Science.gov

Sample records for pbfa ii ion

  1. Lithium ion beam driven hohlraums for PBFA II

    SciTech Connect

    Dukart, R.J.

    1994-05-06

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities.

  2. LEVIS ion source and beam characterization on PBFA-II

    SciTech Connect

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Bailey, J.E.; Filuk, A.B.; Johnson, D.J.; Pointon, T.D.

    1993-12-31

    We report on the continuing development of the LEVIS (Laser Evaporation Ion Source) lithium active ion source for the 15-cm radial focussing ion diode on PBFA-11. We found previously that DC-heating of the anode surface to 150{degrees}C maximum for 5 hours resulted in a pure lithium beam. This paper discusses the characterization of LEVIS source uniformity by Faraday cup arrays and multiple lines of sight for visible light spectroscopy. These diagnostics give some evidence of nonuniformity in both A-K gap electric fields and ion current density. Despite this, however, the measured focal spot size appears smaller than with a passive LiF source operated in the same magnetic field topology. Experiments using a curved anode for vertical beam focussing show reduced ion beam turn-on delay by 5 ns by altering the magnetic field topology as well as anode curvature. Another 3--5 ns reduction was achieved by switching from a passive LiF to the active LEVIS source.

  3. Ion Diode Experiments on PBFA-X

    NASA Astrophysics Data System (ADS)

    Lockner, Thomas

    1996-05-01

    The PBFA-II pulsed power accelerator at Sandia National Laboratories has been modified to replace the radially focusing ion diode with an extraction ion diode. In the extraction diode mode (PBFA X) the ion beam is generated on the surface of an annular disk and extracted along the cylindrical axis. An additional magnetically insulated transmission line (MITL) has been installed to transmit power from the center to the bottom of the accelerator, where it drives a magnetically insulated extraction ion diode. The modification increases access to the diode and the diagnostics, permitting a higher shot rate, and allows us to study extraction diode technology at a power level near what is required for a high yield facility. The modification also includes reversing the polarity of the top half of the accelerator to permit operation at twice the previous source voltage. In the new configuration the diode could operate at 15 MV and 0.8 MA. This operating point is near the 30 MV, 1.0 MA operating point envisioned for one module of a high yield facility, and will allow the study of intense extraction ion diodes at power levels relevant to such a facility. Experimental results will be presented including MITL coupling studies, beam current density control, discharge cleaning of diode surfaces to reduce the presence of contaminant ions in the source beam, and the effect of anode substrate materials on the purity of the lithium beam. A comparison between predicted and measured radial beam profiles will also be presented, with the predicted profiles obtained from the ATHETA code that solves magnetostatics problems in two dimensions. This work was supported by the US/DOE under contract No. DE-AC04-94AL85000. +In collaboration with R. S. Coats, M. E. Cuneo, M. P. Desjarlias, D. J. Johnson, T. A. Mehlhorn, C. W. Mendel, Jr., P. Menge#, and W. J. Poukey,

  4. PBFA II-Z: A 20-MA driver for z-pinch experiments

    SciTech Connect

    1995-12-01

    Sandia is modifying the PBFA II accelerator into a dual use facility. While maintaining the present ion-beam capability, we are developing a long-pulse, high-current operating mode for magnetically-driven implosions. This option, called PBFA II-Z, will require new water transmission lines, a new insulator stack, and new magnetically-insulated transmission lines (MITLs). Each of the existing 36, coaxial water pulse-forming sections will couple to a 4.5-{Omega}, bi-plate water-transmission line. The water transmission lines then feed a four-level insulator stack. The insulators are expected to operate at a maximum, spatially-averaged electric field of {approximately}l00 kV/cm. The MITL design is based on the successful biconic Saturn design. The four ``disk`` feeds will each have a vacuum impedance of {approximately}2.0 {Omega}. The disk feeds are added in parallel using a double post-hole convolute at a diameter of 15 cm. We predict that the accelerator will deliver 20 MA to a 15-mg z-pinch load in 100 ns, making PBFA II-Z the most powerful z-pinch driver in the world providing a pulsed power and load physics scaling testbed for future 40-80-MA drivers.

  5. A Shot Parameter Specification Subsystem for automated control of PBFA (Particle Beam Fusion Accelerator) II accelerator shots

    SciTech Connect

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes.

  6. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  7. Pulsed power performance of PBFA Z

    SciTech Connect

    Spielman, R.B.; Stygar, W.A.; Seamen, J.F.

    1997-08-01

    PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads.

  8. Theory, simulation, and experiment of a single module coax-to-parallel-plate transition for the transformer section of PBFA II

    SciTech Connect

    Johnson, W.A.; Schneider, L.X.; Neau, E.L.

    1989-01-01

    Techniques are being developed to gain understanding of energy transport efficiencies through changes in pulsed power transmission line geometries. These techniques are being applied to design study of the PBFA-II accelerator which has the goal of increasing the energy available for ICF experiments. Transverse electromagnetic (TEM) wave analysis yields a simple circuit model of the new coax-to- parallel-plate transition. This simple model gives insight into the dominant physics of the device and suggests design improvements that will lead to the desired energy efficiencies. Insights gained by this simple model are confirmed and refined by 3-dimensional, time dependent computer simulations with the SOS code and scale model experiments. Simulations have predicted experimental results to high degree of accuracy which adds confidence in both the simulations and the scale model experiments. 1 ref., 11 figs., 1 tab.

  9. Bremsstrahlung Measurements at PBFA Z

    NASA Astrophysics Data System (ADS)

    Rochau, G. A.; Derzon, M. S.; Fehl, D.; Mock, R.; Ruiz, C.; Sweeney, M. A.; Struve, K.; Lazier, S.; Cooper, G.

    1997-11-01

    The PBFA Z accelerator at Sandia National Laboratories demonstrates z-pinch implosions capable of producing 1.8 MJ of soft x-rays. Associated with the power flow on PBFA Z is a bremsstrahlung background produced by electrons with endpoint energies greater than 2 MeV. In this presentation we present time-integrated images of the bremsstrahlung source, the measured bremsstrahlung spectrum both on-axis and side-on with respect to the target, and the bremsstrahlung background intensity as a function of azimuthal angle over the target. Measurements indicate that this background may be isotropic making it less of a concern when fielding diagnostics than previously considered. Additionally, electron losses, which have critical effects on power flow, are estimated with the Screamer circuit code and compared to the losses as determined by unfolding the measured bremsstrahlung field. Disagreements between these estimates are presented and discussed.

  10. Design validation of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W.; Long, F.; Martin, T.H.

    1997-07-01

    Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.

  11. Development of a resistive load for PBFA 2 rimfire gas switch simultaneity and laser triggering tests

    NASA Astrophysics Data System (ADS)

    Seamen, J. F.

    1985-02-01

    Before any useful energy can be delivered to the diode in PBFA II, all 36 rimfire gas switches have to be synchronized with a maximum jitter (one sigma) of 2 ns. In conjunction with the synchronization testing process, the laser system that will trigger all 36 rimfire gas switches will have to be aligned and tested. PBFA-I operations have also shown that being able to test gas switch performance without putting energy into the insulator stack with resistors that will manually be inserted across the first pulse-forming line (PFL1). A schematic of the equivalent circuits test setup and a schematic drawing of Demon are shown. The PFL1 resistors are designed to divert all energy away from the down-line water switches and diode load. The Demon accelerator, which is one module of PBFA II, was used to develop and test the resistive load. Those test results are described.

  12. PBFA Z: A 50 TW/5 MJ Electrical Generator

    NASA Astrophysics Data System (ADS)

    Spielman, R. B.

    1997-05-01

    PBFA Z is a new 50 TW/5 MJ short electrical driver located at Sandia National Laboratories. We use PBFA Z to magnetically-implode solid or plasma shells. These configurations are historically known as z pinches. The pulsed power design of PBFA Z(R. B. Spielman, et al., Proc. of the Ninth IEEE Pulsed Power Conf., Albuquerque, NM 1995) is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn (D. D. Bloomquist, et al., Proc. of the Sixth IEEE Pulsed Power Conf., Arlington, VA edited by P. J. Turchi and B. H. Bernstein (IEEE, New York, 1987), p. 310) and PBFA II(B. N. Turman, et al., Proc. of the Fifth IEEE Pulsed Power Conf., Arlington, VA 1985, pp. 155) accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 50 TW/100 ns pulse to the output water transmission lines, and delivers 3.4 MJ and 40 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, we attain a peak current of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV /cm. The current from the four independent conical disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The measured system performance of the water transmission lines, the vacuum insulator stack, the MITLs, and the double post-hole vacuum convolute differed from preshot predictions by ~ 5%. Using a 2-cm radius and a 2-cm length tungsten wire array with 240, 7.5-=B5m diameter wires (4.1-mg mass) as the z-pinch load, we achieved x-ray powers of 160 TW and x-ray energies of 1.85 MJ as measured by x-ray diodes and resistive bolometry.

  13. In situ evaporation of lithium for LEVIS ion source

    SciTech Connect

    Gerber, B.; Lopez, M.; Lamppa, K.; Stearns, W.; Bieg, K.

    1994-05-01

    This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

  14. Design and analysis of the PBFA-Z vacuum insulator stack

    SciTech Connect

    Shoup, R.W. |; Long, F.; Martin, T.H.

    1996-06-01

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.

  15. PBFA Z: A 20-MA z-pinch driver for plasma radiation sources

    SciTech Connect

    Spielman, R.B.; Breeze, S.F.; Deeney, C.

    1996-07-01

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be a z-pinch driver capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of {approximately} 40 cm/{mu}s. Design constraints resulted in an accelerator with a 0.12-{Omega} impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four, self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15--mg mass, coupling 1.5 MJ into kinetic energy. We present 2-D Rad-Hydro calculations showing MJ x-ray outputs from tungsten wire-array z pinches.

  16. PBFA-2 vacuum system design using a lumped parameter computer model

    NASA Astrophysics Data System (ADS)

    Cap, J. S.; Schneider, L. X.; Boyes, J. D.

    The PBFA-2 vacuum vessel which houses the power flow lines and ion diode presented a difficult engineering problem in analyzing the pressure distribution throughout the chamber. The vessel utilizes a typical construction of stacked lucite and aluminum rings with their associated high outgassing loads. The transmission lines are a series of stacked cones and toroids that form an inter-connected network of annular pathways. Calculating the steady state pressure distribution required solving 30 simultaneous equations, and any transient solution was virtually impossible by hand. This paper describes a computer model developed using the direct analogy between fluid flow parameters and electrical parameters. This model can then be solved as a lumped parameter electrical circuit using the differential network analysis program, SCEPTRE. The overall design of the vacuum system, including the choice of helium cryopumps and water vapor cryopumps to handle the anticipated heavy water vapor load, is also discussed.

  17. PBFA-2 vacuum insulator stack failure mechanisms

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.

    The BPFA-II accelerator includes a large-radius, vertical-axis vacuum insulator stack. The possible failure of the acrylic rings in the stack from electron- or gamma-induced charge buildup is being evaluated. The induced static charges could remain for many hours, and either type of irradiation might cause dendrites to form. Aluminum grading rings sandwiched between the acrylic affect charge accumulation; the acrylic would preferentially break down to these grading rings. The charge buildup and the bremsstrahlung dose could depend critically upon the directionality and position of the electron loss. The effects of electron loss that occurs in the vicinity of the ion diode, where the electrons have energies of about 30 MeV are considered. Monte Carlo electron-photon transport calculations indicate that the bremsstrahlung dose expected in an acrylic ring once diode experiments begin in 1986 could be as much as 5 krads per shot, with roughly half of the photon energy above 5 MeV. Moreover, the calculation indicate that the charge deposition in an individual acrylic ring might exceed 2x10 to the 11 electrons/sq cm.

  18. Progress toward fusion with light ions

    SciTech Connect

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm/sup 2/, a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator.

  19. Zn(II) ions substantially perturb Cu(II) ion coordination in amyloid-β at physiological pH.

    PubMed

    Silva, K Ishara; Saxena, Sunil

    2013-08-15

    The interaction of Cu(II) and Zn(II) ions with amyloid-β (Aβ) plays an important role in the etiology of Alzheimer's disease. We describe the use of electron spin resonance (ESR) to measure metal-binding competition between Cu(II) and Zn(II) in amyloid-β at physiological pH. Continuous wave ESR measurements show that the affinity of Cu(II) toward Aβ(1-16) is significantly higher than that of Zn(II) at physiological pH. Importantly, of the two known Cu(II) coordination modes in Aβ, component I and component II, Zn(II) displaces Cu(II) only from component I. Our results indicate that at excess amounts of Zn(II) component II becomes the most dominant coordination mode. This observation is important as Aβ aggregates in the brain contain a high Zn(II) ion concentration. In order to determine details of the metal ion competition, electron spin echo envelope modulation experiments were carried out on Aβ variants that were systematically (15)N labeled. In the presence of Zn(II), most peptides use His 14 as an equatorial ligand to bind Cu(II) ions. Interestingly, Zn(II) ions completely substitute Cu(II) ions that are simultaneously coordinated to His 6 and His 13. Furthermore, in the presence of Zn(II), the proportion of Cu(II) ions that are simultaneously coordinated to His 13 and His 14 is increased. On the basis of our results we suggest that His 13 plays a critical role in modulating the morphology of Aβ aggregates.

  20. Specific ion effects via ion hydration: II. Double layer interaction.

    PubMed

    Ruckenstein, Eli; Manciu, Marian

    2003-09-18

    A simple modified Poisson-Boltzmann formalism, which accounts also for those interactions between electrolyte ions and colloidal particles not included in the mean potential, is used to calculate the force between two parallel plates. It is shown that the short-range interactions between ions and plates, such as those due to the change in the hydration free energy of a structure-making/breaking ion that approaches the interface, affect the double layer interaction at large separations through the modification of the surface potential and surface charge density. While at short separations (below the range of the short-range ion-hydration forces) the interaction can be attractive, at larger separations the interaction is always repulsive, as in the traditional theory. When the long-range van der Waals interactions between the ions and the system (ion-dispersion interactions) are accounted for in the modified Poisson-Boltzmann approach, an attractive force between plates can be generated. At sufficiently large separations, this attraction can become even stronger than the traditional van der Waals attraction between plates of finite thickness, thus generating a dominant long-range 'double layer attraction'. At small plate separations, the attraction generated by the ion-dispersion forces combined with the electrostatic repulsion due to the double layers overlap can lead to a variety of interactions, from a weak attraction (which is typically by at least one order of magnitude smaller than the traditional van der Waals attraction between plates) to a strong double layer repulsion (for sufficiently large surface charges). Both types of ion interactions (long-range van der Waals or short-range ionic hydration) strongly affect the magnitude of the double layer interaction, and can account for the specific ion effects observed experimentally. However, they do not affect qualitatively the traditional theory of the colloid stability, which predicts that the colloid is stable

  1. Simulations of Ion Beam Heated Targets on NDCX II

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; Friedman, A.; Perkins, L. J.; Bieniosek, F. M.; Hay, M. J.; Henestroza, E.; Logan, B. G.; More, R. M.; Ni, P. A.; Ng, S. F.; Yu, S. S.; Veitzer, S. A.

    2010-11-01

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator now being constructed at LBNL and scheduled for project completion in 2012. The design calls for a ˜2 - 3 MeV, ˜30 A Li^+ ion beam, delivered in a bunch with sub ns pulse duration, and transverse dimension less than ˜ 1 mm. The purpose of NDCX II is to carry out experimental studies of material in the warm dense matter regime and ion beam and hydrodynamic coupling experiments relevant to heavy ion fusion (HIF). In preparation for NDCX-II, we have carried out hydro simulations of ion-beam-heated, porous and solid, metallic and non-metallic, targets. We have shown the sensitivity of observables on equations of state. Pulse formats include single pulses of fixed ion energy, and and single or double pulses with variable energy to create shocks and investigate ion-coupling efficiency. Comparisons are made with simulations of ion driven direct drive HIF capsules.

  2. Angiotensin II and renal tubular ion transport.

    PubMed

    Valles, Patricia; Wysocki, Jan; Batlle, Daniel

    2005-08-29

    Angiotensin II, a potent vasoconstrictor, also participates in the regulation of renal sodium and water excretion, not only via a myriad of effects on renal hemodynamics, glomerular filtration rate, and regulation of aldosterone secretion, but also via direct effects on renal tubule transport. In addition, angiotensin II stimulates H+ secretion and HCO3- reabsorption in both proximal and distal tubules and regulates H+-ATPase activity in intercalated cells of the collecting tubule. Different results regarding the effect of angiotensin II on bicarbonate reabsorption and proton secretion have been reported at the functional level, depending on the angiotensin II concentration and tubule segment studied. It is likely that interstitial angiotensin II is more important in regulating hemodynamic and transport functions than circulating angiotensin II. In proximal tubules, stimulation of bicarbonate reabsorption, Na+/H+-exchange, and Na+/HCO3- cotransport has been found using low concentrations (<10(-9) M), while inhibition of bicarbonate reabsorption has been documented using concentrations higher than 10(-8) M. Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  3. Spectroscopy of barium ions in He II

    NASA Astrophysics Data System (ADS)

    Reyher, H. J.; Bauer, H.; Huber, C.; Mayer, R.; Schäfer, A.; Winnacker, A.

    1986-04-01

    The excitation and emission spectra of Ba + immersed in superfluid helium have been measured. The two absorption bands - several nm wide - are slightly blue shifted with respect to the D 1 and D 2 lines of the free ion. Three emission bands at λ1 = 491 nm, λ2 = 523 nm and λ3 = 648 nm have been observed.

  4. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  5. Electron scattering from HeII ions at intermediate energies

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Scott, M. P.; Burke, P. G.; Dahler, J. S.

    1997-04-01

    Electron collisional excitation cross sections and rate coefficients of HeII ions are of extreme interest in the modelling of astrophysical plasmas. They are required for reliable determination of the excitation and ionization in the solar corona, impulsive heating events in the solar transitions region, shock waves in the interstellar medium and in stellar atmospheres. Emission lines of HeII have been observed in a variety of solar and astrophysical objects at wavelengths below 350 ÅThe Extreme Ultra Violet Explorer (EUVE) spectra of Capella (HD 3402, G8 III + G0 III), the bright RS CVn binary system, is dominated by HeII (λ 303 Åand high ionization stages of iron. Accurate knowledge of the electron collisional excitation rates for the n = 2 and n = 3 levels of HeII are required in the modelling of the electron-ion equilibration in non-radiative shocks associated with SN 1006. Recently attention has focused on scattering at intermediate energies with emphasis on the n = 2 levels using the CCC formalism and the 2D-Rmatrix propagator method. In our work we have used the IERM approach of Burke, Scott and co-workers to obtain accurate cross sections for levels up to n = 3, as this has proved successful in dealing with electron - atomic hydrogen scattering at intermediate energies. A comprehensive set of results will be presented at the meeting.

  6. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:19962235

  7. Complex Formation Between Ca(II), Mg(II), Al(III) Ions and Salicylglycine

    PubMed Central

    Kilyén, Melinda; Labádi, lmre; Tombácz, Etelka; Kiss, Tamás

    2003-01-01

    For modelling the interactions of proteins/peptides with hard metal ions the complex formation of salicylglycine (SalGly) with Ca(II), Mg(ll) and AI(III) ions was studied in aqueous solution using pHpotentiometric and UV-vis spectroscopic techniques. Al(lll) ion was found to form more stable complexes with SalGiy than Ca(ll) or Mg(ll) ions. While AI(III) ion forms various 1:1 complexes of different protonation states in the pH range 2-7, Ca(ll), Mg(ll) ions seem to interact with SalGly only in the basic pH range and form mixed hydroxo species MLH-1 at pH ~ 8. According to the UV-vis spectroscopic measurements in the species MLH-1 the carboxylate-O- atom and the phenolate-O- coordinate to the metal ions. SaIGiy is able to keep Al(lll) in solution through inner and outer sphere coordination to metastable amorphous AI(OH)3 particles. Deprotonation of the peptide amide Nil does not occur in these systems. PMID:18365063

  8. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  9. Selective transport of copper(I, II), cadmium(II), and zinc(II) ions through a supported liquid membrane containing bathocuproine, neocuproine, or bathophenanthroline

    SciTech Connect

    Saito, Takashi )

    1994-06-01

    Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2[prime]-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1, 10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthroline (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu[sup +,2+], Zn[sup 2+], Cd[sup 2+] [much gt] Pb[sup 2+], Co[sup 2+]. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu[sup +] ions was higher than those of Cd[sup 2+] and Zn[sup 2+] ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu[sup 2+] ion decreased whereas that of the Cd[sup 2+] ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species. 18 refs., 9 figs.

  10. [Fluorescence spectroscopic study of interaction between Fe-protoporphyrin in myoglobin and Cu(II) ions].

    PubMed

    Feng, Yu-ying; Yang, Hui; Gu, Xiao-tian; Jiang, Hui-jun; Lu, Tian-hong

    2003-06-01

    In this paper, the interaction between Cu(II) ions and Fe-protoporphyrin in horse-heart myoglobin (FePP-Mb) was studied. As a result, some of the Fe(II) ions in FePP-Mb were found to be replaced by Cu(II) ions forming CuPP-Mb, by adding Cu(II) ions into the myoglobin solution. The interaction became stronger when adding more Cu(II) ions into the myoglobin solution. By studying the metal ions' interaction with myoglobin proteins as macromolecules and discussing the interaction mechanism, this work provides a theoretical basis for the further study of hazardous metal ions' interaction with the human body and its mechanism. The fluorescence spectroscopic method used in this study has higher sensitivity than the ordinary UV and CD methods.

  11. Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180.

    PubMed

    Tokalioğlu, Serife; Yilmaz, Vedat; Kartal, Senol

    2009-05-01

    A new method for separation and preconcentration of trace amounts of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions in various matrices was proposed. The method is based on the adsorption and chelation of the metal ions on a column containing Amberlite XAD-1180 resin impregnated with 1-(2-thiazolylazo)-2-naphthol (TAN) reagent prior to their determination by flame atomic absorption spectrometry (FAAS). The effect of pH, type, concentration and volume of eluent, sample volume, flow rates of sample and elution solutions, and interfering ions have been investigated. The optimum pH for simultaneous retention of all the metal ions was 9. Eluent for quantitative elution was 20 ml of 2 mol l(-1) HNO(3). The optimum sample and eluent flow rates were found as 4 ml min(-1), and also sample volume was 500 ml, except for Mn (87% recovery). The sorption capacity of the resin was found to be 0.77, 0.41, 0.57, and 0.30 mg g(-1) for Cu(II), Ni(II), Cd(II), and Mn(II), respectively. The preconcentration factor of the method was 200 for Cu(II), 150 for Pb(II), 100 for Cd(II) and Ni(II), and 50 for Mn(II). The recovery values for all of the metal ions were > or = 95% and relative standard deviations (RSDs) were < or = 5.1%. The detection limit values were in the range of 0.03 and 1.19 microg l(-1). The accuracy of the method was confirmed by analysing the certified reference materials (TMDA 54.4 fortified lake water and GBW 07605 tea samples) and the recovery studies. This procedure was applied to the determination of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) in waste water and lake water samples.

  12. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash

    PubMed Central

    Zhao, Jiaying; Jiang, Zhao; Shan, Dexin; Lu, Yan

    2014-01-01

    Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient (R2) of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. PMID:24982918

  13. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    SciTech Connect

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  14. Incorporation of sulfide ions into the cadmium(II) thiolate cluster of Cicer arietinum metallothionein2.

    PubMed

    Wan, Xiaoqiong; Freisinger, Eva

    2013-01-18

    The plant metallothionein2 from Cicer arietinum (chickpea), cic-MT2, is known to coordinate five divalent metal ions such as Zn(II) or Cd(II), which are arranged in a single metal thiolate cluster. When the Zn(II) form of the protein is titrated with Cd(II) ions in the presence of sulfide ions, an increased Cd(II) binding capacity and concomitant incorporation of sulfide ions into the cluster are observed. The exact stoichiometry of this novel cluster, its spectroscopic properties, and the significantly increased pH stability are analyzed with different techniques, including UV and circular dichroism spectroscopy and colorimetric assays. Limited proteolytic digestion provides information about the spacial arrangement of the cluster within the protein. Increasing the Cd(II) scavenging properties of a metallothionein by additionally recruiting sulfide ions might be an economic and very efficient detoxification strategy for plants.

  15. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan.

    PubMed

    Li, Manlin; Zhang, Zengqiang; Li, Ronghua; Wang, Jim J; Ali, Amjad

    2016-05-01

    The removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan (TCS) was studied in this article. The synthesized TCS was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), element analysis, N2 adsorption-desorption, scanning electron microscopy (SEM) and X-ray photoelectron spectrophotometer (XPS). Moreover, the influence of solution pH, contact time, initial heavy metal concentration, and solution temperature on the adsorption process was examined, and the adsorbent reusability and adsorption mechanisms were also studied. The results showed that TCS adsorbed greater amount of Pb(II) and Cd(II) ions than the raw chitosan. The adsorption amounts of Pb(II) and Cd(II) ions were affected by increasing solution pH and temperature. The maximum adsorption capacities of the TCS for Pb(II) and Cd(II) ions were found to be 325.2 and 257.2 mg/g, respectively. The endothermic adsorption fitted the pseudo-second-order kinetics equation and the adsorption isotherms could be well described by Langmuir model. The metal ions adsorption mechanism was concluded to be mainly dominated by complexation reaction process. The desorption study indicated that the target adsorbent was easy to be regenerated. PMID:26879912

  16. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    PubMed Central

    Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2010-01-01

    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663

  17. Electroanalytical investigation on the interaction between 6-mercaptopurine and zinc(II), lead(II), and cadmium(II) ions in nonaqueous solvents.

    PubMed

    Cinquantini, A; Cini, R; Zanello, P

    1980-04-01

    Different electroanalytical techniques have been employed in the study of the interaction between 6-mercaptopurine and zinc(II), lead(II), and cadmium(II) ions in ethanol, dimethylformamide, and dimethylsulfoxide. The stoichiometry of the formed complexes was determined as well as their instability constants. The kinetic parameters of the electrode processes have been also evaluated.

  18. Application of carrier element free coprecipitation (CEFC) method for determination of Co(II), Cu(II) and Ni(II) ions in food and water samples.

    PubMed

    Serencam, Huseyin; Duran, Celal; Ozdes, Duygu; Bektas, Hakan

    2013-01-01

    A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples. PMID:23878931

  19. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  20. Generation and focusing of pulsed intense ion beams. Technical progress report, 20 August 1981-30 September 1982

    SciTech Connect

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1983-07-01

    The progress on this contract is described in two parts. The first deals with the technical operation of the LION accelerator which is the exact equivalent to one line of PBFA-I. The second part is concerned with the experimental results on the ion diode mounted at the front end of the LION accelerator.

  1. Determination of Pb(II), Zn(II), Cd(II), and Co(II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo(VI)-diethyldithiocarbamate.

    PubMed

    Tufekci, Mehmet; Bulut, Volkan Numan; Elvan, Hamide; Ozdes, Duygu; Soylak, Mustafa; Duran, Celal

    2013-02-01

    A new, simple, and rapid separation and preconcentration procedure, for determination of Pb(II), Cd(II), Zn(II), and Co(II) ions in environmental real samples, has been developed. The method is based on the combination of coprecipitation of analyte ions by the aid of the Mo(VI)-diethyldithiocarbamate-(Mo(VI)-DDTC) precipitate and flame atomic absorption spectrometric determinations. The effects of experimental conditions like pH of the aqueous solution, amounts of DDTC and Mo(VI), standing time, centrifugation rate and time, sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of the analyte ions. The preconcentration factors were found to be 150 for Pb(II), Zn(II) and Co(II), and 200 for Cd(II) ions. The detection limits were in the range of 0.1-2.2 μg L(-1) while the relative standard deviations were found to be lower than 5 % for the studied analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of certified reference material (CRM TMDW-500 Drinking Water). The procedure was successfully applied to seawater and stream water as liquid samples and baby food and dried eggplant as solid samples in order to determine the levels of Pb(II), Cd(II), Zn(II), and Co(II) ions. PMID:22527456

  2. Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium.

    PubMed

    Cakir, Semiha; Coskun, Emine; Biçer, Ender; Cakir, Osman

    2003-05-23

    The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn). PMID:12747864

  3. Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium.

    PubMed

    Cakir, Semiha; Coskun, Emine; Biçer, Ender; Cakir, Osman

    2003-05-23

    The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn).

  4. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    SciTech Connect

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.

  5. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. PMID:26452863

  6. Mechanism of the catalytic ozonization of lignin in the presence of Mn(II) ions

    NASA Astrophysics Data System (ADS)

    Mitrofanova, A. N.; Khudoshin, A. G.; Lunin, V. V.

    2013-07-01

    The reaction between ozone and lignin in aqueous solutions catalyzed by Mn(II) ions is studied. The rate of destruction for aromatic structures of lignin is found to increase in the presence of Mn(II) ions. However, the greatest catalytic effect is observed upon the transformation of aliphatic acids that are difficult to oxidize with ozone. The introduction of catalyst raises the total consumption of ozone from 3 to 7 mol per each structural unit of lignin. A scheme is proposed for the transformation of phenol fragments of lignin using ozone with the participation of Mn(II) ions: at the initial stage, we observe the ozone oxidation of lignin and Mn(II) to Mn(III) ions stabilized with products of lignin oxidation and accompanied by the formation of chelate complexes, and the Mn(III) chelate complexes act as low-molecular mediators, attacking phenol structures and initiating radical processes.

  7. Equilibrium studies of sorption of lead(II) ions by different pectin compounds.

    PubMed

    Khotimchenko, Maxim; Kovalev, Valeri; Khotimchenko, Yuri

    2007-11-19

    The adsorption of Pb(II) ions from aqueous solution by different pectin compounds was studied in a batch sorption system. Water-soluble low- and high-esterified pectins and insoluble calcium pectate beads were investigated. The lead-binding capacity of all pectin compounds was highest within the pH range from 7 to 8. The binding capacities and rates of Pb(II) ions by pectin compounds were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and isotherm constants. Sorption isothermal data could be well interpreted by the Langmuir model. These results obtained through the study suggest that pectin compounds are favorable sorbers. The largest amount of Pb(II) ions were bound by pectin with the low degree of esterfication. Therefore, pectin substances may be considered as perspective for sorption and removal of Pb(II) ions from wastewaters.

  8. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  9. Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions.

    PubMed

    Lombardo Lupano, Lucía Victoria; Lázaro Martínez, Juan Manuel; Piehl, Lidia Leonor; Rubín de Celis, Emilio; Torres Sánchez, Rosa María; Campo Dall' Orto, Viviana

    2014-03-18

    Here, we report the synthesis and characterization of a hydrogel based on ethylene glycol diglycidyl ether (EGDE) and 1,8-diamino-3,6-dioxaoctane (DA). Chemically stable Co(II) and Cu(II) coordination complexes were prepared with this nonsoluble polyelectrolyte, poly(EGDE-DA), and studied by ss-NMR, FT-IR, thermogravimetry, and microscopy. Mesopores were found in all the samples, the thermal stability of the polymer matrix was highly affected by the presence of metal ions, and the (13)C CP-MAS spectrum for the Cu(II)-complex evidenced a significant increase in the reticulation degree by Cu(II) ions. The catalytic activity of these materials on H2O2 activation was studied by electron spin resonance (ESR). The Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2, an anion superoxide (O2(•)¯), and a hydroxyl radical (OH(•)), which diffused into the solution at the time that a decrease in pH was detected. In the same way, the Cu(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2 and OH(•). H2O2 activation by the poly(EGDE-DA) complexes with Co(II) and Cu(II) were applied on the decolorization of solutions of the azo-dye methyl orange (MO). In the presence of 63 mM H2O2, 87% of MO was removed in 10 min with Cu(II)-poly(EGDE-DA) and in 110 min with Co(II)-poly(EGDE-DA). In addition, the pharmaceutical product epinephrine was partially oxidized to adrenochrome by the O2(•)¯ released from the Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system.

  10. Tested Demonstrations. Color, Solubility, and Complex Ion Equilibria of Nickel (II) Species in Aqueous Solution.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.; And Others

    1980-01-01

    Presents three different procedures in which reagents are added in a specified order to a large beaker containing an aqueous solution of nickel sulfate. Complex ions of nickel (II) are prepared by using aqueous solutions of ammonia, ethylenediamine, dimethylglyoxime, and cyanide ion. (CS)

  11. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  12. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    NASA Astrophysics Data System (ADS)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  13. Cleaning techniques for applied-B ion diodes

    SciTech Connect

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    1995-09-01

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaning techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.

  14. Enhanced removal of nickel(II) ions from aqueous solutions by SDS-functionalized graphene oxide

    PubMed Central

    Salihi, Elif Çalışkan; Wang, Jiabin; Coleman, Daniel J. L.; Šiller, Lidija

    2016-01-01

    ABSTRACT In this paper, a one-pot and easy-to-handle method at room temperature without additional chemicals for the modification of graphene oxide (GO) with surfactant is found. Removal of nickel (II) ions from aqueous solutions by GO and surfactant (sodium dodecyl sulphate) modified graphene oxide (SDS-GO) was studied spectrophotometrically at room temperature as a function of time, initial concentration and pH. Adsorption capacity of the adsorbent was increased dramatically (from 20.19 to 55.16 mg/g found by Langmuir model) due to the functionalization of the surface by SDS. The driving force of the adsorption of Ni(II) ions is electrostatic attraction and Ni(II) ions adsorbed on the GO surface chemically besides ion exchange. PMID:27365545

  15. Study on a colorimetric sensor with color switching: Naked-eye detection for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Ma, Wenzhong

    2012-12-01

    In this paper, we synthesize and report a Cu(II)-sensing probe of N'1,N'2-bis(4-(diethylamino)-2-hydroxybenzylidene)oxalohydrazide (BDHO) with two detection channels. Its colorimetric and fluorescence spectrophotometric responses towards Cu(II) ion are fully investigated. It is found that the absorption and emission spectra of BDHO are both sensitive towards Cu(II) ion with high sensitivity as well as excellent selectivity. In addition, the recognition of BDHO towards Cu(II) ion is also very quick and can be accomplished within less than 1 min. The actual sensing performance of BDHO towards Cu(II) ion is also tentatively explored.

  16. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  17. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part II: Analysis-search for organic ions

    NASA Astrophysics Data System (ADS)

    Ponciano, C. R.; Farenzena, L. S.; Collado, V. M.; da Silveira, E. F.; Wien, K.

    2005-06-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture of CO2 and H2O (T = 80-90 K) bombarded by MeV nitrogen ions and by 252Cf fission fragments. The aim of the experiment is to detect organic molecules, produced in the highly excited material around the nuclear track, which appear as ions in the flux of sputtered particles. Part I of the present work [L.S. Farenzena, V.M. Collado, C.R Ponciano, E.F. da Silveira, K. Wien. Int. J. Mass Spectrom. 243 (2005) 85-93] described the method and presented the time-of-flight mass spectra; a list of the CO2 specific and H2O specific reaction products was provided. In Part II, the peaks of the TOF mass spectra are analyzed. Projectile-ice direct coulomb interaction leads to the production in the track of the H+, C+, O+, O2+, CO+ and CO2+ primarily ions, which react in the highly energized nuclear track plasma mainly with CO2 and H2O or H2CO3. The positive molecular hybrid ions formed are identified as organic species like COH+, COOH+, CHn = 1-3+, Hn = 1,2COOH+ and cluster ions. Similarly, the negative primarily ions O- and OH- formed by electron capture produce negative hybrid ions such as (CO2)nOH-, the four ions (CO4Hm = 0-3)- and the corresponding cluster ions. By far, most of the molecular ions have been formed by one-step reactions; exceptions are eventually the CO4Hm- ions created by a reaction between CO3- and water molecules. An intense mass line corresponding to HCO3+ has been observed, but not the one due to formaldehyde ion. Weak signals of ionic ketene, hydrogen peroxide and carbonic acid were seen.

  18. Ion exchange induced removal of Pb(ii) by MOF-derived magnetic inorganic sorbents.

    PubMed

    Chen, Dezhi; Shen, Weisong; Wu, Shaolin; Chen, Caiqin; Luo, Xubiao; Guo, Lin

    2016-04-01

    Nanoporous adsorbents of ZnO/ZnFe2O4/C were synthesized by using a metal organic framework (Fe(III)-modified MOF-5) as both the precursor and the self-sacrificing template. The adsorption properties of ZnO/ZnFe2O4/C toward Pb(ii) ions were investigated, including the pH effect, adsorption equilibrium and adsorption kinetics. The adsorption isotherms and kinetics were well described by using the Langmuir isotherm model and pseudo-second-order model, respectively. The MOF-derived inorganic adsorbents exhibited high absorption performance with a maximum adsorption capacity of 344.83 mg g(-1). X-ray powder diffraction and high-resolution X-ray photoelectron spectroscopy suggest that Zn(ii) was substituted by a significant portion of Pb(ii) on the surface of ZnO nanocrystals. Microscopic observations also demonstrate the effect of Pb(ii) ions on ZnO crystals as reflected by the considerably reduced average particle size and defective outer layer. Quantitative measurement of the released Zn(ii) ions and the adsorbed Pb(ii) ions indicated a nearly linear relationship (R(2) = 0.977). Moreover, Pb-containing ZnO/ZnFe2O4/C adsorbents are strongly magnetic allowing their separation from the water environment by an external magnet. PMID:26967550

  19. Complexation of Hg (II) ions with humic acids of tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, Roman

    2013-04-01

    Humic acids (HA) play an important role in processes of heavy metals migration, controlling their geochemical streams in environment. Accumulative and detoxification abilities of HA to heavy metals are realized by means of formation of steady complexes salycylate and pyrocatechin types. Modern researches show that HA of the Arctic and Subarctic areas are poorly enriched by aromatic frames, so and metalbinding centres. The work purpose is to study interaction mechanisms of Hg (II) ions with HA and to define tread possibilities of a tundra soils humic acids. It is established that binding ability of Hg (II) ions depends on concentration of an element, on quantity of functional groups in peripheral and nuclear parts of HA molecule as well as on a solution pH. coomplexation proceeds at pH 2.5-3.5 efficiently. On the basis of kinetic models it is shown that HA interaction with Hg (II) ions, at microconcentration of a pollutant (0.025-5.0 mkmol/dm3), has a zero order of reaction. Rate of a reaction does not depend on initial components concentration and is defined by process of Hg (II) ions diffusion to organic ligands. High correlation of a HA sorption capacity to Hg (II) ions is observed: with the nitrogen content and maintenance of amino groups (according to a 13C-NMR, element composition) and negative correlation - with degree of HA aromaticity. It testifies to primary binding of Hg (II) ions by amino-acid fragments of a HA molecule peripheral part. When concentration of Hg (II) ions increases, binding proceeds on carboxylic and phenolic groups of a molecule nuclear part. Higher order of kinetic models reaction and FTIR spectroscopy data testify to it. Comparison of FTIR spectra of HA preparations and mercury humates, shows that Hg (II) ions binding in humate complexes is carried out mainly by -COOH. Reduction of a spectral line intensity not ionized -COOH at 1700-1720 sm-1 and intensity increases of dissymetric valency vibration at 1610-1650 sm-1 diagnose increase

  20. Summary II - Fusion Ion sources, Beam Formation, Acceleration and Neutralisation

    SciTech Connect

    Jones, T. T. C.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on 13th - 15th September 2006 and was hosted by Los Alamos National Laboratory. This summary covers the sessions of the Symposium devoted to the topics listed in the title.

  1. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Silveira, Joshua A.; Michelmann, Karsten; Ridgeway, Mark E.; Park, Melvin A.

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.

  2. Relativistic Configuration Interaction calculations of the atomic properties of selected transition metal positive ions; Ni II, V II and W II

    NASA Astrophysics Data System (ADS)

    Abdalmoneam, Marwa Hefny

    -quantitative agreement with experiment for the oscillator strength and branching fractions. However the calculated lifetimes and Lande g-values are in very good agreement with the available measured quantities. We found the sums of lifetimes and the sums of Lande g-values of the nearby levels were almost independent of the calculation stage. The calculated atomic properties for Ni II, V II, and W II fill in many gaps in the available atomic data for these three ions. Also, they are expected to facilitate the fundamental understanding of electric and magnetic behaviors of most of the transition metal ions and atoms with similar electronic configurations.

  3. Extraction and ion-exchange behavior of mendelevium (II)

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Buklanov, G.V.; Pkhar, Z.Z.; Lebedev, I.A.; Katargin, N.V.; Myasoedov, B.F.

    1988-09-01

    Medelevium-256 was obtained via multinucleon transfer reactions upon irradiation of /sup 249/Bk by /sup 22/Ne ions from the extracted beam of a U-300 cyclotron. In order to extract mendelevium and separate it from the products of nuclear reactions, an express ion-exchange method using one column with cationite and zinc amalgam in a solution of 1 mole/liter HCl as the eluent was developed. It was shown that under these conditions mendelevium is reduced and washes out as an alkaline earth element. On the basis of the location of the peaks of the elution curves of Sr/sup 2+/, Eu/sup 2+/, and Md/sup 2+/, the value of the ionic radium of Md/sup 2+/ is estimated and is used to estimate the heat of hydration.

  4. A new on-fluorescent probe for manganese (II) ion.

    PubMed

    Dutta, Kaku; Deka, Ramesh Ch; Das, Diganta Kumar

    2013-11-01

    A new fluorescent probe for Mn(2+) ion, (6E)-N-((E)-1,2-diphenyl-2-(pyridin-2-ylimino)ethylidene)pyridin-2-amine (L), has been synthesized from benzil and 2-amino pyridine and characterized. In 1:1 (v/v) CH3CN:H2O (pH 4.0, universal buffer) L exhibits fluorescent intensity with emission peak at λmax 360 nm on excitation with photons of 310 nm. Fluorescent intensity of L increases distinguishingly on interaction with Mn(2+) ion compared to metal ions--Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+) and Ag(+) individually or all together. The enhancement in fluorescent intensity is due to snapping of photoinduced electron transfer (PET) prevailed in free L. Fluorescence and UV/visible spectral data analysis shows that binding stoichiometry between Mn(2+) and L is 1:1 with log β ≈ 3.0. Both L and its Mn(2+) complex were optimised using density functional theory (DFT) and vibrational frequency calculations confirm that both are at local minima on the potential energy surfaces.

  5. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  6. Adsorptive removal of nickel(II) ions from aqueous environment: A review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-09-01

    Among various methods adsorption can be efficiently employed for the treatment of heavy metal ions contaminated wastewater. In this context the authors reviewed variety of adsorbents used by various researchers for the removal of nickel(II) ions from aqueous environment. One of the objectives of this review article is to assemble the scattered available enlightenment on a wide range of potentially effective adsorbents for nickel(II) ions removal. This work critically assessed existing knowledge and research on the uptake of nickel by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. In addition, the equilibrium adsorption isotherms, kinetics and thermodynamics data as well as various optimal experimental conditions (solution pH, equilibrium contact time and dosage of adsorbent) of different adsorbents towards Ni(II) ions were also analyzed. It is evident from a literature survey of more than 190 published articles that agricultural solid waste materials, natural materials and biosorbents have demonstrated outstanding adsorption capabilities for Ni(II) ions. PMID:27149285

  7. Effect of Carbon Ion Radiotherapy for Sacral Chordoma: Results of Phase I-II and Phase II Clinical Trials

    SciTech Connect

    Imai, Reiko; Kamada, Tadashi; Tsuji, Hiroshi; Sugawara, Shinji; Serizawa, Itsuko; Tsujii, Hirohiko; Tatezaki, Shin-ichiro

    2010-08-01

    Purpose: To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas. Patients and Methods: We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks. Results: The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm{sup 3}. The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts. Conclusion: Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

  8. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent.

    PubMed

    Mohapatra, M; Rout, K; Mohapatra, B K; Anand, S

    2009-07-30

    The present investigation evaluates the sorption effectiveness of Pb(II) and Cd(II) ions on iron ore slime (IOS) obtained from Jindal Steel Ltd., Vijayanagaram, India. The sorption followed pseudo-second-order kinetics for both the cations. Pb(II) and Cd(II) sorption increased with the increase in pH from 2 to 4.5. The sorption data fitted well to Freundlich model as compared to Langmuir model. Synergistic effect of Pb(II) and Cd(II) on their sorption on IOS sample showed that Pb(II) sorption increases in presence of Cd(II) whereas Cd(II) sorption decreases. Presence of chloride or sulphate resulted in increased Pb(II) sorption but adversely affected Cd(II) sorption. The XRD patterns of Pb(II) adsorbed on IOS sample showed disappearance of some silica peaks and shifting of hematite peaks corresponding to 104 and 110 plane. For Cd(II) sorbed IOS sample, only peak shift for hematite of 104 and 110 plane was observed. Shifting of IR bands indicated that the Pb(II) sorption occurred through an inner sphere mechanism where as Cd(II) sorption occurred through outer sphere mechanism. EPMA studies showed that Pb(II) form a uniform thin layer and Cd(II) concentrate only on iron oxide phase. Regeneration and stability data on metal ion loaded IOS sample has been included.

