance being rarely reported. The observed results are interpreted in the light of strong electrostatic binding of nanoparticles and DNA stands, which leads doping of Pb atoms into DNA. As a result, these devices exhibit negative differential resistance (NDR) effect due to oxidation of doped metal atoms. These composites can be the potential materials in the development of new generation non-volatile memory devices.

  11. Processing of MnBi bulk magnets with enhanced energy product

    DOE PAGES

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; ...

    2016-02-23

    Here, we report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH) max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH) max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  12. [Experimental processing of corrosion casts of large animal organs].

    PubMed

    Pálek, R; Liška, V; Eberlová, L; Mírka, H; Svoboda, M; Haviar, S; Emingr, M; Brzoň, O; Mik, P; Třeška, V

    2018-01-01

    Corrosion casts (CCs) are used for the visualization and assessment of hollow structures. CCs with filled capillaries enable (with the help of imaging methods) to obtain data for mathematical organ perfusion modelling. As the processing is more difficult in case of organs with greater volume of the vasculature, mainly organs from small animals have been cast up to now. The aim of this study was to optimize the protocol of corrosion casting of different organs of pig. Porcine organs are relatively easily accessible and frequently used in experimental medicine. Organs from 10 healthy Prestice Black-Pied pigs (6 females, body weight 35-45 kg), were used in this study (liver, spleen, kidneys and small intestine). The organs were dissected, heparin was administered into the systemic circulation and then the vascular bed of the organs was flushed with heparinized saline either in situ (liver) or after their removal (spleen, kidney, small intestine). All handling was done under the water surface to prevent air embolization. The next step was an intraarterial (in case of the liver also intraportal) administration of Biodur E20® (Heidelberg, Germany) resin. After hardening of the resin the organ tissue was dissolved by 15% KOH and the specimen was rinsed with tap water. Voluminous casts were stored in 70% denatured alcohol, the smaller ones were lyophilized. The casts were assessed with a stereomicroscope, computed and microcomputed tomography (CT and microCT), a scanning electron microscope (SEM) and high-resolution digital microscope (HRDM). High-quality CCs of the porcine liver, kidneys, spleen and small intestine were created owing to the sophisticated organ harvesting, the suitable resin and casting procedure. Macroscopic clarity was improved thanks to the possibility of resin dying. Scanning by CT was performed and showed to be a suitable method for the liver cast examination. MicroCT, SEM and HRDM produced images of the most detailed structures of vascular bed

  13. Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe 2

    DOE PAGES

    Parker, David S.; May, Andrew F.; Singh, David J.

    2015-06-05

    Here we study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe 2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe 2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe 2 has already exhibited a ZT value of 1.5 in amore » high-temperature disordered fcc phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi 2Te 3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe 2 has substantial promise as a room temperature thermoelectric, and estimate its performance.« less

  14. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himcinschi, Cameliu, E-mail: himcinsc@physik.tu-freiberg.de; Talkenberger, Andreas; Kortus, Jens

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using themore » Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.« less

  15. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    PubMed

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  16. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    PubMed Central

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  17. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  18. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  19. Thiol-ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+.

    PubMed

    Su, Zhaohong; Liu, Ying; Zhang, Yi; Xie, Qingji; Chen, Li; Huang, Yi; Fu, Yingchun; Meng, Yue; Li, Xuejiao; Ma, Ming; Yao, Shouzhuo

    2013-02-21

    We report on the thiol-ene chemistry guided preparation of a novel thiolated polymeric nanocomposite involving polyaniline (PANI), a functionalized thiol, e.g., sulfur-rich 2,5-dimercapto-1,3,4-thiadiazole (DMcT), and multiwalled carbon nanotubes (MWCNTs) for the sensitive differential pulse anodic stripping voltammetric determination of Cd(2+) and Pb(2+) on a glassy carbon electrode (GCE). Briefly, the thiol-ene reaction of a thiol with oxidized PANI that was chemically synthesized in the presence of solution-dispersed acidified MWCNTs yielded a thiolated polymeric nanocomposite of thiol-PANI/MWCNTs. The thiols examined include DMcT, 1,6-hexanedithiol and β-mercaptoethanol. Quartz crystal microbalance, cyclic voltammetry, scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were used for film characterization and process monitoring. Under the optimized conditions, the obtained Bi/Nafion/DMcT-PANI/MWCNTs/GCE can sensitively sense Cd(2+) and Pb(2+) with limits of detection of 0.01 and 0.04 μg L(-1), respectively.

  20. Hydrogen Assisted Cracking and Corrosion of Some Highly Corrosion Resistant Alloys

    DTIC Science & Technology

    1990-01-01

    Stainless Steel", June 1985, and "On the Roles of Corrosion Products in Local Cell Processes", January 1986. Research on the latter has occurred in the...concern. In closed systems. howevter, such as nuclear reactor cooling pipes. acid container systems, fuel cells, and so on. the production of ti, gas and...mernhra lie is also imiportant. fihe stirf.ice should he flat. m-e1I-polished and free of filims. (Whde or other corrosion product film-. :Are easil% formed

  1. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe

    DOE PAGES

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang; ...