  9. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.

    PubMed

    Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon

    2016-03-01

    Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level. PMID:26753759

  10. Equilibria occurring between beryllium (II) and salicylate ions.

    PubMed

    Furia, Emilia; Porto, Raffaella

    2003-12-01

    The complexation equilibria between Be2+ and the hydrogen salicylate (HL-) ions have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 3 M NaClO4. The concentrations of metal (CM) and ligand (CL) were varied between 10(-3) and 0.03 M and 2 x 10(-3) and 0.03 M, respectively, while 1 < or = CL/CM < or = 3. The hydrogen ion concentration ranged from 10(-3) to 10(-5.3) M when basic salts start to precipitate. The equilibria can be written in the general form as: pBe2+ + rHL- <==> Be(p)H(-q) (HL)r(2p-r-q) + qH+, log beta(pqr). The experimental data have been explained with the formation of BeHL+ (log beta101 = 1.46 +/- 0.05), BeL (log beta111 = -0.897 +/- 0.018), BeL2(2-) (log beta122 = -3.746 +/- 0.021), Be2(OH)L2- (log beta232 = -5.23 +/- 0.09), Be3(OH)3L3(3-) (log beta363 = -14.39 +/- 0.12). The uncertainties represent 3sigma. The predominant complex in the whole concentration range studied is the uncharged mononuclear species BeL.

  11. Controlling FAMA by the Ptolemy II model of ion beam transport

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Rađenović, B.; Beličev, P.; Nešković, N.

    2009-08-01

    FAMA is a facility for modification and analysis of materials with ion beams. Due to the wide range of ion beams and energies used in the facility and its future expansion, the need has arisen for faster tuning of ion beams transport control parameters. With this aim, a new approach to modeling ion-beam transport system was developed, based on the Ptolemy II modeling and design framework. A model in Ptolemy II is a hierarchical aggregation of components called actors, which communicate with other actors using tokens, or pieces of data. Each ion optical element is modeled by a composite actor implementing beam matrix transformation function, while tokens carry beam matrix data. A basic library of models of typical ion optical elements is developed, and a complex model of FAMA ion beam transport system is hierarchically integrated with bottom-up approach. The model is extended to include control functions. The developed model is modular, flexible and extensible. The results obtained by simulation on the model demonstrate easy and efficient tuning of beam line control parameters. Fine tuning of control parameters, due to uncertainties inherent to modeling, still has to be performed on-line.

  12. Metal-ion dependent catalytic properties of Sulfolobus solfataricus class ii α-mannosidase.

    PubMed

    Nielsen, Jonas Willum; Poulsen, Nina Rødtness; Johnsson, Anna; Winther, Jakob Rahr; Stipp, S L S; Willemoës, Martin

    2012-10-01

    The active site for the family GH38 class II α-mannosidase is constituted in part by a divalent metal ion, mostly Zn(2+), as revealed in the crystal structures of enzymes from both animal and bacterial sources. The metal ion coordinates to the bound substrate and side chains of conserved amino acid residues. Recently, evidence has accumulated that class II α-mannosidase is active in complex with a range of divalent metal ions. In the present work, with employment of the class II α-mannosidase, ManA, from the hyperthermophilic archaeon Sulfolobus solfataricus, we explored the influence of the divalent metal ion on the associated steady-state kinetic parameters, K(M) and k(cat), for various substrates. With p-nitrophenyl-α-d-mannoside as a substrate, the enzyme showed activity in the presence of Co(2+), Cd(2+), Mn(2+), and Zn(2+), whereas Ni(2+) and Cu(2+) were inhibitory and nonactivating. Co(2+) was the preferred metal ion, with a k(cat)/K(M) value of about 120 mM(-1) s(-1), 6 times higher than that with Cd(2+) and Zn(2+) and 10 times higher than that with Mn(2+). With α-1,2-, α-1,3-, α-1,4-, or α-1,6-mannobiose as a substrate, Co(2+) was the only metal ion promoting hydrolysis of all substrates; however, Mn(2+), Cd(2+), and Zn(2+) could substitute to a varying extent. A change in the divalent metal ion generally affected the K(M) for the hydrolysis of p-nitrophenyl-α-d-mannoside; however, changes in both k(cat) and K(M) for the hydrolysis of α-mannobioses were observed, along with changing preferences for the glycosidic linkage. Finally, it was found that the metal ion and substrate bind in that order via a steady-state, ordered, sequential mechanism.

  13. Complexation of Copper (II) Ion with Tetraglycine as Followed by Electronic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Garribba, Eugenio; Micera, Giovanni

    2007-01-01

    An experiment which explores the interaction between Cu (II) ion and tetraglycine (TetraGly) as an excellent model of a protein fragment is presented. The analysis has allowed the students to determine the coordination modes of TetraGly with varying pH.

  14. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  15. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  16. Bio-Sensing of Cadmium(II) Ions Using Staphylococcus aureus†

    PubMed Central

    Sochor, Jiri; Zitka, Ondrej; Hynek, David; Jilkova, Eva; Krejcova, Ludmila; Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Kynicky, Jindrich; Vrba, Radimir; Kizek, Rene

    2011-01-01

    Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL−1) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190–5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6–274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components. PMID:22346664

  17. Crosslinked Electro-Spun Chitosan Nanofiber Mats with Cd(II) as Template Ions for Adsorption Applications.

    PubMed

    Li, Yan; Xu, Cong; Qiu, Tianbao; Xu, Xiaoyan

    2015-06-01

    The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were successfully prepared using Cd(II) as template ions and glutaraldehyde (GA) as crosslinker to investigate the adsorption of Cd(II) and Pb(II) ions in aqueous solutions. The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were characterized by the Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscope (SEM), Thermal Gravimetric Analysis (TGA), elemental analysis and solubility tests. The prepared chitosan nanofiber mats exhibited a higher adsorption capacity for both Cd(II) (364.3 mg/g) and Pb(II) (272.0 mg/g) ions. The dynamic study demonstrated that the adsorption process followed the second-order kinetic equation. Langmuir and Freundlich adsorption models were used to analyze the equilibrium isotherm data. The results showed that the Langmuir model was best suitable for predicting the adsorption isotherm of the studied system. The as prepared Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats might be used as an effective adsorbent for Cd(II) and Pb(II) removal from heavy metal wastewater. PMID:26369036

  18. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base.

    PubMed

    Monier, M; Ayad, D M; Abdel-Latif, D A

    2012-06-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base resin (CSAP) was studied in a batch adsorption system. Cu(II), Cd(II) and Ni(II) removal is pH dependent and the optimum adsorption was observed at pH 5.0. The adsorption was fast with estimated initial rate of 2.7, 2.4 and 1.4 mg/(g min) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption data could be well interpreted by the Langmuir, Freundlich and Temkin model. The maximum adsorption capacities obtained from the Langmuir model were 124±1, 84±2 and 67±2 mg g(-1) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption process could be described by pseudo-second-order kinetic model. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using EDTA and HCl solutions. PMID:22386793

  19. Near infrared fluorescence quenching properties of copper (II) ions for potential applications in biological imaging

    NASA Astrophysics Data System (ADS)

    Maji, Dolonchampa; Zhou, Mingzhou; Sarder, Pinaki; Achilefu, Samuel

    2014-03-01

    Fluorescence quenching properties of copper(II) ions have been used for designing Cu(II) sensitive fluorescent molecular probes. In this paper, we demonstrate that static quenching plays a key role in free Cu(II)-mediated fluorescence quenching of a near infrared (NIR) fluorescent dye cypate. The Stern-Volmer quenching constant was calculated to be KSV = 970,000 M-1 in 25 mM MES buffer, pH 6.5 at room temperature. We synthesized LS835, a compound containing cypate attached covalently to chelated Cu(II) to study fluorescence quenching by chelated Cu(II). The fluorescence quenching mechanism of chelated Cu(II) is predominantly dynamic or collisional quenching. The quenching efficiency of chelated Cu(II) was calculated to be 58% ± 6% in dimethylsulfoxide at room temperature. Future work will involve further characterization of the mechanism of NIR fluorescence quenching by Cu(II) and testing its reversibility for potential applications in designing fluorophore-quencher based molecular probes for biological imaging.

  20. Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan.

    PubMed

    Petrova, Yulia S; Pestov, Alexandr V; Usoltseva, Maria K; Neudachina, Ludmila K

    2015-12-15

    This study presents a simple and effective method of preparation of N-(2-sulfoethyl) chitosan (NSE-chitosan) that allows obtaining a product with a degree of modification up to 1.0. The chemical structure of the obtained polymers was confirmed by FT-IR and 1H NMR spectroscopies. Cross-linking of N-(2-sulfoethyl) chitosans by glutaraldehyde allows preparation of sorbents for removal and concentration of metal ions. Capacity of sorbents towards hydroxide ions was determined depending on the degree of sulfoethylation under static and dynamic conditions. Dissociation constants of functional amino groups of the analyzed sorbents were determined by potentiometric titration. It was shown that basicity of the amino groups decreased (wherein pKa decreased from 6.53 to 5.67) with increase in degree of sulfoethylation. It explains the significant influence of sulfo groups on selectivity of sorption of metal ions on N-(2-sulfoethyl) chitosan-based sorbents. The investigated substances selectively remove copper(II) and silver(I) ions from solutions of complex composition. Wherein the selectivity coefficient KAg/Cu increased to 20 (pH 6.5, ammonium acetate buffer solution) with increase in degree of sulfoethylation of the sorbent up to 1.0. PMID:26282087

  1. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    SciTech Connect

    Takakuwa, J.

    2011-03-01

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to {approx}1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  2. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  3. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  4. The location of the Ca II ions in the beta Pictoris disk

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Welty, D. E.; Lagrange-Henri, A. M.; Ferlet, R.; Vidal-Madjar, A.

    1988-01-01

    Echelle spectra of beta Pictoris have been obtained in the region of the Ca II 8542A line which arises from the metastable 3d 2D5/2 level. A narrow, weak, circumstellar absorption line is seen at the stellar radial velocity. A simple theory is developed of the radiative pumping of the metastable levels of the Ca II ions by the radiation from the star at the H and K lines. The relatively large fractional population, N3(Ca II)/N1(Ca II) of roughly 0.05, observed for the metastable level then requires that the calcium absorbers be largely concentrated within about 1 AU of the star. This result confirms two previous, independent estimates of the location of this gas. A time-variable circumstellar component of the 8542A line also is found at an infall velocity of about 15 km/s.

  5. Sorption of cadmium(II) and zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz).

    PubMed

    Horsfall, M; Abia, A A

    2003-12-01

    The sorption of two divalent metal ions, Cd(II) and Zn(II), onto untreated and differentially acid-treated cassava waste biomass over a wide range of reaction conditions was studied at 30 degrees C. The metal ion removal from the spent biomass was also measured. The batch experiments show that pH 4.5-5.5 was the best range for the sorption of the metal ions for untreated and acid-treated biomass. Time-dependent experiments for the metal ions showed that for the two metals examined, binding to the cassava waste biomass was rapid and occurred within 30 min and completed within 1h. High sorption capacities were observed for the two metals. The binding capacity experiments revealed the following amounts of metal ions bound per gram of biomass: 86.68 mg/g Cd, 55.82 mg/g Zn and 647.48 mg/g Cd, 559.74 mg/g Zn for untreated and acid-treated biomass, respectively. It was further found that the rate of sorption was particle-diffusion controlled, and the sorption rate coefficients were determined to be 2.30 x 10(-1)min(-1) (Cd(2+)), 4.0 x 10(-3)min(-1) (Zn(2+)) and 1.09 x 10(-1)min(-1) (Cd(2+)), 3.67 x 10(-2)min(-1) (Zn(2+)) for 0.5 and 1.00 M differential acid treatment, respectively. Desorption studies showed that acid treatment inhibited effective recovery of metal ions already bound to the biomass as a result of stronger sulfhydryl-metal bonds formed. Less than 25% of both metals were desorbed as concentration of acid treating reagent increases. However, over 60% Cd and 40% Zn were recovered from untreated biomass during the desorption study. The results from these studies indicated that both untreated and acid-treated cassava waste biomass could be employed in the removal of toxic and valuable metals from industrial effluents.

  6. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.

    PubMed

    Juang, Ruey-Shin; Kao, Hsiang-Chien; Liu, Fong-Yi

    2006-01-16

    Ion exchange is widely used for the recovery and removal of metals from process and waste streams in chemical process industries. The Na-form of strong-acid Purolite NRW-100 resin was used to recover Ni(II) from a simulated electroplating waste solution containing NiSO4, NH4Cl, NaH2PO4, and citrate. A set of mass balance equations that take into account possible aqueous complexation reactions was used to establish the pH diagram of Ni(II) species in the presence of anionic ligand citrate or phosphate. Experiments were performed as a function of initial solution pH (0.5-6.0), initial concentration of Ni(II) (0.85-11.9 mol/m3), and temperature (15-45 degrees C). It was shown that the amount of Ni(II) exchanged leveled off when the equilibrium pH was higher than around 2.5. The exchange isotherms obtained at various equilibrium pH values were well fitted by the Langmuir equation. The enthalpy of Ni(II) exchange was also evaluated based on the Langmuir constant. Finally, the kinetics of the present ion exchange process was analyzed.

  7. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution.

    PubMed

    Huang, Li; Xiao, Congming; Chen, Bingxia

    2011-08-30

    A novel effective starch-based adsorbent was prepared through two common reactions, which included the esterification of starch with excess maleic anhydride in the presence of pyridine and the cross-linking reaction of the obtained macromonomer with acrylic acid by using potassium persulphate as initiator. The percentage of carboxylic groups of the macromonomer ranged from 14% to 33.4%. The cross-linking degree of the adsorbent was tailored with the amount of acrylic acid which varied from 10wt% to 80wt%. Both Fourier transform infrared spectra and thermogravimetric analysis results verified the structure of the adsorbent. The maximum gel fraction and swelling ratio of the adsorbent were about 72% and 6.25, respectively, and they were able to be adjusted with the amount of monomers. The weight loss percentage of the adsorbent could reach 96.9% after immersing in the buffer solution that contained α-amylase for 14h. It was found that the adsorption capacities of the adsorbent for lead and mercury ions could be 123.2 and 131.2mg/g, respectively. In addition, the adsorbent was able to remove ca. 51-90% Pb(II) and Hg(II) ions that existed in the decoctions of four medicinal herbals. PMID:21724326

  8. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained. PMID:24827373

  9. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples.

    PubMed

    Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Rezvani, Mehdi; Shekari, Nafiseh; Loni, Masood

    2014-01-01

    This paper describes a novel sorbent based on 4-(2-pyridylazo) resorcinol functionalised magnetic nanoparticles and its application for the extraction and pre-concentration of trace amounts of Cu(II) and Pb(II) ions. The nanosorbent was characterised by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermal analysis, elemental analysis and scanning electron microscopy. The effects of various parameters such as pH, sorption time, sorbent dosage, elution time, volume and concentration of eluent were investigated. Following the sorption and elution of analytes, Cu(II) and Pb(II) ions were quantified by flame atomic absorption spectrometry. The limits of detection were 0.07 and 0.7 μg l(-1) for Cu(II) and Pb(II), respectively. The relative standard deviations of the method were less than 7%. The sorption capacity of this new sorbent were 92 and 78 mg g(-1) for Cu(II) and Pb(II), respectively. Finally this nanosorbent was applied to the rapid extraction of trace quantities of Cu(II) and Pb(II) ions in different real samples and satisfactory results were obtained.

  10. Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate

    NASA Astrophysics Data System (ADS)

    Dzyazko, Yu. S.; Trachevskii, V. V.; Rozhdestvenskaya, L. M.; Vasilyuk, S. L.; Belyakov, V. N.

    2013-05-01

    Samples of amorphous zirconium hydrogen phosphate with different zirconium and phosphorus concentrations in hydrogen and nickel-substituted forms are studied by means of electronic, 31P NMR, and impedance spectroscopy. It is shown that Ni(II) → H+ ion exchange is accompanied by the hydrolysis of sorbed cations and the formation of complexes with the dihydro- and hydrophosphate groups of the inorganic ionite. It is found that the coordination environment of Ni(II) in the sorbent phase includes 2-4 fragments of phosphate groups, along with OH groups and water molecules.

  11. Electrochemical Behavior of Titanium(II) Ion in a Purified Calcium Chloride Melt

    NASA Astrophysics Data System (ADS)

    Kang, Min Ho; Song, Jianxun; Zhu, Hongmin; Jiao, Shuqiang

    2014-09-01

    Cyclic voltammetry, chronopotentiometry, and square wave voltammetry were used to investigate electrochemical behavior of Ti(II) ion in a purified CaCl2 melt at a temperature of 1173 K (900 °C). The result indicated that the cathodic reduction of Ti(II) ion in the melt was a one-step quasi-reversible process controlled by the diffusion. The diffusion coefficient was determined in a CaCl2-TiCl(0.5 mol/dm3) at 1173 K (900 °C). The work also demonstrated the feasibility of producing metallic titanium in the as-prepared CaCl2-TiCl2 melts through galvanostatic electrolysis.

  12. Electrochemical Behavior of Titanium(II) Ion in a Purified Calcium Chloride Melt

    NASA Astrophysics Data System (ADS)

    Kang, Min Ho; Song, Jianxun; Zhu, Hongmin; Jiao, Shuqiang

    2015-02-01

    Cyclic voltammetry, chronopotentiometry, and square wave voltammetry were used to investigate electrochemical behavior of Ti(II) ion in a purified CaCl2 melt at a temperature of 1173 K (900 °C). The result indicated that the cathodic reduction of Ti(II) ion in the melt was a one-step quasi-reversible process controlled by the diffusion. The diffusion coefficient was determined in a CaCl2-TiCl(0.5 mol/dm3) at 1173 K (900 °C). The work also demonstrated the feasibility of producing metallic titanium in the as-prepared CaCl2-TiCl2 melts through galvanostatic electrolysis.

  13. Studies of the fast ion energy spectra in TJ-II

    SciTech Connect

    Bustos, A.; Fontdecaba, J. M.; Arevalo, J.; Castejon, F.; Velasco, J. L.; Tereshchenko, M.

    2013-02-15

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E Element-Of (1-45) keV.

  14. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    SciTech Connect

    LBNL; Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-04-20

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li{sup +} ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 {micro}s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance {approx}2 {pi}-mm-mrad. Here, lithium aluminosilicate ion sources, of {beta}-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 {micro}s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V{sup 3/2}. A space-charge limited beam density of {approx}1 mA/cm{sup 2} was measured at 1275 C temperature, after allowing a conditioning time of about {approx} 12 hours. Maximum emission limited beam current density of {ge} 1.8mA/cm{sup 2} was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 {+-} 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino

  15. Quantitative separation of Hg(II) from several metal ions on Zr(IV) antimonate papers

    SciTech Connect

    Seth, N.S.; Rajput, R.P.S.; Agrawal, N.K.; Agrawal, S.K.; Agrawal, S.

    1985-09-01

    The chromatographic behavior of 32 metal ions has been studied on paper impregnated with Zirconium(IV) antimonate in aqueous HCl and mixed solvent system containing dimethylsulfoxide and dioxane. Several important binary and ternary separations have been achieved. Quantitative separation of Hg(II) from NiS , PbS , PdS , RuT , RhT , BiT , CoS , CdS and GdT is described. 6 references, 3 tables.

  16. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  17. Installation of the advanced heavy ion beam probing diagnostic on the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Bondarenko, I. S.; Chmyga, A. A.; Dreval, N. B.; Khrebtov, S. M.; Komarov, A. D.; Kozachok, A. S.; Krupnik, L. I.; Melnikov, A. V.; Yudina, O. A.; Coelho, P.; Cunha, M.; Goncalves, B.; Malaquias, A.; Nedzelskiy, I. S.; Varandas, C. F. A.; Hidalgo, C.; Garcia-Cortes, I.

    2000-12-01

    An advanced heavy ion beam diagnostic has been developed for the TJ-II stellarator based on the simultaneous utilisation of two different detection systems for the secondary ions: a multiple cell array detector and a 30° Proca-Green electrostatic energy analyser. This innovative design aims at enlarging the HIBD capabilities to allow the instanteneous measurements of electron density and plasma potential profiles together with their respective fluctuations. This paper presents the detailed description of the main parts of HIBD and their characteristics obtained during the first operation on TJ-II. Special attention is paid to the control and data acquisition system built on two VME controllers. The results of the diagnostic beam propagating through the magnetic structure of TJ-II into electrostatic energy analyser are presented and compared with the trajectory calculations. The operation and calibration of a 30° electrostatic energy analyser free of guard rings and with a new biased split detector are described. High intensities of the caesium and thallium ions was obtained from thermionic source using new stable and long-time special operation regimes.

  18. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites.

    PubMed

    Munch, Henrik K; Nygaard, Jesper; Christensen, Niels Johan; Engelbrekt, Christian; Østergaard, Mads; Porsgaard, Trine; Hoeg-Jensen, Thomas; Zhang, Jingdong; Arleth, Lise; Thulstrup, Peter W; Jensen, Knud J

    2016-02-12

    Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine. PMID:26762534

  19. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites.

    PubMed

    Munch, Henrik K; Nygaard, Jesper; Christensen, Niels Johan; Engelbrekt, Christian; Østergaard, Mads; Porsgaard, Trine; Hoeg-Jensen, Thomas; Zhang, Jingdong; Arleth, Lise; Thulstrup, Peter W; Jensen, Knud J

    2016-02-12

    Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.

  20. Similarities between N-Acetylcysteine and Glutathione in Binding to Lead(II) Ions.

    PubMed

    Sisombath, Natalie S; Jalilehvand, Farideh

    2015-12-21

    N-Acetylcysteine is a natural thiol-containing antioxidant, a precursor for cysteine and glutathione, and a potential detoxifying agent for heavy metal ions. However, previous accounts of the efficiency of N-acetylcysteine (H2NAC) in excretion of lead are few and contradicting. Here, we report results on the nature of lead(II) complexes formed with N-acetylcysteine in aqueous solution, which were obtained by combining information from several spectroscopic methods, including (207)Pb, (13)C, and (1)H NMR, Pb LIII-edge X-ray absorption, ultraviolet-visible (UV-vis) spectroscopy, and electro-spray ionization mass spectrometry (ESI-MS). Two series of solutions were used containing CPb(II) = 10 and 100 mM, respectively, varying the H2NAC/Pb(II) mole ratios from 2.1 to 10.0 at pH 9.1-9.4. The coordination environments obtained resemble those previously found for the Pb(II) glutathione system: at a ligand-to-lead mole ratio of 2.1, dimeric or oligomeric Pb(II) N-acetylcysteine complexes are formed, while a trithiolate [Pb(NAC)3](4-) complex dominates in solutions with H2NAC/Pb(II) mole ratios >3.0. PMID:26624959

  1. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions.

    PubMed

    Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyżnikowska, Żaneta

    2016-10-01

    The interaction of natural lipopeptide pseudofactin II with a series of doubly charged metal cations was examined by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) mass spectrometry and molecular modelling. The molecular modelling for metal-pseudofactin II provides information on the metal-peptide binding sites. Overall, Mg(2+), Ca(2+) and Zn(2+) favor the association with oxygen atoms spanning the peptide backbone, whereas Cu(2+) is coordinated by three nitrogens. Circular dichroism (CD) results confirmed that Zn(2+) and Cu(2+) can disrupt the secondary structure of pseudofactin II at high concentrations, while Ca(2+) and Mg(2+) did not essentially affect the structure of the lipopeptide. Interestingly, our results showed that the addition of Zn(2+) and Cu(2+) helped smaller micelles to form larger micellar aggregates. Since pseudofactin II binds metals, we tested whether this phenomena was somehow related to its antimicrobial activity against Staphylococcus epidermidis and Proteus mirabilis. We found that the antimicrobial effect of pseudofactin II was increased by supplementation of culture media with all tested divalent metal ions. Finally, by using Gram-positive and Gram-negative bacteria we showed that the higher antimicrobial activity of metal complexes of pseudofactin II is attributed to the disruption of the cytoplasmic membrane. PMID:27416562

  2. Ion heating in the ion cyclotron range of frequencies in the Wisconsin Tokapole II

    SciTech Connect

    Biddle, A. P.

    1980-06-01

    Ion temperatures of 75 eV, a doubling of the ohmic heating temperature in a normal discharge, have been achieved using the fast magnetosonic wave heating at the second, third, and fourth harmonics of the cyclotron frequency in a single component hydrogen plasma. The wave launching structure is a single turn, shielded, insulated loop which constitutes the inductor of the rf source tank circuit. Power levels of 800 kW have been applied to the plasma for periods of up to 1.1 milliseconds. Good agreement has been found between theory and experiment for loading and wave propagation in the plasma for m = 0 and m = +1 modes. Eigenmodes have been observed by peaking of both the rf wave amplitude and the loading of the oscillator, as well as by oscillator frequency shifts imposed by their passage.

  3. The effect of CuII ions in L-asparagine single crystals

    NASA Astrophysics Data System (ADS)

    Santana, Ricardo C.; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F.

    2016-11-01

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm3;the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g1=2.044, g2=2.105, g3=2.383and A1≈0, A2=35, A3=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two 14N atoms. Correlating the EPR and optical absorption results, the crystal field and the CuII orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x2-y2).

  4. A continuous spectrophotometric assay for the activation of plant NAD kinase by calmodulin, calcium(II), and europium(III) ions.

    PubMed

    Amann, B T; Mulqueen, P; Horrocks, W D

    1992-12-01

    A continuous spectrophotometric assay has been developed to quantify the calmodulin, calcium(II) ion, and europium(III) ion dependence of the activation of NAD kinase from pea seedlings. Experimental enzyme activation data are compared with the theoretical curves for the binding of calcium(II) ions to the individual calcium binding sites of calmodulin. These results indicate that the binding of three calcium(II) ions is necessary for activation of plant NAD kinase. Further studies demonstrate that europium(III) ions can replace calcium(II) ions in calmodulin with retention of its ability to activate NAD kinase.

  5. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  6. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa; Tunali, Sibel; Akar, Tamer; Kiran, Ismail

    2005-09-30

    Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.

  7. Ca(II) Binding Regulates and Dominates the Reactivity of a Transition-Metal-Ion-Dependent Diesterase from Mycobacterium tuberculosis.

    PubMed

    Pedroso, Marcelo M; Larrabee, James A; Ely, Fernanda; Gwee, Shuhui E; Mitić, Nataša; Ollis, David L; Gahan, Lawrence R; Schenk, Gerhard

    2016-01-18

    The diesterase Rv0805 from Mycobacterium tuberculosis is a dinuclear metallohydrolase that plays an important role in signal transduction by controlling the intracellular levels of cyclic nucleotides. As Rv0805 is essential for mycobacterial growth it is a promising new target for the development of chemotherapeutics to treat tuberculosis. The in vivo metal-ion composition of Rv0805 is subject to debate. Here, we demonstrate that the active site accommodates two divalent transition metal ions with binding affinities ranging from approximately 50 nm for Mn(II) to about 600 nm for Zn(II) . In contrast, the enzyme GpdQ from Enterobacter aerogenes, despite having a coordination sphere identical to that of Rv0805, binds only one metal ion in the absence of substrate, thus demonstrating the significance of the outer sphere to modulate metal-ion binding and enzymatic reactivity. Ca(II) also binds tightly to Rv0805 (Kd ≈40 nm), but kinetic, calorimetric, and spectroscopic data indicate that two Ca(II) ions bind at a site different from the dinuclear transition-metal-ion binding site. Ca(II) acts as an activator of the enzymatic activity but is able to promote the hydrolysis of substrates even in the absence of transition-metal ions, thus providing an effective strategy for the regulation of the enzymatic activity.

  8. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules.

    PubMed

    Maret, Wolfgang

    2015-02-01

    Essential metal ions are tightly controlled in biological systems. An understanding of metal metabolism and homeostasis is being developed from quantitative information of the sizes, concentrations, and dynamics of cellular and subcellular metal ion pools. In the case of human zinc metabolism, minimally 24 proteins of two zinc transporter families and a dozen metallothioneins participate in cellular uptake, extrusion, and re-distribution among cellular compartments. Significantly, zinc(ii) ions are now considered signaling ions in intra- and intercellular communication. Such functions require transients of free zinc ions. It is experimentally quite challenging to distinguish zinc that is protein-bound from zinc that is not bound to proteins. Measurement of total zinc is relatively straightforward with analytical techniques such as atomic absorption/emission spectroscopy or inductively coupled plasma mass spectrometry. Total zinc concentrations of human cells are 200-300 μM. In contrast, the pool of non-protein bound zinc is mostly examined with fluorescence microscopy/spectroscopy. There are two widely applied fluorescence approaches, one employing low molecular weight chelating agents ("probes") and the other metal-binding proteins ("sensors"). The protein sensors, such as the CALWY, Zap/ZifCY, and carbonic anhydrase-based sensors, can be genetically encoded and have certain advantages in terms of controlling intracellular concentration, localization, and calibration. When employed correctly, both probes and sensors can establish qualitative differences in free zinc ion concentrations. However, when quantitative information is sought, the assumptions underlying the applications of probes and sensors must be carefully examined and even then measured pools of free zinc ions remain methodologically defined. A consensus is building that the steady-state free zinc ion concentrations in the cytosol are in the picomolar range but there is no consensus on their

  9. Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip.

    PubMed

    Xing, Changrui; Feng, Min; Hao, Changlong; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A rapid and simple immunochromatography method based on a gold nanoparticle-labeled monoclonal antibody was developed for the on-site detection of copper (Cu) in water samples. This monoclonal antibody, obtained by a cell fusion technique, recognized the Cu-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) complex, but not metal-free EDTA, with high sensitivity and specificity. In optimized conditions, the visual limit of detection for qualitative detection of Cu(II) ions was 10 ng/mL and the LOD for semi-quantitative detection decreased to 0.45 ng/mL with the help of a scanning reader system. The detection process was achieved within 10 min with no cross-reactivity from other heavy metal ions. The recovery of the test samples ranged from 98% to 109%. To our knowledge, this antibody-based test strip for Cu(II) ions has not been previously reported. Based on the above results, this strip sensor could be used as an alternative tool for screening heavy metal pollution in the environment.

  10. Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip.

    PubMed

    Xing, Changrui; Feng, Min; Hao, Changlong; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A rapid and simple immunochromatography method based on a gold nanoparticle-labeled monoclonal antibody was developed for the on-site detection of copper (Cu) in water samples. This monoclonal antibody, obtained by a cell fusion technique, recognized the Cu-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) complex, but not metal-free EDTA, with high sensitivity and specificity. In optimized conditions, the visual limit of detection for qualitative detection of Cu(II) ions was 10 ng/mL and the LOD for semi-quantitative detection decreased to 0.45 ng/mL with the help of a scanning reader system. The detection process was achieved within 10 min with no cross-reactivity from other heavy metal ions. The recovery of the test samples ranged from 98% to 109%. To our knowledge, this antibody-based test strip for Cu(II) ions has not been previously reported. Based on the above results, this strip sensor could be used as an alternative tool for screening heavy metal pollution in the environment. PMID:23461614

  11. Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite

    NASA Astrophysics Data System (ADS)

    Missana, T.; García-Gutiérrez, M.

    The sorption of the bivalent ions Ca, Sr and Co onto the Spanish “ FEBEX” bentonite, converted to its Na-form was analysed. Several batch experiments were carried out to study, the effects of pH, ionic strength and radionuclide concentration on the uptake of these bivalent elements, independently. Results showed that the sorption behaviour of Ca and Sr is very similar both from a qualitative and quantitative point of view. The main sorption mechanism for Ca and Sr on the Na-montmorillonite is the ionic exchange and sorption is linear in the whole range of concentrations investigated. The mean logarithm of selectivity coefficient, with respect to Na, obtained from the above-mentioned sorption studies, considering trace concentrations of these elements, is 0.65 ± 0.11 and 0.66 ± 0.06 for Ca and Sr, respectively. However, a small contribution due to surface complexation at the clay edge sites (SOH) had to be considered to fit adequately the sorption results obtained at pH higher than 8 and higher ionic strengths. The sorption behaviour of Co is quite different from that observed for the previous elements. The pH-dependence of Co sorption on the clay is significantly more noticeable, indicating a major contribution of surface complexation at the edge sites. Sorption due to ionic exchange becomes more evident when the ionic strength decreases. The value of the logarithm of the selectivity coefficient, with respect to Na, used in the simulations was 0.62 ± 0.13. The sorption isotherms with Co indicated the existence of two different complexation sites (weak and strong) that were accounted for in the final modelling.

  12. Optical Absorption Behavior of co (ii) Ion Doped Pva Assisted CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    CdSe is an important II-VI, n-type direct band gap semiconductor with wide band gap (bulk band gap of 2.6 eV) and an attractive host for the development of doped nanoparticles. Poly vinyl alcohol (PVA) is used as a capping agent to stabilize the CdSe nanoparticles. The optical properties of Co (II) ion doped PVA capped CdSe nanoparticles grown at room temperature are studied in the wavelength region of 200-1400 nm. The spectrum of Co (II) ion doped PVA capped CdSe nanoparticles exhibit five bands at 1185, 620, 602, 548 and 465 nm (8437, 16125, 16607, 18243 and 21499 cm-1). The bands observed at 1185, 548 and 465 nm are correspond to the three spin allowed transitions 4T1g (F) → 4T2g (F), 4T1g (F) → 4A2g (F) and 4T1g (F) → 4T1g (P) respectively. The other bands observed at 602 nm and 620 nm are assigned to spin forbidden transitions 4T1g (F) → 2T2g (G), 4T1g (F) → 2T1g (G). The small value of the Urbach energy indicates greater stability of the prepared sample.

  13. Biosorption of lead (II) ions by NaOH-activated apple (Malus domestica) juice residue

    NASA Astrophysics Data System (ADS)

    Arimurti, Devita Dwi; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research studied the removal of Pb(II) ions from aqueous solutions using NaOH-activated apple (Malus domestica) juice residue. Biosorbent was characterized with Fourier Transform Infrared Spectrophotometer (FTIR), and Surface Area Analyzer (SAA). The effects of biosorbent dosage, pH, contact time and initial metal ion concentration had been investigated in batch-adsorption method. The biosorption kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetics model. Freundlich and Langmuir's isotherm were used to describe the biosorption process. The optimum conditions of Pb(II) adsorption was observed at 60 min of contact time, pH 4, and 0.1 g biosorbent dosage in 25 ml solution. The biosorption kinetics followed the pseudo-second-order kinetic model, resulted biosorption constant rate of 0.184 g.mg-1.min-1. The Langmuir isotherm model exhibited the best fit to experimental data. The maximum biosorption capacity of Pb(II) determined according to the Langmuir model was 90.90 mg.g-1 at 302 K, with the adsorption energy of 26.429 kJ.mol-1.

  14. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    SciTech Connect

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-07-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction.

  15. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    PubMed

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-01-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system. PMID:24659435

  16. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    PubMed

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-01-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.

  17. Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater.

    PubMed

    Sosa, Velia; Serrano, Núria; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2014-02-01

    A commercially available sputtered bismuth screen-printed electrode (BispSPE) has been pioneeringly applied for the simultaneous determination of Cd(II) and Pb(II) ions in a certified groundwater sample by means of differential pulse anodic stripping voltammetry (DPASV) as an alternative to more conventional bismuth screen-printed carbon electrodes (BiSPCEs). BispSPEs can be used for a large set of measurements without any previous plating or activation. The obtained detection and quantification limits suggest that BispSPEs produce a better analytical performance as compared to In-situ BiSPCE for Pb(II) and Cd(II) determination, but also to Ex-situ BiSPCE for Cd(II) determination. The results confirm the applicability of these devices for the determination of low level concentrations of these metal ions in natural samples with very high reproducibility (0.7% and 2.5% for Pb(II) and Cd(II) respectively), and good trueness (0.3% and 2.4% for Pb(II) and Cd(II) respectively). PMID:24401424

  18. Preparation and Characterization of Bi-metallic and Tri-metallic Metal Organic Frameworks Based on Trimesic Acid and Co(II), Ni(II), and Cu(II) Ions

    NASA Astrophysics Data System (ADS)

    Sahiner, Nurettin; Demirci, Sahin; Yildiz, Mustafa

    2016-10-01

    Trimesic acid-M1(II):M2(II) (M1,2(II)=M(II)=Co(II), Ni(II) and Cu(II)) bi-metallic or tri-metallic organic frameworks (MOFs) were synthesized by the reaction of trimesic acid (H3BTC) ligand with the corresponding MCl2nH2O aqueous solutions. Here, bi- and tri-metallic MOF preparations were demonstrated by using H3BTC as an organic linker, with dual metal ion mixtures at different mole ratios such as Co(II):Ni(II), Ni(II):Cu(II), and Cu(II):Co(II) as metal ion sources in the synthesis of bi-metallic MOFs, and the triple metal ion mixture of Co(II):Ni(II):Cu(II) as the metal ion source in the synthesis of tri-metallic MOFs. The bi- or tri-metallic MOFs were characterized via the Brunauer-Emmett-Teller method, thermogravimetric analyzer (TGA), and magnetic susceptibility measurements with the Gouy method, FT-IR spectroscopy, and electronic spectral studies. The results revealed that the H3BTC MOFs have octahedral and distorted octahedral arrangement around the metal ions, and the d-d transition was not observed in the complex. It was further found that all the prepared MOFs contain water molecules confirmed by Fourier transform infrared (FT-IR) and TGA analyses. The FT-IR spectra of the MOF complexes were characterized by the appearance of a broad band in the region of 3454-3300 cm-1 due to the ν(-OH) of the coordinated water; therefore, the location of the two water molecules was assumed to be inside the complex structure. Remarkably, the synthesized bi-metallic MOFs had unique and distinct colors depending on the amounts of metal ions used in the feed, implying that these bi-metallic MOFs with tunable M1(II) and M2(II) ratios offer great potential in the design of color-coded materials for use as sensors.

  19. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.

    PubMed

    Ibrahim, M N Mohamad; Ngah, W S Wan; Norliyana, M S; Daud, W R Wan; Rafatullah, M; Sulaiman, O; Hashim, R

    2010-10-15

    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.

  20. Indole-7-carbaldehyde thiosemicarbazone as a flexidentate ligand toward ZnII, CdII, PdII and PtII ions: cytotoxic and apoptosis-inducing properties of the PtII complex.

    PubMed

    Ibrahim, Abeer A; Khaledi, Hamid; Hassandarvish, Pouya; Mohd Ali, Hapipah; Karimian, Hamed

    2014-03-14

    A new thiosemicarbazone (LH2) derived from indole-7-carbaldehyde was synthesized and reacted with Zn(II), Cd(II), Pd(II) and Pt(II) salts. The reactions with zinc and cadmium salts in 2 : 1 (ligand-metal) molar ratio afforded complexes of the type MX2(LH2)2, (X = Cl, Br or OAc), in which the thiosemicarbazone acts as a neutral S-monodentate ligand. In the presence of potassium hydroxide, the reaction of LH2 with ZnBr2 resulted in deprotonation of the thiosemicarbazone at the hydrazine and indole nitrogens to form Zn(L)(CH3OH). The reaction of LH2 with K2PdCl4 in the presence of triethylamine, afforded Pd(L)(LH2) which contains two thiosemicarbazone ligands: one being dianionic N,N,S-tridentate while the other one is neutral S-monodentate. When PdCl2(PPh3)2 was used as the Pd(II) ion source, Pd(L)(PPh3) was obtained. In a similar manner, the analogous platinum complex, Pt(L)(PPh3), was synthesized. The thiosemicarbazone in the latter two complexes behaves in a dianionic N,N,S-tridentate fashion. The platinum complex was found to have significant cytotoxicity toward four cancer cells lines, namely MDA-MB-231, MCF-7, HT-29, and HCT-116 but not toward the normal liver WRL-68 cell line. The apoptosis-inducing properties of the Pt complex was explored through fluorescence microscopy visualization, DNA fragmentation analysis and propidium iodide flow cytometry.

  1. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  2. Engineering-scale destruction of organics at Savannah River Site using the silver(II) ion

    SciTech Connect

    Fleischman, S.D.; Pierce, R.A.

    1991-09-04

    Electrochemical destruction of organics to carbon dioxide, water, and inorganic salts using the silver(II) ion as an oxidizer has been demonstrated at the Savannah River Site (SRS) on a laboratory scale. An engineering-scale facility has been constructed at SRS for a process demonstration of the technology using benzene. Organic destruction rates, cell efficiencies and off gas generation will be related to key process variables. Electrocell design, peripheral support equipment, engineering considerations, safety issues, and operating parameters will be discussed. Future test plans and the impact of early results on the direction of the organics destruction program at SRS will also be addressed.

  3. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  4. Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds.

    PubMed

    Ma, Xiaoming; Cui, Weigang; Yang, Lin; Yang, Yuanyuan; Chen, Huifeng; Wang, Kui

    2015-06-01

    The functionalized Saccharomyces cerevisiae cell with biogenic intracellular CaCO3 mineral scaffold, synthesized via a simple and environmentally friendly approach, was efficient for removing lead (II) and cadmium (II) ions from aqueous solutions. The CaCO3 mineral scaffold could promote the uptake of the heavy metal ions and increase the biosorption capabilities of the adsorbent. Compared with the Freundlich isotherm, Langmuir model more fitted the equilibrium data. The maximum removal capacity of functionalized cells for Pb(II) and Cd(II) was 116.69 and 42.63mgg(-1), respectively. Further investigation showed that the adsorbent had high removal efficiency for trace amount of heavy metal ions. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicated that pseudo-second-order kinetic equation and intra-particle diffusion model could better describe the adsorption kinetics. The heavy metal ions might be removed by functionalized cells via membrane transport of metal ions and precipitation transformation. PMID:25755015

  5. Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds.

    PubMed

    Ma, Xiaoming; Cui, Weigang; Yang, Lin; Yang, Yuanyuan; Chen, Huifeng; Wang, Kui

    2015-06-01

    The functionalized Saccharomyces cerevisiae cell with biogenic intracellular CaCO3 mineral scaffold, synthesized via a simple and environmentally friendly approach, was efficient for removing lead (II) and cadmium (II) ions from aqueous solutions. The CaCO3 mineral scaffold could promote the uptake of the heavy metal ions and increase the biosorption capabilities of the adsorbent. Compared with the Freundlich isotherm, Langmuir model more fitted the equilibrium data. The maximum removal capacity of functionalized cells for Pb(II) and Cd(II) was 116.69 and 42.63mgg(-1), respectively. Further investigation showed that the adsorbent had high removal efficiency for trace amount of heavy metal ions. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicated that pseudo-second-order kinetic equation and intra-particle diffusion model could better describe the adsorption kinetics. The heavy metal ions might be removed by functionalized cells via membrane transport of metal ions and precipitation transformation.

  6. Adsorption of lead (II) ions onto novel cassava starch 5-choloromethyl-8-hydroxyquinoline polymer from an aqueous medium.

    PubMed

    Shah, Prapti U; Raval, Nirav P; Vekariya, Mayur; Wadhwani, Poonam M; Shah, Nisha K

    2016-01-01

    Adsorption of lead (II) ions onto cassava starch 5-choloromethyl-8-hydroxyquinoline polymer (CSCMQ) was investigated with the variation in the parameters of pH, contact time, lead (II) ions concentration, temperature and the adsorbent dose. The Langmuir and Freundlich models have been applied. CSCMQ was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Results showed that the adsorption process was better described by the Langmuir model. Adsorption kinetics data obtained for the metal ions sorption were investigated using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The maximum adsorption capacities (qm) were 46.512, 43.859 and 42.735 mg/g at 25, 35 and 45 °C, respectively. The dynamical data fit well with the second-order kinetics model. The results indicate that CSCMQ could be employed as low-cost material for the adsorption of Pb(II) ions from aqueous medium. PMID:27533869

  7. Ion-exchange extraction of platinum(II,IV) from chloride solutions in the presence of iron(III)

    NASA Astrophysics Data System (ADS)

    Kononova, O. N.; Duba, E. V.; Karplyakova, N. S.; Krylov, A. S.