    2016-07-26

    The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factorsmore » with maximal values over 30 μWcm -1 K -2. Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 Wm -1 K -1 but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe-8% SrTe.« less

  2. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe

    PubMed Central

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang; Zhao, Li-Dong; Chi, Hang; Zhang, Xiaomi; Uher, Ctirad; Wolverton, Chris; Dravid, Vinayak P.; Kanatzidis, Mercouri G.

    2016-01-01

    The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factors with maximal values over 30 μW cm−1 K−2. Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 W m−1 K−1 but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe–8%SrTe. PMID:27456303

  3. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    PubMed

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  4. Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-x Bi x /GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Luna, E.; Wu, M.; Hanke, M.; Puustinen, J.; Guina, M.; Trampert, A.

    2016-08-01

    In this work, we report on the spontaneous formation of ordered arrays of nanometer-sized Bi-rich structures due to lateral composition modulations in Ga(As,Bi)/GaAs quantum wells grown by molecular beam epitaxy. The overall microstructure and chemical distribution is investigated using transmission electron microscopy. The information is complemented by synchrotron x-ray grazing incidence diffraction, which provides insight into the in-plane arrangement. Due to the vertical inheritance of the lateral modulation, the Bi-rich nanostructures eventually shape into a three-dimensional assembly. Whereas the Bi-rich nanostructures are created via two-dimensional phase separation at the growing surface, our results suggest that the process is assisted by Bi segregation which is demonstrated to be strong and more complex than expected, implying both lateral and vertical (surface segregation) mass transport. As demonstrated here, the inherent thermodynamic miscibility gap of Ga(As,Bi) alloys can be exploited to create highly uniform Bi-rich units embedded in a quantum confinement structure.

  5. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Galvanic Corrosion of Lead by Iron (Oxyhydr)Oxides: Potential Impacts on Drinking Water Quality.

    PubMed

    Trueman, Benjamin F; Sweet, Gregory A; Harding, Matthew D; Estabrook, Hayden; Bishop, D Paul; Gagnon, Graham A

    2017-06-20

    Lead exposure via drinking water remains a significant public health risk; this study explored the potential effects of upstream iron corrosion on lead mobility in water distribution systems. Specifically, galvanic corrosion of lead by iron (oxyhydr)oxides was investigated. Coupling an iron mineral cathode with metallic lead in a galvanic cell increased lead release by 531 μg L -1 on average-a 9-fold increase over uniform corrosion in the absence of iron. Cathodes were composed of spark plasma sintered Fe 3 O 4 or α-Fe 2 O 3 or field-extracted Fe 3 O 4 and α-FeOOH. Orthophosphate immobilized oxidized lead as insoluble hydroxypyromorphite, while humic acid enhanced lead mobility. Addition of a humic isolate increased lead release due to uniform corrosion by 81 μg L -1 and-upon coupling lead to a mineral cathode-release due to galvanic corrosion by 990 μg L -1 . Elevated lead in the presence of humic acid appeared to be driven by complexation, with 208 Pb and UV 254 size-exclusion chromatograms exhibiting strong correlation under these conditions (R 2 average = 0.87). A significant iron corrosion effect was consistent with field data: lead levels after lead service line replacement were greater by factors of 2.3-4.7 at sites supplied by unlined cast iron distribution mains compared with the alternative, lined ductile iron.

  7. Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb1 -xBixO3 thin films

    NASA Astrophysics Data System (ADS)

    Harris, D. T.; Campbell, N.; Uecker, R.; Brützam, M.; Schlom, D. G.; Levchenko, A.; Rzchowski, M. S.; Eom, C.-B.

    2018-04-01

    BaPb1 -xBixO3 is a superconductor, with transition temperature Tc=11 K, whose parent compound BaBiO3 possesses a charge ordering phase and perovskite crystal structure reminiscent of the cuprates. The lack of magnetism simplifies the BaPb1 -xBixO3 phase diagram, making this system an ideal platform for contrasting high-Tc systems with isotropic superconductors. Here we use high-quality epitaxial thin films and magnetotransport to demonstrate superconducting fluctuations that extend well beyond Tc. For the thickest films (thickness above ˜100 nm ) this region extends to ˜27 K , well above the bulk Tc and remarkably close to the higher Tc of Ba1 -xKxBiO3 (Tc=31 K). We drive the system through a superconductor-insulator transition by decreasing thickness and find the observed Tc correlates strongly with disorder. This material manifests strong fluctuations across a wide range of thicknesses, temperatures, and disorder presenting new opportunities for understanding the precursor of superconductivity near the 2D-3D dimensionality crossover.

  8. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  9. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  10. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  11. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  12. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers.

    PubMed

    Dong, Fan; Sun, Yanjuan; Fu, Min; Wu, Zhongbiao; Lee, S C

    2012-06-15

    This research represents a highly enhanced visible light photocatalytic removal of 450 ppb level of nitric oxide (NO) in air by utilizing flower-like hierarchical porous BiOI/BiOCl composites synthesized by a room temperature template free method for the first time. The facile synthesis method avoids high temperature treatment, use of organic precursors and production of undesirable organic byproducts during synthesis process. The result indicated that the as-prepared BiOI/BiOCl composites samples were solid solution and were self-assembled hierarchically with single-crystal nanoplates. The aggregation of the self-assembled nanoplates resulted in the formation of 3D hierarchical porous architecture containing tri-model mesopores. The coupling to BiOI with BiOCl led to down-lowered valence band (VB) and up-lifted conduction band (CB) in contrast to BiOI, making the composites suitable for visible light excitation. The BiOI/BiOCl composites samples exhibited highly enhanced visible light photocatalytic activity for removal of NO in air due to the large surface areas and pore volume, hierarchical structure and modified band structure, exceeding that of P25, BiOI, C-doped TiO(2) and Bi(2)WO(6). This research results could provide a cost-effective approach for the synthesis of porous hierarchical materials and enhancement of photocatalyst performance for environmental and energetic applications owing to its low cost and easy scaling up. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A nonlinear analysis of the transport Barkhausen-like noise measured in (Bi,Pb)2Sr2Ca2Cu3O10+δ superconductors

    NASA Astrophysics Data System (ADS)

    García-Fornaris, I.; Millán, H.; Jardim, R. F.; Govea-Alcaide, E.

    2013-06-01

    We investigated the transport Barkhausen-like noise (TBN) by using nonlinear time series analysis. TBN signals were measured in (Bi,Pb)2Sr2Ca2Cu3O10+δ ceramic samples subjected to different uniaxial compacting pressures (UCP). These samples display similar intragranular properties but different intergranular features. We found positive Lyapunov exponents in all samples, λm≥0.062, indicating the nonlinear dynamics of the experimental TBN signals. It was also observed higher values of the embedding dimension, m >9, and the Kaplan-Yorke dimension, DKY>2.9. Between samples, the behavior of λm and DKY with increasing excitation current is quite different. Such a behavior is explained in terms of changes in the microstructure associated with the UCP. In addition, determinism tests indicated that the TBN masked determinist components, as inferred by |k →| values larger than 0.70 in most of the cases. Evidence on the existence of empirical attractors by reconstructing the phase spaces has been also found. All obtained results are useful indicators of the interplay between the uniaxial compacting pressure, differences in the microstructure of the samples, and the TBN signal dynamics.

  14. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  15. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight

    NASA Astrophysics Data System (ADS)

    Hao, Lin; Huang, Hongwei; Guo, Yuxi; Du, Xin; Zhang, Yihe

    2017-10-01

    Fabrication of homo/hetero-junctions by coupling of wide-band gap semiconductor and narrow-band gap semiconductor is desirable as they can achieve a decent balance between photoabsorption and photo-redox ability. Herein, a n-n type bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 was developed by facilely manipulating the basicity in a one-pot hydrothermal process. Compared with BiOCl which only responds to UV light, the photo-responsive range is remarkably extended to visible region. The BiOCl/Bi12O17Cl2 phasejunctions show much higher photocatalytic activity than the single BiOCl and Bi12O17Cl2 toward degradation of methyl orange (MO) under simulated solar light. In particular, it presented a high photo-oxidation ability in degrading diverse industrial contaminants including 2,4-dichlorophenol (2,4-DCP), phenol, bisphenol A (BPA) and tetracycline hydrochloride. Based on a series of photoelectrochemical and photoluminescence measurements, the fortified photocatalytic performance of BiOCl/Bi12O17Cl2 phasejunctions was manifested to be attributed to the efficient separation and transfer efficiencies of photoinduced electron-hole pairs because of the junctional interface formed between BiOCl and Bi12O17Cl2. The study may not only furnish a high-effective photocatalyst in the application of environment purification, but also pave a path to fabricate agnate phase-junctional photocatalyst.

  16. Incorporating C60 as Nucleation Sites Optimizing PbI2 Films To Achieve Perovskite Solar Cells Showing Excellent Efficiency and Stability via Vapor-Assisted Deposition Method.