    2015-08-01

    The sorption concentration of platinum(II,IV) in the presence of iron(III) is studied on new samples of domestically produced ionites of the CYBBER brand. In comparing the sorption and kinetic properties of the new ionites to those of sorbents of the Purolite brand studied earlier, the higher effectiveness of the former is demonstrated via the extraction of platinum(II,IV) ions from strongly and weakly acidic chloride solutions. It is found that the sorbed platinum ions can be completely separated from iron(III) ions through separate elution using 0.01-0.001 M HCl (iron ions) and a thiourea solution (80 g/L) in 0.3 M H2SO4 (platinum ions).

  8. Geometries, electronic states, and spectroscopic properties of nitrogen-doped fullerene fragment C10N2(II) and its ions.

    PubMed

    Zhu, Xiaolei

    2008-03-01

    The DFT(B3LYP)/6-31G(d)//CCSD(T)/6-31G(d) method is used to investigate the low-lying electronic states of C(10)N(2)(II) and its ions. Mulliken populations, leading configurations, bond orders, and compositions of molecular orbitals are employed to explore the nature of bonding in the electronic states of C(10)N(2)(II) and its ions. Electron affinity, ionization energy, binding energy of C(10)N(2)(II), and anion photoelectron spectra of C(10)N(2)(II)(-) are also estimated at the CCSD(T)/6-31G(d) level. On the other hand, the similarities and differences between C(10)N(2)(I) and C(10)N(2)(II) are compared and discussed.

  9. Fate of the initial state perturbations in heavy ion collisions. II. Glauber fluctuations and sounds

    SciTech Connect

    Staig, Pilar; Shuryak, Edward

    2011-09-15

    Heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly ideal) hydrodynamics for average events. In the present paper we study initial state fluctuations appearing on an event-by-event basis and the propagation of perturbations induced by them. We found that (i) fluctuations of several of the lowest harmonics have comparable magnitudes and (ii) that at least all odd harmonics are correlated in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local perturbations should be the source of the ''tiny bang,'' a pulse of sound propagating from it. We identify its two fundamental scales as (i) the ''sound horizon'' (analogous to the absolute ruler in cosmic microwave background and galaxy distributions) and (ii) the ''viscous horizon'' separating damped and undamped harmonics. We then qualitatively describe how one can determine them from the data and thus determine two fundamental parameters of the matter: the (average) speed of sound and viscosity. The rest of the paper explains how one can study mutual coherence of various harmonics. For that, one should go beyond the two-particle correlations to three (or more) particles. Mutual coherence is important for the picture of propagating sound waves.

  10. Thiopental and Phenytoin as Novel Ionophores for Potentiometric Determination of Lead (II) Ions

    PubMed Central

    Rizk, Nashwa M.H.; Abbas, Samah S.; Hamza, Salem M.; Abd EL-Karem, Yasser M.

    2009-01-01

    Two novel polymeric membrane sensors for the analysis of Pb(II) have been developed based on two therapeutic drugs, thiopental (TP) and phenytoin (PT) as two new ionophores and potassium tetrakis(p-chlorophenyl) borate (KTpClPB) as a lipophilic additive, in plasticized PVC membranes. The sensors show a Nernstian response for Pb(II) ions over the wide concentration ranges of 1×10−2 – 7×10−6 M and 1×10−2 – 8×10−6 M for the sensors based on thiopental and phenytoin, respectively. The proposed sensors have a fast response time and can be used for more than nine weeks without any considerable divergence in potentials. The sensors exhibit comparatively good selectivity with respect to alkaline, alkaline earth and some transition and heavy metal ions. They were employed for direct determination of lead in solder alloys and in galena rocks with a good agreement with the obtained results by atomic absorption spectroscopy. PMID:22573991

  11. Oxidative Modification in Human Hair: The Effect of the Levels of Cu (II) Ions, UV Exposure and Hair Pigmentation.

    PubMed

    Grosvenor, Anita J; Marsh, Jennifer; Thomas, Ancy; Vernon, James A; Harland, Duane P; Clerens, Stefan; Dyer, Jolon M

    2016-01-01

    Protein oxidative degradation is implicated in a wide range of deleterious effects. For human hair, this oxidative damage can lead to significant observable changes in fiber physical and visual properties. A redox proteomic approach was applied to map molecular modification in human hair proteins and correlate this modification with the abundance of copper (II) ions, the levels of UV exposure and the general level of hair pigmentation. An increase in oxidative modification was observed with increasing copper (II) ion levels, regardless of the pigmentation level. Significantly, increased protein oxidative modification was also observed to occur in both lightly and darkly pigmented hair tresses even in the absence of irradiation, albeit at lower relative levels. Modification levels increased with increased copper (II) ion concentration. This new finding indicates that the level of copper (II) ions in human hair plays a key role in mediating protein oxidation, with or without exposure to UV light. Overall, these results strongly suggest that minimization of the level of copper (II) ions in human hair will mitigate and/or slow protein oxidative modification and therefore lower overall hair damage.

  12. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  13. Complexes of sulfur-containing ligands. I. Factors influencing complex formation between D-penicillamine and copper (II) ion.

    PubMed

    Gergely, A; Sóvágó, I

    1978-07-01

    Complex formation and redox reactions between copper (II) ion and D-penicillamine were studied in detail as functions of the metal/-ligand ratio and the concentration of halide ions. It was established that a copper (I)- D-penicillamine polymeric complex of amphoteric character is formed when excess D-penicillamine is present. When the D-penicillamine/copper (II) ratio = 1.45 in the starting reaction mixture, a mixed valence complex with an intense red-violet color is formed. The formation of this compound, which contains 44% copper (II) ion, is greatly influenced by the experimental conditions, primarily by the concentration of halide ions. The main chemical and physical characteristics of the mixed valence complex were determined via magnetic and spectroscopic measurements. It was further established that a very intense blue complex is formed when the D-penicillamine/copper (II) ratio = 2 and halide ions are present. On the basis of the nature of the products formed under various conditions it was concluded that the copper (II)-D-penicillamine system may serve as a good model for studying the binding sites of copper-containing proteins. PMID:210846

  14. Interaction of Mg(II), Ca(II) and Mn(II) ions with the light-harvesting proteins of chloroplast thylakoid membranes studied by FT-IR difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, A.; Tajmir-Riahi, H. A.

    1994-03-01

    The interaction of Mg(II), Ca(II) and Mn(II) ions with the light-harvesting (LHC-II) proteins of chloroplast thylakoid membranes was investigated in aqueous solution at different metal ion concentrations (0.01-20 mM), using Fourier transform-infrared (FT-IR) difference spectroscopy. The infrared difference spectroscopic results for the amide I and amide II regions (1800-1500 cm -1) have shown a strong metal—protein interaction at high metal ion concentrations (5-20 mM), whereas at very low concentrations (0.01-1 mM) the metal cation binding is negligible. The metal ion binding is mainly via the protein carbonyl group at low cation concentration, whereas metal ion coordination to the protein CO and CN groups were observed at higher cation concentrations. The Mn—tyrosine binding was also observed at high metal ion concentrations. Major conformational changes from α-helix (48% in uncomplexed protein) to β-sheet and turn structures were observed in the presence of these metal cations at high concentrations (10-20 mM).

  15. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.

    PubMed

    Zhao, Juan; Wang, Jianping

    2016-09-15

    In this work, linear infrared spectroscopy was used to examine the effect of salt on the amide-II mode in a model β-peptide (N-ethylpropionamide, NEPA) in its deuterated form, to reveal the sensitivity of this mode in reporting peptide-ion interactions. In comparison to the case of NEPA in water, the amide-II spectra mainly showed a red-shifted component in four typical saline solutions (NaCl, CaCl2, MgCl2, and AlCl3) examined in this work. Our results suggest that highly populated hydrated ion complexes under high salt concentration conditions destroy the hydration layer of the model peptide and result in mostly a salting-out state of the peptide. Molecular dynamics simulations suggest that the hydrated cation mainly interacts with the peptide backbone on the amide C═O side, whereas the hydrated anion interacts on the amide N-H side. As the amide-II mode is mainly a combination of the C-N stretching and N-H in-plane-bending vibrations, this mode is advantageous in being responsive to ionic interaction from both the C═O and N-H sides. Such a dual sensitivity should be very useful in probing the breaking and/or formation of the interamide hydrogen bond between the C═O and N-H groups, which is a very important interaction involved in the solvation and stabilization, as well as folding/unfolding of proteins. PMID:27537202

  16. Oscillatory oxidation of Mn(II) ions by hexacyanoferrates(III) and bistability in the reductions of MnO 2 by hexacyanoferrates(II) in a CSTR

    NASA Astrophysics Data System (ADS)

    Olexová, Anna; Melicherčík, Milan; Treindl, L'udovít

    1997-04-01

    A new transition metal oscillator based on the oxidation of Mn 2+ ions by Fe(CN) 3-6 ions in a CSTR has been found. As well as the oscillations of the absorbance of the Mn(IV) species, pH-oscillations have been observed. In the reduction of manganese dioxide by Fe(CN) 4-6 ions a kinetic bistability has been described. A skeleton mechanism described recently for Mn(II)H 2O 2 and Mn(II)Br 2 oscillators has been applied here and further developed by the idea of the catalytic activity of colloidal particles and of the assistance of the pH-value change of both main processes, i.e. of the Mn(II) oxidation by Fe(CN) 3-6 ions and of the Mn(IV) reduction by Fe(CN) 4-6 ions. This appears to be the first case where both sides of a reversible reaction are autocatalytic.

  17. Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH

    NASA Astrophysics Data System (ADS)

    Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.

  18. Supramolecular control over molecular magnetic materials: γ-cyclodextrin-templated grid of cobalt(II) single-ion magnets.

    PubMed

    Nedelko, Natalia; Kornowicz, Arkadiusz; Justyniak, Iwona; Aleshkevych, Pavlo; Prochowicz, Daniel; Krupiński, Piotr; Dorosh, Orest; Ślawska-Waniewska, Anna; Lewiński, Janusz

    2014-12-15

    Single-ion magnets (SIMs) are potential building blocks of novel quantum computing devices. Unique magnetic properties of SIMs require effective separation of magnetic ions and can be tuned by even slight changes in their coordination sphere geometry. We show that an additional level of tailorability in the design of SIMs can be achieved by organizing magnetic ions into supramolecular architectures, resulting in gaining control over magnetic ion packing. Here, γ-cyclodextrin was used to template magnetic Co(II) and nonmagnetic auxiliary Li(+) ions to form a heterometallic {Co, Li, Li}4 ring. In the sandwich-type complex [(γ-CD)2Co4Li8(H2O)12] spatially separated Co(II) ions are prevented from superexchange magnetic coupling. Ac/dc magnetic and EPR studies demonstrated that individual Co(II) ions with positive zero-field splitting exhibit field-induced slow magnetic relaxation consistent with the SIMs' behavior, which is exceptional in complexes with easy-plane magnetic anisotropy. PMID:25494948

  19. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation

    PubMed Central

    Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-01-01

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the –HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of

  20. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  1. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions

    PubMed Central

    Krystofova, Olga; Shestivska, Violetta; Galiova, Michaela; Novotny, Karel; Kaiser, Jozef; Zehnalek, Josef; Babula, Petr; Opatrilova, Radka; Adam, Vojtech; Kizek, Rene

    2009-01-01

    In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular

  2. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions.

    PubMed

    Krystofova, Olga; Shestivska, Violetta; Galiova, Michaela; Novotny, Karel; Kaiser, Jozef; Zehnalek, Josef; Babula, Petr; Opatrilova, Radka; Adam, Vojtech; Kizek, Rene

    2009-01-01

    In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular

  3. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    NASA Astrophysics Data System (ADS)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  4. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    SciTech Connect

    Obadovic, D. Z.; Kiurski, J.; Marinkovic-Neducin, R. P.

    2007-04-23

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  5. Energies of Electronic States of Ni (II) Ion in NiO-Al2O3 Catalyst Prepared by Impregnation

    NASA Astrophysics Data System (ADS)

    Obadović, D. Ž.; Kiurski, J.; Marinković-Nedučin, R. P.

    2007-04-01

    The behavior of NiO-Al2O3 catalysts is strongly dependent on the preparation method, as well as on pretreatment conditions. In the present work we investigated the influences of Ni(II) ion on NiO-Al2O3 catalysts properties due to the preparation by impregnation method. Based on experimental diffuse reflectance spectroscopy (DRS) data of electronic d-d transitions of Ni (II) promoter ion the energies of electronic states in spinel-like structure were calculated, and the most probable scheme of molecular orbital have been proposed.

  6. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    PubMed

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials.

  7. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    PubMed

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials. PMID:26619127

  8. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography.

    PubMed

    Wu, Chien-Ching; Reinhoudt, David N; Otto, Cees; Velders, Aldrik H; Subramaniam, Vinod

    2010-02-23

    An indirect method of protein patterning by using Ni(II) ion templates for immobilization via a specific metal-protein interaction is described. A nitrilotriacetic acid (NTA)-terminated self-assembled monolayer (SAM) allows oriented binding of histidine-tagged proteins via complexation with late first-row transition metal ions, such as Ni(II). Patterns of nickel(II) ions were prepared on NTA SAM-functionalized glass slides by microcontact printing (microCP) and dip-pen nanolithography (DPN) to obtain micrometer and submicrometer scale patterns. Consecutive dipping of the slides in 6His-protein solutions resulted in the formation of protein patterns, as was subsequently proven by AFM and confocal fluorescence microscopy. This indirect method prevents denaturation of fragile biomolecules caused by direct printing or writing of proteins. Moreover, it yields well-defined patterned monolayers of proteins and, in principle, is indifferent for biomolecules with a high molecular weight. This approach also enabled us to characterize the transfer of Ni(II) ions on fundamental parameters of DPN, such as writing speeds and tip-surface contact times, while writing with the smallest possible ink "molecules" (i.e., metal ions). PMID:20104881

  9. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  10. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography.

    PubMed

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55μg/L, the relative standard deviation (n=10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  11. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist.

  12. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  13. Kinetic studies of Cd (II) and Pb (II) ions biosorption from aqueous media using untreated and chemically treated biosorbents.

    PubMed

    Bakyayita, G K; Norrström, A C; Nalubega, M; Kulabako, R N

    2014-01-01

    Untreated and chemically treated Albizia coriaria, Erythrina abyssinica and Musa spp. were studied in batch for uptake of Cd(2+) and Pb(2+) ions at pH 2.0-9.0 and agitation time of 30-390 min. Optimum biosorption conditions were pH 4 for Pb(2+) ions and pH 5 for Cd(2+) ions, contact time was 3.5 hours at 24 ± 1 °C for 10 mg/L biosorbent dosage and initial metal ions concentration of 20 mg/L. Chemical treatment had a 10-17% biosorption efficiency enhancement for Cd(2+) ions and a 1.6-2.3% reduction effect for Pb(2+) ions. The sorption capacities for Cd(2+) and Pb(2+) ions for treated biosorbents were 1.760-1.738 mg g(-1) compared to 1.415-1.539 mg g(-1) for untreated materials. The pseudo second-order model suitably fitted the Cd(2+) and Pb(2+) ions biosorption data with regression coefficients (R(2)) of 0.9784-0.9999. Fitting of the Ho model to the experimental data showed that the biosorption mechanism for both metal ions studied was mainly a chemisorption process. Therefore, treated A. coriaria, E. abyssinica and Musa spp. were potential biosorbents for remediation of Cd(2+) ions and the untreated materials suitable for removing Pb(2+) ions from contaminated aqueous media.

  14. Biosorption of Cu(II) ions by cellulose of cabbage waste as biosorbent from agricultural waste

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Wireni, Lestari, Witri Wahyu

    2016-02-01

    Biosorption on lignocellulosic wastes has been identified as an appropriate alternative technology to remove heavy metal ions from wastewater. The purpose of this research was to study the ability of cabbage waste biosorbent prepared from agricultural waste on biosorption of Cu(II). Cabbage waste biosorbent was activated with sodium hydroxide at concentration 0.1 M. The biosorption optimum conditions were studied with initial pH (2-8), biosorbent dosage (0.2-1) g/L, contact time (15-90) minutes, and metal ion concentrations (10-100) mg/L by batch method. Experimental data were analyzed in terms of two kinetic models such as pseudo-first-order and pseudo-second-order models. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The results showed that cabbage biosorbent activated by 0.1 M sodium hydroxide enhanced the biosorption capacity from 9,801 mg/g to 12,26 mg/g. The FTIR spectra have shown a typical absorption of cellulose and typical absorption of lignin decrease after activation process. The kinetic biosorption was determined to be appropriate to the pseudo-second order model with constant rate of 0,091 g/mg.min, and the biosorption equilibrium was described well by the Langmuir isotherm model with maximum biosorption capacity of 37.04 mg/g for Cu(II) at pH 5, biosorption proses was spontaneous in nature with biosorption energy 25.86 kJ/mol at 302 K.

  15. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  16. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. PMID:25277090

  17. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  18. A Study of the Ion Hose Instability in the DARHT-II Downstream Transport Region

    SciTech Connect

    McCarrick, J F

    2004-11-11

    The second axis of the DARHT flash X-ray facility at Los Alamos National Laboratory (''DARHT-II'') is a multiple-pulse, 18.4 MeV, 2 kA induction electron linear accelerator [1]. A train of short ({approx}50 ns) pulses are converted via bremsstrahlung to X-rays, which are then used to make radiographic images at various times (nominally four) during a ''hydrotest'' experiment. The train of pulses is created by carving them out of a two microsecond long macropulse, using a fast switching element called a kicker [2]. The unused portion of the macropulse is absorbed in a beam dump. Thus, upstream of the kicker, two microseconds of beam are transported through a vacuum system roughly sixty meters long. These conditions involve length and, specifically, time scales which are new to the transport of high-current beams. A concern under such conditions are the macroscopic interactions between the electron beam and positive ions created by impact ionization of the residual gas in the vacuum system. Over two microseconds, the ion density can develop to a hundredth or even a tenth of a percent of the beam density--small, to be sure, but large enough to have cumulative effects over such a long transport distance. Two such effects will be considered here: the ion hose instability, where transverse forces conspire to pull the electron beam farther and farther off axis, and background gas focusing, where radial forces (with respect to the beam) change the beam envelope during the course of the macropulse. The former effect can cause beam emittance growth (affecting the ability to focus the beam on the target) and eventually catastrophic beam loss; the latter can cause either serious degradation of the statically tuned final focus on the converter target, or a pinching of the beam on the surface of the main dump to the point where the heat flux causes damage. The beam transport upstream of the kicker has two distinct phases. First, the beam is created and accelerated up to 18.4 Me

  19. Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres.

    PubMed

    Zeng, Lixuan; Chen, Yufei; Zhang, Qiuyun; Guo, Xingmei; Peng, Yanni; Xiao, Huijuan; Chen, Xiaocheng; Luo, Jiwen

    2015-10-01

    Chitosan/rectorie (CTS/REC) nano-hybrid composite microsphere was prepared by changing the proportion of CTS/REC with 2:1, 3:1 and 4:1. Compared with the pure cross-linking chitosan microsphere, the nano-hybrid composite microsphere was proved to have better sorption capacity of Cd(II), Cu(II) and Ni(II), especially 2:1(CTS/REC-1). The adsorption behavior of the microsphere of Cd(II), Cu(II) and Ni(II) was investigated in single and binary metal systems. In single system, the equilibrium studies showed that the adsorption of Cd(II), Cu(II) and Ni(II) followed the Langmuir model and the pseudo-second-order kinetic model. The negative values of (ΔG) suggested that the adsorption process was spontaneous. In binary system, the combined action of the metals was found to be antagonistic and the metal sorption followed the order of Cu(II)>Cd(II)>Ni(II). The regeneration studies indicated that EDTA desorbed Cd(II), Cu(II) and Ni(II) from cross-linking microspheres better than HCl. The FT-IR and XPS spectra showed that coordination bonds were formed between Cd(II), Cu(II) and Ni(II) and the nitrogen atoms of cross-linking CTS/REC nano-hybrid composite microspheres. PMID:26076634

  20. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  1. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.

    PubMed

    Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti

    2014-06-25

    A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.

  2. EPR study of Cu(2+) ion doped orotato(nicotinamid)cobalt(II) single crystal.

    PubMed

    Yıldırım, I; Karabulut, B; Büyükgüngör, O

    2016-01-01

    We have studied the Cu(2+) ion doped orotato(nicotinamid)cobalt(II) complex by using EPR spectroscopy and X-ray diffraction. The single crystal is triclinic with the space group P1‾. The unit cell dimensions of the crystal are a=7.2785(4)Å, b=10.2349(5)Å, c=12.7372(6)Å, α=69.297(4)°, β=74.791(4)° and γ=76.995(4)°, with Z=2. We analyzed the EPR spectra of both single crystal and powder of the complex at room temperature. EPR analysis indicates the presence of only one Cu(2+) site. We obtained the spin Hamiltonian parameters from the single crystal data for the complex. The spin Hamiltonian parameters are gx=2.032, gy=2.116, gz=2.319, Ax=28G, Ay=66G, Az=126G. These data indicate that the symmetry of paramagnetic center is rhombic. We constructed the ground state wave function of the Cu(2+) ion.

  3. [Effect of manganese (II), cobalt (II), and nickel (II) ions on the growth and production of coumarins in the suspension culture of Angelica archangelica L].

    PubMed

    Siatka, T; Kasparová, M; Sklenárová, H; Solich, P

    2005-01-01

    The plant cell reacts to an increased concentration of metals in the environment by various mechanisms. They include an increase in the formation of heat-shock proteins, metallothioneins, phytochelatins, amino acids (cysteine, histidine), organic acids (citric, malic), or secondary metabolites. The latter mechanism is being investigated for its possible use in explant cultures for the stimulation of secondary metabolism, which is the source of substances of pharmaceutical importance. The study tested manganese (II) (0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, and 50 mM in the medium), cobalt (II), and nickel (II) ions (0, 0.1, 0.5, 1, 5, 10, 50, 100, 200, and 500 microM in the medium) as potential elicitors of coumarin production. At the same time, toxicity of these metals for the culture was examined by evaluating their effect on growth (characterized by fresh and dry weight of biomass at the end of a two-week cultivation). Cultures were cultivated in the dark and in the light. It has been found that the growth of cultures is not influenced by manganese in concentrations ranging from 0 to 2 mM, then it slightly decreases, at a concentration of 50 mM it is lower by 20 % when cultivated in the dark and by 30 % when cultivated in the light in comparison with the control. Cobalt in concentrations of 0 to 50 microM does not significantly influence the growth of the culture, higher concentrations decrease the biomass yields, more markedly when cultivated in the light (at 500 microM Co by 60 %, in the dark only by 30 % in comparison with the controls). Nickel in concentrations of 0.1 to 200 microM does not influence growth, and in a concentration of 500 microM decreases it by approximately 30 % in comparison with the control both in the light and dark. Production of coumarins was not stimulated by any metal in comparison with the control cultures, only the removal of manganese from the medium in the culture cultivated in the dark increased production by about 15 % versus the

  4. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.

    PubMed

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin

    2013-01-01

    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid. PMID:23846730

  5. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions.

    PubMed

    Vitali, Luciano; Laranjeira, Mauro C M; Gonçalves, Norberto S; Fávere, Valfredo T

    2008-03-01

    In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).

  6. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions.

    PubMed

    Bhatt, Keyur D; Vyas, Disha J; Makwana, Bharat A; Darjee, Savan M; Jain, Vinod K

    2014-01-01

    Water dispersible stable gold nanoparticles (AuNps) have been synthesized by using calix[4]pyrrole octa-hydrazide (CPOH) as a reducing as well as stabilizing agent. CPOH-AuNps have been characterized by surface plasmon resonance, particle size analyzer and transmission electron microscopy. CPOH-AuNps are water dispersible, highly stable for more than 150 days at neutral pH with a size of less than 10nm and zeta potential of 15±2 MeV. Ion sensing property of CPOH-AuNps has been investigated for various metal ions Pb(II), Cd(II), Mn(II), Fe(III), Ni(II), Zn(II), Hg(II), Co(II) and Cu(II) by colorimetry and spectrofluorimetry. Among all the metal ions investigated, only Co(II) ions gives sharp colour change from ruby red to blue and is easily detectable by naked-eye. CPOH-AuNps being fluorescent in nature also shows great sensitivity and selectivity for Co(II) ions. Co(II) ions can be selectively detected at very low concentration level of 1 nM in a facile way of fluorescence quenching.

  7. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions

    NASA Astrophysics Data System (ADS)

    Bhatt, Keyur D.; Vyas, Disha J.; Makwana, Bharat A.; Darjee, Savan M.; Jain, Vinod K.

    2014-03-01

    Water dispersible stable gold nanoparticles (AuNps) have been synthesized by using calix[4]pyrrole octa-hydrazide (CPOH) as a reducing as well as stabilizing agent. CPOH-AuNps have been characterized by surface plasmon resonance, particle size analyzer and transmission electron microscopy. CPOH-AuNps are water dispersible, highly stable for more than 150 days at neutral pH with a size of less than 10 nm and zeta potential of 15 ± 2 MeV. Ion sensing property of CPOH-AuNps has been investigated for various metal ions Pb(II), Cd(II), Mn(II), Fe(III), Ni(II), Zn(II), Hg(II), Co(II) and Cu(II) by colorimetry and spectrofluorimetry. Among all the metal ions investigated, only Co(II) ions gives sharp colour change from ruby red to blue and is easily detectable by naked-eye. CPOH-AuNps being fluorescent in nature also shows great sensitivity and selectivity for Co(II) ions. Co(II) ions can be selectively detected at very low concentration level of 1 nM in a facile way of fluorescence quenching.

  8. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  9. Hexanuclear Platinum(II) Thiolate Macrocyclic Host: Charge-Transfer-Driven Inclusion of a Ag(I) Ion Guest.

    PubMed

    Shichibu, Yukatsu; Yoshida, Keisuke; Konishi, Katsuaki

    2016-09-19

    The inclusion of a Ag(I) ion by a hexanuclear platinum(II) thiolate macrocycle in solution was demonstrated, and the inclusion structure was determined by X-ray crystallography. Unique host-guest intermetallic interactions driven by charge transfer were elucidated by optical absorption spectroscopy and theoretical calculations. PMID:27608203

  10. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study.

    PubMed

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  11. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study

    PubMed Central

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  12. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

    PubMed Central

    Rückriem, Kai; Grotheer, Sarah; Vieker, Henning; Penner, Paul; Beyer, André; Gölzhäuser, Armin

    2016-01-01

    Summary Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor. PMID:27547602

  13. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers.

    PubMed

    Rückriem, Kai; Grotheer, Sarah; Vieker, Henning; Penner, Paul; Beyer, André; Gölzhäuser, Armin; Swiderek, Petra

    2016-01-01

    Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor. PMID:27547602

  14. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid.

    PubMed

    Faheim, Abeer A; Abdou, Safaa N; Abd El-Wahab, Zeinab H

    2013-03-15

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H(2)L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, (1)H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H(2)L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  15. Effects of Fe(II)/H2O2 Oxidation on Ubiquitin Conformers Measured by Ion Mobility-Mass Spectrometry

    PubMed Central

    Shi, Huilin; Gu, Liqing; Clemmer, David E.; Robinson, Renã A. S.

    2013-01-01

    Oxidative modifications can have significant effects on protein structure in solution. Here, the structures and stabilities of oxidized ubiquitin ions electrosprayed from an aqueous solution (pH 2) are studied by ion mobility spectrometry-mass spectrometry (IMS-MS). IMS-MS has proven to be a valuable technique to assess gas-phase and in many cases, solution structures. Herein, in vitro oxidation is performed by Fenton chemistry with Fe(II)/hydrogen peroxide. Most molecules in solution remain unmodified whereas ~20% of the population belongs to an M+16 Da oxidized species. Ions of low charge states (+7 and +8) show substantial variance in collision cross section distributions between unmodified and oxidized species. Novel and previously reported Gaussian conformers are used to model cross section distributions for +7 and +8 oxidized ubiquitin ions, respectively, in order to correlate variances in observed gas-phase distributions to changes in populations of solution states. Based on Gaussian modeling, oxidized ions of charge state +7 have an A-state conformation which is more populated for oxidized relative to unmodified ions. Oxidized ubiquitin ions of charge state +8 have a distribution of conformers arising from native-state ubiquitin and higher intensities of A- and U-state conformers relative to unmodified ions. This work provides evidence that incorporation of a single oxygen atom to ubiquitin leads to destabilization of the native state in an acidic solution (pH ~2) and to unfolding of gas-phase compact structures. PMID:23211023

  16. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  17. Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers.

    PubMed

    Mihai, Marcela; Bunia, Ion; Doroftei, Florica; Varganici, Cristian-Dragos; Simionescu, Bogdan C

    2015-03-23

    A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample). PMID:25675892

  18. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    SciTech Connect

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  19. Surface ion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions.

    PubMed

    Monier, M; Ibrahim, Amr A; Metwally, M M; Badawy, D S

    2015-11-01

    Surface ion-imprinted amino-functionalized cellulosic fibers (Cu-ABZ) were manufactured for efficient selective adsorption of Cu(2+) ions. The chemical modification steps had been characterized utilizing elemental analysis; Fourier transforms infrared (FTIR) along with wide angle X-ray diffraction (XRD) spectroscopy. Also, the morphological structure of the ion-imprinted and the non-imprinted (NI-ABZ) fibers were visualized and compared with that of the native cotton fibers using scanning electron microscope (SEM). In addition, the coordination mode by which the Cu(2+) ions bonded to the active sites were examined by both FTIR and X-ray photo electron spectra (XPS). Both Cu-ABZ and NI-ABZ were implemented in batch experiments for optimizing the conditions by which the Cu(2+) ions can be selectively removal from aqueous medium and pH 5 was the optimum for the metal ion extraction. Moreover, the kinetics and isotherm studies revealed that the adsorption data fitted with pseudo-second-order kinetic and Langmuir models with estimated maximum adsorption capacity 93.6mg/g. Also, the reusability studies indicated that the prepared ion-imprinted adsorbent maintains more than 95% of its original activity after fifth generation cycle.

  20. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator.

    PubMed

    Li, Hongbo; Xue, Yan; Wang, Wei

    2014-04-15

    An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors. PMID:24291750

  1. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  2. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY.

    PubMed

    Ostroski, Indianara C; Barros, Maria A S D; Silva, Edson A; Dantas, João H; Arroyo, Pedro A; Lima, Oswaldo C M

    2009-01-30

    The uptake capacity of Fe(III) and Zn(II) ions in NaY zeolite was investigated. Experiments were carried out in a fixed bed column at 30 degrees C, pH 3.5 and 4.5 for Fe(III) and Zn(II), respectively, and an average particle size of 0.180 mm. In order to minimize the diffusional resistances the influence of flow rate on the breakthrough curves at feed concentrations of 1.56 meq/L for Fe(III) and 0.844 meq/L for Zn(II) was investigated. Flow rate of the minimal resistance in the bed according to mass transfer parameter were 2.0 mL/min for iron and 8.0 mL/min for zinc ions. Freundlich and Langmuir isotherm models have been used to represent the column equilibrium data. The iron dynamic isotherm was successfully modeled by the Langmuir equation and this mathematical model described well the experimental breakthrough curves for feed concentrations from 0.1 up to 3.5 meq/L. The zinc dynamic isotherm was successfully modeled by the Freundlich equation. This equilibrium model was applied to mathematical model. Experimental breakthrough curves could be predicted. Experiments were also carried out in a batch reactor to investigate the kinetics adsorption of the ions Fe(III) and Zn(II). Langmuir kinetic model fit well both experimental data.

  3. Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas

    DOE PAGESBeta

    Simakov, Andrei Nikolaevich; Molvig, Kim

    2016-03-17

    Paper I [A. N. Simakov and K. Molvig, Phys. Plasmas23, 032115 (2016)] obtained a fluid description for an unmagnetized collisional plasma with multiple ion species. To evaluate collisional plasmatransport fluxes, required for such a description, two linear systems of equations need to be solved to obtain corresponding transport coefficients. In general, this should be done numerically. Herein, the general formalism is used to obtain analytical expressions for such fluxes for several specific cases of interest: a deuterium-tritium plasma; a plasma containing two ion species with strongly disparate masses, which agrees with previously obtained results; and a three ion species plasmamore » made of deuterium, tritium, and gold. We find that these results can be used for understanding the behavior of the aforementioned plasmas, or for verifying a code implementation of the general multi-ion formalism.« less

  4. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    NASA Astrophysics Data System (ADS)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  5. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps: EBIT-I and EBIT-II

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Boyce, K. R.; Kelley, R. L.; Porter, F. S.; Stahle, C. K.; Szymkowiak, A. E.; Tillotson, W.; Beiersdorfer, P.; Chen, H.; May, M. J.

    2002-01-01

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I. EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the magnetic trapping mode. We have also built and operated a full suite of spectrometers spanning the 1-7000 Angstrom wavelength band, the most recent being a spectrometer based on a spare Astro-E (6 x 6) microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL ebit facility, its capabilities, and some results will be discussed.

  6. Laboratory Astrophysics at the LLNL Electron Beam Ion Traps EBIT I& EBIT II

    SciTech Connect

    Beeriersdorder, P; Chen, H; May, M J; Thorn, D; Brown, G V; Boyce, K R; Kelly, R L; Porter, F S; Stahle, C K; Szymkowiak, A E; Tillotson, W; Behar, E; Gu, M F; Kahn, S M

    2002-06-18

    In order to provide a complete, accurate set of atomic data for interpreting spectra provided by missions such as XMM-Newton, the Chandra X-Ray Observatory, and Astro-E2, we have harnessed the Lawrence Livermore National Laboratory's electron beam ion traps EBIT-I, EBIT-II, and Super-EBIT for laboratory astrophysics. In support of this work we have developed a number of unique techniques, including the ability to experimentally simulate a Maxwellian distribution of electron energies and measuring low-energy charge exchange cross sections using the ''magnetic trapping mode''. We have also built, and operated a full suite of spectrometers spanning the 1-7000 {angstrom} wavelength band, the most recent, being the NASA/Goddard Space Flight Center's Astro-E 6 x 6 engineering spare microcalorimeter array. Results of our efforts include a complete list of wavelengths of the Fe L-shell transitions, measurements of absolute and relative cross sections for direct, impact, dielectronic, and resonance excitation, and measurements of low energy charge transfer reactions. A brief overview of the LLNL, ebit facility, its capabilities, and some results will be discussed.

  7. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  8. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes.

    PubMed

    Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2016-06-21

    Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a

  9. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes.

    PubMed

    Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2016-06-21

    Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a

  10. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Barnard, J. J.; Briggs, R. J.; Davidson, R. C.; Dorf, M.; Grote, D. P.; Henestroza, E.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Sefkow, A. B.; Sharp, W. M.; Waldron, W. L.; Welch, D. R.; Yu, S. S.

    2009-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity "tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ˜30 nC pulse of Li+ ions to ˜3 MeV, then compresses it to ˜1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  11. Synthesis and characterization of ion-imprinted resin for selective removal of UO2 (II) ions from aqueous medium.

    PubMed

    Monier, M; Alatawi, Raedah A S; Abdel-Latif, D A

    2015-05-01

    In this work, uranyl ion-imprinted resin based on 2-(((4-hydroxyphenyl)amino)methyl)phenol was synthesized by condensation polymerization of its uranyl complex in presence of resorcinol and formaldehyde cross-linkers. Numerous instrumental techniques including elemental analysis, Fourier transform infrared spectroscopy, ultraviolet, (1) H along with (13) C nuclear magnetic resonance spectroscopy have been employed for complete characterization of the synthesized ligand and its uranyl complex. Additionally, the obtained ion-imprinted and non-imprinted resins were investigated using scanning electron microscope and Fourier transform infrared spectroscopy. The effects of various essential parameters such as pH, temperature and contact time on removal of uranyl ions have been examined, and the results indicated that the obtained resin exhibited the optimum activity at pH 5. Furthermore, the adsorption process was spontaneous at all studied temperatures and followed the second-order kinetics model. Also, Langmuir adsorption isotherm exhibited the best fit with the experimental results with maximum adsorption capacity 139.3 mg/g. Moreover, the selectivity studies revealed that the ion-imprinted resin exhibited an obvious affinity toward the uranyl ions in presence of other metal ions compared with the non-imprinted resin.

  12. Influence of the crystal field stabilization energy of metal(II) ions on the structural distortion of matrix-isolated SO 42- guest ions in selenate matrices

    NASA Astrophysics Data System (ADS)

    Stoilova, Donka

    2004-08-01

    Infrared spectra of metal(II) selenate hydrates (MeSeO 4· nH 2O and Na 2Me(SeO 4) 2·2H 2O; n=6, 5, 4, 1; Me=Mg, Mn, Co, Ni, Cu, Zn, Cd) containing matrix-isolated SO 42- guest ions are reported and discussed with respect to the SO stretching modes ν3 and ν1. An adequate measure for the SO 42- guest ion distortion is the site group splitting Δ νas (Δ νab and Δ νac in the case of a doublet and a triplet for ν3, respectively; a, being the highest wavenumbered component of ν3) and Δ νmax (the difference between the highest and the lowest wavenumbered SO stretching modes). It has been shown that the SO 42- guest ion distortion depends on both the number of the sulfate oxygen atoms involved in coordinative bonds with the metal(II) ions and the electronic configuration of the metal(II) ions, i.e. their crystal field stabilization energy (CFSE) additionally to the site symmetry and the local potential at the lattice site of the host lattice. The SO 42- guest ions matrix-isolated in MeSeO 4·H 2O (Me=Mn, Co, Zn) and in Na 2Me(SeO 4) 2·2H 2O (Me=Mn, Cu, Cd) exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis and Δ νab≅Δ νbc. When SO 42- guest ions are incorporated in the triclinic Na 2Me(SeO 4) 2·2H 2O host lattices (Me=Co, Ni, Zn) the ν3 stretching region resembles a higher local symmetry of the SO 42- guest ions (an approximate (A 1⊕E) splitting) than the crystallographic one (i.e. Δ νab>Δ νbc instead of Δ νab≅Δ νbc) and, hence, the ratio Δ νab/Δ νbc has to be taken into account (the higher value of the ratio Δ νab/Δ νbc, the weaker is the distortion of the SO 42- guest ions). The SO 42- guest ions incorporated in MeSeO 4· nH 2O ( n=6, 5, 4) exhibit a higher local symmetry of the guest ions than that deduced from the site group analysis (D 2d for the SO 42- guest ions in MeSeO 4·5H 2O, MeSeO 4·4H 2O and in the monoclinic MeSeO 4·6H 2O host lattices and close to T d in the tetragonal

  13. Zinc(II)-Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity.

    PubMed

    Stacy, Alexandra E; Palanimuthu, Duraippandi; Bernhardt, Paul V; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R

    2016-05-26

    As the di-2-pyridylketone thiosemicarbazone (DpT) and 2-acetylpyridine thiosemicarbazone (ApT) series show potent antitumor activity in vitro and in vivo, we synthesized their fluorescent zinc(II) complexes to assess their intracellular distribution. The Zn(II) complexes generally showed significantly greater cytotoxicity than the thiosemicarbazones alone in several tumor cell-types. Notably, specific structure-activity relationships demonstrated the importance of the di-2-pyridyl pharmacophore in their activity. Confocal fluorescence imaging and live cell microscopy showed that the Zn(II) complex of our lead compound, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which is scheduled to enter clinical trials, was localized to lysosomes. Under lysosomal conditions, the Zn(II) complexes were shown to transmetallate with copper ions, leading to redox-active copper complexes that induced lysosomal membrane permeabilization (LMP) and cytotoxicity. This is the first study to demonstrate direct lysosomal targeting of our novel Zn(II)-thiosemicarbazone complexes that mediate their activity via transmetalation with copper ions and LMP. PMID:27023111

  14. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). PMID:25529724

  15. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    NASA Astrophysics Data System (ADS)

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  16. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II.

    PubMed

    Bonke, Erik; Zwicker, Klaus; Dröse, Stefan

    2015-08-15

    Manganese-induced toxicity has been recently associated with an increased ROS generation from mitochondrial complex II (succinate:ubiquinone oxidoreductase). To achieve a deeper mechanistic understanding how divalent manganese ions (Mn(2+)) could stimulate mitochondrial ROS production we performed investigations with bovine heart submitochondrial particles (SMP). In succinate fueled SMP, the Mn(2+) induced hydrogen peroxide (H2O2) production was blocked by the specific complex II ubiquinone binding site (IIQ) inhibitor atpenin A5 while a further downstream block at complex III increased the rate markedly. This suggests that site IIQ was the source of the reactive oxygen species. Moreover, Mn(2+) ions also accelerated the rate of superoxide dismutation, explaining the general increase in the measured rates of H2O2 production and an attenuation of direct superoxide detection.

  17. Synthesis of Ge1- x Sn x Alloy Thin Films Using Ion Implantation and Pulsed Laser Melting (II-PLM)

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Hlaing Oo, W. M.; Siegel, G.; Stone, P. R.; Yu, K. M.; Scarpulla, M. A.

    2012-05-01

    Ge1- x Sn x thin films are interesting for all-group-IV optoelectronics because of a crossover to a direct bandgap with dilute Sn alloying. However, Sn has vanishing room-temperature equilibrium solubility in Ge, making their synthesis very challenging. Herein, we report on our attempts to synthesize Ge1- x Sn x films on Ge (001) using ion implantation and pulsed laser melting (II-PLM). A maximum of 2 at.% Sn was incorporated with our experimental conditions in the samples as determined by Rutherford back scattering spectroscopy. A red-shift in the Ge optical phonon branch and increased absorption below the Ge bandgap with increasing Sn concentration indicate Sn-induced lattice- and band-structure changes after II-PLM. However, ion-channeling and electron microscopy show that the films are not of sufficient epitaxial quality for use in devices.

  18. Single-ion-magnet behavior in a two-dimensional coordination polymer constructed from Co(II) nodes and a pyridylhydrazone derivative.

    PubMed

    Liu, Xiangyu; Sun, Lin; Zhou, Huiliang; Cen, Peipei; Jin, Xiaoyong; Xie, Gang; Chen, Sanping; Hu, Qilin

    2015-09-21

    A novel two-dimensional (2D) coordination polymer, [Co(ppad)2]n (1), resulted from the assembly of Co(II) ions based on a versatile ligand termed N(3)-(3-pyridoyl)-3-pyridinecarboxamidrazone. Alternating/direct-current magnetic studies of compound 1 indicate that the spatially separated high-spin Co(II) ions act as single-ion magnets (SIMs). The present work represents the first case of a 2D Co(II)-based SIM composed of a monocomponent organic spacer.

  19. The hydrogen salicylate ion as ligand. Complex formation equilibria with dioxouranium (VI), neodymium (III) and lead (II).

    PubMed

    Furia, Emilia; Porto, Raffaella

    2004-11-01

    The complexation equilibria of the hydrogen salicylate ion, HL(-), have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 1 M NaClO4 for uranyl and Nd(III) ions and in 3 M NaClO4 for Pb(II) ion. The ligand concentration (CL) was varied between 10(-3) and 0.05 M. In the system with U(VI) the concentrations ranged between: 10(-3) < or = [U(VI)] < or = 0.01 M, 0.5 < or = CL /[U(VI)] < or = 10 and 10(-2) < or = [H+] < or = 10(-5) M; for neodymium system: 2 x 10(-3) < or = [Nd(III)] < or = 0.01, 1 < or = CL /[Nd(III)] < or = 10 and 10(-2) < or = [H+] < or = 10(-7) M; for lead system: 10(-3) < or = [Pb(II) < or = 3 x 10(-3), 1 < or = CL /Pb(II)] < or = 2 and 10(-5) < or = [H+] < or = 10(-7.3) M. The experimental data have been explained with the formation of UO2HL+, UO2L, UO2(OH)L(-), (UO2)2(OH)L2(-) UO2(HL)L(-), NdHL(2+), NdL(+), Nd(OH)L, PbHL(+), PbL and PbL2(2-). Equilibrium constants are given for the investigated ionic media and at infinite dilution.

  20. Recovery and concentration of metal ions. 4: Uphill transport of Zn(II) in a multimembrane hybrid system

    SciTech Connect

    Wodzki, R.; Sionkowski, G.; Pozniak, G.