    PubMed

    Chen, Hai-Bin; Ding, Xi-Hong; Pan, Xu; Hayat, Tasawar; Alsaedi, Ahmed; Ding, Yong; Dai, Song-Yuan

    2018-01-24

    To achieve high-quality perovskite solar cells (PSCs), the morphology and carrier transportation of perovskite films need to be optimized. Herein, C 60 is employed as nucleation sites in PbI 2 precursor solution to optimize the morphology of perovskite films via vapor-assisted deposition process. Accompanying the homogeneous nucleation of PbI 2 , the incorporation of C 60 as heterogeneous nucleation sites can lower the nucleation free energy of PbI 2 , which facilitates the diffusion and reaction between PbI 2 and organic source. Meanwhile, C 60 could enhance carrier transportation and reduce charge recombination in the perovskite layer due to its high electron mobility and conductivity. In addition, the grain sizes of perovskite get larger with C 60 optimizing, which can reduce the grain boundaries and voids in perovskite and prevent the corrosion because of moisture. As a result, we obtain PSCs with a power conversion efficiency (PCE) of 18.33% and excellent stability. The PCEs of unsealed devices drop less than 10% in a dehumidification cabinet after 100 days and remain at 75% of the initial PCE during exposure to ambient air (humidity > 60% RH, temperature > 30 °C) for 30 days.

  17. Modeling of concrete cracking due to corrosion process of reinforcement bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossio, Antonio, E-mail: antonio.bossio@unina.it; Monetta, Tullio, E-mail: monetta@unina.it; Bellucci, Francesco, E-mail: bellucci@unina.it

    The reinforcement corrosion in Reinforced Concrete (RC) is a major reason of degradation for structures and infrastructures throughout the world leading to their premature deterioration before design life was attained. The effects of corrosion of reinforcement are: (i) the reduction of the cross section of the bars, and (ii) the development of corrosion products leading to the appearance of cracks in the concrete cover and subsequent cover spalling. Due to their intrinsic complex nature, these issues require an interdisciplinary approach involving both material science and structural design knowledge also in terms on International and National codes that implemented the conceptmore » of durability and service life of structures. In this paper preliminary FEM analyses were performed in order to simulate pitting corrosion or general corrosion aimed to demonstrate the possibility to extend the results obtained for a cylindrical specimen, reinforced by a single bar, to more complex RC members in terms of geometry and reinforcement. Furthermore, a mechanical analytical model to evaluate the stresses in the concrete surrounding the reinforcement bars is proposed. In addition, a sophisticated model is presented to evaluate the non-linear development of stresses inside concrete and crack propagation when reinforcement bars start to corrode. The relationships between the cracking development (mechanical) and the reduction of the steel section (electrochemical) are provided. Finally, numerical findings reported in this paper were compared to experimental results available in the literature and satisfactory agreement was found.« less

  18. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  20. In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons

    NASA Astrophysics Data System (ADS)

    Whitaker, Tom; Anderson, Scott; Levine, Jonathan

    2016-04-01

    HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser

  1. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    PubMed

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Analysis of (210)Pb in water samples with plastic scintillation resins.

    PubMed

    Lluch, E; Barrera, J; Tarancón, A; Bagán, H; García, J F

    2016-10-12

    (210)Pb is a radioactive lead isotope present in the environment as member of the (238)U decay chain. Since it is a relatively long-lived radionuclide (T1/2 = 22.2 years), its analysis is of interest in radiation protection and the geochronology of sediments and artwork. Here, we present a method for analysing (210)Pb using plastic scintillation resins (PSresins) packaged in solid-phase extraction columns (SPE cartridge). The advantages of this method are its selectivity, the low limit of detection, as well as reductions in the amount of time and reagents required for analysis and the quantity of waste generated. The PSresins used in this study were composed of a selective extractant (4',4″(5″)-Di-tert-butyldicyclohexano-18-crown-6 in 1-octanol) covering the surface of plastic scintillation microspheres. Once the amount of extractant (1:1/4) and medium of separation (2 M HNO3) were optimised, PSresins in SPE cartridges were calibrated with a standard solution of (210)Pb. (210)Pb could be fully separated from its daughters, (210)Bi and (210)Po, with a recovery value of 91(3)% and detection efficiency of 44(3)%. Three spiked water samples (one underground and two river water samples) were analysed in triplicates with deviations lower than 10%, demonstrating the validity of the PS resin method for (210)Pb analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of nanosized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} on the transport critical current density of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafiz, M.; Abd-Shukor, R.

    2014-09-03

    The effects of nano-sized Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} addition on the superconducting and transport properties of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) in bulk form has been investigated. Bi-2223 superconductor was fabricated using co-precipitation method and 0.01 – 0.05 wt% of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles with average size of 20 nm were added into the samples. The critical temperature (T{sub c}) and critical current density (J{sub c}) of the samples were measured by using the four-point probe method, while the phase formation and microstructure of the samples were examined using x-ray diffraction and SEM respectively.more » It was found that J{sub c} of all samples added with Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} were higher than non-added sample, with x = 0.01 wt. % sample showing the highest J{sub c}. This study showed that small addition of nano-Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} can effectively enhance the transport critical current density in Bi-2223 superconductor.« less

  4. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less

  5. Enhanced thermoelectric performance realized in AgBiS2 composited AgBiSe2 through indium doping and mechanical alloying

    NASA Astrophysics Data System (ADS)

    Guan, Yingdong; Huang, Yi; Wu, Di; Feng, Dan; He, Mingkai; He, Jiaqing

    2018-05-01

    AgBiSe2 is deemed as a decent candidate of state-of-arts thermoelectric lead chalcogenides due to its intrinsically low lattice thermal conductivity. In this work, we report that a peak figure of merit of ˜0.9 can be realized at 773 K in n-type AgBiSe2 when it is simultaneously doped with indium and composited with AgBiS2 through the ball milling process. The enhancement of thermoelectric performance of AgBiSe2 largely comes from the significant reduction of thermal conductivity from ˜0.5 W/mK to 0.33 W/mK at 773 K, which is the record low value ever reported in this specific system. The decrease in thermal conductivity can be ascribed to the combination of grain size reduction and enhanced alloy scattering from S-Se substitution during the high energy ball milling processes.

  6. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Substitution effects on the ferroelectric properties of BiFeO3 thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kuk; Kim, Sang Su; Kim, Won-Jeong; Bhalla, Amar S.

    2007-01-01

    Ferroelectric properties of Cr-substituted BiFeO3 (BFCr) and Pb-cosubstituted BFCr films prepared by a chemical solution deposition method and annealed at 550°C in nitrogen have been studied. X-ray diffraction measurements revealed that the thin films were composed of a rhombohedrally distorted perovskite structure without secondary phases. The 5mol% Pb-cosubstituted BFCr films appeared to have superior ferroelectric properties to those of other BFCr films prepared by the same conditions. The remanent polarization (Pr) and the coercive field (Ec) of the 5mol% Pb-cosubstituted BFCr film were 62μC /cm2 and 235kV/cm, respectively, with a maximum applied field of 712kV/cm. In addition, the film exhibited a fatigue-free behavior up to 1.45×1010 read/write cycles.

  8. Bi-resampled data study

    NASA Technical Reports Server (NTRS)

    Benner, R.; Young, W.

    1977-01-01

    The results of an experimental study conducted to determine the geometric and radiometric effects of double resampling (bi-resampling) performed on image data in the process of performing map projection transformations are reported.

  9. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy.

    PubMed

    Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L

    2000-09-15

    Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed.

  10. Corrosion of 15th and early 16th century stained glass from the monastery of Batalha studied with external ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarigues, M., E-mail: mgv@fct.unl.pt; Redol, P.; Monastery of Batalha, P-2440

    2011-02-15

    This paper reports the study of corrosion in two stained glass panels from the south aisle of Sta. Maria da Vitoria monastery, at Batalha (Portugal), one depicting the Last Supper (dated from 1508), and the other one showing a saint (c. 1450). These panels exhibit extensive corrosion with darkening phenomena that are an impediment to their correct visualization, a source of major concern both to conservators and curators. By using external micro-beam Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma Emission (PIGE) spectrometry, the elemental compositions of large fragments were obtained, enabling the selection of representative corroded areas, frommore » which elemental distribution maps were produced by scanning. Calcium and potassium rich structures were found - at the surface and inside cavities in the glass - that were identified as oxalates and carbonates, by Raman microscopy and micro-FTIR. The dark spots present in the glass surfaces were found to be Zn and Pb rich. These findings indicate that the corrosion observed was due not only to reactions with atmospheric water and CO{sub 2} but also with the oxalic acid secreted by micro-organisms. Furthermore, it did not result from reactions with atmospheric SO{sub 2} or acid rain. The information obtained is relevant for a better understanding of the corrosion processes and products formed on the surface of these panels and therefore for the proper planning of much needed adequate conservation-restoration actions and appropriate display conditions. - Research Highlights: {yields} Corrosion and darkening of stained glasses is of concern to conservators and curators. {yields} A multi-technique approach is of relevance to study stained glass corrosion. {yields} External beam PIXE-PIGE provide valuable insight on stained glass corrosion.« less

  11. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion playsmore » a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.« less

  12. Challenges and New Trends for Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    BiScO3-PbTiO3 ceramics with TC greater than 400 C has been successfully processed. Despite the increase in TC, excess Pb addition increases both the bulk conductivity and the grain boundary contribution to conductivity at elevated temperatures. Conductivity at elevated temperatures, that limits the operating temperature for actuators, has been greatly reduced by excess Bi additions. Excess Bi doping improves poling conditions resulting in enhanced piezoelectric coefficient (d(sub 33) = 408 pC/N).