    1999-02-01

    A study has been made on the uphill transport of zinc cations across a multimembrane hybrid system (MHS) composed of two ion-exchange membranes (IEM) separated by a bulk liquid membrane (BLM). The fluxes of the Zn(II)/H countertransport were investigated as dependent on the composition and structure of ion-exchange polymer membranes (i), the solvent of a liquid membrane (II), the feed and strip membrane area ratio (iii), and the pH of the feed solution (iv). The IEMs of various ionogenic groups (sulfonic acid, carboxylic acid, quaternized amine) and of various structure (clustered, gelatinous, porous) were examined in the MHS containing the BLM with di(2-ethylhexyl)phosphoric acid as a carrier of Zn(II) cations. It has been found that the Zn(II) fluxes are dependent on the properties of both the BLM and polymer membranes, i.e., on the BLM solvent viscosity (i), the nature and concentration of the IEM ion-exchange sites (ii), and the IEM thickness (iii). The best results were obtained when using hexane as the BLM solvent and the Nafion-117 membrane (perfluorinated polymer, sulfonic acid groups) as the cation-exchange membrane (CEM). The influence of the area ratio (feed-to-strip interface) has been checked for A{sub f}/A{sub g} equal to 3:1, 1:1, and 1:3. It was found that the asymmetry of the system leads mainly to some changes in the accumulation of transported species in a liquid membrane phase.

  1. Multiple Metal Binding Domains Enhance the Zn(II) Selectivity of the Divalent Metal Ion Transporter AztA

    SciTech Connect

    Liu, T.; Reyes-Caballero, H.; Li, C.; Scott, R.A.; Giedroc, D.P.

    2009-06-03

    Transition metal-transporting P{sub 1B}-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by {sup 1}H-{sup 15}N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S{sub 4} or S{sub 3}(O/N) complexes with AztA{sup aHbH}, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter.

  2. Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions.

    PubMed

    Zhang, Yan; Zhang, Lina; Kong, Qingkun; Ge, Shenguang; Yan, Mei; Yu, Jinghua

    2016-10-01

    Graphitic carbon nitride (g-C3N4) materials with a layered structure have unusual physicochemical properties. Herein it was shown that g-C3N4 quantum dots (QDs) obtained through a thermal-chemical etching route exhibited attractive upconversion and electrochemiluminescence (ECL) properties. After modification on nanoporous gold (NPG) with a sponge-like porous structure, g-C3N4 QDs were employed to fabricate an ECL sensor for the determination of Pb(2+) using target - dependent DNAzyme as the recognition unit. Moreover, magnetic reduced graphene oxide nanosheets (rGO) attached with Fe3O4 nanoparticles (rGO-Fe3O4) were obtained via a one-pot in situ reduction approach, and used as carriers of DNAzyme. To make full use of the unique magnetic property the prepared rGO-Fe3O4, a flow injection ECL detecting cell was designed using indium tin oxide (ITO) glass as working electrode. Due to the unique separation and enrichment properties of magnetic Fe3O4-rGO materials as well as wire-like conductivity of NPG, high sensitivity and selectivity for the determination of Pb(2+) in real water samples were achieved. This indicates that g-C3N4 has excellent anodic ECL performance in the presence of triethanolamine, and could be applied in real environmental samples analyses. Graphical Abstract Graphitic carbon nitride based electrochemiluminescence sensor for the sensitive monitor of lead(II) ions in real samples was constructed.

  3. A flexible luminescent probe to monitor fast ion losses at the edge of the TJ-II stellarator

    SciTech Connect

    Jimenez-Rey, D.; Zurro, B.; Guasp, J.; Liniers, M.; Baciero, A.; Fernandez, A.; Fontdecaba, J. M.; Garcia-Munoz, M.; Garcia, G.; Rodriguez-Barquero, L.

    2008-09-15

    A mobile luminescent probe has been developed to detect fast ion losses and suprathermal ions escaping from the plasma of the TJ-II stellarator device. The priorities for its design have been flexibility for probe positioning, ease of maintenance, and detector sensitivity. It employs a coherent fiber bundle to relay, to the outside of the vacuum chamber, ionoluminescence images produced by the ions that impinge, after entering the detector head through a pinhole aperture, onto a screen of luminescent material. Ionoluminescence light detection is accomplished by a charge-coupled device camera and by a photomultiplier, both of which are optically coupled to the in-vacuum fiber bundle head by means of a standard optical setup. A detailed description of the detector, and the first results obtained when operated close to the plasma edge, are reported.

  4. Enhancing the Photostability of Arylvinylenebipyridyl Compounds as Fluorescent Indicators for Intracellular Zinc(II) Ions

    PubMed Central

    Yuan, Zhao; Younes, Ali H.; Allen, John R.; Davidson, Michael W.; Zhu, Lei

    2015-01-01

    Arylvinylenebipyridyl (AVB) ligands are bright, zinc(II)-sensitive fluoroionophores. The applicability of AVBs as fluorescent indicators for imaging cellular zinc(II), however, is limited by low photostability, partially attributable to the photoisomerization of the vinylene functionality. Two configurationally immobilized (i.e., “locked”) AVB analogues are prepared in this work. The zinc(II)-sensitive photophysical properties and zinc(II) affinities of both AVBs and their locked analogues are characterized in organic and aqueous media. The zinc(II) sensitivity of the emission is attributed to the zinc(II)-dependent energies of the charge transfer excited states of these compounds. The configurationally locked ligands have improved photostability, while maintaining the brightness and zinc(II) sensibility of their AVB progenitors. The feasibility of the “locked” AVB analogues with improved photostability for imaging intracellular Zn(II) of eukaryotic cells using laser confocal fluorescence microscopy is demonstrated. PMID:25942357

  5. Transport of cadmium(II) ion through a supported liquid membrane containing a bathocuproine

    SciTech Connect

    Saito, Takashi )

    1991-12-01

    The active transport of cadmium ions across a supported liquid membrane (SLM) containing a ligand based on a driving force supplied by the concentration gradient of the chloride ion is described. The SLM used is a microporous polypropylene membrane impregnated with a bathocuproine (4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline) solution in dibenzyl ether as a carrier. The characteristics of the cadmium ion transport system are examined under various experimental conditions. The active transport of cadmium ions through an SLM is dependent on the concentrations of the cadmium ion, ligand, and chloride ion. An equation for the permeation velocity of cadmium ions, consisting of three important factors for this transport system, is proposed.

  6. Magnetic properties of weakly exchange-coupled high spin Co(II) ions in pseudooctahedral coordination evaluated by single crystal X-band EPR spectroscopy and magnetic measurements.

    PubMed

    Neuman, Nicolás I; Winkler, Elín; Peña, Octavio; Passeggi, Mario C G; Rizzi, Alberto C; Brondino, Carlos D

    2014-03-01

    We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(μ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S′= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(–1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(–1)), in good agreement with the average J(3/2) value determined from magnetic measurements.

  7. Design of ratiometric fluorescent probes based on arene-metal-ion interactions and their application to Cd(II) and hydrogen sulfide imaging in living cells.

    PubMed

    Takashima, Ippei; Kinoshita, Miyuki; Kawagoe, Ryosuke; Nakagawa, Saika; Sugimoto, Manabu; Hamachi, Itaru; Ojida, Akio

    2014-02-17

    Non-coordinative interactions between a metal ion and the aromatic ring of a fluorophore can act as a versatile sensing mechanism for the detection of metal ions with a large emission change of fluorophores. We report the design of fluorescent probes based on arene-metal-ion interactions and their biological applications. This study found that various probes having different fluorophores and metal binding units displayed significant emission redshift upon complexation with metal ions, such as Ag(I), Cd(II), Hg(II), and Pb(II). X-ray crystallography of the complexes confirmed that the metal ions were held in close proximity to the fluorophore to form an arene-metal-ion interaction. Electronic structure calculations based on TDDFT offered a theoretical basis for the sensing mechanism, thus showing that metal ions electrostatically modulate the energy levels of the molecular orbitals of the fluorophore. A fluorescent probe was successfully applied to the ratiometric detection of the uptake of Cd(II) ions and hydrogen sulfide (H2S) in living cells. These results highlight the utility of interactions between arene groups and metal ions in biological analyses.

  8. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM.

  9. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms.

    PubMed

    Wang, Jingjing; Li, Zhengkui

    2015-12-30

    A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by (60)Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption-desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater. PMID:26151381

  10. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination.

    PubMed

    Hu, Shanling; Xiong, Xiaodong; Huang, Shuiying; Lai, Xiaoqi

    2016-01-01

    An ion imprinted polymer (IIP) was synthesized by using Pb(II) as a template, methacrylic acid as a monomer, 8-hydoxyquinoline as a ligand, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile as initiator. It can be applied to prepare lead ion selective voltammetric sensor for Pb(II) adsorption and trace detection. The Pb(II)-IIP was characterized by FTIR spectra and SEM image. Under optimized conditions of polymerization, the Pb(II)-IIP showed good adsorption behavior toward Pb(II), with a magnitude of three times higher than that of the non imprinted polymer (NIP). Also, it exhibited a favorable selectivity for Pb(II), compared with other heavy metal ions of Hg(II), Cd(II), Cu(II), and a negligible adsorption to the other cations. The synthesized IIP was used to determine trace levels of Pb(II) in food and water samples, with a calibration linear range over Pb(II) concentrations of 0.05 - 60 μM and a limit of detection at 0.01 μM. PMID:27682403

  11. Structural elucidation and location of Mn(II) ion in Tetraaquabis(hydrogen maleato)cadium(II): Single crystal EPR studies

    NASA Astrophysics Data System (ADS)

    Ramachitra, Somasundaram; Hema, Ramesh; Muthuausteria, Premkumar; Parthipan, Krishnan

    2014-01-01

    Electron paramagnetic resonance study of Mn2+ ion-doped Tetraaquabis(hydrogen maleato)cadmium(II) single crystal was carried out at X-band frequency to ascertain its structural properties. EPR spectrum exhibits group of five fine structure transitions each splits into six hyperfine components. The spin Hamiltonian parameters calculated from the crystal rotations are: gxx = 2.109, gyy = 2.029, gzz = 2.008, Axx = -9.51 mT, Ayy = -8.30 mT, Azz = -8.09 mT, Dxx = 20.29 mT, Dyy = 4.11 mT, Dzz = -24.40 mT, E = 8.09 mT and it indicates Mn2+ ion has orthorhombic symmetry. The direction cosines of spin Hamiltonian parameters (g, A and D) are suggesting that Mn2+ ion has entered the lattice interstitially and its exact location has been established with the help of position of atoms in the host lattice. Covalency of Mn-ligand bonds are evaluated using Matumura's plot is 7.3%. FT-IR and powder XRD data confirm the formation of host lattice. Optical absorption study suggests distortion around incorporated ion. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in distorted octahedral crystalline field. The theoretical band positions are estimated using energy expressions and good agreement is observed with the experimental values. The best fit values of the crystal field (Dq) and Racah inter electronic repulsion parameters were evaluated from the observed band positions.

  12. Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples.

    PubMed

    Behbahani, Mohammad; Bagheri, Akbar; Taghizadeh, Mohsen; Salarian, Mani; Sadeghi, Omid; Adlnasab, Laleh; Jalali, Kobra

    2013-06-01

    This paper describes the preparation of new Pb(II)-imprinted polymeric particles using 2-vinylpyridine as a functional monomer, ethylene glycol dimethacrylate as the cross-linker, 2,2'- azobisisobutyronitrile as the initiator, diphenylcarbazone as the ligand, acetonitril as the solvent, and Pb(NO(3))(2) as the template ion, through bulk polymerisation technique. The imprinted lead ions were removed from the polymeric matrix using 5 mL of HCl (2 mol.L(-1)) as the eluting solvent. The lead ion concentration was determined by flame atomic absorption spectrometry. Optimum pH for maximum sorption was obtained at 6.0. Sorption and desorption of Pb(II) ions on the IIP particles were quite fast and achieved fully over 5 min. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 75.4 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 245, 2.1%, and 0.42 ng mL(-1), respectively. The prepared ion-imprinted polymer particles have an increased selectivity toward Pb(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This ion-imprinted polymer is an efficient solid phase for extraction and preconcentration of lead ions in complex matrixes. For proving that the proposed method is reliable, a wide range of food samples with different and complex matrixes was used.

  13. [\\ion(C)(ii)] 158 and [\\ion(O)(i)] 63 MU M ISO-Observations of L1457

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralf; Koester, Benedikt; Stutzki, Juergen

    1998-08-01

    We report here the results of [C Ii] 158 and [O I] 63 mu m fine-structure line observations along two cuts across a molecular clump of L1457 (MBM 12) carried out with ISO-LWS. [C Ii] emission was detected at all positions observed. It can be assigned to the cooling of the diffuse atomic interstellar medium. We observed excess [C Ii] emission from the dense clumpy molecular component. It is likely to originate from molecular gas that is irradiated by an interstellar FUV-radiation field of order chi (1-2) chi_0 . Using PDR models for a spherical symmetry we find the molecular gas of L1457 consists of clumps with a density n_H ~ 10(5) cm(-3) . Their masses range between 10(-4) and 10(-3) M_⊙ consistent with the clump distribution derived from high resolution CO observations. [O I] 63 mu m emission was not detected toward L1457. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  14. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function. PMID:27416303

  15. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function.

  16. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abd-Elgawad, Mohamed M. A.

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO3 at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The complexes were stabilized by enthalpy changes and the results suggest that the complexation is an enthalpy-driven process. The concentration distribution diagrams of the complexes are evaluated.

  17. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M; Abd-Elgawad, Mohamed M A

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO(3) at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn(2+)

  18. In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks

    SciTech Connect

    Xiao, Chaoxian; Goh, Tian Wei; Brashler, Kyle; Pei, Yuchen; Guo, Zhiyong; Huang, Wenyu

    2014-09-07

    The interaction of guest Pt(II) ions with UiO-66–X (X = NH2, H, NO2, OMe, F) series metal–organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66–X MOFs generally coordinate with 1.6–2.4 Cl and 1.4–2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66–X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h–1 for UiO-66–NH2 and 0.011–0.017 h–1 for other UiO-66–X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66–NH2 is 4–6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66–NH2, in which amino groups coordinate with Pt(II) ions.

  19. Electron paramagnetic resonance studies of Cu 2+ ion in Tetraaqua-di(nicotinamide)Ni(II)-saccharinates single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Kazan, S.; Yalçın, O.; Aktaş, B.

    2006-06-01

    X-band (˜9.8 GHz) electron paramagnetic resonance (EPR) measurement at ambient temperature in three mutually perpendicular planes have been carried out on a single crystal of Cu 2+ doped mixed ligand complex of Ni(II) with saccharin and nicotinamide [Ni(Nic) 2(H 2O) 4](sac) 2. The angular dependent spectra showed that the Cu 2+ ion enters Ni 2+ sites in the lattice and distorted local environment of Ni 2+ site. The principal g and A values, covalency parameter ( α' 2), mixing coefficients ( α and β) and Fermi contact term ( K) have been evaluated from the EPR analysis. The ground-state wave function of the Cu 2+ ion has been constructed using the α' 2, α and β values. The nature of the distortion present in the lattice is obtained from the values of the mixing coefficients.

  20. Prediction of the copper (II) ions dynamic removal from a medium by using mathematical models with analytical solution.

    PubMed

    Borba, Carlos Eduardo; da Silva, Edson Antônio; Fagundes-Klen, Márcia R; Kroumov, Alexander D; Guirardello, Reginaldo

    2008-03-21

    A copper (II) ions biosorption by Sargassum sp. biomass was studied in a fixed bed column at 30 degrees C and pH 3.5. The experimental curves were obtained for the following feed concentrations -2.08, 4.16, 6.42 and 12.72mmol/L of the copper ions. The mathematical models developed by Thomas and Bohart-Adams were used for description of ions sorption process in the column. The models principle hypothesis is that the mass transfer controlling stage of the process is the adsorption kinetics between sorbate and adsorbent. The phenomena such as intraparticle diffusion, a mass transfer external resistance and axial dispersion effects were out of considerations. Some of the models parameters were experimentally determined (rho(B), epsilon, u(0), C(0)) and the others were evaluated on the bases of the experimental data (k(a1), k(a2)). The unique fitting parameter in all models was the adsorption kinetic constant. The identification procedure was based on the least square statistical method. Simulation results show that the models describe well a copper ions sorption process in a fixed bed column. The used models can be considered as useful tools for adsorption process design and optimization in fixed bed column by using algae biomass of Sargassum sp. as an adsorbent.

  1. Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids.

    PubMed

    Zhu, Xiangbing; Cui, Yuemei; Chang, Xijun; Wang, Hua

    2016-01-01

    Multi-walled carbon nanotubes (MCNTs) were dispersed in graphene oxide (GO) colloids to be further functionalized with diethylenetriamine (DETA), resulting in GO-MCNTs-DETA nanocomposites for the solid-phase extraction and analysis of Cr(III), Fe(III), Pb(II), and Mn(II) ions at the trace levels in wastewater. Inductively coupled plasma optical emission spectrometry (ICP-OES) indicates that this new solid-phase sorbent could facilitate the maximum static adsorption capacities of 5.4, 13.8, 6.6 and 9.5 mg g(-1) for Cr(III), Fe(III), Pb(II), and Mn(II) ions, respectively, showing the adsorption capacity up to 95% within about 30 min. Moreover, the detection limits of the GO-MCNTs-DETA-based analysis method were found to be 0.16, 0.50, 0.24 and 0.38 ng mL(-1) for Cr(III), Fe(III), Pb(II), and Mn(II) ions, respectively, with the relative standard deviation of lower than 3.0% (n=5). Importantly, common coexisting ions showed no significant interference on the separation and pre-concentration of these heavy metal ions at pH 4.0. Subsequently, the GO-MCNTs-DETA sorbent was successfully employed for the separation and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) ions in wastewater samples yielding 75-folds concentration factors. PMID:26695275

  2. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection.

    PubMed

    Wu, Lan-Lan; Wang, Zhuo; Zhao, Shu-Na; Meng, Xing; Song, Xue-Zhi; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2016-01-11

    Mercury(II) ions have emerged as a widespread environmental hazard in recent decades. Despite different kinds of detection methods reported to sense Hg(2+) , it still remains a challenging task to develop new sensing molecules to replenish the fluorescence-based apparatus for Hg(2+) detection. This communication demonstrates a novel fluorescent sensor using UiO-66-NH2 and a T-rich FAM-labeled ssDNA as a hybrid system to detect Hg(2+) sensitively and selectively. To the best of our knowledge, it has rarely been reported that a MOF is utilized as the biosensing platform for Hg(2+) assay. PMID:26555340

  3. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction.

    PubMed

    Shanmugaprakash, M; Sivakumar, V

    2015-12-01

    The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater.

  4. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction.

    PubMed

    Shanmugaprakash, M; Sivakumar, V

    2015-12-01

    The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater. PMID:26366934

  5. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.

    PubMed

    Semin, Boris K; Seibert, Michael

    2016-06-01

    We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.

  6. New heterocycle modified chitosan adsorbent for metal ions (II) removal from aqueous systems.

    PubMed

    Kandile, Nadia G; Mohamed, Hemat M; Mohamed, Mansoura I

    2015-01-01

    A new hydrogel based on a modified chitosan CS-B was synthesized and evaluated for its metal ion removal from aqueous systems. The CS-B hydrogel was prepared through modification of chitosan with 4-((1, 3-dioxoisoindolin-2-ylimino) methyl) benzaldehyde as a heterocyclic component. The new hydrogel was analyzed by diverse techniques such as FTIR, XRD, TGA, SEM, and swelling tests. The adsorption capacity of CS-B for metal ions Co(2+), Hg(2+), Cu(2+), Zn(2+), and Pb(2+) from aqueous systems at different pH values showed various levels of efficiency. The metal ion uptake data over a range of pH values for Co(2+) and Hg(2+) showed the highest adsorption capacity while Cu(2+), Zn(2+), and Pb(2+) showed moderate adsorption capacity. Selective metal ion efficiency was highest for Co(2+) and lowest for Hg(2+) in their binary mixture.

  7. Modeling FAMA ion beam diagnostics based on the Ptolemy II model

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Beličev, P.; Radjenović, B.

    2012-10-01

    The previously developed model of ion beam transport control of the FAMA facility is further enhanced by equipping it with the model of ion beam diagnostics. The model of control, executing once, is adjusted so that it executes in iterative mode, where each iteration samples the input beam normally distributed over initial phase space and calculates a single trajectory through the facility beam lines. The model takes into account only the particles that manage to pass through all the beam line apertures, emulating in this way a Faraday cup and a beam profile meter. Generated are also beam phase space distributions and horizontal and vertical beam profiles at the end of the beam transport lines the FAMA facility consists of. By adding the model of ion beam diagnostics to the model of ion beam transport control, the process of determining optimal ion beam control parameters is eased and speeded up, and the understanding of influence of control parameters on the ion beam characteristics is improved.

  8. High-sensitivity assay for Hg (II) and Ag (I) ion detection: A new class of droplet digital PCR logic gates for an intelligent DNA calculator.

    PubMed

    Cheng, Nan; Zhu, Pengyu; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Yang, Zhansen; Xu, Wentao

    2016-10-15

    The first example of droplet digital PCR logic gates ("YES", "OR" and "AND") for Hg (II) and Ag (I) ion detection has been constructed based on two amplification events triggered by a metal-ion-mediated base mispairing (T-Hg(II)-T and C-Ag(I)-C). In this work, Hg(II) and Ag(I) were used as the input, and the "true" hierarchical colors or "false" green were the output. Through accurate molecular recognition and high sensitivity amplification, positive droplets were generated by droplet digital PCR and viewed as the basis of hierarchical digital signals. Based on this principle, YES gate for Hg(II) (or Ag(I)) detection, OR gate for Hg(II) or Ag(I) detection and AND gate for Hg(II) and Ag(I) detection were developed, and their sensitively and selectivity were reported. The results indicate that the ddPCR logic system developed based on the different indicators for Hg(II) and Ag(I) ions provides a useful strategy for developing advanced detection methods, which are promising for multiplex metal ion analysis and intelligent DNA calculator design applications.

  9. High-sensitivity assay for Hg (II) and Ag (I) ion detection: A new class of droplet digital PCR logic gates for an intelligent DNA calculator.

    PubMed

    Cheng, Nan; Zhu, Pengyu; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Yang, Zhansen; Xu, Wentao

    2016-10-15

    The first example of droplet digital PCR logic gates ("YES", "OR" and "AND") for Hg (II) and Ag (I) ion detection has been constructed based on two amplification events triggered by a metal-ion-mediated base mispairing (T-Hg(II)-T and C-Ag(I)-C). In this work, Hg(II) and Ag(I) were used as the input, and the "true" hierarchical colors or "false" green were the output. Through accurate molecular recognition and high sensitivity amplification, positive droplets were generated by droplet digital PCR and viewed as the basis of hierarchical digital signals. Based on this principle, YES gate for Hg(II) (or Ag(I)) detection, OR gate for Hg(II) or Ag(I) detection and AND gate for Hg(II) and Ag(I) detection were developed, and their sensitively and selectivity were reported. The results indicate that the ddPCR logic system developed based on the different indicators for Hg(II) and Ag(I) ions provides a useful strategy for developing advanced detection methods, which are promising for multiplex metal ion analysis and intelligent DNA calculator design applications. PMID:27140307

  10. Effects of Spatial Variations in Coronal Electron and Ion Temperatures on Type III Bursts. II. Variations in Ion Temperature

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Robinson, P. A.

    2011-03-01

    Quasilinear-based simulations are presented for the effects on coronal type III bursts of spatially varying ion temperature Ti in the corona. The simulations use a newly developed method for integrating spatial variations of coronal temperatures into our previous simulations for constant temperatures. The effects are simulated for monotonic Ti variations and/or for spatially localized enhancements in Ti . Generally, a localized enhancement in Ti has stronger effects on type III bursts than a corresponding monotonic variation in Ti . A localized Ti enhancement causes modulations to the dynamic spectra of fp and 2fp emission at frequencies corresponding to the disturbance: a narrowband slowly drifting intensification for both fp and 2fp emission and a narrowband suppression for 2fp emission. The fp emission may become observable due to the disturbance, although still much weaker than the 2fp emission. Signatures of the Ti enhancement are found in the 2fp spectral characteristics, e.g., the maximum flux and frequency drift rate. Importantly, these signatures are distinct from those of localized disturbances in electron temperature Te . The results indicate that coronal type III bursts provide a new tool to probe and distinguish localized disturbances in Ti or Te in the corona. Additionally, the presence of multiple spatially confined Ti enhancements at different heights may produce some observed fine structures in type III bursts; e.g., stria bursts and associated flux modulations in type IIIb bursts, and flux modulations in type IIIs whose beams traverse coronal shocks.

  11. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite.

    PubMed

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II

  12. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    PubMed Central

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II

  13. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.

    PubMed

    Liang, Chenju; Bruell, Clifford J; Marley, Michael C; Sperry, Kenneth L

    2004-06-01

    In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.

  14. The response of a fast scintillator screen (YAP:Ce) to low energy ions (0-40 keV) and its use to detect fast-ion-loss in stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.; Malo, M.; Crespo, M. T.; Muñoz, D.

    2016-11-01

    A systematic study of scintillation materials was undertaken to improve the time resolution of the fast ion diagnostic currently installed at TJ-II stellarator. It was found that YAP:Ce (formula YAlO3:Ce, Yttrium Aluminum Perovskite doped with Cerium) ionoluminescence offers better sensitivity and time response compared to the standard detector material, SrGa2S4:Eu (TG-Green), currently used in TJ-II. A comparison between both materials was carried out by irradiating them with H+ ions of up to 40 keV using a dedicated laboratory setup. It is found that for the low energy ions of interest at TJ-II, YAP:Ce offers 20 times higher sensitivity than TG-Green and much faster decay time, 27 ns versus 540 ns. It is expected that the use of YAP:Ce in combination with a faster data acquisition and an ion counting software as part of the TJ-II ion luminescent probe will provide 20 times faster data on ion loss.

  15. Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion.

    PubMed

    Yamagata, Y; Inomata, K

    1997-08-01

    The previously reported condensation reaction of glycylglycine with trimetaphosphate (Yamanaka et al., 1988) was reinvestigated and shown to be catalyzed by magnesium ion. Aqueous solutions containing glycylglycine (0.5 M), trimetaphosphate (0.5 M) and magnesium chloride (0.5 M) were incubated at 38 degrees C at pH 4, 5, 6, 7 and 8. After incubation for ten days at pH 5, the maximum yields of tetraglycine and hexaglycine as condensation products were found to be about 12 and 1.4%, respectively. This result indicated the presence of a considerable catalytic effect of magnesium ion compared with the maximum yield of about 2% for tetraglycine and approximately 0% for hexaglycine in the absence of magnesium ion. PMID:11536827

  16. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  17. A sensitive, selective and rapid determination of lead(II) ions in real-life samples using an electrochemically reduced graphene oxide-graphite reinforced carbon electrode.

    PubMed

    Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd

    2015-11-01

    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water.

  18. Ion-multiplet formation and the photoanation of Tris(2,2'-bipyridine)ruthenium(II)

    SciTech Connect

    Wallace, W.M.; Hoggard, P.E.

    1980-01-01

    (Ru(bpy)/sub 3/)Br/sub 2/ in dimethylformamide loses one bipyridine upon irradiation at 458 nm, with an overall quantium yield of 3 x 10/sup -4/ with 0.017 M Br/sup -/ present. The quantum yields of the two photoproducts. (Ru(bpy)/sub 2/(DMF)Br)/sup +/ and (Ru(bpy)/sub 2/Br/sub 2/), are linearly dependent on bromide concentration within the range 0.0016 < (Br/sup -/) < 0.017 M. The results are consistent with a model based on ion pairs and ion triplets as the photoactive species.

  19. Iron oxide nanostructured electrodes for detection of copper(II) ions.

    PubMed

    Santos, J G M; Souza, J R; Letti, C J; Soler, M A G; Morais, P C; Pereira-da-Silva, M A; Paterno, L G

    2014-09-01

    Iron oxide nanostructured (ION) electrodes were assembled layer-by-layer onto ITO-coated glass substrates and their structure, morphology, and electrochemical properties were investigated, the latter aiming at the development of a chemical sensor for Cu2+. The electrodes were built by immersing the substrate alternately into an aqueous colloidal suspension of positively charged magnetite nanoparticles (np-Fe3O4, 8 nm) and an aqueous solution of anionic sodium sulfonated polystyrene (PSS). The adsorbed amount of both materials was monitored ex-situ by UV-vis spectroscopy and it was found to increase linearly with the number of deposition cycles. The resulting films feature a densely-packed structure of magnetite nanoparticles, as suggested by AFM and Raman spectroscopy, respectively. Cyclic voltammograms of electrodes immersed in acetate buffer (pH 4.6) displayed three electrochemical events that were tentatively ascribed to the reduction of Fe(III) oxy-hydroxide to magnetite, reduction of maghemite to magnetite, and finally oxidation of magnetite to maghemite. The effect of np-Fe3O4/PSS bilayers on the ION electrode performance was to increase the anodic and cathodic currents produced during electrochemical oxidation-reduction of the Fe(CN)(3-/4-) redox couple. With more bilayers, the ION electrode provided higher anodic/cathodic currents. Moreover, the redox couple exhibited a quasi-reversible behavior at the ION electrode as already observed with other working electrode systems. Fitting of voltammetry data provided the apparent electron transfer constants, which were found to be higher in ION electrodes for both redox couples (Fe(CN)(3-/4-) and Cu(2+/0)). By means of differential pulsed anodic stripping voltammetry, the ION electrodes were found to respond linearly to the presence of Cu2+ in aqueous samples in the range between 1.0 and 8.0 x 10(-6) mol x L(-1) and displayed a limit of detection of 0.3 x 10(-8) mol x L(-1). The sensitivity was - 0.6μA/μmol x L

  20. Studies on stannic selenoarsenate. II. Separation of uranium from numerous metal ions

    SciTech Connect

    Nabi, S.A.; Siddiqi, Z.M.; Rao, R.A.K.

    1982-12-01

    Stannic selenoarsenate has been synthesized by adding 0.05 M sodium selenite and 0.05 M sodium arsenate to a 0.05 M solution of stannic chloride in a volume ratio of 1:1:1 at pH 1. A tentative structure has been proposed on the basis of chemical composition, pH titrations, and infrared and thermogravimetric analyses. Distribution coefficients of several metal ions have been studied in hydrochloric acid, citric acid, ammonium citrate-citric acid, and water-dioxane systems. The unusual adsorption behavior or uranium has been utilized for its quantitative separation from several metal ions.

  1. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: spectroscopic and quantum chemical studies.

    PubMed

    Mansour, Ahmed M; Shehab, Ola R

    2014-07-15

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, (1)H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80°C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO(-)], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]⋅4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional. PMID:24674917

  2. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.; Shehab, Ola R.

    2014-07-01

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.

  3. Avidin-biotin capped mesoporous silica nanoparticles as an ion-responsive release system to determine lead(II).

    PubMed

    Song, Weiling; Li, Jingyu; Li, Qing; Ding, Wenyao; Yang, Xiaoyan

    2015-02-15

    We have developed DNAzyme-functionalized silica nanoparticles for the rapid, sensitive, and selective detection of lead ion (Pb(2+)). The specific binding between avidin and biotinylated DNAzymes was used to cap the pore of dye-trapped silica nanoparticles. In the presence of Pb(2+), DNAzymes were catalytically cleaved to uncap the pore, releasing the dye cargo with detectable enhancements of fluorescence signal. This method enables rapid (15 min) and sensitive (limit of detection=8.0 nM) detection. Moreover, the Pb(2+)-responsive behavior shows high selectivity with other metal ions. The superior properties of the as-designed DNAzyme-functionalized silica nanoparticles can be attributed to the large loading capacity and highly ordered pore structure of mesoporous silica nanoparticles as well as the catalytical cleaving of DNAzymes with Pb(2+). The recoveries obtained by standard Pb(II) addition to real samples-tap water, commercial mineral water, and lake water-were all from 98 to 101%. Our design serves as a new prototype for metal-ion sensing systems, and it also has promising potential for detection of various targets in stimulus-release systems. PMID:25447495

  4. San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis.

    PubMed

    Caprarescu, Simona; Corobea, Mihai Cosmin; Purcar, Violeta; Spataru, Catalin Ilie; Ianchis, Raluca; Vasilievici, Gabriel; Vuluga, Zina

    2015-09-01

    Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by pH and conductivity measurements in the solution. The electrodialytic performance, evaluated in terms of extraction removal degree (rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest (over 70%) was attained at 8V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements. PMID:26354689

  5. Complexation of copper and zinc ions with proteins of a light-harvesting complex (LHC-II) of chloroplast thylakoid membranes studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tajmir-Riahi, H. A.; Ahmed, A.

    1993-08-01

    The interaction of Zn(II) and Cu(II) ions with the light-harvesting proteins (LHC-II) of chloroplast thylakoid membranes was studied in aqueous solution with metal ion concentrations of 0.01 to 20mM, using Fourier transform-infrared (FT-IR) spectroscopy. Analyses of the metal ion binding mode and protein conformational variations were carried out and correlations between spectral changes and metal—protein complexation were established. Infrared difference spectroscopic results revealed the presence of a strong metal—protein interaction at high metal ion concentrations, while at low concentrations complexation was negligible. The binding of Zn and Cu ions was found to be with the protein carbonyl groups at low metal ion concentrations, whereas CO and CN groups were the main coordination sites at higher concentrations. A major conformational variation from α-helix to β-sheet and turn structures was observed in the presence of a concentrated metal ion solution.

  6. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    PubMed Central

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  7. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions.

    PubMed

    Ibrahim, I; Lim, H N; Huang, N M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  8. Surface-plasmon-based colorimetric detection of Cu(II) ions using label-free gold nanoparticles in aqueous thiosulfate systems

    NASA Astrophysics Data System (ADS)

    Tripathy, Suraj Kumar; Woo, Ju Yeon; Han, Chang-Soo

    2012-08-01

    We report colorimetric, label-free and non-aggregation-based gold nanoparticle (AuNP) probes for the highly selective detection of Cu(II) ions in aqueous environments. This detection scheme relies on the ability of Cu(II) ions to catalyze the leaching of gold at room temperature in the presence of thiosulfate species and ammonia. This simple and cost-effective probe provides rapid detection of Cu(II) ions at concentrations as low as 10 ppm. A similar detection method using AuNPs in ammonia-free thiosulfate solution is also viable at moderate reaction temperature (50 °C). The ammonia-free method also leads to marked damping and red-shifting of the surface plasmon resonance signal of the AuNP dispersion. The two methods clearly differ in the nature of the surface plasmon damping phenomenon, and their working mechanisms are plausibly explained based on the experimental investigations.

  9. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II).

    PubMed

    Kálmán, Ferenc Krisztián; Végh, Andrea; Regueiro-Figueroa, Martín; Tóth, Éva; Platas-Iglesias, Carlos; Tircsó, Gyula

    2015-03-01

    The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).

  10. Non-redox metal ions can promote Wacker-type oxidations even better than copper(II): a new opportunity in catalyst design.

    PubMed

    Qin, Shuhao; Dong, Lei; Chen, Zhuqi; Zhang, Sicheng; Yin, Guochuan

    2015-10-28

    In Wacker oxidation and inspired Pd(ii)/Cu(ii)-catalyzed C-H activations, copper(ii) is believed to serve in re-oxidizing of Pd(0) in the catalytic cycle. Herein we report that non-redox metal ions like Sc(iii) can promote Wacker-type oxidations even better than Cu(ii); both Sc(iii) and Cu(ii) can greatly promote Pd(ii)-catalyzed olefin isomerization in which the redox properties of Cu(ii) are not essential, indicating that the Lewis acid properties of Cu(ii) can play a significant role in Pd(ii)-catalyzed C-H activations in addition to its redox properties. Characterization of catalysts using UV-Vis and NMR indicated that adding Sc(OTf)3 to the acetonitrile solution of Pd(OAc)2 generates a new Pd(ii)/Sc(iii) bimetallic complex having a diacetate bridge which serves as the key active species for Wacker-type oxidation and olefin isomerization. Linkage of trivalent Sc(iii) to the Pd(ii) species makes it more electron-deficient, thus facilitating the coordination of olefin to the Pd(ii) cation. Due to the improved electron transfer from olefin to the Pd(ii) cation, it benefits the nucleophilic attack of water on the olefinic double bond, leading to efficient olefin oxidation. The presence of excess Sc(iii) prevents the palladium(0) black formation, which has been rationalized by the formation of the Sc(iii)H-Pd(ii) intermediate. This intermediate inhibits the reductive elimination of the H-Pd(ii) bond, and facilitates the oxygen insertion to form the HOO-Pd(ii) intermediate, and thus avoids the formation of the inactive palladium(0) black. The Lewis acid promoted Wacker-type oxidation and olefin isomerization demonstrated here may open up a new opportunity in catalyst design for versatile C-H activations. PMID:26390300

  11. Potentiometric and spectroscopic study of the complexation of copper(II) ions by tripeptides containing aromatic side-chains

    NASA Astrophysics Data System (ADS)

    Ghalem, S.; Fan, B.-T.; Xiao, L.

    1998-01-01

    The complexation of copper(II) ions with L,L-Gly-Phe-Phe, L,L-Phe-Gly-Phe and L,L-Phe-Phe-Gly was studied by potentiometric and spectroscopic measurements. Only four complexes have been found for each copper(II)-tripeptide system, and no species with two ligand molecules was observed. The results show influences of aromatic side-chains. These influences are dependent upon the location of two aromatic rings in studied tripeptides. The stabilization or destabilization of a given complex is probably the result of several different effects, including steric hindrance, hydrophobic effect, electrodonor effect and π-d interaction. The spectroscopic measurements, e.s.r and electronic absorption, are useful to determine the complex structures. La complexation du cuivre(II) par Gly-Phe-Phe-L,L, Phe-Gly-Phe-L,L et Phe-Phe-Gly-L,L a été étudiée par potentiométrie et par spectroscopies. Seulement quatre espèces ont été mises en évidence pour chaque système Cu(II)-tripeptide. Aucun complexe contenant deux molécules de ligand n'a été observé. Les résultats obtenus montrent des influences évidentes liées aux chaînes latérales aromatiques. Ces influences dépendent des positions des résidus phénylalanines. La stabilisation ou déstabilisation d'un complexe est probablement le résultat d'un ensemble de différents effets : effet stérique, effet hydrophobe, électrodonneur et l'interaction π-d. Les spectroscopies RPE et visible ont été utilisées pour la détermination structurale des complexes.

  12. Multinuclear complex formation in aqueous solutions of Ca(II) and heptagluconate ions.

    PubMed

    Pallagi, Attila; Csendes, Zita; Kutus, Bence; Czeglédi, Eszter; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-06-21

    The equilibria and structure of complexes formed between the Ca(2+) ion and the heptagluconate (Hglu(-)) ion in both neutral and alkaline solutions have been studied. In alkaline solutions an uncharged, multinuclear complex is formed with the composition of Ca3Hglu2(OH)4 (or [Ca3Hglu2H(-4)](0)) with an unexpectedly high stability constant (lg β(32-4) = 14.09). The formation of the trinuclear complex was deduced from potentiometry and confirmed by freezing-point depression measurements and conductometry as well. The binding sites of Hglu(-) were determined from NMR measurements. Besides the carboxylate group, the O atoms on the second and third carbon atoms proved to be the most probable sites for Ca(2+) binding. PMID:23629045

  13. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  14. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed.

  15. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. PMID:26363471

  16. Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study.

    PubMed

    Lima, L M P; Iranzo, O

    2016-01-01

    Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (<20 amino acids) usually lack structure in solution, different levels of structural preorganization can be induced by introducing conformational constraints, such as β-turn/loop template sequences and backbone cyclization. For all these reasons, and the fact that one is not restricted to use proteinogenic amino acids, small peptidic scaffolds constitute a simple and versatile platform for the development of inorganic systems with tailor-made properties and functions. Here we outline a general approach to the design of short preorganized peptide sequences (10-16 amino acids) for metal ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties. PMID:27586340

  17. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2012-10-01

    Sorption of copper ions by the alga Spirogyra sp. was investigated to determine the influence of experimental conditions and the methods of sample preparation on the process. The experiments were carried out both under the static and the dynamic conditions. Kinetics and equilibrium parameters of the sorption were evaluated. In addition, the influence was studied of the algae preparation methods on the conductivity of demineralized water in which the algae samples were immersed. The static experiments showed that the sorption of Cu(2+) ions reached equilibrium in about 30 min, with approximately 90% of the ions adsorbed in the initial 15 min. The sorption capacity determined from the Langmuir isotherms appeared highly uncertain (SD=±0.027 mg/g dry mass or ±11%, for the live algae). Under static conditions, the slopes of the Langmuir isotherms depended on the ratio of the alga mass to the volume of solution. The conductometric measurements were proven to be a simple and fast way to evaluate the quality of algae used for the experiments.

  18. Radiative recombination data for tungsten ions: II. W{sup 47+}–W{sup 71+}

    SciTech Connect

    Trzhaskovskaya, M.B.; Nikulin, V.K.

    2014-07-15

    New radiative recombination and photoionization cross sections, radiative recombination rate coefficients, and radiated power loss rate coefficients are presented for 23 tungsten impurity ions in plasmas. We consider ions from W{sup 47+} to W{sup 71+} that are of importance to fusion studies for ITER and for experiments using electron beam ion traps. The calculations are fully relativistic and all significant multipoles of the radiative field are taken into account. The Dirac–Fock method is used to compute the electron wavefunctions. Radiative recombination rates and radiated power loss rates are found using the relativistic Maxwell–Jüttner distribution of the continuum electron velocity. The total radiative recombination cross sections are given in the electron energy range from 1 eV to ∼80keV. Partial cross sections for ground and excited states are approximated by an analytical expression involving five fit parameters. Radiative recombination rates and radiated power loss rates are calculated in the temperature range from 10{sup 4}K to 10{sup 9}K. The total radiative recombination rates are approximated by another analytical expression with four fit parameters.

  19. Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study.

    PubMed

    Lima, L M P; Iranzo, O

    2016-01-01

    Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (<20 amino acids) usually lack structure in solution, different levels of structural preorganization can be induced by introducing conformational constraints, such as β-turn/loop template sequences and backbone cyclization. For all these reasons, and the fact that one is not restricted to use proteinogenic amino acids, small peptidic scaffolds constitute a simple and versatile platform for the development of inorganic systems with tailor-made properties and functions. Here we outline a general approach to the design of short preorganized peptide sequences (10-16 amino acids) for metal ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties.

  20. Synthesis, characterization and application of a novel ion-imprinted polymer for selective solid phase extraction of copper(II) ions from high salt matrices prior to its determination by FAAS.

    PubMed

    Yılmaz, Vedat; Hazer, Orhan; Kartal, Şenol

    2013-11-15

    A new Cu(II)-imprinted sorbent has been prepared by using 5-methyl-2-thiozylmethacrylamide (MTMAAm). The monomer of Cu(II)-MTMAAm complex was synthesized and copolymerized in the presence of ethyleneglycol dimethacrylate cross-linker via bulk polymerization method. The resulting Cu(II)-imprinted polymer was characterized by FT-IR spectroscopy and scanning electron microscopy (SEM). Copper ions were removed from the polymer with 1.0 mol L(-1) HNO3 and determined by flame atomic absorption spectrometry (FAAS). The imprinted polymer showed higher selectivity for Cu(II) in comparison to the non-imprinted polymer. Relative selectivity coefficients (k') for Cu(II)/Zn(II), Cu(II)/Ni(II) and Cu(II)/Co(II) were 9.1, 14.8 and 26.6, respectively. The imprinted polymer was examined as a column packing material for solid phase extraction of Cu(II) from various matrices. The effects of solution pH, acid eluents and interfering ions were investigated. The poylmer possesses selective extraction of Cu(II) within pH range from 5.0 to 6.5. The relative standard deviation and limit of detection (3s) of the method were evaluated as 1.4% and 0.9 µg L(-1), respectively. The accuracy of the method was verified by analysis of two certified reference materials (CWW-TM-D and SRM 3280) and then applied to the determination of Cu in seawater, lake water and tap water samples, and hemodialysis concentrates and multivitamin/multielement supplements. PMID:24148410

  1. Two-dimensional coordination polymers constructed using, simultaneously, linear and angular spacers and cobalt(II) nodes. New examples of networks of single-ion magnets.

    PubMed

    Ion, Adrian E; Nica, Simona; Madalan, Augustin M; Shova, Sergiu; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; Andruh, Marius

    2015-01-01

    Two novel bidimensional coordination polymers, [Co(azbbpy)(4,4'-bipy)0.5(DMF)(NCS)2]·MeOH (1) and [Co(azbbpy)(bpe)0.5(DMF)(NCS)2]·0.25H2O (2), resulted from the assembling of cobalt(II) ions by 1,3-bis(4-pyridyl)azulene, using either 4,4'-bipyridyl or 1,2-bis(4-pyridyl)ethylene as neutral spacers. The cobalt(II) nodes in 1 and 2 act as single-ion magnets (SIMs).