  13. Bi-induced band gap reduction in epitaxial InSbBi alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb 1-x Bi x alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ~88 meV (14.1 μm)more » for InSb 0.976Bi 0.024, a reduction of ~35 meV/%Bi.« less

  14. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jiangdong

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C weremore » investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.« less

  15. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    NASA Technical Reports Server (NTRS)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  16. Tailoring Mater-Bi properties by the use of a biowaste-derived additive

    NASA Astrophysics Data System (ADS)

    Cerruti, Pierfrancesco; Santagata, Gabriella; Gomez d'Ayala, Giovanna; Malinconico, Mario; Ambrogi, Veronica; Carfagna, Cosimo; Persico, Paola

    2010-06-01

    In this work, a polyphenol-containing extract from winery bio-waste (EP) has been used as additive to tailor Mater-Bi properties. EP was able to efficiently modulate both polymer processing and mechanical, thermal and biodegradation properties. EP decreased the melt viscosity, behaved as a Mater-Bi plasticizer and delayed the Mater-Bi crosslinking process occurring upon thermal aging. Finally, the biodisintegration rate of doped Mater-Bi decreased, thus indicating that EP interfered with the microbial digestion of the polymer films.

  17. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that themore » effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.« less

  18. Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China

    NASA Astrophysics Data System (ADS)

    Wu, Shenghua; Mao, Jingwen; Yuan, Shunda; Dai, Pan; Wang, Xudong

    2018-01-01

    The Shizhuyuan polymetallic deposit is located in the central part of the Nanling region, southeastern China, and consists of proximal W-Sn-Mo-Bi skarns and greisens and distal Pb-Zn-Ag veins. The sulfides and sulfosalts in the distal veins formed in three distinct stages: (1) an early stage of pyrite and arsenopyrite, (2) a middle stage of sphalerite and chalcopyrite, and (3) a late stage of galena, Ag-, Sn-, and Bi-bearing sulfides and sulfosalts, and pyrrhotite. Combined sulfide and sulfosalt geothermometry and fluid inclusion analyses indicate that the early stage of mineralization occurred at a temperature of 400 °C and involved boiling under hydrostatic pressure ( 200 bar), with the temperature of the system dropping during the late stage to 200 °C. Laser Raman analysis indicates that the fluid inclusions within the studied minerals are dominated by H2O, although some contain carbonate solids and CH4 gas. Vein-hosted sulfides have δ34S values of 3.8-6.3‰ that are interpreted as indicative of a magmatic source of sulfur. The mineralization process can be summarized as follows: an aqueous fluid exsolved on final crystallization of the Qianlishan pluton, ascended along fracture zones, cooled to <400 °C, and boiled under hydrostatic conditions, and with decreasing temperature and sulfur fugacity, sulfide and sulfosalt minerals precipitated successively from the Ag-Cu-Zn-Fe-Pb-Sb-As-S-bearing fluid system.

  19. A method for grounding grid corrosion rate prediction

    NASA Astrophysics Data System (ADS)

    Han, Juan; Du, Jingyi

    2017-06-01

    Involved in a variety of factors, prediction of grounding grid corrosion complex, and uncertainty in the acquisition process, we propose a combination of EAHP (extended AHP) and fuzzy nearness degree of effective grounding grid corrosion rate prediction model. EAHP is used to establish judgment matrix and calculate the weight of each factors corrosion of grounding grid; different sample classification properties have different corrosion rate of contribution, and combining the principle of close to predict corrosion rate.The application result shows, the model can better capture data variation, thus to improve the validity of the model to get higher prediction precision.

  20. Degreasing of titanium to minimize stress corrosion

    NASA Technical Reports Server (NTRS)

    Carpenter, S. R.

    1967-01-01

    Stress corrosion of titanium and its alloys at elevated temperatures is minimized by replacing trichloroethylene with methanol or methyl ethyl ketone as a degreasing agent. Wearing cotton gloves reduces stress corrosion from perspiration before the metal components are processed.

  1. Modelling aqueous corrosion of nuclear waste phosphate glass

    NASA Astrophysics Data System (ADS)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  2. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  3. Digital speckle correlation for nondestructive testing of corrosion

    NASA Astrophysics Data System (ADS)

    Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.

    1999-07-01

    This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.

  4. Effect of convection on the microstructure of the MnBi/Bi eutectic

    NASA Technical Reports Server (NTRS)

    Eisa, Gaber Faheem; Wilcox, william R.; Busch, Garrett

    1986-01-01

    For the quasi-regular fibrous microstructure of MnBi formed at freezing rates of 9 mm/h and above, good agreement between experimental and theoretical results for fiber spacing, freezing rate, radial position, and ampoule rotation rate is found. For the irregular blade-like microstructure formed at lower freezing rates, convection is found to coarsen the microstructure somwhat more than predicted. The volume fraction of MnBi was also shown to depend on ampoule rotation and radial position, even in the absence of ampoule rotation. The two-fold finer microstructure observed in space-processed material could not be explained by the elimination of buoyancy-driven natural convection.

  5. Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.

    PubMed

    Haack, Rebekka; Schulz, Stephan; Jansen, Georg

    2018-03-13

    Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. BiP negatively affects ricin transport.

    PubMed

    Gregers, Tone F; Skånland, Sigrid S; Wälchli, Sébastien; Bakke, Oddmund; Sandvig, Kirsten

    2013-05-10

    The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER). In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD) involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  7. BiP Negatively Affects Ricin Transport

    PubMed Central

    Gregers, Tone F.; Skånland, Sigrid S.; Wälchli, Sébastien; Bakke, Oddmund; Sandvig, Kirsten

    2013-01-01

    The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER). In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD) involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol. PMID:23666197

  8. Prediction of stress corrosion of carbon steel by nuclear process liquid wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrejcin, R.S.

    1978-08-01

    Radioactive liquid wastes are produced as a consequence of processing fuel from Savannah River Plant (SRP) production reactors. These wastes are stored in mild steel waste tanks, some of which have developed cracks from stress corrosion. A laboratory test was developed to determine the relative agressiveness of the wastes for stress corrosion cracking of mild steel. Tensile samples were strained to fracture in synthetic waste solutions in an electrochemical cell with the sample as the anode. Crack initiation is expected if total elongation of the steel in the test is less than its uniform elongation in air. Cracking would bemore » anticipated in a plant waste tank if solution conditions were equivalent to test conditions that cause a total elongation that is less than uniform elongation. The electrochemical tensile tests showed that the supernates in salt receiver tanks at SRP have the least aggressive compositions, and wastes newly generated during fuel repocessing have the most aggressive ones. Test data also verified that ASTM A 516-70 steel used in the fabrication of the later design waste tanks is less susceptible to cracking than the ASTM A 285-B steel used in earlier designs.« less

  9. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    PubMed

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  10. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  11. Alpha Lead Oxide (α-PbO): A New 2D Material with Visible Light Sensitivity.

    PubMed

    Kumar, Prashant; Liu, Jing; Ranjan, Pranay; Hu, Yaowu; Yamijala, Sharma Srkc; Pati, Swapan K; Irudayaraj, Joseph; Cheng, Gary J

    2018-03-01

    Even though transition metal dichalcogenides (TMDCs) are deemed to be novel photonic and optoelectronic 2D materials, the visible band gap being often limited to monolayer, hampers their potential in niche applications due to fabrication challenges. Uncontrollable defects and degraded functionalities at elevated temperature and under extreme environments further restrict their prospects. To address such limitations, the discovery of a new 2D material, α-PbO is reported. Micromechanical as well as sonochemical exfoliation of 2D atomic sheets of α-PbO are demonstrated and its optical behavior is investigated. Spectroscopic investigations indicate layer dependent band gaps. In particular, even multilayered PbO sheets exhibit visible band gap > 2 eV (direct) which is rare among semiconducting 2D materials. The emission lifetime of multilayer PbO atomic sheets is 7 ns (dim light) as compared to the monolayer which gives 2.5 ns lifetime and an intense light. Density functional theory calculations of layer dependent band structure of α-PbO matches well with experimental results. Experimental findings suggest that PbO atomic sheets exhibit hydrophobic nature, thermal robustness, microwave stability, anti-corrosive behaviour and acid resistance. This new low-cost, abundant and robust 2D material is expected to find many applications in the fields of electronics, optoelectronics, sensors, photocatalysis and energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-08

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  13. On the Problem of Stress Corrosion

    NASA Technical Reports Server (NTRS)

    Graf, L.

    1946-01-01

    The object of the present work is first to investigate accurately the processes during stress corrosion, in particular, for light metal alloys and, as the first part of the investigation, to determine its laws; and secondly to explain its causes for various alloys and thereby find means for its partial or complete elimination and thus make possible the production of light metal alloys free from any stress corrosion. In the present paper some of the results of the investigation are given and the fundamental problems of stress corrosion discussed.

  14. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    NASA Astrophysics Data System (ADS)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  15. Electrochemical monitoring of high-temperature molten-salt corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G.; Stott, F.H.; Dawson, J.L.

    1990-02-01

    Hot molten-salt corrosion can cause serious metal degradation in boiler plant, incinerators, and furnaces. In this research, electrochemical-impedance and electrochemical-noise techniques have been evaluated for the monitoring of hot-corrosion processes in such plants. Tests have been carried out on Ni-1% Co and Alloy 800, a commercial material of interest to operators of industrial plants. Electrochemical-impedance and electrochemical-noise data were compared with the results of metallographic examination of the test alloys and showed reasonable correlation between the electrochemical data and the actual degradation processes. This preliminary work indicated that the electrochemical techniques show considerable promise as instruments for the monitoring ofmore » high-temperature corrosion processes.« less

  16. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process.