  2. Regulation of the mammalian carbamoyl-phosphate synthetase II by effectors and phosphorylation. Altered affinity for ATP and magnesium ions measured using the ammonia-dependent part reaction.

    PubMed

    Shaw, S M; Carrey, E A

    1992-08-01

    We have measured the 'core' mammalian carbamoyl-phosphate synthetase II (CPSII) activity, using NH4Cl as the nitrogen-donating substrate and trapping carbamoyl phosphate as urea through its reaction with ammonium ions. When ATP and magnesium ion concentrations are close to those found in the cell, the substrate saturation curves for ammonia and bicarbonate are hyperbolic, giving Km (NH3) values of 166 microM at high ATP concentrations and 26 microM at low ATP concentrations, while the Km (bicarbonate) is 1.4 mM at both ATP concentrations used. These values for the Km (NH3) are lower than previously reported for CPS II, and closer to the values for the mitochondrial counterpart. The Km for ammonia and bicarbonate are not altered by phosphorylation of the multienzyme polypeptide CAD, which contains the first three enzyme activities of pyrimidine biosynthesis. The CPS II activity is lower with an excess of either ATP or magnesium ions, causing the apparently sigmoid dependence of activity upon ATP concentration to be enhanced at low concentrations of free magnesium ions. The feedback inhibitor, UTP, acts by stabilising a state with a low affinity for magnesium ions and for ATP. In the presence of the activator, 5-phosphoribosyl diphosphate (PRibPP), the enzyme has a higher affinity for magnesium ions and thus the ATP dependence of the activity is hyperbolic. Phosphorylation of CAD similarly activates the CPS II enzyme by increasing the affinity for magnesium ions and by pushing the equilibrium away from the low-affinity UTP-stabilised state. Using our improved assay procedure, we observe a very large activation by PRibPP of carbamoylphosphate synthesis at low concentrations of magnesium ions, and we find that unlike UTP, the activator PRibPP is able to act on the phosphorylated enzyme. PMID:1499569

  3. Hydrothermal self-assembly and supercapacitive behaviors of Co(II) ion-modified graphene aerogels in H{sub 2}SO{sub 4} electrolyte

    SciTech Connect

    Bao, Qi; Hui, K.N.; Hui, K.S.; Wang, Yi; Hong, Xiaoting

    2014-08-15

    Highlights: • 3D Co(II) ions modified graphene aerogels were prepared by one-step hydrothermal process. • The aerogel electrodes showed hybrid supercapacitor behaviors. • The aerogel electrodes exhibited high rate capability and long-term cycling stability. - Abstract: Reduced graphene oxide (r-GO) aerogels decorated with divalent cobalt ions were synthesized via a one-pot hydrothermal self-assembly route. The interaction of Co(II) ions with 3D r-GO aerogels was investigated by spectroscopic techniques, including Raman, attenuated total reflectance infrared, and X-ray photoelectron spectroscopies. The excellent electrochemical properties of the aerogels were confirmed by cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy in an acid electrolyte (1 M H{sub 2}SO{sub 4}). The Co(II) ion-modified r-GO aerogels can be used as high-performance hybrid supercapacitor materials with a specific capacitance of 387.2 F g{sup –1} at 1 A g{sup –1} current density and a good cycling stability without capacity decay over 1000 cycles. The mechanical integrity enhancement of the hybrid r-GO aerogel framework and the improvement in its unique capacitive performance are attributed to the efficient interconnection produced by electro-active Co(II) ions.

  4. Removal of Pb (II) Ions from Aqueous Solutions by Cladophora rivularis (Linnaeus) Hoek

    PubMed Central

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R2 = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter RL is found in the range of 0.0639 to 0.1925 (0 < RL < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C–H stretching vibrations of –CH3 and –CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II). PMID:22629198

  5. Removal of Cu(II) ions from aqueous solutions using N-carboxymethyl chitosan.

    PubMed

    Wang, C X; Song, Q P

    2012-01-01

    N-carboxymethyl chitosan (NCMC) was synthesized by reacting chitosan with chloroacetic acid in water under triethylamine (Et(3)N) as catalyst. The chemical structures of NCMC were characterized by Fourier transform infrared (FT-IR) and hydrogen-1 nuclear magnetic resonance ((1)H-NMR) spectroscopy and confirmed that carboxymethylation occurred on the amino groups. Samples of NCMC were used for removal of Cu(II) from aqueous solution. The effects of degree of substitution of NCMC, initial pH value and adsorption kinetics on the adsorption were studied. Adsorption experiments showed that NCMC has a high adsorption speed and high adsorption capacity for remove Cu(II) from aqueous solution. The adsorption kinetics data were best fitted with the pseudo-second-order model. The experimental equilibrium data of Cu(II) on the NCMC were both fitted to the Langmuir model and Freundlich model, which revealed that the maximum capacity for monolayer saturation was 147.93 mg/g. PMID:22925879

  6. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  7. [Biosorption properties of extracellular polymeric substances produced by sulfate-reducing bacteria towards Cu(II) ion].

    PubMed

    Fang, Di; Zhang, Rui-Chang; Zhao, Yang-Guo

    2011-10-01

    The purpose of the present study was to investigate the Cu2+ biosorption properties of extracellular polymeric substances (EPS) produced by sulfate-reducing bacteria. The composition and physicochemical characteristics of EPS were determined. The adsorption characteristics of EPS towards Cu2+ were examined using thermodynamic equilibrium equations and determined by FTIR and SEM-EDS. The EPS was shown to have a strong copper-binding capacity and the biosorption data obtained were well described by the Freundlich isotherm model. The results of FTIR spectra and SEM-EDS confirmed the importance of the C-O-C group, -OH group and carbonyl group from polysaccharides and proteins in Cu2+ sorption by EPS. These findings suggest the potential of EPS produced by sulfate-reducing bacteria for the removal of Cu(II) ion from aqueous solution.

  8. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier.

    PubMed

    Rechkemmer, Yvonne; Breitgoff, Frauke D; van der Meer, Margarethe; Atanasov, Mihail; Hakl, Michael; Orlita, Milan; Neugebauer, Petr; Neese, Frank; Sarkar, Biprajit; van Slageren, Joris

    2016-01-01

    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials. PMID:26883902

  9. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier

    PubMed Central

    Rechkemmer, Yvonne; Breitgoff, Frauke D.; van der Meer, Margarethe; Atanasov, Mihail; Hakl, Michael; Orlita, Milan; Neugebauer, Petr; Sarkar, Biprajit; van Slageren, Joris

    2016-01-01

    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials. PMID:26883902

  10. Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite.

    PubMed

    Anirudhan, T S; Shainy, F

    2015-10-15

    A novel adsorbent, 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite [P(MB-IA)-g-MNCC] was synthesized for adsorbing mercury(II) [Hg(II)] ions selectively from aqueous solutions. Fourier transforms infrared spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric studies were performed to characterize the adsorbent. The optimum pH for Hg(II) adsorption was found to be 8.0, and the adsorption attained equilibrium within 60 min. The kinetic data were found to follow pseudo-second-order which assumes the ion exchange followed by complexation mechanism. The temperature dependence indicates an exothermic process. The well agreement of equilibrium data with Freundlich adsorption model confirms the multilayer coverage of Hg(II) onto P(MB-IA)-g-MNCC. The maximum adsorption capacity was found to be 240.0 mg/g. Complete removal of Hg(II) from aqueous solution was possible with an adsorbent dosage of 2.0 g/L. Spent adsorbent was effectively degenerated with 0.1M HCl. The present investigation shows that P(MB-IA)g-MNCC is a promising adsorbent for the removal and recovery of Hg(II) ions from aqueous solutions. PMID:26086434

  11. Iron(II)-Catalyzed Intermolecular Aminofluorination of Unfunctionalized Olefins Using Fluoride Ion.

    PubMed

    Lu, Deng-Fu; Zhu, Cheng-Liang; Sears, Jeffrey D; Xu, Hao

    2016-09-01

    We herein report a new catalytic method for intermolecular olefin aminofluorination using earth-abundant iron catalysts and nucleophilic fluoride ion. This method tolerates a broad range of unfunctionalized olefins, especially nonstyrenyl olefins that are incompatible with existing olefin aminofluorination methods. This new iron-catalyzed process directly converts readily available olefins to internal vicinal fluoro carbamates with high regioselectivity (N vs F), many of which are difficult to prepare using known methods. Preliminary mechanistic studies demonstrate that it is possible to exert asymmetric induction using chiral iron catalysts and that both an iron-nitrenoid and carbocation species may be reactive intermediates. PMID:27529196

  12. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Cernei, Natalia; Kominkova, Marketa; Zitka, Ondrej; Beklova, Miroslava; Zehnalek, Josef; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes. PMID:23538727

  13. Functional layers for Zn(II) ion detection: from molecular design to optical fiber sensors.

    PubMed

    Liu, Zhihong; Tonnelé, Claire; Battagliarin, Glauco; Li, Chen; Gropeanu, Radu A; Weil, Tanja; Surin, Mathieu; Beljonne, David; Lazzaroni, Roberto; Debliquy, Marc; Renoirt, Jean-Michel; Müllen, Klaus

    2014-01-01

    We report on the synthesis of a novel perylene monoimide derivative that shows high response and selectivity for zinc ion detection. The complexation of Zn(2+) by the dye is followed by FD-MS, (1)H NMR, UV-vis spectroscopy, and isothermal titration calorimetry. Quantum chemical calculations are performed to gain further insight into the electronic processes responsible for the spectroscopic changes observed upon complexation. Finally, the perylene dye is incorporated in a sol-gel silica layer coated on optical fibers that are then used for Zn(2+) detection in aqueous solution.

  14. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.

  15. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein.

    PubMed

    Magrì, Antonio; Munzone, Alessia; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Hansson, Orjan; Satriano, Cristina; Rizzarelli, Enrico; La Mendola, Diego

    2016-01-01

    Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH₂), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides. PMID:27490533

  16. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein

    PubMed Central

    Magrì, Antonio; Munzone, Alessia; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Hansson, Orjan; Satriano, Cristina; Rizzarelli, Enrico; La Mendola, Diego

    2016-01-01

    Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang–actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo (“wild-type”, wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein–copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1–17) and AcAng(1–17), which encompass the sequence 1–17 of angiogenin (QDNSRYTHFLTQHYDAK-NH2), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides. PMID:27490533

  17. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.

    PubMed

    Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir

    2015-01-01

    Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results. PMID:26398037

  18. Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation.

    PubMed

    Zhan, Shenshan; Wu, Yuangen; Luo, Yanfang; Liu, Le; He, Lan; Xing, Haibo; Zhou, Pei

    2014-10-01

    A label-free fluorescent DNA sensor for the detection of lead ions (Pb(2+)) based on lead(II)-stabilized G-quadruplex formation is proposed in this article. A guanine (G)-rich oligonucleotide, T30695, was used as a recognition probe, and a DNA intercalator, SYBR Green I (SG), was used as a signal reporter. In the absence of Pb(2+), the SG intercalated with the single-stranded random-coil T30695 and emitted strong fluorescence. While in the presence of Pb(2+), the random-coil T30695 would fold into a G-quadruplex structure and the SG could barely show weak fluorescence, and the fluorescence intensity was inversely proportional to the involving amount of Pb(2+). Based on this, a selective lead ion sensor with a limit of detection of 3.79 ppb (parts per billion) and a detection range from 0 to 600 ppb was constructed. Because detection for real samples was also demonstrated to be reliable, this simple, low-cost, sensitive, and selective sensor holds good potential for Pb(2+) detection in real environmental samples.

  19. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein.

    PubMed

    Magrì, Antonio; Munzone, Alessia; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Hansson, Orjan; Satriano, Cristina; Rizzarelli, Enrico; La Mendola, Diego

    2016-08-01

    Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH₂), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides.

  20. Amorphous polymeric anode materials from poly(acrylic acid) and tin(II) oxide for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Nakanishi, Shinji; Iba, Hideki; Itoh, Takahito

    2015-02-01

    The reaction of poly(acrylic acid) (PAA) and tin oxide (II) (SnO) provides an amorphous product (PSnA), which was found to be a promising precursor of an anode material for lithium ion batteries. The anode electrode composed of PSnA as the active material and polyimide as the binder showed a better cycling performance than the anode electrode using SnO as the active material. It is considered that the organic polymer chain present in PSnA might act as a buffer to the volume change in the active material during the charge-discharge cycles. The X-ray diffraction (XRD) results of the electrode after delithiation revealed that nano-sized cubic tin (α-Sn) and tetragonal tin (β-Sn) particles are formed in the active material. Therefore, it is concluded that these nano-sized tin particles in the polymer matrix were effective for the storage and release of Li ions.

  1. A statistical analysis of the low-energy geosynchronous plasma environment. I - Electrons. II - Ions

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Schwank, D. C.; Deforest, S. E.

    1981-01-01

    Data on the geosynchronous plasma environment between approximately 30 eV and 80 keV are analyzed statistically. Nearly 50 days of 10 minute averages of the first four moments of the distribution function from low-energy plasma detectors on the ATS-5 and ATS-6 geosynchronous satellites were used. The data were studied in terms of occurrence frequency, local time variations, and response to geomagnetic activity. These techniques revealed marked differences in the ATS-5 and ATS-6 data bases. When translated into a 2-Maxwellian representation, it was found that (1) the ATS-6 data covered an energy range not covered by ATS-5 (between 1 and 50 eV) and (2) there was a definite change in the ion plasma between the ATS-5 and ATS-6 measurements. Simple expressions are derived to simulate the relationship between the four moments, and a model is presented, which takes into account the ATS-5 and ATS-6 plasma variations. Despite the differences in the ion data, the accuracy of the four-moment representation was found valid for characterizing the geosynchronous electron population.

  2. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material. PMID:22489283

  3. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  4. Calculation of multicomponent ionic diffusion from zero to high concentration: II. Inclusion of associated ion species

    SciTech Connect

    Felmy, A.R.; Weare, J.H. )

    1991-01-01

    This paper presents a theoretical model of multicomponent ionic diffusion which is valid to high concentration for systems which show ion association. The results of the authors' formulations are contrasted with those of more simplified models for systems containing Na{sub 2}SO{sub 4} and MgSO{sub 4}, as well as for multicomponent natural seawater. The differences between their model and simplified models are significant, especially at high concentration. Inconsistencies which may develop with the use of the simplified approaches are demonstrated. The authors' approach requires considerable data which are not available at temperatures other than 25{degree}C. Therefore, other approaches which are based only on data at infinite dilution are of great interest. They show here that, if chemical potential derivatives are included in the infinite dilution model of Nernst and Hartley which uses only infinite dilution mobilities, the model can be extended to slightly concentrated solutions. This extended Nernst-Hartley model gives good agreement with all of the existing experimental mutual diffusion coefficient data at concentrations below about 0.2 M in the six component system Na-K-Ca-Mg-Cl-SO{sub 4}-H{sub 2}O. This may be the most reliable way to extend infinite dilution data into more concentrated regions. In the systems they have studied, the inclusion of ion-association species for weakly interacting species does not appear to provide significant improvement over the generalized Nernst-Hartley model.

  5. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  6. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.

    PubMed

    Guan, Jiehao; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-04-01

    A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples. PMID:25754066

  7. Low-temperature charging of lithium-ion cells Part II: Model reduction and application

    NASA Astrophysics Data System (ADS)

    Remmlinger, Jürgen; Tippmann, Simon; Buchholz, Michael; Dietmayer, Klaus

    2014-05-01

    Lithium-ion cells, especially when used in electric vehicles at varying operation conditions, require a sophisticated battery management to ensure an optimal operation regarding operation limits, performance, and maximum lifetime. In some cases, the best trade-off between these conflictive goals can only be reached by considering internal, non-measurable cell characteristics. This article presents a data-driven model-reduction method for a strict electrochemical model. The model describes the charging process of a lithium-ion cell and possibly occurring degradation effects in a large temperature range and is presented in Part I of this contribution. The model-reduction process is explained in detail, and the gained model is compared to the original electrochemical model showing a very high approximation quality. This reduced model offers a very low computation complexity and is therefore suitable for the implementation in a battery management system (BMS). Based on this model, an advanced charging strategy is presented and evaluated for possible reductions in charging times especially at low temperatures.

  8. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide-supported sulfanilic acid.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; You, Shao-hong; Wang, Hui; Hu, Xi; Guo, Yi-ming; Tan, Xiao-fei; Guo, Fang-ying

    2014-12-01

    To elucidate the influence mechanisms of background electrolytes and ionic strength on Cd(II) removal, the adsorption of Cd(II) onto magnetic graphene oxide-supported sulfanilic acid (MGO-SA) in aqueous solutions containing different types and concentrations of background electrolytes was studied. The results indicate that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The Cd(II) removal was decreased with the presence of background electrolyte cations (Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), and Ni(2+)), and the divalent cations exerted more obvious influences on the Cd(II) uptake than the monovalent cations at pH 6. Both Cl(-) and NO3(-) had negative effects on Cd(II) adsorption because they can form water-soluble metal-anion complexes with Cd(II) ions. The presence of 0.01molL(-1) Na3PO4 reduced the removal percentage of Cd(II) at pH<5 but extremely enhanced the Cd(II) removal when the pH>5. The Cd(II) adsorption was sensitive to changes in the concentration of NaCl, NaNO3, NaClO4, and Na3PO4. Besides, the adsorption isotherm of Cd(II) onto MGO-SA could be well described by the Freundlich model and was also influenced by the type of background electrolyte ions and the ionic strength.

  9. The adsorption of lead(II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber.

    PubMed

    Wang, Hui; Huang, Tao; Tu, Zong-Cai; Ruan, Chuan-Ying; Lin, Derong

    2016-06-01

    Insoluble dietary fiber from soybean residue (SIDF) was treated with dynamic high-pressure microfluidization (DHPM) and used as adsorbent for Pb(II) ion. The effects of pressure on the Pb(II) adsorption capacity, primary cilia structure and surface topography of SIDF were determined using a gastrointestinal simulated model in vitro. SIDF (at pH 7.0) showed maximum binding capacity (261.42 ± 2.77 μmol/g), which was about 1.13 times higher than that of untreated sample (233.47 ± 1.84 μmol/g), when pressure reached 80 MPa. However, the net adsorption value of SIDF in a simulated small intestine (~ 9 μmol/g) was significantly lower than that in the stomach (~ 48 μmol/g), because of the competitive adsorption of Pb(2+) by pancreatin, cholate and several enzymes in the small intestine. In addition, the adsorption capacity of SIDF exhibited good linear relationship with the physicochemical properties of total negative charges, and the adsorption behavior presumably occurred on the surface area of granules fiber. PMID:27478208

  10. Thermodynamic clarification of the curious ferric/potassium ion exchange accompanying the electrochromic redox reactions of prussian blue, iron(III) hexacyanoferrate(II).

    PubMed

    Rosseinsky, David R; Glasser, Leslie; Jenkins, H Donald Brooke

    2004-08-25

    The recent Glasser-Jenkins method for lattice-energy prediction, applied to an examination of the solid-state thermodynamics of the cation exchanges that occur in electrochromic reactions of Prussian Blue, provides incisive thermodynamic clarification of an ill-understood ion exchange that accompanies particularly the early electrochromic cycles. A volume of 0.246 +/- 0.017 nm(3) formula unit(-1) for the ferrocyanide ion, Fe(II)[(CN)(6)],(4-) is first established and then used, together with other formula unit-volume data, to evaluate the changes of standard enthalpy, entropy, and Gibbs energy in those ion-exchange reactions. The results impressively show by how much the exchange of interstitial Fe(3+) ions by alkali metal ions, usually exemplified by K+, is thermodynamically favored.

  11. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples. PMID:16457175

  12. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  13. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    SciTech Connect

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-ray absorption fine structure measurements.

  14. An assessment of surface heating during ion beam analysis II: Application to biological materials

    NASA Astrophysics Data System (ADS)

    Peach, Donald F.; Lane, David W.; Sellwood, Mike J.; Painter, Jonathan D.

    2006-08-01

    Surface temperature rise can have a significant affect on biological specimens through the loss of volatile species and charring, which can alter the gross chemical composition. In this study the equilibrium temperature rise on the surface of animal 'soft tissue' and plant specimens were measured during ion beam analysis by PIXE. Pellets of compressed powdered human hair, bovine liver and apple leaves were irradiated with a range of proton beam currents at energies of 1 and 2.5 MeV, and a beam diameter of 2 mm. The effects of the observed temperature rise were assessed by differential scanning calorimeter measurements and scanning electron microscopy. Comparisons are made to our previously published results for human hair and suggestions for operating parameters are given.

  15. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    NASA Astrophysics Data System (ADS)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  16. Ag(nic)2 (nic = nicotinate): a spin-canted quasi-2D antiferromagnet composed of square-planar S = 1/2 Ag(II) ions.

    PubMed

    Manson, Jamie L; Woods, Toby J; Lapidus, Saul H; Stephens, Peter W; Southerland, Heather I; Zapf, Vivien S; Singleton, John; Goddard, Paul A; Lancaster, Tom; Steele, Andrew J; Blundell, Stephen J

    2012-02-20

    Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.

  17. The transformation of ferrihydrite in the presence of trace Fe(II): The effect of the ammonia, amine and the coordination ions of Fe(III)

    SciTech Connect

    Liu Hui; Yang Lijuan; Ma Miaorui; Li Ping; Wei Yu

    2010-03-15

    This work examined Fe(II)-induced transformation of ferrihydrite in the presence of ammonia, amine and the coordination ions of Fe(III). Our earlier results showed that ferrihydrite transformed into the mixture of lepidocrocite, goethite and/or hematite in the presence of trace Fe(II) and absence of ammonia and similar species. However, the formation of lepidocrocite was restrained when using ammonia as precipitants. When introducing some amines (e.g. ethanolamine and diethanolamine) and some coordination ions (e.g. F{sup -} and C{sub 2}O{sub 4}{sup 2-} ions) into the reaction system, a similar effect on the transformation of ferrihydrite was found. Probably, the complexes formed between Fe(III) and those additives favor the formation of goethite. At the same time, the introduction of these additives hinders Fe(II) from interacting with ferrihydrite, which makes the catalytic dissolution of ferrihydrite be limited, thus, the formation of lepidocrocite be restrained. - Graphical Abstract: Fe(II)-induced transformation of ferrihydrite in the presence of ammonia, amine and coordination ions of Fe(III) was studied. The introduction of the additives favors the formation of goethite.

  18. A simple technique for the facile synthesis of novel crystalline mesoporous ZrO2-Al2O3 hierarchical nanostructures with high lead (II) ion absorption ability

    NASA Astrophysics Data System (ADS)

    Tian, Xike; Wu, Qiongyu; Wong, Kin Mun; Yang, Chao; Wang, Weiwei; Wu, Xiaoning; Wang, Yanxin; Zhang, Suxin; Lei, Yong

    2013-11-01

    In this study, a simple evaporation-induced self-assembly process for the facile synthesis of crystalline ZrO2-Al2O3 hierarchical nanostructures was reported. The synthesized hierarchical nanostructures display a long ranged ordered mesoporous structure, and demonstrated excellent adsorption properties for Pb (II) ions removal due to its larger surface-to-volume ratio. Characterization by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller (BET) analysis reveal that the as-synthesized nanostructures possess large BET surface area (278 m2 g-1), relatively large pore size (12.99 nm) and high pore volume (0.925 cm3 g-1). The Pb (II) ions adsorption processes conformed to the pseudo-second order kinetics and the Langmuir adsorption isotherm was suitable in describing the lead removal processes where the equilibrium time for the Pb (II) ions adsorption on the ZrO2-Al2O3 nanostructures was 30 min. These crystalline mesoporous ZrO2-Al2O3 hierarchical nanostructures possess a maximum adsorption capacity of 110.49 mg g-1 for Pb (II) and hence are an attractive adsorbent for the removal of heavy metal ion from water. In addition, our synthesized ZrO2-Al2O3 hierarchical nanostructures also display good reusability properties.

  19. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  20. Two Magnetic Switching Complexes Based on the Fe(II) Ion.

    PubMed

    Yang, Qian; Gao, Chen; Wang, Ye-Xin; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2016-08-15

    Two neutral mononuclear iron(II) complexes with different spin-crossover (SCO) properties, Fe(L1)2(SCN)2 (1) and Fe(L2)2(SCN)2 (2) (L1 = 2-(thiophen-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline and L2 = 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline), were solvothermally synthesized. With the different substituted position in 1,10-phenanthroline derivatives, 1 exhibits gradual SCO around room temperature with T1/2 = 280 K, while 2 displays abrupt SCO with 10 K hysteresis at T1/2↓ = 210 K and T1/2↑ = 220 K. PMID:27479289

  1. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    PubMed

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2015-06-15

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei.

  2. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  3. Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: a statistical design approach.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2009-04-01

    Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5-30 d), hydraulic residence time (HRT, 5-25 h), feed Cu(II) concentration (0-50 mg L(-1)) and PWS loading rate (0-4 g h(-1)) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2=0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h(-1) and feed Cu(II) concentration of less than 30 mg L(-1).

  4. Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(II) ions into cancer cells.

    PubMed

    Yuan, Yun Huan; Li, Rong Sheng; Wang, Qiang; Wu, Zhu Lian; Wang, Jian; Liu, Hui; Huang, Cheng Zhi

    2015-10-28

    Carbon dots doped with germanium (GeCDs) were firstly prepared by a new simple 15 min carbonation synthesis route, exhibiting excitation-independent photoluminescence (PL), which could avoid autofluorescence in bioimaging applications. The as-prepared GeCDs have low cell toxicity, good biocompatibility, high intracellular delivery efficiency, stability and could be applied for detection of mercury(II) ions with excellent selectivity in complicated medium. It is to be noted that the as-prepared GeCDs used as a new type of probe for visualization of dynamic invasions of mercury(II) ions into Hep-2 cells display greatly different properties from most of the previously reported CDs which are regularly responsive to iron ions. All the results suggest that the GeCDs can be employed for visualization and monitoring of the significant physiological changes of living cells induced by Hg(2+).

  5. Restricted accessed material-copper(II) ion imprinted polymer solid phase extraction combined with inductively coupled plasma-optical emission spectrometry for the determination of free Cu(II) in urine and serum samples.

    PubMed

    Cui, Chao; He, Man; Chen, Beibei; Hu, Bin

    2013-11-15

    A novel restricted accessed material (RAM)-Cu(II) ion imprinted polymer (IIP) was synthesized by the surface imprinted-emulsion method, and possessed a high selectivity to Cu(II) and good macromolecules exclusion property. And a novel method of RAM-IIP packed microcolumn solid phase extraction (SPE) combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for the determination of trace free Cu(II) in human body fluids. Under the optimized conditions, the adsorption capacity of RAM-IIP for Cu(II) was 15.9 mg g(-1). With a preconcentration factor of 30, the limit of detection was 0.17 µg L(-1), and the relative standard deviation was 2.2% (n=7, c=1 µg L(-1)). The developed method was validated by the analysis of two Certified Reference Materials, and the determined values were in good agreement with the certified values. This method was also successfully applied for the direct analysis of free Cu(II) in human urine and serum samples. While the total Cu can be determined by the proposed method after microwave digestion. The concentrations of free Cu(II) were much lower than that of total Cu, indicating that Cu is mainly coordinated with macromolecules in these biological samples. From this point of view, the developed method exhibits application potential in speciation of free metal ions and metallic complex molecules in biological samples. PMID:24148513

  6. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  7. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    USGS Publications Warehouse

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  8. Substrate restriction in entomophilous Splachnaceae: II. Effects of hydrogen ion concentration on establishment of gametophytes

    SciTech Connect

    Cameron, R.G.; Wyatt, R. )

    1989-10-01

    The authors tested the hypothesis that establishment of Splachnum gametophytes is limited to neutral substrates by examining the effect of hydrogen ion concentration on spore germination, protonemal growth, and gametophore production in Splachnum ampullaceum, S. luteum, and S. sphaericum. Decreased germination was observed in S. sphaericum spores grown at pH 4 as compared to pH 7. Splachnum ampullaceum and S. luteum, however, exhibited no spore germination response to pH. Protonemal growth and gametophore production were inhibited at pH 4 compared to pH 7 in all taxa. Numbers of cells and protonemal branches per filament, chlorophyll a content, and total protein content were significantly reduced at pH 4. In addition, dark oxygen uptake was higher and light-dependent oxygen evolution was lower in protonema of S. ampullaceum grown at pH 4. In vivo ({sup 35}S) sulfate-labelled protonema of S. ampullaceum grown at pH 4 and pH 7 produced generally similar polypeptide patterns on one-dimensional polyacrylamide gels, but four major differences were detected. Total ({sup 35}S) sulfate uptake and incorporation into protein were reduced in protonema grown at pH 4. These observations are consistent with the neutrophilic hypothesis of substrate restriction in Splachnum.

  9. Rational design of a novel azoimine appended maleonitrile-based Salen chemosensor for rapid naked-eye detection of copper(II) ion in aqueous media.

    PubMed

    Rezaeian, Khatereh; Khanmohammadi, Hamid; Arab, Vajihe

    2015-12-01

    Achieving specific selectivity and high sensitivity for the colorimetric recognition of copper(II) ions in aqueous media over a complex background of potentially competing metal ions is inherently challenging in sensor development. Thus, a novel azo-azomethine receptor (L) based on the combination of 2-amino-3-(5-bromo-2-hydroxybenzylamino)maleonitrile and azo-coupled salicylaldehyde scaffold has been designed and synthesized for the naked-eye and rapid detection of Cu(2+) ion at trace level in a wide pH range. Accordingly, the devised chemosensor distinguished Cu(2+) from other metal ions by distinct color change from light yellow to light brown without any expensive equipment. The binding stoichiometry between Cu(2+) and L has been investigated using Job's plot and MALDI-TOF mass analysis. Remarkably, the current sensor can detect Cu(2+) ions even at 1.07 μM level, which is lower than the World Health Organization (WHO) permissible level (30 μM) in drinking water. Furthermore, sensor L was successfully utilized in the preparation of test strips for the detection of copper(II) ions from aqueous environment. PMID:26184468

  10. Finite orbit width effect in ion collisional transport in TJ-II

    SciTech Connect

    Velasco, J. L.; Tarancon, A.; Castejon, F.

    2009-05-15

    The validity of the traditional local diffusive approach and of the use of monoenergetic calculations has been studied for the stellarator TJ-II [Alejaldre et al., Fusion Technol. 17, 131 (1990)]: it is shown to be doubtful, under some circumstances, even in a purely collisional description of transport. The diffusion in physical space starting from Dirac-delta-like initial conditions has been studied using the code Integrator of Stochastic Differential Equations for Plasmas by Castejon et al. [Plasma Phys. Controlled Fusion 49, 753 (2007)]. Particles may experience large radial excursions from their original magnetic surfaces in a single collisional time. The contribution of these particles to the flux may make it nondiffusive; non-Gaussian density distributions, characterized by long tails, are observed. In the velocity space, there are important variations in the average particle kinetic energy after one collision time. We discuss the effect of this fact over the calculation of monoenergetic transport coefficients and their convolution. A simple analysis based on Hurst exponents has shown nevertheless that the description of transport by means of a pinch term and an effective transport coefficient is more correct than expected.

  11. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society. PMID:26736132

  12. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  13. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base.

    PubMed

    Afkhami, Abbas; Bagheri, Hasan; Khoshsafar, Hosein; Saber-Tehrani, Mohammad; Tabatabaee, Masoumeh; Shirzadmehr, Ali

    2012-10-01

    A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0×10(-4) and 6.0×10(-4) μmol L(-1) for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples. PMID:22975186

  14. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: Synthesis, spectroscopic characterization, molecular modeling and fungicidal study

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3‧-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, 1H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl-, CH3COO-. The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  15. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: synthesis, spectroscopic characterization, molecular modeling and fungicidal study.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3'-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, (1)H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl(-), CH3COO(-). The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  16. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma

    PubMed Central

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J.

    2016-01-01

    Background: Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC

  17. Ion exchange chromatography of proteins-predictions of elution curves and operating conditions. II. Experimental verification.

    PubMed

    Yamamoto, S; Nakanishi, K; Matsuno, R; Kamijubo, T

    1983-05-01

    The applicability and validity of the model developed in Part I were confirmed experimentally. In this article, various proteins were eluted both by stepwise and linear gradient elution on DEAE ion exchangers under a variety of experimental conditions. Adsorption isotherms were measured as a function of ionic strength in batch experiments. The moment method was employed for the determination of various parameters such as the gel-phase diffusion coefficient and the longitudinal dispersion coefficient. By use of these parameters and the experimentally measured ionic strength of the peak position, the number of plates was determined according to the method described in Part I. Theoretical elution curves were calculated with the experimentally measured adsorption equilibria and the number of plates. Good agreement was observed between theory an experiments. Various factors affecting the separation were investigated. It was found that the effect of the number of plates for salts, N'(p), was negligible except the case of stepwise elution of high ionic strength buffer. When elution curves were symmetrical, the widths of the elution curves were inversely proportional to the square root of the number of plates of proteins, N(p), as in other chromatographic techniques. A simple graphical method for prediction of the peak position in linear gradient elution described in Part I was found applicable when the elution curves were symmetrical. A useful correlation of prediction of the peak width in a linear gradient elution was proposed on the basis of the approximate solution derived in Part I of this study. This graphical method and correlation permit easy prediction of the peak position and peak width in linear gradient elution in the case of symmetrical elution curves.

  18. Solid contact ion-selective electrodes with a well-controlled Co(II)/Co(III) redox buffer layer.

    PubMed

    Zou, Xu U; Cheong, Jia H; Taitt, Brandon J; Bühlmann, Philippe

    2013-10-01

    Solid contact ion-selective electrodes (ISEs) typically have an intermediate layer between the ion-selective membrane and the underlying solid electron conductor that is designed to reduce the irreproducibility and instability of the measured electromotive force (emf). Nevertheless, the electrode-to-electrode reproducibility of the emf of current solid contact ISEs is widely considered to be unsatisfactory. To address this problem, we report here a new method of constructing this intermediate layer based on the lipophilic redox buffer consisting of the Co(III) and Co(II) complexes of 1,10-phenanthroline ([Co(phen)3](3+/2+)) paired with tetrakis(pentafluorophenyl)borate as counterion. The resulting electrodes exhibit emf values with an electrode-to-electrode standard deviation as low as 1.7 mV after conditioning of freshly prepared electrodes for 1 h. While many prior examples of solid contact ISEs also used intermediate layers that contained redox active species, the selection of a balanced ratio of the reduced and oxidized species has typically been difficult and was often ignored, contributing to the emf irreproducibility. The ease of the control of the [Co(phen)3](3+)/[Co(phen)3](2+) ratio explains the high emf reproducibility, as confirmed by the emf decrease of 58 mV per 10-fold increase in the ratio of the reduced and oxidized redox buffer species. Use of a gold electrode modified with a self-assembled 1-hexanethiol monolayer as underlying electron conductor suppresses the formation of a water layer and results in an electrode-to-electrode standard deviation of E° of 1.0 mV after 2 weeks of exposure to KCl solution. PMID:24047234

  19. Response of the Cu(II) ion selective electrode to Cu titration in artificial and natural shore seawater and in the measurement of the Cu complexation capacity.

    PubMed

    Rivera-Duarte, Ignacio; Zirino, Alberto

    2004-06-01

    The Orion 94-29 Cu(II) jalpaite ion selective electrode (Cu-ISE) was used to measure both the concentration of the aqueous free Cu(II) ion ([Cu(II)aq]) and its changes due to additions of Cu, in artificial seawater (ASW) and in seawater from San Diego Bay, CA. The range of free copper ion (i.e., pCu, -log [Cu(II)aq]) determined in seawater samples from the San Diego Bay area (11.3-12.6, 11.9 +/- 0.4, average +/- SD) is consistent with that previously reported for estuarine and coastal areas (10.9-14.1). The changes in [Cu(II)aq] as a result of the additions of Cu were used to determine the Cu complexation capacity (Cu-CC), which has a measured range (2.7 x 10(-8)-2.0 x 10(-7) M; 7.6 x 10(-8) +/- 4.8 x 10(-8) M) comparable to the range of values previously reported for estuarine and coastal zones (i.e., L1+L2, 1.1 x 10(-8)-2.0 x 10(-7) M). The narrow range of pCu at the Cu-CC (pCuCu-CC, 11.1-11.9, 11.5 +/- 0.2) indicates the predominant role of the Cu-CC in regulating the concentration of ambient Cu(II)aq to a level < or =1 x 10(-11) M Cu(II)aq. These results attest to the capability of the Cu-ISE to measure pCu and Cu-CC in aquatic coastal environments with relatively high total Cu concentrations and organic loads, such as those from heavily used coasts and bays.

  20. Highly selective colorimetric sensing of Hg(II) ions in aqueous medium and in the solid state via formation of a novel M-C bond.

    PubMed

    Parthiban, C; Manivannan, R; Elango, Kuppanagounder P

    2015-02-21

    For the first time an easy-to-make receptor 2-chloro-3-(thiazol-2-ylamino)naphthalene-1,4-dione (R1) for highly selective sensing of Hg(ii) ions in aqueous solution and in the solid state through the formation of an Hg-C bond was developed. The Hg(ii) ion sensing properties of R1 were investigated using UV-Vis, fluorescence and (1)H & (13)C NMR spectral studies. The results indicated that the receptor selectively senses Hg(ii) ions via the formation of a 1 : 1 complex of moderate stability (Ka = 3.5 × 10(4) M(-1)). The NMR spectral studies indicated that complexation between R1 and Hg(ii) occurs through the formation of an Hg-C bond (after deprotonation), which was confirmed by a single crystal XRD analysis of the product. When Hg(ii) was added to a solution of R1 in DMF-water (1 : 9 v/v), a dramatic color change from pale brown to blue was observed, while many common cations and anions did not interfere with the recognition process. The detection limit was 0.3 μM, which is much lower than the permissible limit of Hg(ii) in drinking water (0.001 mg L(-1)) as recommended by the WHO. The simple grinding of R1 with Hg(ii) in the solid state also exhibited the same dramatic colour change which is easily detectable visually.

  1. Multinuclear complex formation between Ca(II) and gluconate ions in hyperalkaline solutions.

    PubMed

    Pallagi, Attila; Bajnóczi, Éva G; Canton, Sophie E; Bolin, Trudy; Peintler, Gábor; Kutus, Bence; Kele, Zoltán; Pálinkó, István; Sipos, Pál

    2014-06-17

    Alkaline solutions containing polyhydroxy carboxylates and Ca(II) are typical in cementitious radioactive waste repositories. Gluconate (Gluc(-)) is a structural and functional representative of these sugar carboxylates. In the current study, the structure and equilibria of complexes forming in such strongly alkaline solutions containing Ca(2+) and gluconate have been studied. It was found that Gluc(-) significantly increases the solubility of portlandite (Ca(OH)2(s)) under these conditions and Ca(2+) complexes of unexpectedly high stability are formed. The mononuclear (CaGluc(+) and [CaGlucOH](0)) complexes were found to be minor species, and predominant multinuclear complexes were identified. The formation of the neutral [Ca2Gluc(OH)3](0) (log β213 = 8.03) and [Ca3Gluc2(OH)4](0) (log β324 = 12.39) has been proven via H2/Pt-electrode potentiometric measurements and was confirmed via XAS, (1)H NMR, ESI-MS, conductometry, and freezing-point depression experiments. The binding sites of Gluc(-) were identified from multinuclear NMR measurements. Besides the carboxylate group, the O atoms on the second and third carbon atoms were proved to be the most probable sites for Ca(2+) binding. The suggested structure of the trinuclear complex was deduced from ab initio calculations. These observations are of relevance in the thermodynamic modeling of radioactive waste repositories, where the predominance of the binuclear Ca(2+) complex, which is a precursor of various high-stability ternary complexes with actinides, is demonstrated. PMID:24865662

  2. Preparation of a core-shell magnetic ion-imprinted polymer via a sol-gel process for selective extraction of Cu(II) from herbal medicines.

    PubMed

    He, Huan; Xiao, Deli; He, Jia; Li, Hui; He, Hua; Dai, Hao; Peng, Jun

    2014-05-21

    A novel magnetic surface ion-imprinted polymer (c-MMWCNTs-SiO2-IIP) was synthesized for the first time using magnetic CNTs/Fe3O4 composites (c-MMWCNTs) as the core, 3-ammonium propyltriethoxysilane (APTES) as the functional monomer, tetraethylorthosilicate (TEOS) as the cross-linker and Cu(II) as the template. c-MMWCNTs-SiO2-IIP was evaluated for selective extraction of Cu(II) from herbal medicines via a magnetic solid phase extraction (M-SPE) procedure. One factor affecting the separation and preconcentration of the target heavy metal was pH. Under the optimized experimental conditions, the adsorption kinetics and adsorption capacity of c-MMWCNTs-SiO2-IIP toward Cu(II) were estimated. The results indicated that the adsorption mechanism corresponds to a pseudo-second order adsorption process, with a correlation coefficient (R(2)) of 0.985 and a maximum adsorption capacity of 42.2 mg g(-1). The relative selectivity factor (β) values of Cu(II)/Zn(II) and Cu(II)/Pb(II) were 38.5 and 34.5, respectively. c-MMWCNTs-SiO2-IIP, combined with flame atomic absorption spectrometry, was successfully applied in the extraction and detection of Cu(II) in herbal medicine, with high recoveries ranging from 95.6% to 108.4%.

  3. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    NASA Astrophysics Data System (ADS)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  4. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  5. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  6. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase.

    PubMed

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria; De Luca, Annamaria

    2014-10-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers.

  7. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  8. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  9. Removal of zinc(II) ion by graphene oxide (GO) and functionalized graphene oxide-glycine (GO-G) as adsorbents from aqueous solution: kinetics studies

    NASA Astrophysics Data System (ADS)

    Najafi, F.

    2015-05-01

    The main purpose of this study is to explain the absorption of zinc from aqueous solution by grapheme oxide and functionalized grapheme oxide with glycine as the adsorbent surface. For confirmed functionalized graphene oxide, the glycine amino group was added to the surface of graphene oxide. The effects of the initial concentration of Zn(II) ions and contact time were studied. Results showed that with increasing initial concentration of Zn(II) ions, the adsorption capacity increased. The adsorption capacity did not show a large change after 50 min; therefore, for the study of kinetic parameters, the optimal time of 50 min was selected. The chemical structure of graphene oxide was confirmed by using FT-IR analysis. The adsorption process of Zn(II) ions graphene oxide and functionalized graphene oxide-glycine surfaces was fixed at 298 K and pH 6. The pseudo-first-order and the pseudo-second-order (types I, II, III and IV) kinetic models were tested for the adsorption process and the results showed that the kinetic parameters best fit type (I) of the pseudo-second-order model. A high R 2 was used to be the best match.

  10. Reconstructing lead isotope exposure histories preserved in the growth layers of walrus teeth using the SHRIMP II ion microprobe

    SciTech Connect

    Stern, R.A.; Outridge, P.M.; Davis, W.J.; Stewart, R.E.A.

    1999-05-15

    Development of a microprobe technique to determine Pb isotope ratios within the growth layers of mammal teeth could have widespread applications in Pb toxicology, Pb pollution tracing, and human and animal ecology. Here, the SHRIMP II ion microprobe is shown to possess sufficient sensitivity, accuracy, and precision to satisfactorily determine Pb isotope ratios in the canine tooth cementum of a walrus (Odobenus rosmarus rosmarus), with a sampling resolution of 130 {micro}m. The tooth layers were estimated to contain only 1--3 {micro}g/gf Pb. By combining multiple replicates within each annual layer, the {+-}1 SE uncertainty was typically {+-}1% for {sup 206}Pb/{sup 207}Pb and {+-}0.5% for {sup 208}Pb/{sup 207}Pb. Significant isotopic differences were found between layers deposited at age 10 and ages 2, 27, and 30. This result, together with corroborative data on excised cementum fragments analyzed by thermal ionization mass spectrometry, indicates that the animal migrated into different geological terrains several times during its life. There was no evidence of exchange between the Pb deposited in early growth layers and more recent ambient Pb.

  11. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other

  12. Utilization of Mg2Al-layered double hydroxide as an effective sequestrator to trap Cu(II) ions from aqueous solution impacted by water quality parameters

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Linghu, Wensheng; Hu, Jun; Jiang, Gongyi; Sheng, Jiang

    2016-11-01

    Recently, Mg2Al-layered double hydroxide (Mg2Al-LDH) has been extensively studied as promising candidates to trap metal ions due to their high complexation and adsorption capacity. Herein, Mg2Al-LDH was utilized as an effectiveness sequestrator to trap Cu(II) ions from aqueous solution by an adsorption process using batch technique under ambient conditions. The results showed that Cu(II) adsorption on Mg2Al-LDH increases with pH increasing and maintains a high level at pH>7.0. The adsorption of Cu(II) was obviously affected by ionic strength at low pH, which was not dependent on ionic strength at high pH. The presence of HA or FA promotes the adsorption of Cu(II) on Mg2Al-LDH at low pH values, while reduces the adsorption of Cu(II) at high pH values. The adsorption isotherms of Cu(II) on Mg2Al-LDH at three different temperatures were simulated by the Langmuir, Freundlich, and Dubinin-Radushkevitch (D-R) models very well. The thermodynamic parameters were determined from the temperature-dependent adsorption, and the results showed that Cu(II) adsorption on Mg2Al-LDH was exothermic and the process was favored at high temperature. The results suggest that Mg2Al-LDH is suitable as a sorbent material for the recovery and attenuation of Cu(II)-polluted wastewater.

  13. Preconcentration of Trace Amounts of Pb(II) Ions without Any Chelating Agent by Using Magnetic Iron Oxide Nanoparticles prior to ETAAS Determination

    PubMed Central

    Mohammadi, S. Z.; Shamspur, T.; Karimi, M. A.; Naroui, E.

    2012-01-01

    This work investigates the potential of magnetic Fe3O4 nanoparticles as an adsorbent for separation and preconcentration of trace amounts of lead from water samples prior to electrothermal atomic absorption spectrometry (ETAAS) determination. No chemical modifier is required in graphite furnace. Pb(II) ion was adsorbed on magnetic Fe3O4 nanoparticles in the pH range of 5.5–6.5, and then magnetic nanoparticles (MNPs) were easily separated from the aqueous solution by applying an external magnetic field; so, no filtration or centrifugation was necessary. After extraction and collection of MNPs, the analyte ions were eluted using HNO3 1.0 mol L−1. Several factors that may affect the preconcentration and extraction process, such as pH, type, and volume of eluent, amount of MNPs, sample volume, salting out effect, and interference ions were studied and optimized. Under the best experimental conditions, linearity was maintained between 0.005–0.5 ng mL−1. Detection limits for lead were 0.8 ng L−1 based on 3Sb. The relative standard deviation of seven replicate measurements of 0.05 ng mL−1 of Pb(II) ions was 3.8%. Finally, the method was successfully applied to extraction and determination of lead ions in the water and standard samples. PMID:22649300

  14. Integrated and Passive 1,2,3-Triazolyl Groups in Fluorescent Indicators for Zinc(II) Ions – Thermodynamic and Kinetic Evaluations

    PubMed Central

    Simmons, J. Tyler; Allen, John R.; Morris, Deborah R.; Clark, Ronald J.; Levenson, Cathy W.; Davidson, Michael W.; Zhu, Lei

    2013-01-01

    In addition to being a covalent linker in molecular conjugation chemistry, the function of a 1,2,3-triazolyl moiety resulting from the copper(I)-catalyzed azide-alkyne cycloaddition reaction as a ligand for metal ions is receiving considerable attention. In this work, we characterize the thermodynamic and kinetic effects of incorporating a 1,2,3-triazolyl group in a multidentate ligand scaffold on metal coordination in the context of fluorescent zinc(II) indicator development. Ligands L14, BrL14, and FL14 (1,4-isomers) contain the 1,4- disubstituted-1,2,3-triazolyl group that is capable of binding with zinc(II) in conjunction with a di(2-picolylamino) (DPA) moiety within a multidentate ligand scaffold. The 1,2,3-triazolyl in the 1,4-isomers is therefore “integrated” in chelation. The 1,5-isomers L15, BrL15, and FL15 contain 1,2,3-triazolyls that are excluded from participating in zinc(II) coordination. These 1,2,3- triazolyls are “passive linkers”. Zinc(II) complexes of 2:1 (ligand/metal) stoichiometry are identified in solution using 1H NMR spectroscopy and isothermal titration calorimetry (ITC), and in one case, characterized in the solid state. The 1:1 ligand/zinc(II) affinity ratio of L14 over L15, which is attributed to the affinity enhancement of a 1,2,3-triazolyl group to zinc(II) over that of the solvent acetonitrile, is quantified at 18 (−1.7 kcal/mol at 298 K) using an ITC experiment. Fluorescent ligands FL14 and FL15 are evaluated for their potential in zinc(II) sensing applications under pH neutral aqueous conditions. The 1,4-isomer FL14 binds zinc(II) both stronger and faster than the 1,5-isomer FL15. Visualization of free zinc(II) ion distribution in live HeLa cells is achieved using both FL14 and FL15. The superiority of FL14 in staining endogenous zinc(II) ions in live rat hippocampal slices is evident. In summation, this work is a fundamental study of 1,2,3-triazole coordination chemistry, with a demonstration of its utility in developing

  15. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  16. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Emel'yanov, A. V.

    2015-04-01

    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  17. Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III).

    PubMed

    Ito, Yasuhiro; Okazaki, Toshiya; Okubo, Shingo; Akachi, Masahiro; Ohno, Yutaka; Mizutani, Takashi; Nakamura, Tetsuya; Kitaura, Ryo; Sugai, Toshiki; Shinohara, Hisanori

    2007-12-01

    Di-erbium and di-erbium-carbide endohedral metallofullerenes with a C(82) cage such as Er(2)@C(82) (isomers I, II, and III) and (Er(2)C(2))@C(82) (isomers I, II, and III) have been synthesized and chromatographically isolated (99%). The structures of Er(2)@C(82) (I, II, III) and (Er(2)C(2))@C(82) (I, II, III) metallofullerenes are characterized by comparison with the UV-vis-NIR absorption spectra of (Y(2)C(2))@C(82) (I, II, III), where molecular symmetries of the structures are determined to be C(s), C(2v) and C(3v), respectively. Furthermore, enhanced near-infrared photoluminescence (PL) at 1520 nm from Er(3+) ions in Er(2)@C(82) (I, III) and (Er(2)C(2))@C(82) (I, III) have been observed at room temperature. The PL intensities have been shown to depend on the symmetry of the C(82) cage. In particular, the PL intensity of (Er(2)C(2))@C(82) (III) has been the strongest among the isomers of Er(2)@C(82) and (Er(2)C(2))@C(82). Optical measurements indicate that the PL properties of Er(2)@C(82) (I, II, III) and (Er(2)C(2))@C(82) (I, II, III) correlate strongly with the absorbance at 1520 nm and the HOMO-LUMO energy gap of the C(82) cage.

  18. Combination of a Copper-Ion Selective Electrode and Fluorometric Titration for the Determination of Copper(II) Ion Conditional Stability Constants of Humic Substances.

    PubMed

    Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E

    2015-11-01

    A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent

  19. Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine

    NASA Astrophysics Data System (ADS)

    Aljahdali, M.

    2013-08-01

    The ternary complexes of Cu(II), Zn(II), Ni(II) and Cd(II) with 2-aminomethylbenzimidazole (AMBI) and glycine as a representative example of amino acids have been isolated and characterized by elemental analyses, IR, ESR, UV-vis, magnetic moment, molar conductance and 1H NMR spectra. AMBI behaves as neutral bidentate ligands with coordination through imidazole and amino group nitrogens while the glycine amino acid behaves as a monodenate anion with coordination involving the amino group and carboxylate oxygen after deprotonation. The magnetic and spectral data indicates a square planar geometry for both Cu2+ and Ni2+ complexes and a tetrahedral geometry for both Zn2+ and Cd2+ complexes. The isolated chelates have been screened for their antifungal and antibacterial activities using the disc diffusion method. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. The stability constants of ternary M-AMBI-Gly complexes were determined potentiometrically in aqueous solution at I = 0.1 mol dm-3 NaCl.

  20. Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode

    PubMed Central

    Khan, Asif Ali; Habiba, Umme; Khan, Anish

    2009-01-01

    Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082

  1. Unexpected metal ion-assisted transformations leading to unexplored bridging ligands in Ni(II) coordination chemistry: the case of PO3F(2-) group.

    PubMed

    Dermitzaki, Despina; Raptopoulou, Catherine P; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P; Stamatatos, Theocharis C

    2014-10-21

    The initial 'accidental', metal ion-assisted hydrolysis of PF6(-) to PO3F(2-) has been evolved in a systematic investigation of the bridging affinity of the latter group in Ni(II)/oximate chemistry; mono-, di- and trinuclear complexes have been prepared and confirmed both the rich reactivity of PO3F(2-) and its potential for further use as bridging ligand in high-nuclearity 3d-metal cluster chemistry.

  2. Incorporation of dithiooxamide as a complexing agent into cellulose for the removal and pre-concentration of Cu(II) and Cd(II) ions from natural water samples

    NASA Astrophysics Data System (ADS)

    Jorgetto, A. O.; Silva, R. I. V.; Longo, M. M.; Saeki, M. J.; Padilha, P. M.; Martines, M. A. U.; Rocha, B. P.; Castro, G. R.

    2013-01-01

    The present study describes the incorporation of a complexing agent, dithiooxamide, into microcrystalline cellulose for use in the pre-concentration of Cu(II) and Cd(II) ions from aqueous samples. The FTIR spectrum of the adsorbent exhibited an absorption band in the region of 800 cm-1, which confirmed the binding of the silylating agent to the matrix. Elemental analysis indicated the amount of 0.150 mmol g-1 of the complexing agent. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be 0.058 and 0.072 mmol g-1 for Cu(II) and Cd(II), respectively. The covering fraction ϕ, which was 0.39 and 0.48 for Cu(II) and Cd(II), respectively, was used to estimate a 1:2 (metal:ligand) ratio in the formed complex, and a binding model was proposed based on this information. The adsorbent was applied in the pre-concentration of natural water samples and exhibited an enrichment factor of approximately 50-fold for the species studied, which enabled its use in the analysis of trace metals in aqueous samples. The system was validated by the analysis of certified standard (1643e), and the adsorbent was stable for more than 20 cycles, thus enabling its safe reutilization.

  3. Synthesis, structure, photophysics, electrochemistry, and ion-binding studies of ruthenium(II) 1,10-phenanthroline complexes containing thia-, selena-, and aza-crown pendants.

    PubMed

    Li, Mei-Jin; Chu, Ben Wai-Kin; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2007-02-01

    A series of ruthenium(II) diimine complexes containing thia-, selena- and aza-crowns derived from 1,10-phenanthroline have been synthesized and characterized, and their photophysics and electrochemistry were studied. Their interaction with metal ions was investigated by UV-vis, luminescence, and 1H NMR spectroscopy. The crystal structures of [Ru(bpy)2(L1)](PF6)2, [Ru(bpy)2(L2)](ClO4)2, [Ru(bpy)2(L3)](ClO4)2, and [Ru(bpy)2(L4)](ClO4)2 have been determined. The luminescence properties of [Ru(bpy)2(L1)](ClO4)2 were found to be sensitive and selective toward the presence of Hg2+ ions in an acetonitrile solution. The addition of alkaline-earth metal ions, Zn2+, Cd2+, and Hg2+ ions, to the solution of [Ru(bpy)2(L6)](ClO4)2 in acetonitrile gave rise to large changes in the UV-vis and emission spectra. The binding of metal ions to [Ru(bpy)2(L6)](ClO4)2 was found to cause a strong enhancement in the emission intensities of the complex, with high specificity toward Hg2+ ions.

  4. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  5. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  6. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. PMID:26520475

  7. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  8. Self-assembled metallogels formed from N,N',N''-tris(4-pyridyl)trimesic amide in aqueous solution induced by Fe(III)/Fe(II) ions.

    PubMed

    Zhong, Jin-Lian; Jia, Xin-Jian; Liu, Hui-Jin; Luo, Xu-Zhong; Hong, San-Guo; Zhang, Ning; Huang, Jian-Bin

    2016-01-01

    In this work, we report self-assembled metallogels formed from a ligand of trimesic amide, N,N',N''-tris(4-pyridyl)trimesic amide (TPTA), induced by Fe(III)/Fe(II) ions. TPTA is difficult to dissolve in water even in the presence of some metal ions such as Cu(2+), Co(2+), Ni(2+), K(+), Na(+) and Mg(2+) under heating, and it exhibits no gelation ability. Interestingly, upon heating TPTA can be dissolved easily in aqueous solution containing Fe(3+)/Fe(2+), and subsequently self-assembled into metallogels after cooling. The metallogels could also be formed in aqueous solutions of mixed metal ions containing Fe(3+)/Fe(2+), indicating that the other metal ions do not affect the formation of Fe(III)-TPTA and Fe(II)-TPTA metallogels. The high selectivity of metallogel formation to Fe(3+)/Fe(2+) may be used for application in the test of Fe(3+)/Fe(2+). The metallogels obtained are characterized by scanning electron microscopy, Fourier transform infrared spectra, nuclear magnetic resonance spectra, rheological measurements and scanning tunneling microscopy. The results indicate that TPTA can self-assemble into fibrous aggregates in Fe(3+)/Fe(2+) aqueous solution through the metal-ligand interactions and intermolecular hydrogen bonding. This kind of metallogel also possesses good mechanical properties and thermoreversibility. PMID:26456396

  9. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    PubMed

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. PMID:27245963

  10. Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    NASA Astrophysics Data System (ADS)

    Tayyebi, Ahmad; Outokesh, Mohammad; Moradi, Shahab; Doram, Amir

    2015-10-01

    Magnetite nanoparticles with a size distribution of 15-21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M-GO hybrid were appreciably finer than the hybrids prepared by stirring method. M-GO is a superparamagnetic material with saturation magnetization of 31 emu g-1. The Langevin equation was successfully applied for estimation of size of Fe3O4 nanoparticles in M-GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M-GO, based on instrumental analyses. Adsorption isotherms of Sr2+ and Co2+ ions, which were fitted by Langmuir monolayer model, displayed two-fold higher capacity for Co2+ ions, presumably due to its similarity to Fe2+ (of Fe3O4 component). Uptake of both Co2+ and Sr2+ ions were endothermic, and spontaneous, however the former proceeded through inner-shell complex formation, while the latter took place via ion exchange mechanism. Rate of adsorption of Co2+ was faster, but for both ions, chemical reaction was the rate determining step. Sorption of Sr2+ and Co2+ ions greatly increased at pHs above 5, where (1) surface zeta potential changed its sign, and (2) deprotonating reactions at the surface became complete.

  11. Investigation of Cu(II) Binding to Bovine Serum Albumin by Potentiometry with an Ion Selective Electrode

    ERIC Educational Resources Information Center

    Jie Liu

    2004-01-01

    A laboratory project that investigates Cu(II) bind to bovine serum albumin (BSA) in an aqueous solution is developed to assist undergraduate students in gaining better understanding of the interaction of ligands with biological macromolecule. Thus, students are introduced to investigation of Cu(II) binding to BSA by potentiometry with the Cu(II)…

  12. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  13. Use of an ions thruster to dispose of type II long-lived fission products into outer space

    SciTech Connect

    Takahashi, H.; Yu, A.

    1997-04-01

    To dispose of long-lived fission products (LLFPs) into outer space, an ions thruster can be used instead of a static accelerator. The specifications of the ions thrusters which are presently studies for space propulsion are presented, and their usability discussed. Using of a rocket with an ions thruster for disposing of the LLFPs directly into the sun required a larger amount of energy than does the use of an accelerator.

  14. Relativistic calculations of radiative properties and fine structure constant varying sensitivity coefficients in the astrophysically relevant Zn II, Si IV and Ti IV ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.; Sahoo, B. K.

    2015-03-01

    We have carried out calculations of the relativistic sensitivity coefficients, oscillator strengths, transition probabilities, lifetimes and magnetic dipole hyperfine structure constants for a number of low-lying states in the Zn II, Si IV and Ti IV ions which are abundant in the distant quasars and various stellar plasmas. These spectroscopic data will be very useful for probing temporal variation of the fine structure constant (αe) and in the diagnostic processes of some of the astrophysical plasmas. We have employed all-order perturbative methods in the relativistic coupled-cluster framework using the Dirac-Coulomb Hamiltonian to calculate the atomic wavefunctions of the considered ions. Reference states are constructed with the VN-1 and VN+1 potentials and then the electron-electron correlation effects are taken into account by constructing all possible singly and doubly excited configurations, involving both the core and valence electrons, from the respective reference states. We have also determined one electron affinities and ionization potentials of many excited states in these Zn II, Si IV and Ti IV ions. Except for a few states we have attained accuracies within 1 per cent for the energies compared with their experimental values. Our calculated sensitivity coefficients are estimated to have similar accuracies as of the calculated energies. Furthermore, combining our calculated transition matrix elements with the experimental wavelengths we evaluate transition probabilities, oscillator strengths and lifetimes of some of the excited states in these ions. These results are compared with the available data in a few cases and found to be in very good agreement among themselves. Using our reported hyperfine structure constants due to the dominant magnetic dipole interaction, it is possible to determine hyperfine splittings approximately in the above considered ions.

  15. Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper(II) ions.

    PubMed

    Shamsipur, Mojtaba; Besharati-Seidani, Abbas; Fasihi, Javad; Sharghi, Hashem

    2010-12-15

    This work reports the preparation of new Cu(2+) ion-imprinted polymeric nanoparticles using 1-hydroxy-4-(prop-2'-enyloxy)-9,10-anthraquinone (AQ) as a vinylated chelating agent. The Cu(2+) ion found to form a stable 1:1 complex with AQ in methanol solution. The resulting Cu(2+)-AQ complex was copolymerized with ethyleneglycol dimethacrylate, as a cross-linking monomer, via precipitation polymerization method. The imprint copper ion was removed from the polymeric matrix using a 0.1 mol L(-1) HNO(3) solution. The Cu(2+)-imprinted polymeric nanoparticles were characterized by IR spectroscopy, scanning electron microscopy (SEM) and N(2) adsorption-desorption isotherms. The SEM micrographs showed colloidal nanoparticles of 60-100 nm in diameter and slightly irregular in shape. Optimum pH for maximum sorption was 7.0. Sorption and desorption of Cu(2+) ion on the IIP nanoparticles were quite fast and achieved completely over entire investigated time periods of 2-30 min. Maximum sorbent capacity and enrichment factor of the prepared IIP for Cu(2+) were 73.8 μmol g(-1) and 56.5, respectively. The relative standard deviation and limit of detection (C(LOD)=3S(b)/m) of the method were evaluated as 2.6% and 0.1 ng mL(-1), using inductively coupled plasma-atomic emission spectrometry, respectively. It was found that the imprinting technology results in increased affinity of the prepared material toward Cu(2+) ion over other metal ions with the same charge and close ionic radius. The relative standard deviations for six and twenty replicates with the same nanoparticles were found to be 1.7% and 2.1%, respectively.

  16. Determination of mercury(II) ions in seafood samples after extraction and preconcentration by a novel functionalized magnetic metal-organic framework nanocomposite.

    PubMed

    Ghorbani-Kalhor, Ebrahim; Hosseinzadeh-Khanmiri, Rahim; Abolhasani, Jafar; Babazadeh, Mirzaagha; Hassanpour, Akbar

    2015-04-01

    This work describes a novel functionalized magnetic metal-organic framework nanocomposite [(Fe3O4-2,5-dimercapto-1,3,4-thiadiazole)/metal-organic framework] and its application in the preconcentration of Hg(II) ions. The parameters affecting the preconcentration procedure were optimized by a Box-Behnken design through response surface methodology. Three variables (uptake time, magnetic nanosorbent amount, and pH value) were selected as the main factors affecting the sorption step, while four variables (type, volume, and concentration of the eluent; and elution time) were selected as main factors in the optimization study of the elution step. Following the sorption and elution of analytes, the ions were quantified by cold vapor atomic absorption spectrometry. Under the optimum conditions, the limit of detection was 0.01 ng/mL and all the relative standard deviations were less than 10%. The obtained sorption capacity (in mg/g) of this new sorbent was 124. Ultimately, this nanocomposite was successfully applied to the rapid extraction of trace quantities of Hg(II) ions in seafood samples and satisfactory results were obtained.

  17. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped α-Fe2O3 nanocrystals: equilibrium, thermodynamic, and kinetic studies.

    PubMed

    OuldM'hamed, Mohamed; Khezami, L; Alshammari, Abdulrahman G; Ould-Mame, S M; Ghiloufi, I; Lemine, O M

    2015-01-01

    The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface. PMID:26247760

  18. Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O 4@SiO 2@polythiophene magnetic nanocomposite.

    PubMed

    Abolhasani, Jafar; Hosseinzadeh Khanmiri, Rahim; Babazadeh, Mirzaagha; Ghorbani-Kalhor, Ebrahim; Edjlali, Laden; Hassanpour, Akbar

    2015-09-01

    This work describes a novel Fe3O4@SiO2@polythiophene magnetic nanocomposite and its application in the preconcentration of Hg(II) ions. The parameters affecting the preconcentration procedure were opted by a Box-Behnken design through response surface methodology. Three factors (uptake time, magnetic nanosorbent amount, and pH of sample) were selected as the main factors affecting the sorption step, while four variables (type, volume and concentration of the eluent as well as the elution time) were selected as main factors in the optimization study of the elution step. Following the sorption and elution of Hg(II), it was quantified by cold vapor atomic absorption spectrometry. Under the optimum condition, the limit of detection was 0.02 ng mL(-1) and all the relative standard deviations were less than 9.2 %. The obtained sorption capacity of this new sorbent was 59 mg g(-1). Finally, this nanocomposite was successfully applied to the rapid extraction of trace quantities of Hg(II) ions in sea food samples and satisfactory results were obtained.

  19. Application of maghemite nanoparticles as sorbents for the removal of Cu(II), Mn(II) and U(VI) ions from aqueous solution in acid mine drainage conditions

    NASA Astrophysics Data System (ADS)

    Etale, Anita; Tutu, Hlanganani; Drake, Deanne C.

    2016-06-01

    The adsorptive removal of Cu(II), Mn(II) and U(VI) by maghemite nanoparticles (NPs) was investigated under acid mine drainage (AMD) conditions to assess NP potential for remediating AMD-contaminated water. The effects of time, NP and metal concentration, as well as manganese and sulphate ions were quantified at pH 3. Adsorption of all three ions was rapid, and equilibrium was attained in 5 min or less. 56 % of Cu, 53 % of Mn and 49 % of U were adsorbed. In addition, adsorption efficiencies were enhanced by ≥10 % in the presence of manganese and sulphate ions, although Cu sorption was reduced in 1:2 Cu-to-Mn solutions. Adsorption also increased with pH: 86 % Cu, 62 % Mn and 77 % U were removed from solution at pH 9 and increasing initial metal concentrations. Increasing NP concentrations did not, however, always increase metal removal. Kinetics data were best described by a pseudo-second-order model, implying chemisorption, while isotherm data were better fitted by the Freundlich model. Metal removal by NPs was then tested in AMD-contaminated surface and ground water. Removal efficiencies of up to 46 % for Cu and 54 % for Mn in surface water and 8 % for Cu and 50 % for Mn in ground water were achieved, confirming that maghemite NPs can be applied for the removal of these ions from AMD-contaminated waters. Notably, whereas sulphates may increase adsorption efficiencies, high Mn concentrations in AMD will likely inhibit Cu sorption.

  20. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions.

    PubMed

    Ng, Sing Muk; Wong, Derrick Sing Nguong; Phung, Jane Hui Chiun; Chin, Suk Fun; Chua, Hong Siang

    2013-11-15

    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.

  1. Mineralization of wastewater from the pharmaceutical industry containing chloride ions by UV photolysis of H2O2/Fe(II) and ultrasonic irradiation.

    PubMed

    Monteagudo, J M; Durán, A; San Martín, I

    2014-08-01

    The mineralization of pharmaceutical wastewater containing chloride ions using a UV/H2O2/Fe(II) process was studied. The addition of Fe(II) to the UV/H2O2 system did not improve the degradation efficiency due to inhibition of the photo-Fenton reaction, at acid pH, in the presence of chloride ions in these wastewaters. The increase of pH from 2 to 7 increased the degree of mineralization under UV photolysis of H2O2 because more HO radicals are available by HOCl dissociation reaction. Under the selected operation conditions ([H2O2]o = 11,500 ppm, [Fe(II)] = 0 ppm, [TOC]o = 125 ppm and pH = 7), 100% of TOC removal was attained in 120 min. A significant synergistic effect of combining photolysis (UV/H2O2) and sonolysis was observed. Sonophotolysis (UV/H2O2/ultrasound) technique significantly increased the degree of mineralization (100% TOC removal in 90 min using 6500 ppm H2O2) when compared with each individual process. Sonochemical reaction was favored by the presence of chloride ions since the concentration of contaminants at the gas-liquid interface increased. Free radicals reaction was the controlling mechanism in the UV/H2O2/ultrasound system. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO2) also played a role. The contribution of thermal-pyrolytic reaction (in gas-phase) to sonophotolysis process was negligible. PMID:24768835

  2. Magnetically modified single and turbostratic stacked graphenes from tris(2,2'-bipyridyl) iron(II) ion-exchanged graphite oxide.

    PubMed

    Szabó, Tamás; Bakandritsos, Aristides; Tzitzios, Vassilis; Devlin, Eamonn; Petridis, Dimitris; Dékány, Imre

    2008-11-20

    Loading of graphite oxide (GO) with tris(2,2'-bipyridyl) iron(II) ions and subsequent calcination affords a novel graphene-based composite with magnetic and electrically conductive properties. The pH of the starting aqueous suspension and the washing procedure play a crucial role in the successful immobilization of the iron precursor, which is mainly governed by ion exchange. The complex is intercalated between the graphene oxide layers, where it adopts a distorted conformation. Rapid heating of this solid results in the deflagration of GO and the formation of ultrafine ( d = 2-14 nm) Fe2O3 particles with maghemite as the dominant phase. The superparamagnetic maghemite crystals are dispersed uniformly in the high-surface-area diamagnetic matrix built up from single or turbostratic stacked graphenes. PMID:18680337

  3. Magnetically modified single and turbostratic stacked graphenes from tris(2,2'-bipyridyl) iron(II) ion-exchanged graphite oxide.

    PubMed

    Szabó, Tamás; Bakandritsos, Aristides; Tzitzios, Vassilis; Devlin, Eamonn; Petridis, Dimitris; Dékány, Imre

    2008-11-20

    Loading of graphite oxide (GO) with tris(2,2'-bipyridyl) iron(II) ions and subsequent calcination affords a novel graphene-based composite with magnetic and electrically conductive properties. The pH of the starting aqueous suspension and the washing procedure play a crucial role in the successful immobilization of the iron precursor, which is mainly governed by ion exchange. The complex is intercalated between the graphene oxide layers, where it adopts a distorted conformation. Rapid heating of this solid results in the deflagration of GO and the formation of ultrafine ( d = 2-14 nm) Fe2O3 particles with maghemite as the dominant phase. The superparamagnetic maghemite crystals are dispersed uniformly in the high-surface-area diamagnetic matrix built up from single or turbostratic stacked graphenes.

  4. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy.

    PubMed

    Herchel, Radovan; Váhovská, Lucia; Potočňák, Ivan; Trávníček, Zdeněk

    2014-06-16

    Pseudooctahedral mononuclear cobat(II) complex [Co(abpt)2(tcm)2] (1), where abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole and tcm = tricyanomethanide anion, shows field-induced slow relaxation of magnetization with U = 86.2 K and large axial and rhombic single-ion zero-field-splitting parameters, D = +48(2) cm(-1) and E/D = 0.27(2) (D = +53.7 cm(-1) and E/D = 0.29 from ab initio CASSCF/NEVPT2 calculations), thus presenting a new example of a field-induced single-ion magnet with transversal magnetic anisotropy. PMID:24853769

  5. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III). PMID:27454898

  6. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.

    PubMed

    Yang, Yuxi; Zhang, Weihua; Qiu, Hao; Tsang, Daniel C W; Morel, Jean-Louis; Qiu, Rongliang

    2016-10-01

    Biochar is being widely considered as a promising amendment agent for immobilizing heavy metals in contaminated acidic soils, where plenty of soluble Al(III) ions exist. In view of uncertain significance of the effects of coexisting Al(III) on Pb(II) sorption by biochars, this study used kenaf core biochar (KB550; high carbon, low ash) and sewage sludge biochar (SB550; low carbon, high ash) pyrolyzed at 550 °C to elucidate the influence of coexisting Al(III) species and biochars' mineral components on Pb(II) immobilization conducted in aqueous solution with initial pHs of 3.0-4.5. Results showed that Al(III) reduced Pb(II) sorption on KB550 primarily via pH buffering against biochar alkalinity, thus inhibiting lead carbonate formation. In contrast, the reduction on SB550 mainly resulted from direct competition for sorption sites, especially on Fe-rich phengite 2M1 and metakaolinite. Because of Pb-P precipitation and Pb-K interlayer exchange, the residual Pb(II) adsorption capacity resistant to coexisting Al(III) was 3-5 times higher on SB550 than on KB550. The Pb-K interlayer exchange was enhanced by lower pH and coexisting Al(III), while Pb-P precipitation was the dominant Pb(II) sorption mechanism on SB550 resistant to Al(III) buffering and competition at higher pH. Application of these two biochars as amendments confirmed that the mineral-rich SB550 was more suitable for Pb(II) immobilization in acidic soils with high levels of extractable Al(III).

  7. Investigation of the molecular nature of low-molecular-mass cobalt(II) ions in isolated osteoarthritic knee-joint synovial fluid.

    PubMed

    Silwood, Christopher J L; Chikanza, Ian C; Tanner, K Elizabeth; Shelton, Julia C; Bowsher, John G; Grootveld, Martin

    2004-06-01

    High field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate > histidine - threonine > glycine - glutamate - glutamine - phenylalanine tyrosine > formate > lactate > alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g. histidinate) serve as powerful *OH scavengers, the results acquired indicate that any of this radical generated from the Co(II) source in such complexes via Fenton or pseudo-Fenton reaction systems will be "site-specifically" scavenged. The significance of these observations with regard to cobalt toxicity and the in vivo corrosion of cobalt-containing metal alloy joint prostheses (e.g. CoCr alloys) is discussed.

  8. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  9. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  10. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  11. Plasma etching of Hf-based high-k thin films. Part II. Ion-enhanced surface reaction mechanisms

    SciTech Connect

    Martin, Ryan M.; Blom, Hans-Olof; Chang, Jane P.

    2009-03-15

    The mechanism for ion-enhanced chemical etching of hafnium aluminate thin films in Cl{sub 2}/BCl{sub 3} plasmas was investigated in this work, specifically how the film composition, ion energy, and plasma chemistry determine their etch rates. Several compositions of Hf{sub 1-x}Al{sub x}O{sub y} thin films ranging from pure HfO{sub 2} to pure Al{sub 2}O{sub 3} were etched in BCl{sub 3}/Cl{sub 2} plasmas and their etch rates were found to scale with {radical}(E{sub ion}) in both Cl{sub 2} and BCl{sub 3} plasmas. In Cl{sub 2} plasmas, a transition point was observed around 50 eV, where the etch rate was significantly enhanced while the linear dependence to {radical}(E{sub ion}) was maintained, corresponding to a change in the removal of fully chlorinated to less chlorinated reaction products. In BCl{sub 3} plasma, deposition dominates at ion energies below 50 eV, while etching occurs above that energy with an etch rate of three to seven times that in Cl{sub 2}. The faster etch rate in BCl{sub 3} was attributed to a change in the dominant ion from Cl{sub 2}{sup +} in Cl{sub 2} plasma to BCl{sub 2}{sup +} in BCl{sub 3}, which facilitated the formation of more volatile etch products and their removal. The surface chlorination (0-3 at. %) was enhanced with increasing ion energy while the amount of boron on the surface increases with decreasing ion energy, highlighting the effect of different plasma chemistries on the etch rates, etch product formation, and surface termination.

  12. Hairpin oligonucleotides anchored terbium ion: a fluorescent probe to specifically detect lead(II) at sub-nM levels.

    PubMed

    Wei, Yueteng; Liu, Ru; Wang, Yaling; Zhao, Yuliang; Cai, Zhifang; Gao, Xueyun

    2013-04-21

    A terbium based fluorescent probe was synthesized by coordinating terbium ions with a designed oligonucleotides (5'-ATATGGGGGATAT-3', termed GH5). GH5 improved the fluorescence of terbium ions by four orders of magnitude. The fluorescence enhancement of terbium ions by different oligonucleotides sequences indicated that the polyguanine loop of the hairpin GH5 is key to enhance terbium ion emission. The quantum yield of Tb-GH5 probe was 10.5% and the probe was photo-stable. The result of conductivity titration indicated that the stoichiometry of the probe is 3.5 Tb: 1 GH5, which is confirmed by fluorescence titration. This probe had high sensitivity and specificity for the detection of lead ions. The fluorescence intensity of this probe was linear with respect to lead concentration over a range 0.3-2.1 nM (R(2) = 0.99). The limit of detection for lead ions was 0.1 nM at a signal-to-noise ratio of 3.

  13. Separation and determination of metallocyanide complexes of Fe(II), Ni(II) and Co(III) by ion-interaction chromatography with membrane suppressed conductivity detection applied to analysis of oil refinery streams (sour water).

    PubMed

    Souza e Silva, Renata; de Carvalho, Maria de Fátima Batista; Santelli, Ricardo Erthal

    2006-09-15

    A separation and determination method for the analysis of cyanometallic complexes of Fe(II), Ni(II) and Co(III) was developed to be applied to the analysis of petroleum refinery streams (sour water). Ion-interaction chromatography was used employing an analytical column IonPac NS1 10 microm and a chromatographic system ICS 2500 equipped with a membrane conductivity suppression ASRS ultra 4mm, both supplied by Dionex Corporation. The mobile phase was composed of 2 mmol l(-1) TBAOH, 1 mmol l(-1) Na(2)CO(3), 0.1 mol l(-1) NaCN and ACN (77:23, v/v), flowing at 0.7 ml min(-1). At the optimized conditions, detection limits estimated by the calibration curve parameters and relative standard deviation were: 0.002 mg CNl(-1) and 3.1% for Fe(CN)(6)(4-); 0.003 mg CNl(-1) and 2.5% for Ni(CN)(4)(2-) and 0.003 mg CNl(-1) and 2.8% for Co(CN)(6)(3-). Sour water samples without any pretreatment (except membrane filtration) from a petroleum refinery in Brazil were analyzed successfully by external calibration method. PMID:16889783

  14. A novel 2,6-diformyl-4-methylphenol based chemosensor for Zn(II) ions by ratiometric displacement of Cd(II) ions and its application for cell imaging on human melanoma cancer cells.

    PubMed

    Jana, Atanu; Sukul, Pradip K; Mandal, Sushil K; Konar, Saugata; Ray, Sangita; Das, Kinsuk; Golen, James A; Rheingold, Arnold L; Mondal, Sudipa; Mondal, Tapan K; Khuda-Bukhsh, Anisur R; Kar, Susanta K

    2014-01-21

    A new chelating ligand [4-methyl-2,6-bis-(pyridin-2-yl-hydrazonomethyl)-phenol] (1) was prepared by the condensation of 2-hydrazinylpyridine with 2,6-diformyl-p-cresol. Compound 1 exhibits weak fluorescence due to intramolecular photoinduced electron transfer (PET). The sensor (1) demonstrates Zn(2+)-specific emission enhancement due to the “PET off” process through a 1:1 binding mode with the metal ion. The fluorescence quantum yield of chemosensor 1 is only 0.020, and it increases more than 14-fold (0.280) in the presence of one equivalent of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to remain either unchanged or weakened except for Cd(2+). The new sensor showed ‘naked-eye’ detection of Zn(2+) ions: a color change of the solution from colorless to yellow. Ratiometric displacement of Cd(2+) ions from the complex by Zn(2+) ions supports the formation of a more stable sensor–Zn(2+) complex over the sensor–Cd(2+) complex. The experimental findings have been correlated with theoretical results using the B3LYP functional and 6-31G (d, p), LANL2DZ basis set for Cd(2+) (2) and Zn(2+) (3) complexes, respectively, by the Density Functional Theory (DFT) method. Moreover, the ability of probe 1 to sense Zn(2+) within human melanoma cancer cells has been explored, and the Zn(2+)-probing process in living cells was found to be reversible with zinc chelator solution of N,N,N,N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or EDTA. PMID:24223423

  15. A novel 2,6-diformyl-4-methylphenol based chemosensor for Zn(II) ions by ratiometric displacement of Cd(II) ions and its application for cell imaging on human melanoma cancer cells.

    PubMed

    Jana, Atanu; Sukul, Pradip K; Mandal, Sushil K; Konar, Saugata; Ray, Sangita; Das, Kinsuk; Golen, James A; Rheingold, Arnold L; Mondal, Sudipa; Mondal, Tapan K; Khuda-Bukhsh, Anisur R; Kar, Susanta K

    2014-01-21

    A new chelating ligand [4-methyl-2,6-bis-(pyridin-2-yl-hydrazonomethyl)-phenol] (1) was prepared by the condensation of 2-hydrazinylpyridine with 2,6-diformyl-p-cresol. Compound 1 exhibits weak fluorescence due to intramolecular photoinduced electron transfer (PET). The sensor (1) demonstrates Zn(2+)-specific emission enhancement due to the “PET off” process through a 1:1 binding mode with the metal ion. The fluorescence quantum yield of chemosensor 1 is only 0.020, and it increases more than 14-fold (0.280) in the presence of one equivalent of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to remain either unchanged or weakened except for Cd(2+). The new sensor showed ‘naked-eye’ detection of Zn(2+) ions: a color change of the solution from colorless to yellow. Ratiometric displacement of Cd(2+) ions from the complex by Zn(2+) ions supports the formation of a more stable sensor–Zn(2+) complex over the sensor–Cd(2+) complex. The experimental findings have been correlated with theoretical results using the B3LYP functional and 6-31G (d, p), LANL2DZ basis set for Cd(2+) (2) and Zn(2+) (3) complexes, respectively, by the Density Functional Theory (DFT) method. Moreover, the ability of probe 1 to sense Zn(2+) within human melanoma cancer cells has been explored, and the Zn(2+)-probing process in living cells was found to be reversible with zinc chelator solution of N,N,N,N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or EDTA.

  16. A comparative study of caffeine and theophylline binding to Mg(II) and Ca(II) ions: studied by FTIR and UV spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Shamloo, Delaram Sadraii; Mohajerani, Nasser; Omidi, Akram

    2002-08-01

    The interactions of calcium and magnesium ions with caffeine and theophylline have been investigated in aqueous solution at physiological pH. Fourier Transform infrared (FTIR) spectroscopy and absorption spectra were used to determine the cation binding mode and the association constants. Our spectroscopic results showed that calcium and magnesium ions do not complex with caffeine strongly and the weak interactions between caffeine and Mg 2+ and Ca 2+ might be via O6 atom. In Ca 2+-theophylline complex, binding between Ca 2+ with CO and N7 is observed, however in Mg 2+-theophylline complex, binding between Mg 2+ and N7 is more likely. The k values of these complexes are as follows: k(caffeine-Ca)=29.8 M -1, k(caffeine-Mg)=22.4 M -1, k(theophylline-Ca)=59.8 M -1 and k(theophylline-Mg)=33.8 M -1. These values are evidence for a weak cation interaction in these metal complexes.

  17. In situ formation of p-n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-27

    The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p-n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p-n junction was confirmed by P-N conductive type discriminator measurements and current-voltage (I-V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6×10(-9)mol/L. It is expected that the present study can serve as a foundation to the application of p-n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry. PMID:24832992

  18. Time-Resolved Transient Optical Absorption Study of Bis(terpyridyl)oligothiophenes and Their Metallo-Supramolecular Polymers with Zn(II) Ion Couplers.

    PubMed

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, Pavla; Svoboda, Jan; Vohlídal, Jiří; Pfleger, Jiří

    2015-06-18

    α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated. PMID:25913085

  19. Tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle

    NASA Astrophysics Data System (ADS)

    Zhang, Aiqin; Yang, Yamin; Zhai, Guangmei; Jia, Husheng; Xu, Bingshe

    2016-02-01

    In this work, a method of tuning the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions based on colorimetric principle was proposed. The technological route from coordination to copolymerization was employed to obtain the white light macromolecular phosphor. The three primary color monomers have been synthesized and their Commission Internationale de L'Eclairage (CIE) coordinates are respectively (0.540, 0.314), (0.231, 0.463), and (0.161, 0.054). The molar feed ratios of the three primary color monomers were calculated from the CIE coordinates based on colorimetric principle. Serial copolymers have been synthesized by free radical copolymerization of the three primary color monomers and methyl methacrylate. The quantum efficiency of the copolymers was higher than that of the complex monomers. The complexes were directly boned to the polymer chain, in which the energy transfer was reduced significantly compared to the doped-polymers. The experimental values of copolymers' CIE coordinates were located in the white light region in good agreement with theoretical values. The results indicate that the chromaticity of the emission color of the copolymers containing Eu(III), Tb(III), Be(II) ions could be tuned by theoretical calculation based on colorimetric principle.

  20. Orthometalation of dibenzo[1,2]quinoxaline with ruthenium(II/III), osmium(II/III/IV), and rhodium(III) ions and orthometalated [RuNO](6/7) derivatives.

    PubMed

    Maity, Suvendu; Kundu, Suman; Saha Roy, Amit; Weyhermüller, Thomas; Ghosh, Prasanta

    2015-02-16

    A new family of organometallics of ruthenium(II/III), osmium(II/III/IV), and rhodium(III) ions isolated from C-H activation reactions of dibenzo[1,2]quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN-chelate complexes isolated are trans-[Ru(III)(DBQ)(PPh3)2Cl2] (1), trans-[Ru(II)(DBQ)(CO)(PPh3)2Cl] (2), trans-[Os(III)(DBQ)(PPh3)2Br2] (3), trans-[Os(II)(DBQ)(PPh3)2(CO)Br] (4), and trans-[Rh(III)(DBQ)(PPh3)2Cl2] (5). Reaction of 1 with NO affords trans-[Ru(DBQ)(NO)(PPh3)2Cl]Cl (6(+)Cl(-)), isoelectronic to 2, with a byproduct, [Ru(NO)(PPh3)2Cl3] (7). Complexes 1-5 and 6(+) were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of 1-3 and 5. The Ru(III)-C, Ru(II)-C, Os(III)-C, and Rh(III)-C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in 1, 2, 3, and 5. In cyclic voltammetry, 2, 3, and 4 undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc(+)/Fc couple, to trans-[Ru(III)(DBQ)(CO)(PPh3)2Cl](+) (2(+)), trans-[Os(IV)(DBQ)(PPh3)2Br2](+) (3(+)), and trans-[Os(III)(DBQ)(CO)(PPh3)2Br](+) (4(+)) ions. Complex 3(+) incorporates an Os(IV)(d(4) ion)-C bond. The 6(+)/trans-[Ru(DBQ)(NO)(PPh3)2Cl] (6) reduction couple at -0.65 V is reversible. 2(+), 3(+), 4(+) and 6 were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated 6 exhibits hyperfine couplings due to (99,101)Ru and (14)N nuclei. DFT calculations on trans-[Os(III)(DBQ)(PMe3)2Br2] (3(Me)), St = 1/2 and trans-[Os(IV)(DBQ)(PMe3)2Br2](+) (3(Me+)), St = 0, trans-[Ru(DBQ)(NO)(PMe3)2Cl](+) (6(Me+)), St = 0 and trans-[Ru(DBQ)(NO)(PMe3)2Cl] (6(Me)), St = 1/2, authenticated a significant mixing between dOs and πaromatic* orbitals, which stabilizes M(II/III/IV)-C bonds and the [RuNO](6) and [RuNO](7) states

  1. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.

    PubMed

    Reinoso-Maset, Estela; Ly, Jacques

    2016-06-01

    Uranium and the long-lived decay product radium-226 are abundantly present in mine wastes produced during uranium extraction activities. In the case of release to the surrounding environment, these radionuclides are at trace level compared to groundwater solutes, and the presence, content and properties of clay minerals in the host environment influence the extent of radionuclide sorption and, in turn, migration. Since clays are known to have the distinctive property of retaining ions, the aim of this work was to study the sorption of trace U(VI) and Ra(II) on a common phyllosilicate mineral, kaolinite, in the presence of excess K, a common groundwater cation, in order to obtain a thermodynamic database that describes the ion exchange equilibria occurring at the mineral-solution interface. Following a detailed experimental protocol using chemical and radiochemical analytical techniques, batch experiments over a wide pH range (from 2 to 11) and fixed concentration (ca. 10(-9) M), and additional adsorption isotherms at two different solution pH (6.2 and 10.4) over a concentration range (10(-10) to 10(-4) M) were carried out to measure the distribution coefficient (Kd) of U(VI) and Ra(II) sorption on kaolinite. The experimental sorption data was processed according to a general multisite sorbent/multispecies sorbate ion exchange model, which allowed deducing the charge of adsorbed species and the stoichiometry of the associated adsorption equilibria on kaolinite's surface sites. Aqueous speciation calculations predicted Ra(II) as Ra(2+) over the working pH range, and its adsorption curves and isotherms were explained using three sorption sites. Adsorption of U(VI) occurred on four sorption sites and was governed by its solution speciation, with positively charged hydroxylated (UO2(2+) and UO2(OH)(+)) and silicate (UO2(H3SiO4)(+)) species being adsorbed between pH 2 and 6, whereas its negatively charged forms (UO2(OH)3(-) and UO2(OH)4(2-)) dominated U(VI) sorption at

  2. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.