    PubMed

    Wang, Liang; Yan, Dengbiao; Lyu, Lai; Hu, Chun; Jiang, Ning; Zhang, Lili

    2018-10-01

    BiOI is widely used as photocatalysts for pollutant removal, water splitting, CO 2 reduction and organic transformation due to its excellent photoelectric properties. Here, we report for the first time that a light-free catalyst consisting of the flower-like BiOI microspheres (f-BiOI MSs) exposing (1 0 1) and (1 1 0) crystal planes prepared by a hydrothermal method in ethylene glycol environment can rapidly eliminate the refractory BPA within only ∼3 min through a Fenton-like process. The reaction activity is ∼190 times higher than that of the conventional Fenton catalyst Fe 2 O 3 . A series of characterizations and experiments reveal the formation of the dual reaction centers on f-BiOI MSs. The electron-rich O centers efficiently reduce H 2 O 2 to OH, while the electron-poor oxygen vacancies capture electrons from the adsorbed pollutants and divert them to the electron-rich area during the Fenton-like reactions. By these processes, pollutants are degraded and mineralized quickly in a wide pH range. Our findings address the problems of the classical Fenton reaction and are useful for the development of efficient Fenton-like catalysts through constructing dual reaction centers. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints

    PubMed Central

    Huang, Ying; Zhang, Zhijie

    2017-01-01

    Sn-Bi solder with different Bi content can realize a low-to-medium-to-high soldering process. To obtain the effect of Bi content in Sn-Bi solder on the microstructure of solder, interfacial behaviors in solder joints with Cu and the joints strength, five Sn-Bi solders including Sn-5Bi and Sn-15Bi solid solution, Sn-30Bi and Sn-45Bi hypoeutectic and Sn-58Bi eutectic were selected in this work. The microstructure, interfacial reaction under soldering and subsequent aging and the shear properties of Sn-Bi solder joints were studied. Bi content in Sn-Bi solder had an obvious effect on the microstructure and the distribution of Bi phases. Solid solution Sn-Bi solder was composed of the β-Sn phases embedded with fine Bi particles, while hypoeutectic Sn-Bi solder was composed of the primary β-Sn phases and Sn-Bi eutectic structure from networked Sn and Bi phases, and eutectic Sn-Bi solder was mainly composed of a eutectic structure from short striped Sn and Bi phases. During soldering with Cu, the increase on Bi content in Sn-Bi solder slightly increased the interfacial Cu6Sn5 intermetallic compound (IMC)thickness, gradually flattened the IMC morphology, and promoted the accumulation of more Bi atoms to interfacial Cu6Sn5 IMC. During the subsequent aging, the growth rate of the IMC layer at the interface of Sn-Bi solder/Cu rapidly increased from solid solution Sn-Bi solder to hypoeutectic Sn-Bi solder, and then slightly decreased for Sn-58Bi solder joints. The accumulation of Bi atoms at the interface promoted the rapid growth of interfacial Cu6Sn5 IMC layer in hypoeutectic or eutectic Sn-Bi solder through blocking the formation of Cu6Sn5 in solder matrix and the transition from Cu6Sn5 to Cu3Sn. Ball shear tests on Sn-Bi as-soldered joints showed that the increase of Bi content in Sn-Bi deteriorated the shear strength of solder joints. The addition of Bi into Sn solder was also inclined to produce brittle morphology with interfacial fracture, which suggests that the

  18. Influence of biofilm formation on corrosion and scaling in geothermal plants

    NASA Astrophysics Data System (ADS)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  19. SR-BI selective lipid uptake: subsequent metabolism of acute phase HDL.

    PubMed

    de Beer, Maria C; Webb, Nancy R; Whitaker, Nathan L; Wroblewski, Joanne M; Jahangiri, Anisa; van der Westhuyzen, Deneys R; de Beer, Frederick C

    2009-09-01

    The purpose of this study was to investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II, and SAA. Small apoA-I only particles failed to associate with preformed HDL, whereas larger remnants readily did. The presence of SAA on SR-BI-processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism.

  20. SR-BI Selective Lipid Uptake: Subsequent Metabolism of Acute Phase HDL

    PubMed Central

    de Beer, Maria C.; Webb, Nancy R.; Whitaker, Nathan L.; Wroblewski, Joanne M.; Jahangiri, Anisa; van der Westhuyzen, Deneys R.; de Beer, Frederick C.

    2009-01-01

    Objective To investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). Methods and Results We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II and SAA. Small apoA-I only particles failed to associate with preformed HDL whereas larger remnants readily did. The presence of SAA on SR-BI processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. Conclusions Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism. PMID:19304574