    PubMed

    Reinoso-Maset, Estela; Ly, Jacques

    2016-06-01

    Uranium and the long-lived decay product radium-226 are abundantly present in mine wastes produced during uranium extraction activities. In the case of release to the surrounding environment, these radionuclides are at trace level compared to groundwater solutes, and the presence, content and properties of clay minerals in the host environment influence the extent of radionuclide sorption and, in turn, migration. Since clays are known to have the distinctive property of retaining ions, the aim of this work was to study the sorption of trace U(VI) and Ra(II) on a common phyllosilicate mineral, kaolinite, in the presence of excess K, a common groundwater cation, in order to obtain a thermodynamic database that describes the ion exchange equilibria occurring at the mineral-solution interface. Following a detailed experimental protocol using chemical and radiochemical analytical techniques, batch experiments over a wide pH range (from 2 to 11) and fixed concentration (ca. 10(-9) M), and additional adsorption isotherms at two different solution pH (6.2 and 10.4) over a concentration range (10(-10) to 10(-4) M) were carried out to measure the distribution coefficient (Kd) of U(VI) and Ra(II) sorption on kaolinite. The experimental sorption data was processed according to a general multisite sorbent/multispecies sorbate ion exchange model, which allowed deducing the charge of adsorbed species and the stoichiometry of the associated adsorption equilibria on kaolinite's surface sites. Aqueous speciation calculations predicted Ra(II) as Ra(2+) over the working pH range, and its adsorption curves and isotherms were explained using three sorption sites. Adsorption of U(VI) occurred on four sorption sites and was governed by its solution speciation, with positively charged hydroxylated (UO2(2+) and UO2(OH)(+)) and silicate (UO2(H3SiO4)(+)) species being adsorbed between pH 2 and 6, whereas its negatively charged forms (UO2(OH)3(-) and UO2(OH)4(2-)) dominated U(VI) sorption at

  3. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was found that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.

  4. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples. PMID:23888301

  5. Heterometallic Fe2 (II) -U(V) and Ni2 (II) -U(V) Exchange-Coupled Single-Molecule Magnets: Effect of the 3 d Ion on the Magnetic Properties.

    PubMed

    Chatelain, Lucile; Pécaut, Jacques; Tuna, Floriana; Mazzanti, Marinella

    2015-12-01

    Uranium-based compounds have been put forward as ideal candidates for the design of single-molecule magnets (SMMs) with improved properties, but to date, only two examples of exchange-coupled 3d-5f SMM containing uranium have been reported and both are based on the Mn(II) ion. Here we have synthesized the first examples of exchange-coupled uranium SMMs based on Fe(II) and Ni(II) . The SMM behavior of these complexes containing a quasi linear {M-O=U=O-M} core arises from intramolecular Fe-U and Ni-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. The measured values of the relaxation barrier (53.9±0.9 K in the UFe2 complex and of 27.4±0.5 K in the UNi2 complex) show clearly the dependency on the spin value of the transition metal, providing important new information for the future design of improved uranium-based SMMs.

  6. MEMRI and tumors: a method for the evaluation of the contribution of Mn(II) ions in the extracellular compartment.

    PubMed

    Gianolio, Eliana; Arena, Francesca; Di Gregorio, Enza; Pagliarin, Roberto; Delbianco, Martina; Baio, Gabriella; Aime, Silvio

    2015-09-01

    The purpose of the work was to set-up a simple method to evaluate the contribution of Mn(2+) ions in the intra- and extracellular tumor compartments in a MEMRI experiment. This task has been tackled by "silencing" the relaxation enhancement arising from Mn(2+) ions in the extracellular space. In vitro relaxometric measurements allowed assessment of the sequestering activity of DO2A (1,4,7,10-tetraazacyclododecane-1,7-diacetic acid) towards Mn(2+) ions, as the addition of Ca-DO2A to a solution of MnCl2 causes a drop of relaxivity upon the formation of the highly stable and low-relaxivity Mn-DO2A. It has been proved that the sequestering ability of DO2A towards Mn(2+) ions is also fully effective in the presence of serum albumin. Moreover, it has been shown that Mn-DO2A does not enter cell membranes, nor does the presence of Ca-DO2A in the extracellular space prompt migration of Mn ions from the intracellular compartment. On this basis the in vivo, instantaneous, drop in SE% (percent signal enhancement) in T1 -weighted images is taken as evidence of the sequestration of extracellular Mn(2+) ions upon addition of Ca-DO2A. By applying the method to B16F10 tumor bearing mice, T1 decrease is readily detected in the tumor region, whereas a negligible change in SE% is observed in kidneys, liver and muscle. The relaxometric MRI results have been validated by ICP-MS measurements.

  7. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. PMID:26458121

  8. The binding energies of one and two water molecules to the first transition-row metal positive ions. II

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1990-01-01

    The present investigation of H2O's binding energy to transition-metal ions proceeds from the D(2h) structure and bends the two water molecules out of plane. The molecule is constrained to have C(2v) symmetry, so that each water molecule and metal ion lies on a plane. The ground states are bent only for Mn(H2O)2(+) and Zn(H2O)2(+), where only 4s4p hybridization is energetically favorable; 4s4p hybridization reduces repulsion.

  9. 3D chiral and 2D achiral cobalt(ii) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation.

    PubMed

    Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan

    2016-05-01

    Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers. PMID:27054774

  10. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  11. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Fan; Yang, Xiurong

    2010-05-01

    Using unimolecular copper(II)-dependent self-cleaving deoxyribozymes (DNAzymes), a label-free colorimetric biosensor for copper(II) ions (Cu2 + ) has been developed based on the sequence-length-dependent adsorption of single-stranded deoxyribonucleic acid (ssDNA) on unmodified gold nanoparticles (AuNPs). In the presence of Cu2 + , the Cu2 + -dependent DNAzyme could be self-cleaved into short ssDNA fragments. The cleaved short ssDNA could adsorb rapidly onto the surface of the AuNPs. This enhanced the stability of the AuNPs against salt-induced aggregation, and thus the solution color remained red. In the absence of Cu2 + , however, uncleaved long ssDNA adsorbed relatively slowly onto the AuNPs and upon the addition of salt, the electrostatic repulsion between the AuNPs was screened, resulting in aggregation of the AuNPs which produced a red-to-blue color change. Thus, Cu2 + detection could be realized by monitoring the color change of the AuNPs. The calibration curve showed that the absorption ratio values at 520 and 620 nm increased linearly over the Cu2 + concentration range of 0.625-15 µM, with a limit of detection of 290 nM. The other environmentally relevant metal ions did not interfere with the determination of Cu2 + . Subsequently, the assay was employed to determine Cu2 + in several water samples, and the results were satisfactory. It is expected that the present colorimetric strategy will be possibly extended to the detection of cofactors of other in vitro-selected unimolecular self-cleaving DNAzymes, such as amino acids, nucleic acids, metal ions and small organic molecules.

  12. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent. PMID:27084802

  13. X-ray absorption study of the solvated Cu(II) ion: Transition from a solvated solid to the dissolved state

    SciTech Connect

    Carrado, K.A.; Wasserman, S.R. )

    1993-04-21

    X-ray absorption spectroscopy has often been used to examine the local environment around an absorbing cation in both the solid and the liquid state. In order to examine the properties of a transition-metal ion under conditions in which the degree of solvation can be regulated, the authors have placed cupric ions within a smectite clay. Smectite clays consist of negatively charged sheets of aluminosilicates which are separated by an interlayer whose thickness changes upon absorption of solvent. In the native clay used for these experiments, bentonite, the calcium was replaced with copper by stirring the clay in a 0.1 M aqueous solution of CuCl[sub 2]. For the experiments described here, Cu K-edge spectra were acquired at the National Synchrotron Light Source and Stanford Synchrotron Radiation Laboratory in both transmission and fluorescence modes. Four samples of Cu-bentonite powder, dried from water, methanol, ethanol, and ethylene glycol, were examined, as well as slurries of these samples in their respective solvents. The normalized X-ray absorption near edge (XANES) spectra are obtained for copper ion in the Cu-bentonite dried from methanol and for the Cu-clay as a slurry in the same solvent. The spectrum of the dry material clearly shows the electronic 1s-4p transition as a resolved shoulder on the absorption edge at 8986 eV. This transition, which is characteristic of a copper ion with square planar coordination, has broadened and almost disappeared in the slurry. The observed change suggests that as the solvent penetrates into the clay, some of the solvent molecules enter the coordination sphere of the copper(II) ion. The addition of two axial oxygen ligands shifts the coordination geometry of the Cu(II) from a square planar configuration to a distorted octahedron. There is an obvious change in the EXAFS data between the dry clay and the slurry which cannot be readily discerned by examination of the radial distributions alone. 23 refs., 2 figs., 1 tab.

  14. Harnessing the bone-seeking ability of Ca(II)-like metal ions in the treatment of metastatic cancer and resorption disorders.

    PubMed

    Weekes, D M; Orvig, C

    2016-04-21

    Metal ions are naturally retained by skeletal tissues in living systems because of their high affinity for the hydroxyapatite-like mineral matrix that makes up cortical bone. This is particularly true for metal ions that bear a close resemblance to calcium(ii) (such as the lanthanides or alkaline earth metals), and in a few key cases this targeting ability has been exploited in order to develop medicinal agents that are intended to treat bones which have become diseased. In this review, we focus on two areas where this has been particularly effective: first is in the diagnosis and therapy of metastatic bone cancer, in which radioactive metal ions including (99m)Tc, (153)Sm, and (223)Ra are used to image, alleviate, and ablate harmful cancerous legions with good specificity versus healthy tissues; second is the use of trivalent lanthanides to treat osteoporosis, an emerging concept which has gathered significance over the last 15 years, and is now entering preclinical trials with carefully designed systems.

  15. Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma: A Phase I/II dose-escalation study

    SciTech Connect

    Tsuji, Hiroshi . E-mail: h_tsuji@nirs.go.jp; Ishikawa, Hitoshi; Yanagi, Takeshi; Hirasawa, Naoki; Kamada, Tadashi; Mizoe, Jun-Etsu; Kanai, Tatsuaki; Tsujii, Hirohiko; Ohnishi, Yoshitaka

    2007-03-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascular glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.

  16. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.

    PubMed

    Baraka, Ahmad; Hall, P J; Heslop, M J

    2007-02-01

    A new chelating resin was synthesised by anchoring nitrilotriacetic acid (NTA) to melamine during the melamine-formaldehyde gelling reaction in the presence of water, using acetone and guaiacol as a porogen mixture. This technique gives a porous chelating gel resin capable of removing heavy metals from wastewater. FT-IR, XRD, elemental analysis, surface area and water regain measurements were conducted for characterization of the new chelating gel resin. A comprehensive adsorption study (kinetics isotherm, and thermodynamics) of Cu(II) removal from synthetic acidic aqueous solutions by adsorption on this resin was conducted regarding the effects of time, temperature, initial pH and copper(II) initial concentration.

  17. Ion implantation modified stainless steel as a substrate for hydroxyapatite deposition. Part II. Biomimetic layer growth and characterization.

    PubMed

    Pramatarova, L; Pecheva, E; Krastev, V

    2007-03-01

    The interest in stainless steel as a material widely used in medicine and dentistry has stimulated extensive studies on improving its bone-bonding properties. AISI 316 stainless steel is modified by a sequential ion implantation of Ca and P ions (the basic ions of hydroxyapatite), and by Ca and P implantation and subsequent thermal treatment in air (600( composite function)C, 1 h). This paper investigates the ability of the as-modified surfaces to induce hydroxyapatite deposition by using a biomimetic approach, i.e. immersion in a supersaturated aqueous solution resembling the human blood plasma (the so-called simulated body fluid). We describe our experimental procedure and results, and discuss the physico-chemical properties of the deposed hydroxyapatite on the modified stainless steel surfaces. It is shown that the implantation of a selected combination of ions followed by the applied methodology of the sample soaking in the simulated body fluid yield the growth of hydroxyapatite layers with composition and structure resembling those of the bone apatite. The grown layers are found suitable for studying the process of mineral formation in nature (biomineralization).

  18. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  19. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  20. Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions.

    PubMed

    Dorcák, Vlastimil; Sestáková, Ivana

    2006-01-01

    Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.

  1. Positional isomeric tunable two Co(II) 6-connected 3-D frameworks with pentanuclear to binuclear units: structures, ion-exchange and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu

    2014-11-01

    Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions. PMID:25190003

  2. The role of anode and cathode plasmas in high power ion diode performance

    SciTech Connect

    Mehlhorn, T.A.; Bailey, J.E.; Bernard, M.A.

    1996-06-01

    We describe measurements, modeling, and mitigation experiments on the effects of anode and cathode plasmas in applied-B ion diodes. We have performed experiments with electrode conditioning and cleaning techniques including RF discharges, anode heating, cryogenic cathode cooling and anode surface coatings that have been successful in mitigating some of the effects of electrode contamination on ion diode performance on both the SABRE and PBFA accelerators. We are developing sophisticated spectroscopic diagnostic techniques that allow us to measure the electric and magnetic fields in the A-K gap, we compare these measured fields with those predicted by our 3-D particle-in-cell (PIC) simulations of ion diodes, and we measure anode and cathode plasma densities and expansion velocities. We are continuing to develop E-M simulation codes with fluid-PIC hybrid models for dense plasmas, in order to understand the role of electrode plasmas in ion diode performance. Our strategy for improving high power ion diode performance is to employ and expand our capabilities in measuring and modeling A-K gap plasmas and leverage our increased knowledge into an increase in total ion beam brightness to High Yield Facility (HYF) levels.

  3. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions.

    PubMed

    Djelad, Amal; Morsli, Amine; Robitzer, Mike; Bengueddach, Abdelkader; di Renzo, Francesco; Quignard, Françoise

    2016-01-01

    Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO₂ drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties. PMID:26797593

  4. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions.

    PubMed

    Djelad, Amal; Morsli, Amine; Robitzer, Mike; Bengueddach, Abdelkader; di Renzo, Francesco; Quignard, Françoise

    2016-01-19

    Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO₂ drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties.

  5. Fluorescence of a Histidine-Modified Enhanced Green Fluorescent Protein (EGFP) Effectively Quenched by Copper(II) Ions. Part II. Molecular Determinants.

    PubMed

    Péterffy, Judit Petres; Szabó, Mária; Szilágyi, László; Lányi, Szabolcs; Ábrahám, Beáta

    2015-07-01

    The histidine-modified EGFP was characterized as a sensing element that preferentially binds nanomolar concentrations of Cu(2+) in a reversible manner (Kd = 15 nM). This research aims to determine the causes of nanomolar-affinity of this mutant by investigating significant structural and energetic alterations of the chromophore in the presence of different copper ion concentrations. In order to reveal the unknown parts of the quenching mechanism we have elaborated a specific approach that combines theoretical and experimental techniques. The theoretical experiment included the modeling of potential distortions of the chromophores and the corresponding changes in energy using quantum mechanical calculations. Differences between the modeled energy profiles of planar and distorted conformations represented the energies of activation for the chromophore distortions. We found that some values of the experimental activation energies, which were derived from fluorescence lifetime decay analysis (ex: 470 nm, em: 507 nm), were consistent with the theoretical ones. Thus, it has been revealed similarity between the theoretical activation energy (50 kJmol(-1)) for 40° phenolate-ring distortion and the experimental activation energy (52.17 kJmol(-1)) required for histidine-modified EGFP saturation with copper. This chromophore conformation was further investigated and it has been found that the large decrease in fluorescence emission is attributed to the significant charge transfer over the molecule which triggers proton transfer thereby neutralizing the cromophore. PMID:25893929

  6. NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine II. Support effect.

    PubMed

    Bettahar, M M; Wojcieszak, R; Monteverdi, S

    2009-04-15

    A series of bimetallic NiAg (Ni + Ag = 1% wt) catalysts supported on amorphous silica was synthesized via chemical reduction using hydrazine as the reducing agent at 353 K. Catalysts were prepared via impregnation or precipitation technique. It was found that the reduction of the Ni(2+) ions occurred only in the presence of silver, otherwise a stable blue [Ni(N(2)H(4))(3)](2+) complex was formed. Comparisons with similar NiAg catalysts supported on crystallized silica as prepared in our previous work indicated that the Ni(2+) ions weakly interacted with acidic crystallized silica on which they were readily reduced. For both supports, the combination of silver and nickel gave rise to a synergistic effect due to the existence of NiAg groupings. The surface and catalytic properties of the metal particles formed depended on the Ni:Ag ratio, method of preparation, and acidity of the support.

  7. Students' understanding of external representations of the potassium ion channel protein part II: structure-function relationships and fragmented knowledge.

    PubMed

    Harle, Marissa; Towns, Marcy H

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis of the interview data demonstrates that students were able to use the ribbon structures and polarity of the cell membrane to help support claims about the protein's orientation and interactions within the cell membrane. Students expressed fragmented understandings of the interactions between the potassium ion and the aqueous solution outside/inside of the cell membrane. Suggestions for instruction are to probe student understanding to help students activate prior knowledge and to help them build a more connected set of concepts pertaining to protein structure and function.

  8. Ion energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: II. Particles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2011-06-01

    Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.

  9. The effect of hydrogen ion on the steady-state multiplicity of substrate-inhibited enzymatic reactions. II. Transient behavior.

    PubMed

    Elnashaie, S S; Elrifaie, M A; Ibrahim, G; Badra, G

    1983-12-01

    In this paper we concentrate our attention on the stability and transient behavior of the isothermal system (CSTR) with a substrate-inhibited enzyme reaction producing hydrogen ions. Our investigation covers the region of multiple steady states uncovered previously (1) (ordinary hysteresis and isola). We investigate the local stability characteristics of the different steady states, the effect of the initial condition on the transient behavior and the response of the system to feed disturbances of various magnitudes and durations.

  10. Preparation and characterization of trihydroxamic acid functionalized carbon materials for the removal of Cu(II) ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Godino-Salido, M. Luz; Santiago-Medina, Antonio; López-Garzón, Rafael; Gutiérrez-Valero, María D.; Arranz-Mascarós, Paloma; López de la Torre, M. Dolores; Domingo-García, María; López-Garzón, F. Javier

    2016-11-01

    The main objective of this study is to prepare and characterize two functionalizated carbon materials with enhanced adsorptive properties for Cu(II). Thus, two novel hybrid materials have been prepared by a non-covalent functionalization method based on the adsorption of a pyrimidine-desferrioxamine-B conjugate compound (H4L) on two activated carbons, ACs (labelled Merck and F). The adsorption of H4L on the ACs is pH-dependent and highly irreversible. This is due to strong π-π interactions between the arene centers of the ACs and the pyrimidine moiety of H4L. The textural characterization of the AC/H4L hybrids shows large decreases of their surface areas. Thus the values of Merck and F are 1031 and 1426 m2/g respectively, while these of Merck/H4L and F/H4L hybrids are 200 and 322 m2/g. An important decrease in the micropore volumes is also found, due to the blockage of narrow porosity produced by the adsorption of H4L molecules. The ACs/H4L hybrids show larger adsorption capacities for Cu(II) (0.105(4) and 0.13(2) mmol/g, at pH 2.0, and 0.20(3) and 0.242(9) mmol/g, at pH 5.5, for Merck/H4L and F/H4L, respectively) than those of the ACs (0.024(6) and 0.096(9) mmol/g, at pH 2.0, and 0.10(2) and 0.177(8) mmol/g, at pH 5.5, for Merck and F respectively), which is explained on the basis of the complexing ability of the trihydroxamic acid functions. The desorption of Cu(II) from the ACs/H4L/Cu(II) materials in acid solution allows the regeneration of most active sites (78.5% in the case of Merck/H4L/Cu(II) and 83.0% in the case of F/H4L/Cu(II)).

  11. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.

    PubMed

    Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-06-01

    A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.

  12. Synthesis and Characterization with Antineoplastic, Biochemical, Cytotoxic, and Antimicrobial Studies of Schiff Base Cu(II) Ion Complexes

    PubMed Central

    Haque, M. M.; Kudrat-E-Zahan, Md.; Banu, Laila Arjuman; Islam, Md. Shariful; Islam, M. S.

    2015-01-01

    Copper(II) complexes containing two Schiff base ligands derived from 2-hydroxybenzaldehyde with 2-aminophenol and 3-aminophenol have been synthesized and characterized by means of analytical, magnetic, and spectroscopic methods. Bacteria, fungus, Entamoeba histolytica, and antineoplastic activities of the synthesized complexes have been determined by monitoring the parameters cell growth inhibition, survival time of tumour mice, time-body relation, causing of intraperitoneal cells and macrophages, alkaline phosphatase activity, hematological effect, and biopsy of tumour. PMID:26294901

  13. Encapsulation of Ln(III) ions/Ag nanoparticles within Cd(ii) boron imidazolate frameworks for tuning luminescence emission.

    PubMed

    Liu, Min; Chen, Shumei; Wen, Tian; Zhang, Jian

    2016-06-30

    Two Cd(ii) boron imidazolate frameworks (/) with different topologies have been synthesized by the targeted assembly of aromatic carboxylate, tetradentate imidazolate ligands, possessing tunable luminescence emission properties. Hydroxy-functional neutral shows an obvious blue shift of luminescence after loading Ag nanoparticles (NPs) while the first reported anionic in the BIF system with blue emission can tune the white-light emission via doping mixed Ln(3+) in an appropriate ratio (Ln = Eu and Tb). PMID:27321108

  14. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  15. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  16. Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae.

    PubMed

    Rowbotham, J S; Dyer, P W; Greenwell, H C; Selby, D; Theodorou, M K

    2013-02-01

    Thermochemical processing methods such as pyrolysis are of growing interest as a means of converting biomass into fuels and commodity chemicals in a sustainable manner. Macroalgae, or seaweed, represent a novel class of feedstock for pyrolysis that, owing to the nature of the environments in which they grow coupled with their biochemistry, naturally possess high metal contents. Although the impact of metals upon the pyrolysis of terrestrial biomass is well documented, their influence on the thermochemical conversion of marine-derived feeds is largely unknown. Furthermore, these effects are inherently difficult to study, owing to the heterogeneous character of natural seaweed samples. The work described in this paper uses copper(II) alginate, together with alginic acid and sodium alginate as model compounds for exploring the effects of metals upon macroalgae thermolysis. A thermogravimetric analysis-Fourier transform infrared spectroscopic study revealed that, unusually, Cu(2+) ions promote the onset of pyrolysis in the alginate polymer, with copper(II) alginate initiating rapid devolatilization at 143°C, 14°C lower than alginic acid and 61°C below the equivalent point for sodium alginate. Moreover, this effect was mirrored in a sample of wild Laminaria digitata that had been doped with Cu(2+) ions prior to pyrolysis, thus validating the use of alginates as model compounds with which to study the thermolysis of macroalgae. These observations indicate the varying impact of different metal species on thermochemical behaviour of seaweeds and offer an insight into the pyrolysis of brown macroalgae used in phytoremediation of metal-containing waste streams. PMID:24427515

  17. Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae

    PubMed Central

    Rowbotham, J. S.; Dyer, P. W.; Greenwell, H. C.; Selby, D.; Theodorou, M. K.

    2013-01-01

    Thermochemical processing methods such as pyrolysis are of growing interest as a means of converting biomass into fuels and commodity chemicals in a sustainable manner. Macroalgae, or seaweed, represent a novel class of feedstock for pyrolysis that, owing to the nature of the environments in which they grow coupled with their biochemistry, naturally possess high metal contents. Although the impact of metals upon the pyrolysis of terrestrial biomass is well documented, their influence on the thermochemical conversion of marine-derived feeds is largely unknown. Furthermore, these effects are inherently difficult to study, owing to the heterogeneous character of natural seaweed samples. The work described in this paper uses copper(II) alginate, together with alginic acid and sodium alginate as model compounds for exploring the effects of metals upon macroalgae thermolysis. A thermogravimetric analysis–Fourier transform infrared spectroscopic study revealed that, unusually, Cu2+ ions promote the onset of pyrolysis in the alginate polymer, with copper(II) alginate initiating rapid devolatilization at 143°C, 14°C lower than alginic acid and 61°C below the equivalent point for sodium alginate. Moreover, this effect was mirrored in a sample of wild Laminaria digitata that had been doped with Cu2+ ions prior to pyrolysis, thus validating the use of alginates as model compounds with which to study the thermolysis of macroalgae. These observations indicate the varying impact of different metal species on thermochemical behaviour of seaweeds and offer an insight into the pyrolysis of brown macroalgae used in phytoremediation of metal-containing waste streams. PMID:24427515

  18. Cavity morphology in a Ni based superalloy under heavy ion irradiation with hot pre-injected helium. II

    SciTech Connect

    Zhang, He; Yao, Zhongwen Daymond, Mark R.; Kirk, Marquis A.

    2014-03-14

    In the current investigation, TEM in-situ heavy ion (1 MeV Kr{sup 2+}) irradiation with helium pre-injected at elevated temperature (400 °C) was conducted to simulate in-reactor neutron irradiation induced damage in CANDU spacer material Inconel X-750, in an effort to understand the effects of helium on irradiation induced cavity microstructures. Three different quantities of helium, 400 appm, 1000 appm, and 5000 appm, were pre-injected directly into TEM foils at 400 °C. The samples containing helium were then irradiated in-situ with 1 MeV Kr{sup 2+} at 400 °C to a final dose of 5.4 dpa (displacement per atom). Cavities were formed from the helium injection solely and the cavity density and size increased with increasing helium dosage. In contrast to previous heavy ion irradiations with cold pre-injected helium, heterogeneous nucleation of cavities was observed. During the ensuing heavy ion irradiation, dynamical observation showed noticeable size increase in cavities which nucleated close to the grain boundaries. A “bubble-void” transformation was observed after Kr{sup 2+} irradiation to high dose (5.4 dpa) in samples containing 1000 appm and 5000 appm helium. Cavity distribution was found to be consistent with in-reactor neutron irradiation induced cavity microstructures. This implies that the distribution of helium is greatly dependent on the injection temperature, and helium pre-injection at high temperature is preferred for simulating the migration of the transmutation produced helium.

  19. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II - Odd hydrogen

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Rusch, D. W.; Gerard, J.-C.; Reid, G. C.; Crutzen, P. J.

    1981-01-01

    A one dimensional time-dependent model of the neutral and ion chemistry of the middle atmosphere has been used to examine the production of odd hydrogen (H, OH, and HO2) during charged particle precipitation. At altitudes above about 65 km, odd hydrogen production depends on the ionization rate, and the atomic oxygen and water vapor densities. Odd hydrogen production is shown to exhibit diurnal and other time dependent variations during such an event at these altitudes, and the assumption that two odd hydrogen particles are always produced per ionization is reexamined.

  20. Randomized phase II trial of hypofractionated proton versus carbon ion radiation therapy in patients with sacrococcygeal chordoma-the ISAC trial protocol

    PubMed Central

    2014-01-01

    Background Chordomas are relatively rare lesions of the bones. About 30% occur in the sacrococcygeal region. Surgical resection is still the standard treatment. Due to the size, proximity to neurovascular structures and the complex anatomy of the pelvis, a complete resection with adequate safety margin is difficult to perform. A radical resection with safety margins often leads to the loss of bladder and rectal function as well as motoric/sensoric dysfunction. The recurrence rate after surgery alone is comparatively high, such that adjuvant radiation therapy is very important for improving local control rates. Proton therapy is still the international standard in the treatment of chordomas. High-LET beams such as carbon ions theoretically offer biologic advantages in slow-growing tumors. Data of a Japanese study of patients with unresectable sacral chordoma showed comparable high control rates after hypofractionated carbon ion therapy only. Methods and design This clinical study is a prospective randomized, monocentric phase II trial. Patients with histologically confirmed sacrococcygeal chordoma will be randomized to either proton or carbon ion radiation therapy stratified regarding the clinical target volume. Target volume delineation will be carried out based on CT and MRI data. In each arm the PTV will receive 64 GyE in 16 fractions. The primary objective of this trial is safety and feasibility of hypofractionated irradiation in patients with sacrococygeal chordoma using protons or carbon ions in raster scan technique for primary or additive treatment after R2 resection. The evaluation is therefore based on the proportion of treatments without Grade 3–5 toxicity (CTCAE, version 4.0) up to 12 months after treatment and/or discontinuation of the treatment for any reason as primary endpoint. Local-progression free survival, overall survival and quality of life will be analyzed as secondary end points. Discussion The aim of this study is to confirm the toxicity

  1. Magnetic Interactions in the Copper Complex (L-Aspartato)(1,10-phenanthroline)copper(II) Hydrate. An Exchange-Coupled Extended System with Two Dissimilar Copper Ions.

    PubMed

    Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio

    1997-07-01

    We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.

  2. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V)

    NASA Astrophysics Data System (ADS)

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at λmax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 μg mL -1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  3. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V).

    PubMed

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method. PMID:17142094

  4. Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions.

    PubMed

    Veerakumar, Pitchaimani; Chen, Shen-Ming; Madhu, Rajesh; Veeramani, Vediyappan; Hung, Chin-Te; Liu, Shang-Bin

    2015-11-11

    High surface area carbon porous materials (CPMs) synthesized by the direct template method via self-assembly of polymerized phloroglucinol-formaldehyde resol around a triblock copolymer template were used as supports for nickel nanoparticles (Ni NPs). The Ni/CPM materials fabricated through a microwave-assisted heating procedure have been characterized by various analytical and spectroscopic techniques, such as X-ray diffraction, field emission transmission electron microscopy, vibrating sample magnetometry, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. Results obtained from ultraviolet-visible (UV-vis) spectroscopy demonstrated that the supported Ni/CPM catalysts exhibit superior activity for catalytic reduction of organic dyes, such as methylene blue (MB) and rhodamine B (RhB). Further electrochemical measurements by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) also revealed that the Ni/CPM-modified electrodes showed excellent sensitivity (59.6 μA μM(-1) cm(-2)) and a relatively low detection limit (2.1 nM) toward the detection of Hg(II) ion. The system has also been successfully applied for the detection of mercuric ion in real sea fish samples. The Ni/CPM nanocomposite represents a robust, user-friendly, and highly effective system with prospective practical applications for catalytic reduction of organic dyes as well as trace level detection of heavy metals. PMID:26479076

  5. Influence of prolactin and calcium gluconate concentration on permeation and intestinal absorption of Ca(II) ions.

    PubMed

    Ryszka, Florian; Klimas, Rimantas; Dolinska, Barbara; Lopata, Katarzyna

    2012-08-01

    The in vitro permeation and absorption of calcium ions across the small intestine were measured at different concentrations of calcium gluconate solutions (1.0, 10.0 and 20.0 mM) with or without prolactin. The calcium ions permeated through the small intestine from a donor environment to an acceptor environment that mimicked the conditions in the stomach to ileum segment of the digestive tract. The permeation and absorption of calcium were directly dependent on the calcium concentration of the solutions. At 10 and 20 mM permeation was significantly higher than that at 1.0 mM (p < 0.05). In the presence of prolactin both permeation and absorption increase considerably. At the lowest concentration (1.0 mM) simulating calcium deficiency, there was compensation by the small intestine, suggesting that such deficiency stimulates its mobilization from intestinal tissue. Prolactin enhances the calcium mobilization process even at sufficient calcium intakes. It is suggested that prolactin takes part in regulation of calcium homeostasis in the organism. PMID:22702896

  6. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: II. Mechanical analysis

    NASA Astrophysics Data System (ADS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-12-01

    This paper presents the second part of a study aiming at modelling the mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C3S). Such composites may be subjected to internal pressures due to ion exchange processes between ionic species which are in IER and interstitial solution of the cement paste. The reactive transport model developed in the companion paper is coupled in this study to a multi-scale approach describing the mechanical behavior of the material. It is based on an analogy with thermomechanics for taking in account the IER internal pressures, and on Eshelby-based homogenization techniques to estimate both mechanical and coupling parameters. A laboratory test has been set up to measure the macroscopic strain caused by the swelling phenomenon. The model has been finally implemented in a finite elements software. The simulation of the laboratory tests has been performed and the results have been analyzed and compared to experimental data.

  7. Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization

    NASA Astrophysics Data System (ADS)

    Breitsprecher, Konrad; Košovan, Peter; Holm, Christian

    2014-07-01

    In this work, which is a continuation of part I, we introduce a primitive model for an ionic liquid (IL) that can account for the planar shape of cations typical for ILs like imidazolium. The model consists of a spherical anion and a triangular cation consisting of three spheres, where one or all three vertices of the triangle can carry electric charge. We use molecular dynamics simulations to study the differential capacitance Cd of an ionic liquid confined between two planar electrodes. Our goal is to elucidate the complex dependence of Cd on the electrode potential U in terms of simple entities such as the shape and charge distribution of the ions. For this purpose, we compare the results from the current model to the results based on the models with spherical cations that possess asymmetry in ion valence and shape that were analyzed in detail in part I of this work. We show that the various possible stackings of the triangles near the cathode lead to noticeable new features in Cd(U) as compared to the spherical models. Different distributions of charges on the triangle lead to different preferred orientations of the cations near the cathode that are moreover potential dependent.

  8. Self-assembly of copper(II) ion-mediated nanotube and its supramolecular chiral catalytic behavior.

    PubMed

    Jin, Qingxian; Zhang, Li; Cao, Hai; Wang, Tianyu; Zhu, Xuefeng; Jiang, Jian; Liu, Minghua

    2011-11-15

    Self-assembly of several low-molecular-weight L-glutamic acid-based gelators, which individually formed helical nanotube or nanofiber structures, was investigated in the presence of Cu(2+) ion. It was found that, when Cu(2+) was added into the system, the self-assembly manner changed significantly. Only in the case of bolaamphiphilic glutamic acid, N,N'-hexadecanedioyl-di-L-glutamic acid (L-HDGA), were the hydrogel formation as well as the nanotube structures maintained. The addition of Cu(2+) ion caused a transition from monolayer nanotube of L-HDGA to a multilayer nanotube with the thickness of the tubular wall about 10 nm. For the other amphiphiles, the gel was destroyed and nanofiber structures were mainly formed. The formed Cu(2+)-containing nanostructures can function as an asymmetric catalyst for Diels-Alder cycloaddition between cyclopentadiene and aza-chalcone. In comparison with the other Cu(2+)-containing nanostructures, the Cu(2+)-mediated nanotube structure showed not only accelerated reaction rate, but enhanced enantiomeric selectivity. It was suggested that, through the Cu(2+) mediated nanotube formation, the substrate molecules could be anchored on the nanotube surfaces and produced a stereochemically favored alignment. When adducts reacted with the substrate, both the enantiomeric selectivity and the reaction rate were increased. Since the Cu(2+)-mediated nanotube can be fabricated easily and in large amount, the work opened a new way to perform efficient chiral catalysis through the supramolecular gel. PMID:21978005

  9. The binding of Ni(II) ions to hexahistidine as a model system of the interaction between nickel and His-tagged proteins.

    PubMed

    Valenti, Laura E; De Pauli, Carlos P; Giacomelli, Carla E

    2006-02-01

    The aim of this work is to study the binding of nickel ions to hexahistidine (His(6)) combining potentiometric titrations and spectroscopic (UV-Vis and circular dichroism) determinations in order to establish the species distribution as a function of the pH, their stoichiometry, stability and geometry. For comparative purposes, the same procedure was applied to the Ni-histidine (His) system. His behaves as a tridentate ligand, coordinating the carboxyl group, the imidazole and the amino nitrogen atoms to Ni(II) ions in an octahedral coordination and a bis(histidine) complex is formed at pH higher than 5. For the Ni-His(6) system, the complex formation starts at pH 4 and five different species (Ni(His(6))H, Ni(His(6)), Ni(n)(His(6))(n), Ni(n)(His(6))(n)H(-n/2), Ni(n)(His(6))(n)H(-n)) are formed as a function of the pH. Ni(His(6))H involves the coordination of the imidazole nitrogen and a deprotonated amide nitrogen (N(Im), N(-)) resulting in an octahedral geometry. In Ni(His(6)), an imidazole nitrogen is deprotonated and coordinated (2N(Im), N(-)) to the metal ion with a square planar geometry. The aggregated forms result from the extra Ni-N(Im) coordination, resulting in a 4N square planar geometry that is stabilized by inter/intramolecular hydrogen bonds. This coordination mode is not altered during the deprotonation steps from Ni(n)(His(6))(n). PMID:16376429

  10. A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu(II) ions.

    PubMed

    Wu, Zhan-Chao; Wang, Zhao-Zhan; Liu, Jie; Yin, Jin-Hua; Kuang, Shao-Ping

    2015-11-01

    A new porous magnetic chitosan modified by melamine (MA-CS/Fe3O4) was synthesized. The compositions and surface topographies were characterized by infrared (IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric (TG) analysis and scanning electron microscope (SEM), respectively. The results of adsorption kinetics showed the adsorption behavior could be better described by the pseudo-second-order equation (R>0.999). The adsorption isotherm was well fitted by the Langmuir equation (R>0.999), and the values of separation factors were in the range of 0-1.0. The maximum adsorption capacity for Cu(II) was 2.58mmolg(-1) at the optimal experimental conditions, which were pH=5.5, t=25min, C0=5.0mmolL(-1). The rate-controlling step was supposed to be chemical adsorption rather than mass transport. The adsorbent still exhibited high adsorption capacity after five regeneration cycles. The adsorption mechanism was due to coordination between Cu(II) and N atoms.

  11. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    PubMed

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method.

  12. The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid.

    PubMed

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O

    2012-02-20

    Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 Å, and MXAN, 1.99 ± 0.03 Å. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 Å (EXAFS) or 2.14 ± 0.06 Å (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 Å (EXAFS) or 3.0 ± 0.1 Å (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 Å that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 Å axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions. PMID:22316238

  13. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples.

  14. Colorimetric detection of copper(II) ion using click chemistry and hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme.

    PubMed

    Ge, Chenchen; Luo, Quan; Wang, Dou; Zhao, Shiming; Liang, Xiaoling; Yu, Luxin; Xing, Xuerong; Zeng, Lingwen

    2014-07-01

    G-quadruplex-forming sequence can be formed through a copper(I) ion (Cu(+))-catalyzed click chemistry between azide- and alkyne-modified short G-rich sequences in aqueous solution, eliminating immobilization and washing steps of conventional assays. The source for Cu(+) was generated from the reduction of Cu(2+) with the reductant of sodium ascorbate. In the presence of hemin and K(+), the self-assembly of hemin/G-quadruplex structure has the activity of horseradish peroxidase (HRP), which can catalyze its colorless substrate tetrazmethyl benzidine (TMB) into a colored product. Hence, the concentration of Cu(2+) can be evaluated visually for qualitative analysis according to the color change of the solution, and the optical density (OD) value of the resulting solution at 450 nm was also recorded using a microplate reader for quantitative analysis. PMID:24950121

  15. Building a better mousetrap II: using Design of Experiments with unconfounded ions to compare the growth of different microalgae.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    A large number of unconfounded media variations were used with a Scheffe Mix Model to examine in an unambiguous fashion the effects of variations in six important ions; NH4(+), NO3(-), Na(+), K(+), PO4(-), and Cl(-), on the growth of Chlorella vulgaris. This allows several novel observations on media components, for example, the inhibitory effects of chloride, to be made. Using a side by side comparison, it is shown that two strains of Chlorella show significant physiological and functional differences brought out by this approach. Testing selected formulations with a diverse set of algae demonstrated different effects on both growth and cellular lipid content, in some cases driving significant lipid production. This suggests that future work using a larger portion of media composition space could lead to the development of novel media supporting maximal biomass production and lipid production. PMID:25465789

  16. Kinetics of release of serotonin from isolated secretory granules. II. Ion exchange determines the diffusivity of serotonin.

    PubMed Central

    Marszalek, P E; Farrell, B; Verdugo, P; Fernandez, J M

    1997-01-01

    We measured the efflux of 5-hydroxytryptamine (5-HT, serotonin) from an intact secretory granule extracted from the mast cell of the beige mouse. The efflux was measured with amperometry after rupture of the granule membrane was triggered by electroporation. We determined the diffusivity of 5-HT within the secretory granule to be 2.0 x 10(-8) cm2 s(-1) when the granule is in contact with a physiological saline and found that this diffusivity depends on the valence of the cation in the external electrolyte. There is a fivefold increase in the diffusion coefficient of 5-HT determined in CsCl (150 mM, pH 7.2) at 3.7 x 10(-8) cm2 s(-1) compared to that determined in histamine dihydrochloride (Hi, 100 mM at pH 4.5) at 0.7 x 10(-8) cm2 s(-1). We found that the rate of expansion of the granule matrix observed in physiological medium correlates with the efflux of 5-HT, and that the rate of swelling of the matrix and the efflux depend on the microviscosity within the granule matrix and not the bulk viscosity of the external solution. The low diffusivity of 5-HT (approximately 500-fold less than in the bulk), the observation that the valence of the counterion affects this diffusivity, and the relationship between the volume changes of the matrix and the efflux suggest that 5-HT is released from the granule by ion exchange. We discuss the implications of this result for exocytotic release in mast cells and propose that an ion exchange mechanism could control the rate of release in other secretory systems. Images FIGURE 1 PMID:9284284

  17. Ion parking during ion/ion reactions in electrodynamic ion traps.

    PubMed

    McLuckey, Scott A; Reid, Gavin E; Wells, J Mitchell

    2002-01-15

    Under appropriate ion density conditions, it is possible to selectively inhibit rates of ion/ion reactions in a quadrupole ion trap via the application of oscillatory voltages to one or more electrodes of the ion trap. The phenomenon is demonstrated using dipolar resonance excitation applied to the end-cap electrodes of a three-dimensional quadrupole ion trap. The application of a resonance excitation voltage tuned to inhibit the ion/ion reaction rate of a specific range of ion mass-to-charge ratios is referred to as "ion parking". The bases for rate inhibition are (i) an increase in the relative velocity of the ion/ion reaction pair, which reduces the cross section for ion/ion capture and, at least in some cases, (ii) reduction in the time of physical overlap of positively charged and negatively charged ion clouds. The efficiency and specificity of the ion parking experiment is highly dependent upon ion densities, trapping conditions, ion charge states, and resonance excitation conditions. The ion parking experiment is illustrated herein along with applications to the concentration of ions originally present over a range of charge states into a selected charge state and in the selection of a particular ion from a set of ions derived from a simple protein mixture.

  18. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    SciTech Connect

    Vardanyan, Zaruhi; Trchounian, Armen

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  19. Graphenothermal reduction synthesis of 'exfoliated graphene oxide/iron (II) oxide' composite for anode application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Petnikota, Shaikshavali; Marka, Sandeep Kumar; Banerjee, Arkaprabha; Reddy, M. V.; Srikanth, V. V. S. S.; Chowdari, B. V. R.

    2015-10-01

    Graphenothermal Reduction process is used to obtain exfoliated graphene oxide (EG)/iron (II) oxide (FeO) composite prepared at 650 °C for 5 h in argon. Structural and compositional analyses of the sample confirm the formation of EG/FeO composite. This composite shows a reversible capacity of 857 mAh g-1 at a current rate of 50 mA g-1 in the voltage range 0.005-3.0 V versus Li. An excellent capacity retention up to 60 cycles and high coulombic efficiency of 98% are also observed. Characteristic Fe2+/0 redox peaks observed in Cyclic Voltammetry measurement are explained in correlation with lithium storage mechanism. Thermal, electrical and impedance spectroscopy studies of EG/FeO composite are discussed in detail. Comparative electrochemical cycling studies of EG/FeO composite with Fe2O3 and Fe3O4 materials prepared under controlled conditions are also discussed.

  20. Fine-Tuning of Electronic Structure of Cobalt(II) Ion in Nonplanar Porphyrins and Tracking of a Cross-Hybrid Stage: Implications for the Distortion of Natural Tetrapyrrole Macrocycles.

    PubMed

    Liu, Qiuhua; Zhang, Xi; Zeng, Wennan; Wang, Jianxiu; Zhou, Zaichun

    2015-11-01

    The core size of the porphyrin macrocycles was closely related to their stability of the different electron structure in the central metal ion. Cobalt(II) ions can undergo a conversion in electron configurations upon N4 core contraction of 0.05 Å in nonplanar porphyrins, and these ions still maintain low spin forms after and before conversion. The structural fine-tuning can induce the appearance of a cross-hybrid stage [d(x(2)-y(2))sp(2) ↔ d(z(2))sp(2)] based on quadrilateral coordination of the planar core. The results indicate that the configuration conversion plays a key role in electron transfer in redox catalysis involving cobalt complexes. The electronic properties of six monostrapped cobalt(II) porphyrins were investigated by spectral, paramagnetic, and electrochemical methods. The macrocyclic deformations and size parameters of Co-containing model compounds were directly obtained from their crystal structures. PMID:26461496

  1. Spectral Properties of Large Gradual Solar Energetic Particle Events. II. Systematic Q/M Dependence of Heavy Ion Spectral Breaks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Mason, G. M.; Dayeh, M. A.; Ebert, R. W.; McComas, D. J.; Li, G.; Cohen, C. M. S.; Mewaldt, R. A.; Schwadron, N. A.; Smith, C. W.

    2016-09-01

    We fit ∼0.1–500 MeV nucleon‑1 H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ a and γ b, and break energy E B, and derive the low-energy spectral slope γ 1. We find that: (1) γ a, γ 1, and γ b are species-independent and the spectra steepen with increasing energy; (2) E B decreases systematically with decreasing Q/M scaling as (Q/M) α ; (3) α varies between ∼0.2–3 and is well correlated with the ∼0.16–0.23 MeV nucleon‑1 Fe/O; (4) in most events, α < 1.4, γ b–γ a > 3, and O E B increases with γ b–γ a; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and 3He/4He ratios are enriched, α ≥ 1.4, γ b–γ a < 3, and E B decreases with γ b–γ a. The species-independence of γ a, γ 1, and γ b and the Q/M dependence of E B within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ 1, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E B is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  2. Spectral Properties of Large Gradual Solar Energetic Particle Events. II. Systematic Q/M Dependence of Heavy Ion Spectral Breaks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Mason, G. M.; Dayeh, M. A.; Ebert, R. W.; McComas, D. J.; Li, G.; Cohen, C. M. S.; Mewaldt, R. A.; Schwadron, N. A.; Smith, C. W.

    2016-09-01

    We fit ˜0.1-500 MeV nucleon-1 H-Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ a and γ b, and break energy E B, and derive the low-energy spectral slope γ 1. We find that: (1) γ a, γ 1, and γ b are species-independent and the spectra steepen with increasing energy; (2) E B decreases systematically with decreasing Q/M scaling as (Q/M) α ; (3) α varies between ˜0.2-3 and is well correlated with the ˜0.16-0.23 MeV nucleon-1 Fe/O; (4) in most events, α < 1.4, γ b-γ a > 3, and O E B increases with γ b-γ a; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and 3He/4He ratios are enriched, α ≥ 1.4, γ b-γ a < 3, and E B decreases with γ b-γ a. The species-independence of γ a, γ 1, and γ b and the Q/M dependence of E B within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ 1, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E B is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  3. Cobalt(II)-Based Single-Ion Magnets with Distorted Pseudotetrahedral [N2O2] Coordination: Experimental and Theoretical Investigations.

    PubMed

    Ziegenbalg, Sven; Hornig, David; Görls, Helmar; Plass, Winfried

    2016-04-18

    The synthesis and magnetic properties of cobalt(II) complexes with sterically demanding Schiff-base ligands are reported. The compounds [Co(L(Br))2] (1) and [Co(L(Ph))2]·CH2Cl2 (2·CH2Cl2) are obtained by the reaction of cobalt(II) acetate with the ligands HL(Br) and HL(Ph) in a dichloromethane/methanol mixture. 1 and 2 crystallize in the space groups P21212 and P1̅, respectively. X-ray diffraction studies revealed mononuclear constitution of both complexes. For 1, relatively short intermolecular Co-Co distances of 569 pm are observed. In compound 2, a hydrogen-bonded dichloromethane molecule is present, leading to a solvent aggregate with remarkable thermal stability for which desolvation is taking place between 150 and 210 °C. Magnetic measurements were performed to determine the zero-field-splitting (ZFS) parameter D for both complexes. Frequency-dependent susceptibility measurements revealed slow magnetic relaxation behavior with spin-reversal barriers of 36 cm(-1) for 1 and 43 cm(-1) for 2 at an applied external field of 400 Oe. This observation is related to an increasing distortion of the pseudotetrahedral coordination geometry for complex 2. These distortions can be decomposed in two major contributions. One is the elongation effect described by the parameter ϵT, which is the ratio of the averaged obtuse and acute bond angles. The other effect is related to a twisting distortion of the chelate coordination planes at the cobalt center. A comparison with literature examples reveals that the elongation effect seems to govern the overall magnetic behavior in pseudotetrahedral complexes with two bidentate chelate ligands. Ab initio calculations for complexes 1 and 2 using the CASPT2 method show strong splitting of the excited (4)T2 term, which explains the observed strong ZFS. Spin-orbit calculations with the RASSI-SO method confirm the single-molecule-magnet behavior because only small transversal elements are found for the lowest Kramers doublet for both

  4. Precision, high dose radiotherapy. II. Helium ion treatment of tumors adjacent to critical central nervous system structures

    SciTech Connect

    Saunders, W.M.; Chen, G.T.Y.; Austin-Seymour, M.; Castro, J.R.; Collier, J.M.; Gauger, G.; Gutin, P.; Phillips, T.L.; Pitluck, S.; Walton, R.E.

    1985-07-01

    In this paper, the authors present a technique for treating relatively small, low grade tumors located very close to critical, radiation sensitive central nervous system structures such as the spinal cord and the brain stem. A beam of helium ions is used to irradiate the tumor. The nearby normal tissues are protected by exploiting the superb dose localization properties of this beam, particularly its well defined and controllable range in tissue, the increased dose deposited near the end of this range (i.e., the Bragg peak), the sharp decrease in dose beyond the Bragg peak, and the sharp penumbra of the beam. To illustrate the technique, the authors present a group of 19 patients treated for chordomas, meningiomas and low grade chondrosarcomas in the base of the skull or spinal column. They have been able to deliver high, uniform doses to the target volumes, while keeping the doses to the nearby critical tissues below the threshold for radiation damage. Follow-up on this group of patients is short, averaging 22 months (2 to 75 months). Currently, 15 patients have local control of their tumor. Two major complications, a spinal cord transsection and optic tract damage, are discussed in detail. Their treatment policies have been modified to minimize the risk of these complications in the future, and they are continuing to use this method to treat such patients.

  5. Modeling solar flare conduction fronts. I - Homogeneous plasmas and ion-acoustic turbulence. II - Inhomogeneous plasmas and ambipolar electric fields

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Winglee, R. M.; Dulk, G. A.

    1990-01-01

    A one-dimensional, electrostatic, particle-in-cell simulation is used here to model the expansion of a heated electron population in a coronal loop during a solar flare and the characteristics of the associated X-ray emissions. The hot electrons expand outward from the localized region, creating an ambipolar electric field which accelerates a return current of cooler, ambient electrons. Ion-acoustic waves are generated by the return currents as proposed by Brown et al. (1979), but they play little or no role in containing energetic electrons and the conduction front proposed by Brown et al. does not form. The X-ray emission efficiency of the electrons is too low in the corona for them to be the source of hard X-ray bursts. The particle dynamics changes dramatically if the heated plasma is at low altitudes and expands upward into the more tenuous plasma at higher altitudes. Two important applications of this finding are the radio-frequency heating of the corona and the collisional heating of the chromosphere by precipitating energetic electrons. In both cases, the overlying plasma has a density that is too low to supply a balancing return current to the expanding hot electrons. As a result, an ambipolar electric field develops that tends to confine the energetic electrons behind a front that propagate outward at about the speed of sound.

  6. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-08-01

    Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb2+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb2+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb2+ (31.72 mg g-1) is 2.03 times higher than that of pristine yeast (15.63 mg g-1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb2+ via synergistic effect.

  7. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.

    PubMed

    Furuike, Yoshihiko; Akita, Yuka; Miyahara, Ikuko; Kamiya, Nobuo

    2016-03-29

    Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases.

  8. Applications of ion chromatography in the semiconductor industry. II. Determination of basic airborne contaminants in a cleanroom.

    PubMed

    Lue, S J; Huang, C

    1999-07-30

    Since the geometry of semiconductors and integrated circuits has been shrunk to well below sub-micron dimensions, there is a great demand for precise and reliable analytical techniques to measure and monitor the contaminants in all areas related to the fabrication process. Special concerns about the air cleanliness in a Fab lead to the necessity for developing analytical techniques to perform this task. In this research, basic airborne contaminants in a cleanroom were adsorbed onto a collection tube, subsequently extracted with deionized water and analyzed by ion chromatography. Such a method is capable of simultaneously measuring the concentrations of ammonia and cations (e.g., sodium, potassium, calcium, magnesium, etc.) present in the cleanroom air samples. The optimal sample preparation method was determined and the analyte concentrations at various locations in the cleanroom were measured. The results showed significant variations from one location to another. The long-term fluctuations in the contaminant levels were also significant. Data obtained using this method compared well with data from inductively coupled plasma analysis of the same materials.

  9. Response mechanism of a neutral carrier Hg(II) polymeric membrane ion-selective electrode. SEM and EDAX study.

    PubMed

    Pérez-Marín, L; López-Valdivia, H; Avila-Pérez, P; Otazo-Sánchez, E; Macedo-Miranda, G; Gutiérrez-Lozano, O; Alonzo Chamaro, J; De la Torres-Orozco, J; Carapia-Morales, L

    2001-04-01

    Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectrometry (EDAX) were used to study the response mechanism of a previously reported new Hg membrane ion-selective electrode (ISE) based on 1,3-diphenylthiourea. These techniques allowed the study of the membrane surface characteristics, such as the morphological homogeneity and chemical composition. A 'twice Nernstian' response at pH > or = 7 was explained by the detection of the Hg(OH)+ cation. A normal Nernstian response was found at acidic pH values. Using these techniques, both coordination compounds, [Ligand-Hg-OH] at pH 7 and [Ligand-Hg-Ligand] at pH 4.5, were confirmed on the electrode membrane surface activated with Hg(NO3)2 solution at both pH values. These methods provide results which are independent of the potential measurement data and in agreement with them. A successful response model has explained both independent and unbiased sets of results. These conclusions confirm the proposed response mechanisms for this new Hg membrane sensor.

  10. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  11. XAS study of mercury(II) ions trapped in mercaptan-functionalized mesostructured silicate with a wormhole framework structure.

    PubMed

    Chen, Chia-Chen; McKimmy, Emily J; Pinnavaia, Thomas J; Hayes, Kim F

    2004-09-15

    Directly assembled wormhole mesostructures with high level functionalized mercaptan (MP-HMS) have been shown to be effective mercury(II) (Hg2+) trapping agents. Sorption of Hg2+ onto MP-HMS was investigated using X-ray absorption spectroscopy (XAS) to identify the structural coordination of the adsorbed Hg. Samples with different fractions of mercaptan functionalized groups (i.e., x = 0.1 and 0.5) with various Hg/S molar ratios ranging from 0.05 to 1.4 were investigated. XAS analysis indicates that adsorbed Hg first coordination shell is best fitted with an Hg-O path and an Hg-S path. The Hg-S atomic distance (R(Hg-S)) remained relatively constant while the Hg-S coordination numbers (CN) decreased as Hg/S loading increased. For the Hg-O path, both the CN and the R(Hg-O) increased with increasing Hg loading. XAS results suggest that at low Hg loadings, adsorbed Hg2+ forms mostly monodentate sulfur complexes (-S-Hg-OH) with the sulfur functional groups on the MP-HMS surfaces. At high Hg loadings, the Hg coordination environment is consistent with the formation of a double-layer structure of Hg attached to sulfur binding sites (-S-Hg-O-Hg-OH).

  12. The effect of magnesium ions on action spectra for reactions mediated by photosystems I and II in spinach chloroplasts.

    PubMed

    Loos, E

    1976-08-13

    Action spectra were measured for positive changes in variable fluorescence (emission greater than 665 nm) excited by a beam of 485 nm chopped at 75 HZ. The action of two further beams were compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 HZ and adjusting the intensity of the latter such as to cancel out any 0.3 HZ component in the 75 HZ fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O2 evolution with ferricyanide/p-phenylenediamine as electron acceptor, and for O2 uptake mediated by methyl viologen with ascorbate 3-(p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol. Addition of 5 mM MgCl2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O2 evolution, and decreases it for methyl viologen-mediated O2 uptake with 2,6-dichlorophenolindo-phenol/ascorbate as electron donor in the presence of 3-(p-chlorophenyl)-1,1-dimethylurea. The change in variable fluorescence and O2 evolution are stimulated by MgCl2, whereas O2 uptake is inhibited by it. The results are discussed in terms of a model assuming a tripartite organization of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109-116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72-85). MgCl2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems.

  13. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    SciTech Connect

    Logan, G.; Moir, R.; Hoffman, M.

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  14. Study of NBI-driven chirping mode properties and radial location by the heavy ion beam probe in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Eliseev, L. G.; Castejón, F.; Hidalgo, C.; Khabanov, P. O.; Kozachek, A. S.; Krupnik, L. I.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Sharapov, S. E.; Ufimtsev, M. V.; Zenin, V. N.; HIBP Group; TJ-II Team

    2016-11-01

    Alfvén eigenmodes (AEs) were studied in low magnetic shear flexible heliac TJ-II (B 0  =  0.95 T, R 0  =  1.5 m, < a>   =  0.22 m) neutral beam injection (NBI) heated plasmas (P NBI  ⩽  1.1 MW, E NBI  =  32 keV) using the heavy ion beam probe (HIBP). L-mode hydrogen plasmas heated with co-, counter- and balanced-NBI and electron cyclotron resonance heating (ECRH) were investigated in various magnetic configurations with rotational transform ι(a)/2π  =  1/q ~ 1.5-1.6. The HIBP diagnostic is capable of simultaneously measuring the oscillations of the plasma electric potential, density and poloidal magnetic field. In earlier studies chirping modes have been observed with 250 kHz  <  f AE  <  380 kHz in combined ECR and NBI heated plasmas at low density {{\\bar{n}}\\text{e}}   =  (0.3-1.5)  ×  1019 m-3. In this paper we report the observation of chirping modes obtained with NBI only in plasmas with densities similar to those of earlier studies and obtained after lithium evaporation in the vacuum vessel. The absence of ECRH in the discharges studied here shows that ECRH is not a necessary ingredient to obtain chirping modes in TJ-II but rather a tool for obtaining low-density discharges. Using the HIBP we deduce that the location of the AE chirping mode is  -0.8  <  ρ  <  0.8. Chirping modes have a specific spatial structure: electric potential perturbations have a ballooning character, while the density and B pol perturbations are nearly symmetric for both ECRH  +  NBI and NBI-only plasmas. On TJ-II, the dominant effect on the nonlinear evolution of the AE from the chirping state to the steady-frequency state is the magnetic configuration, determined by the vacuum ι and plasma current I pl.

  15. Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues.

    PubMed

    Deng, Yi; Wang, Xin; Xue, Feng; Zheng, Lei; Liu, Jian; Yan, Feng; Xia, Fan; Chen, Wei

    2015-04-01

    Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg(2+)) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg(2+) using the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg(2+) are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL(-1) (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.

  16. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. PMID:27497195

  17. High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: effects of the presence of manganese(II) ions.

    PubMed

    Rapta, Peter; Valachová, Katarína; Gemeiner, Peter; Soltés, Ladislav

    2009-02-01

    This study compares the radical scavenging capacity of high-molar-mass hyaluronan (HA) using standardized methods applying 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and 2,2'-azinobis[3-ethylbenzthiazoline sulfonate] (ABTS) radical cations as oxidants. Additionally, spin-trapping technique combined with electron paramagnetic resonance (EPR) was used to evaluate the ability of HA to scavenge reactive radicals. The thermal decomposition of K2S2O8 in pure H2O or in a H2O/dimethyl sulfoxide (DMSO) mixture at 333 K was used as a source of reactive paramagnetic species. We found that HA does not exhibit radical-scavenging activity when DPPH radicals or ABTS(.+) radical cations are used as oxidant, but that HA is an effective radical scavenger at low concentrations, if the oxidation reactions are initiated by the decomposition of K2S2O8. At higher HA concentrations, a more complex behavior and prooxidant HA action was observed. The influence of Mn(II) ions on the reaction mechanisms of radical generation and termination in the K2S2O8/H2O/DMSO system in the presence of HA was studied in detail. PMID:19235158

  18. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples.

  19. Catalytic-Oxidative Leaching of Low-Grade Complex Zinc Ore by Cu (II) Ions Produced from Copper Ore in Ammonia-Ammonium Sulfate Solution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi Xiong; Yin, Zhou Lan; Hu, Hui Ping; Chen, Qi Yuan

    2012-10-01

    The catalytic-oxidative leaching of a mixed ore, which consists of low-grade oxide copper ore and oxide zinc ore containing ZnS, was investigated in ammonia-ammonium sulfate solution. The effect of the main parameters, such as mass ratio of copper ore to zinc ore, liquid-to-solid ratio, concentration of lixivant, leaching time, and temperature, was studied. The optimal leaching conditions with a maximum extraction of Cu 92.6 pct and Zn 85.5 pct were determined as follows: the mass ratio of copper ore to zinc ore 4/10 g/g, temperature 323.15 K (50 °C), leaching time 6 hours, stirring speed 500 r/min, liquid-to-solid ratio 3.6/1 cm3/g, concentration of lixivant including ammonia 2.0 mol/dm3, ammonium sulfate 1.0 mol/dm3, and ammonium persulfate 0.3 mol/dm3. It was found that ZnS in the oxide zinc ore could be extracted with Cu(II) ion, which was produced from copper ore and was used as the catalyst in the presence of ammonium persulfate.

  20. Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study.

    PubMed

    Tahmasebi, Elham; Masoomi, Mohammad Yaser; Yamini, Yadollah; Morsali, Ali

    2015-01-20

    The three zinc(II) metal-organic frameworks [Zn2(oba)2(4-bpdb)]·(DMF)x (TMU-4), [Zn(oba)(4-bpdh)0.5]n·(DMF)y (TMU-5), and [Zn(oba)(4-bpmb)0.5]n·(DMF)z (TMU-6) [DMF = dimethylformamide, H2oba = 4,4'-oxybisbenzoic acid, 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene, and 4-bpmb = N(1),N(4)-bis((pyridin-4-yl)methylene)benzene-1,4-diamine], which contain azine-functionalized pores, have been successfully synthesized by mechanosynthesis as a convenient, rapid, low-cost, solventless, and green process. These MOFs were studied for the removal and extraction of some heavy-metal ions from aqueous samples, and the effects of the basicity and void space of these MOFs on adsorption efficiency were evaluated. The results showed that, for trace amounts of metal ions, the basicity of the N-donor ligands in the MOFs determines the adsorption efficiency of the MOFs for the metal ions. In contrast, at high concentrations of metal ions, the void space of the MOFs plays a main role in the adsorption process. The studies conducted revealed that, among the three MOFs, TMU-6 had a lower adsorption efficiency for metal ions than the other two MOFs. This result can be attributed to the greater basicity of the azine groups on the TMU-4 and TMU-5 pore walls as compared to the imine groups on the N-donor ligands on the TMU-6 pore walls. Subsequently, TMU-5 was chosen as an efficient sorbent for the extraction and preconcentration of trace amounts of some heavy-metal ions including Cd(II), Co(II), Cr(III), Cu(II), and Pb(II), followed by their determination by flow injection inductively coupled plasma optical emission spectrometry. Several variables affecting the extraction efficiency of the analytes were investigated and optimized. The optimized methodology exhibits a good linearity between 0.05 and 100 μg L(-1) (R(2) > 0.9935) and detection limits in the range of 0.01-1.0 μg L(-1). The method has enhancement factors between 42

  1. Binding of copper(II) ions to the polyproline II helices of PEVK modules of the giant elastic protein titin as revealed by ESI-MS, CD, and NMR.

    PubMed

    Ma, Kan; Wang, Kuan

    2003-10-01

    Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of

  2. Ribonuclease Activity of an Artificial Catalyst That Combines a Ligated Cu(II) Ion and a Guanidinium Group at the Upper Rim of a cone-Calix[4]arene Platform.

    PubMed

    Salvio, Riccardo; Volpi, Stefano; Cacciapaglia, Roberta; Casnati, Alessandro; Mandolini, Luigi; Sansone, Francesco

    2015-06-01

    A cone-calix[4]arene derivative, featuring a guanidinium group and a Cu(II) ion ligated to a 1,4,7-triazacyclononane (TACN) ligand at the 1,3-distal positions of the upper rim, effectively catalyzes the cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) and a number of diribonucleoside 3',5'-monophosphates (NpN'). Kinetic and potentiometric measurements support the operation of a general-base/general-acid mechanism and demonstrate that the hydroxo form of the ligated Cu(II) ion is the sole catalytically active species. Rate enhancements relative to the background hydrolysis reaction at 1 mM catalyst concentration are 6 × 10(5)-fold for HPNP and cluster around 10(7)-fold with the most favorable catalyst-NpN' combinations.

  3. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  4. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample. PMID:27211049

  5. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  6. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  7. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  8. The inhibitory effect of luteolin-7-O-glucoside on the formation of pentyl and 7-carboxyheptyl radicals from 13-hydroperoxy-9,11-octadecadienoic acid in the presence of iron(II) ions.

    PubMed

    Iwahashi, Hideo; Akata, Kayo; Sunaga, Atsuko; Tone, Yoshiko; Yamada, Noriko; Iijima, Keiko

    2004-08-01

    A flavone glucoside, luteolin-7-O-glucoside (luteolin-7-G) inhibited the formation of pentyl and 7-carboxyheptyl radicals in the reaction of 13-hydroperoxy-9,11-octadecadienoic (13-HPODE) acid with iron(II) ions. The inhibitory effect of luteolin-7-G was diminished in the presence of EDTA. These results indicated that the inhibitory effects of luteolin-7-G occur partly through the chelation of iron ions. Measurement of visible spectra also showed that luteolin-7-G chelates iron ions. On the other hand, luteolin-7-G did not inhibit the reaction under anaerobic conditions, suggesting that oxygen molecules participate in the inhibition. Oxygen consumption measurements showed that the luteolin-7-G/iron ion complexes react with oxygen molecules in competition with 13-HPODE acid, and free iron ions exclusively react with 13-HPODE acid. The reaction of luteolin-7-G/iron ion complexes with oxygen molecules possibly diminishes the formation of pentyl and 7-carboxyheptyl radicals. PMID:15493461

  9. Influence of the Ca(2+) ion on the Mn4Ca conformation and the H-bond network arrangement in Photosystem II.

    PubMed

    Saito, Keisuke; Ishikita, Hiroshi

    2014-01-01

    In the crystal structure of Photosystem II (PSII) analyzed at a resolution of 1.9Å, most of the bond lengths between Mn and O atoms in the oxygen-evolving Mn4Ca cluster are 1.8-2.1Å. On the other hand, the Mn1O5 bond in the Mn3CaO4 cubane region of the Mn4Ca cluster is significantly elongated to 2.6Å. Using a quantum mechanical/molecular mechanical approach, we investigated factors that are responsible for distortion of the Mn3CaO4 cubane. Removal of Ca led to shortening the Mn1O5 bond by 0.2Å; however, Mn1O5 remained significantly elongated, at >2.5Å. Conversely, removal of Mn4 significantly shortens the Mn1O5 distance by 0.5Å to 2.2Å, resulting in a more symmetric cubane shape. These results suggest that Mn4, not Ca, is predominantly responsible for distortion of the Mn3CaO4 cubane. It was not the Ca component that was responsible for the existence of the two S2 conformers but two different Mn oxidation states (Mn1, Mn2, Mn3, M4)=(III, IV, IV, IV) and (IV, IV, IV, III); they were interconvertible by translocation of the O5 atom along the Mn1-O5-Mn4 axis. Depletion of Ca resulted in rearrangement of the H-bond network near TyrZ, which proceeds via a chloride ion (Cl-1 pathway). This may explain why Ca depletion inhibits the S2 to S3 transition, the same process that can also be inhibited by Cl(-) depletion.

  10. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Tao; Li, Jing; Li, Zhan-Chao; Sun, Ting

    2012-02-01

    A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by the hydrothermal-assisted surface imprinting technique using Cd2+ as the template, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AAAPTS) as the functional monomer, and epichlorohydrin as the cross-linking agent (IIP-AAAPTS/SiO2) for the selective removal of Cd2+ from aqueous solution, and was characterized by FTIR, SEM, nitrogen adsorption and the static adsorption-desorption experiment method. The specific surface area of the IIP-AAAPTS/SiO2 sorbents was found to be 149 m2 g-1. The results showed that the maximum static adsorption capacities of IIP-AAAPTS/SiO2 sorbents by hydrothermal heating method and by the conventional heating method were 57.4 and 31.6 mg g-1, respectively. The IIP-AAAPTS/SiO2 sorbents offered a fast kinetics for the adsorption and desorption of Cd(II). The relative selectivity coefficients of IIP-AAAPTS/SiO2 sorbents for Cd2+/Co2+, Cd2+/Ni2+, Cd2+/Zn2+, Cd2+/Pb2+ and Cd2+/Cu2+ were 30.68, 14.02, 3.00, 3.12 and 6.17, respectively. IIP-AAAPTS/SiO2 sorbents had a substantial binding capacity in the range of pH 4-8 and could be used repeatedly. Equilibrium data fitted perfectly with Langmuir isotherm model compared to Freundlich isotherm model. Kinetic studies indicated that adsorption followed a pseudo-second-order model. Negative values of ΔG° indicated spontaneous adsorption and the degree of spontaneity of the reaction increased with increasing temperature. ΔH° of 26.13 kJ mol-1 due to the adsorption of Cd2+ on the IIP-AAAPTS/SiO2 sorbents indicated that the adsorption was endothermic in the experimental temperature range.

  11. Influence of the Ca(2+) ion on the Mn4Ca conformation and the H-bond network arrangement in Photosystem II.

    PubMed

    Saito, Keisuke; Ishikita, Hiroshi

    2014-01-01

    In the crystal structure of Photosystem II (PSII) analyzed at a resolution of 1.9Å, most of the bond lengths between Mn and O atoms in the oxygen-evolving Mn4Ca cluster are 1.8-2.1Å. On the other hand, the Mn1O5 bond in the Mn3CaO4 cubane region of the Mn4Ca cluster is significantly elongated to 2.6Å. Using a quantum mechanical/molecular mechanical approach, we investigated factors that are responsible for distortion of the Mn3CaO4 cubane. Removal of Ca led to shortening the Mn1O5 bond by 0.2Å; however, Mn1O5 remained significantly elongated, at >2.5Å. Conversely, removal of Mn4 significantly shortens the Mn1O5 distance by 0.5Å to 2.2Å, resulting in a more symmetric cubane shape. These results suggest that Mn4, not Ca, is predominantly responsible for distortion of the Mn3CaO4 cubane. It was not the Ca component that was responsible for the existence of the two S2 conformers but two different Mn oxidation states (Mn1, Mn2, Mn3, M4)=(III, IV, IV, IV) and (IV, IV, IV, III); they were interconvertible by translocation of the O5 atom along the Mn1-O5-Mn4 axis. Depletion of Ca resulted in rearrangement of the H-bond network near TyrZ, which proceeds via a chloride ion (Cl-1 pathway). This may explain why Ca depletion inhibits the S2 to S3 transition, the same process that can also be inhibited by Cl(-) depletion. PMID:24095684

  12. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column.

    PubMed

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2004-09-10

    This paper investigates the ability of crab shell to remove nickel(II) ions from aqueous solution in a packed bed up-flow column with an internal diameter of 2 cm. The experiments were performed with different bed heights (15-25 cm) and using different flow rates (5-20 ml/min) in order to obtain experimental breakthrough curves. The bed depth service time (BDST) model was used to analyze the experimental data and the model parameters were evaluated. The column regeneration studies were carried out for seven sorption-desorption cycles. The elutant used for the regeneration of the sorbent was 0.01 M EDTA (disodium) solution at pH 9.8 adjusted using NH4OH. Due to continuous usage of crab shell, a performance loss was observed as the breakthrough curves become more flattened also indicated by the broadened mass transfer zone. The breakthrough time decreased uniformly from 28.1 to 9.5 h as the cycles progressed from one to seven, whereas nickel uptake remained approximately constant throughout the seven cycles. The life-factors for crab shell in terms of critical bed length and breakthrough time were found to be 1.1 cm/cycle and 0.17 per cycle, respectively. The elution efficiency was greater than 99.1% in all the seven cycles. The pH profiles during both sorption and desorption process were also reported. In sorption cycles, there was a sudden raise in pH in the early part of the process and then the pH decreased as the time progressed. In desorption cycles, pH decreased in initial stages and followed by gradual increase in pH, which eventually reached the pH of the inlet elutant. PMID:15363535

  13. Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Its application in making Cd(II) ion selective membrane electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Akhtar, Tabassum

    2011-03-01

    An organic-inorganic composite, poly-o-toluidine Ce(IV) phosphate was chemically synthesized by mixing ortho-toluidine into the gel of Ce(IV) phosphate in different mixing volume ratios. Effect of eluant concentration, elution behavior and pH-titration studies were carried out to understand the ion-exchange capabilities. The physico-chemical properties of the material were determined using AAS, CHN elemental analysis, UV-VIS spectrophotometry, FTIR, SEM/EDX, TGA-DTA, TEM (Transmission electron microscopy), XRD and SEM studies. The distribution studies revealed that the cation-exchange material is highly selective for Cd(II). Due to selective nature of the cation-exchanger, ion selective membrane electrode was fabricated for the determination of Cd(ІІ) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  14. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    SciTech Connect

    Barnard, J. J.; Hay, M. J.; Logan, B. G.; Ng, S. F.; Perkins, L. J.; Veitzer, S.; Yu, S. S.

    2010-07-01

    The simulations provided in this milestone have solidified the theoretical underpinning of direct drive targets and also the ability to design experiments on NDCX II that will enhance our understanding of ion-beam hydrodynamic coupling, and thus be relevant to IFE. For the case of the IFE targets, we have studied hydro and implosion efficiency using HYDRA in ID, a starting point towards the goal of polar direct drive in geometry compatible with liquid wall chambers. Recent analysis of direct drive fusion energy targets using heavy ion beams has found high coupling efficiency of ion beam energy into implosion energy. However, to obtain optimal coupling, the ion energy must increase during the pulse in order to penetrate the outflowing ablated material, and deposit the energy close enough to the fuel so that the fuel achieves sufficient implosion velocity. We have computationally explored ID (radial) time dependent models of ion driven direct drive capsule implosions using the Arbitrary Lagrangian-Eulerian (ALE) code HYDRA, to help validate the theoretical analysis done so far, particularly exploring the effects of varying the ion energy and ion current over the course of the pulse. On NDCX II, experiments have been proposed to explore issues of ion penetration of the outflowing plasma over the course of the ion pulse. One possibility is to create a first pulse of ions that heats a planar target, and produces an outflow of material. A second pulse, {approx}10 ns after the first, of higher ion energy (and hence larger projected range) will interact with this outflow before reaching and further heating the target. We have investigated whether the change in range can be tailored to match the evolution of the ablation front. We have carried out simulations using the one-dimensional hydrodynamic code DISH and HYDRA to set parameters for this class of experiments. DISH was upgraded with an ion deposition algorithm, and we have carried out ID (planar) simulations. HYDRA was

  15. Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3,4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg(II) ions from water.

    PubMed

    Venkateswarlu, Sada; Yoon, Minyoung

    2015-11-14

    Mercury is considered one of the most notorious global pollutants due to its high toxicity and widespread use in industry. Although many materials have been developed for the removal of mercury for water purification, most of these materials are difficult to reuse, which may lead to an increase in the mercury handling expense. Therefore, new sustainable materials that can be easily recycled and are highly efficient for the removal of mercury are required. Herein, we report the surfactant-free green synthesis of Fe3O4 magnetic nanoparticles (MNPs) using a watermelon (Citrullus lanatus) rind extract. The Fe3O4 MNPs were further functionalized with 3,4-dihydroxyphenethylcarbamodithioate (DHPCT) and applied to the removal of Hg(ii). Evaluation of the mercury removal efficiency and the amount adsorbed by DHPCT@Fe3O4 MNPs demonstrated a high Hg(ii) removal efficiency (98%) with a maximum Hg(ii) adsorption capacity of 52.1 mg g(-1). Systematic studies of the adsorption mechanism and selectivity suggest that the soft ligand (DHPCT) can preferentially coordinate with the soft metal ion (Hg(ii)) resulting in selective mercury removal. The developed DHPCT@Fe3O4 MNPs were readily recycled several times using an external magnet by exploiting their ferromagnetic character, without a significant decline in the Hg(ii) removal efficiency. This study provides a new insight into the preparation of a highly efficient adsorbent for Hg(ii) removal by an eco-friendly method. PMID:26436867

  16. An NMR study on the 6,6'-(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) interaction with Al(III) and Zn(II) ions.

    PubMed

    Peana, Massimiliano; Medici, Serenella; Nurchi, Valeria Marina; Lachowicz, Joanna Izabela; Crisponi, Guido; Crespo-Alonso, Miriam; Santos, Maria Amelia; Zoroddu, Maria Antonietta

    2015-07-01

    Here we report about the complex formation among an amine-bearing bis-kojic acid, 6,6'-(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and two metal ions, the trivalent hard and not essential metal ion Al(III) and the borderline and essential divalent metal ion Zn(II). We carried out a thorough NMR study in order to reach the indispensable structural information on the behavior of these complexes in solution. A combination of 1D, 2D total correlation spectroscopy, heteronuclear single quantum coherence spectroscopy, nuclear Overhauser enhancement spectroscopy and rotating-frame Overhauser effect spectroscopy experiments was used to assign the signals of both free and metal-bound ligand at different pH values. Our results highlighted the different coordination behaviors of the ligand towards the different metal ions, depending on their hard or borderline character. The trivalent metal ion, Al(III), mainly forms dinuclear helicate complexes of M2L3 stoichiometry, and the coordination only involves both hydroxypyrone (O,O)-donor atoms. NMR data are in agreement with the presence of a rigid and symmetric structure of L9-Al(III) complexes up to physiological pH. On the contrary, with the divalent metal ion, NMR data showed the coexistence of several species in solution though Zn(II) forms complexes of ML stoichiometry at physiological pH, where the metal coordination involves the nitrogen atoms of both the linker and the side-chain amine groups together with the oxygen atoms of phenolate groups. The in solution study will be of interest for providing an insight on the ligand bioavailability and on its behavior in the chelation treatments.

  17. CuII ions and the stilbene-chroman hybrid with a catechol moiety synergistically induced DNA damage, and cell cycle arrest and apoptosis of HepG2 cells: an interesting acid/base-promoted prooxidant reaction.

    PubMed

    Liu, Guo-Yun; Yang, Jie; Dai, Fang; Yan, Wen-Jing; Wang, Qi; Li, Xiu-Zhuang; Ding, De-Jun; Cao, Xiao-Yan; Zhou, Bo

    2012-08-27

    Development of potential cancer treatment strategies by using an exogenous reactive oxygen species (ROS)-generating agent (prooxidant) or redox intervention, has attracted much interest. One effective ROS generation method is to construct a prooxidant system by polyphenolic compounds and Cu(II) ions. This work demonstrates that Cu(II) and the stilbene-chroman hybrid with a catechol moiety could synergistically induce pBR322 plasmid DNA damage, as well as cell cycle arrest and apoptosis of HepG2 cells. Additionally, an interesting acid/base-promoted prooxidant reaction was found. The detailed chemical mechanisms for the reaction of the hybrid with Cu(II) in acid, neutral and base solutions are proposed based on UV/Vis spectral changes and identification of the related oxidative intermediates and products.

  18. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.

    PubMed

    Hąc-Wydro, Katarzyna; Sroka, Aleksandra; Jabłońska, Klaudia

    2016-07-01

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane.

  19. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water.

    PubMed

    Yang, Dongjiang; Zheng, Zhanfeng; Yuan, Yong; Liu, Hongwei; Waclawik, Eric R; Ke, Xuebin; Xie, Mengxia; Zhu, Huaiyong

    2010-02-14

    Sodium hexa-titanate (Na(2)Ti(6)O(13)) nanofibers, which have microporous tunnels, were prepared by heating sodium tri-titanate nanofibers with a layered structure at 573 K. The void section of the tunnels consist of eight linked TiO(6) octahedra, having a quasi-rectangular shape and the sodium ions located in these tunnel micropores are exchangeable. The exchange of these sodium ions with divalent cations, such as Sr(2+) and Ba(2+) ions, induces moderate structural deformation of the tunnels due to the stronger electrostatic interactions between di-valent ions Sr(2+) and Ba(2+) and the solid substrate. However, as the size of Ba(2+) ions (0.270 nm) is larger than the minimum width (0.240 nm) of the tunnel, the deformation can lock the Ba(2+) ions in the nanofibers, whereas Sr(2+) ions (0.224 nm) are smaller than the minimum width so the fibers can release the Sr(2+) ions exchanged into the channels instead. Therefore, the hexa-titanate (Na(2)Ti(6)O(13)) nanofibers display selectivity in trapping large divalent cations, since the deformed tunnels cannot trap smaller cations within the fibers. The fibers can be used to selectively remove radioactive Ra(2+) ions, which have a similar size and ion-exchange ability to Ba(2+) ions, from wastewater for safe disposal.

  20. Discrimination of Isomeric Carbohydrates as the Electron Transfer Products of Group II Cation Adducts by Ion Mobility Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Huang, Yuting; Dodds, Eric D

    2015-06-01

    The rapid and unambiguous distinction of isomeric carbohydrate structures persists as a tremendous analytical challenge. This paper reports the first exploitation of carbohydrate/metal ion interactions in concert with gas-phase ion chemistry to improve discrimination of oligosaccharide isomers by both ion mobility spectrometry and tandem mass spectrometry. This is demonstrated for two isomeric pentasaccharides and two isomeric hexasaccharides, each studied in an underivatized form as their calcium ion adducts, barium ion adducts, and gas-phase electron transfer products thereof. With appropriate selection of the charge carrier, transfer of a single electron to the carbohydrate metal ion adducts resulted in isomer-distinguishing shifts in their ion/neutral collision cross sections and the appearance of unique features in their vibrational activation/dissociation spectra. These findings suggest novel and elegant gas-phase strategies for rapid differentiation of isomeric oligosaccharides.

  1. Reversible sequential transfer of two electrons at the same potential in bis(1,3,5-triketonato)dicopper(II) complexes and their diamine Schiff bases. Effect of Na/sup +/ and similar ions on the cyclic voltammetry

    SciTech Connect

    Lintvedt, R.L.; Kramer, L.S.

    1983-03-02

    The cyclic voltammetry of four binuclear Cu(II) 1,3,5-triketonates and their diamine Schiff-base derivatives has been investigated in DMF with (C/sub 2/H/sub 5/)/sub 4/NClO/sub 4/ as the supporting electrolyte. Addition of simple cations such as Na/sup +/ to these solutions has a profound effect on the reduction potentials of the Cu(II) ions and on the stability of the reduced product. In the presence of a sufficient concentration of Na/sup +/ ions, the complexes exhibit one CV wave due to the coppers with peak separations of 42-44 mV and cathodic half-peak widths of 42-44 mV also. These results may be obtaned with no instrumental iR compensation, providing a high concentration of the supporting electrolyte is present. The process is reversible with use of the criteria of scan rate dependence of the cathodic peak current and width and the equivalence of the cathodic and anodic peak heights. Controlled-potential electrolysis results prove that the process involves the transfer of two electrons. All of the experimental facts may be explained by the reversible, sequential transfer of two electrons at the same potential. Although the two Cu(II) ions in the diamine Schiff bases are in much different coordination environments within the same molecule, they give rise to the same CV wave shapes as the triketonates; i,e., ..delta..E/sub p/ and E/sub pc/ - E/sub p///sub 2/ both are very nearly 42 mV. Thus, they also undergo two-electron transfer at the same potential. The only significant difference between the simpler binuclear Cu(II) triketonates and the diamine Schiff-base derivatives is that E/sub 1///sub 2/ values for the Schiff bases are about 0.1V more negative than for their triketonate analogues.

  2. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-01

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  3. Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II).

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-07-01

    Reaction of uranyl nitrate with 1,3,5-benzenetriacetic acid (H3BTA) in the presence of additional species, either organic bases or their conjugate acids or metal cations, has provided 12 new crystalline complexes, all but one obtained under solvo-hydrothermal conditions. The complexes [C(NH2)3][UO2(BTA)]·H2O (1) and [H2NMe2][UO2(BTA)] (2) crystallize as one- or two-dimensional (1D or 2D) assemblies, respectively, both with uranyl tris-chelation by carboxylate groups and hydrogen-bonded counterions but different ligand conformations. One of the bound carboxylate units is replaced by chelating 1,10-phenanthroline (phen) or 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) in the complexes [(UO2)3(BTA)2(phen)3]·4H2O (3) and [(UO2)3(BTA)2(Me4phen)3]·NMP·3H2O (4) (NMP = N-methyl-2-pyrrolidone), which are a 2D network with honeycomb topology and a 1D polymer, respectively. With silver(I) cations, [UO2Ag(BTA)] (5), a three-dimensional (3D) framework in which the ligand assumes various chelating/bridging coordination modes, and the aromatic ring is involved in Ag(I) bonding, is obtained. A series of seven heterometallic complexes results when lead(II) cations and N-chelating molecules are both present. The complexes [UO2Pb(BTA)(NO3)(bipy)] (6) and [UO2Pb2(BTA)2(bipy)2]·3H2O (7), where bipy is 2,2'-bipyridine, crystallize from the one solution, as 1D and 2D assemblies, respectively. The two 1D coordination polymers [UO2Pb(BTA)(HCOO)(phen)] (8 and 9), again obtained from the one synthesis, provide an example of coordination isomerism, with the formate anion bound either to lead(II) or to uranyl cations. Another 2D architecture is found in [(UO2)2Pb2(BTA)2(HBTA)(H2O)2(phen)2]·2H2O (10), which provides a possible example of a Pb-oxo(uranyl) "cation-cation" interaction. While [UO2Pb(BTA)(HCOO)0.5(NO3)0.5(Me2phen)] (11), where Me2phen is 5,6-dimethyl-1,10-phenanthroline, is a 1D assembly close to those in 6 and 8, [UO2Pb2(BTA)2(Me4phen)2] (12), obtained together with

  4. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2015-08-01

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N'-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H+ and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  5. Development of a dipodal Schiff base ligand with N-imine and O-naphtholate donors: A potential chelator towards Cu(II) metal ion established through potentiometric and spectrophotometric studies

    SciTech Connect

    Baral, Minati Gupta, Amit; Kanungo, B. K.

    2015-08-28

    A novel hydroxynaphthaldehyde derived Schiff base ligand N,N’-bis-[2-[(2-hydroxy-1-naphthyl)methyleneamino]ethyl]propanediamide (DOTA2HNAP) containing nitrogen and oxygen donor atoms has been developed. The lowest energy molecular structure of DOTA2HNAP and its complexes with Cu (II) metal ion were examined by molecular mechanics using MM+ force which later was re-optimized by semi-empirical method. The theoretical IR and UV spectra of the ligand were obtained using semi empirical/ZINDO/PM3 and were compared with the experimental ones. The coordinating ability of DOTA2HNAP with H{sup +} and Cu(II) ions was investigated in 1:99 (DMSO: water) binary solvent mixture at 25±1°C by potentiometric and spectrophotometric method. The electronic spectra of the ligand show three distinct peaks (253nm, 320nm and 360nm) implicating existence of the Schiff base in quinone form that was well supported by theoretical spectral studies. Out of various complex species forming in solution, all the metal ions show higher stability of complexes when in 1:1 metal-ligand stoichiometry, binding through two N-imine and two O-naphtholate groups.

  6. Studies on the complexation of neodymium(III) ion with 1,2,4-1H-triazole and 1,2,3-benzotriazole in absence and presence of calcium(II) ion in aqueous and some selected different aquated organic solvents by an absorption spectroscopy involving 4f-4f transitions.

    PubMed

    Huidrom, Bimola; Ranjana Devi, N; Singh, Th David; Singh, N Rajmuhon

    2012-01-01

    The absorption spectra of trivalent neodymium ion with 1,2,4-1H-triazole and 1,2,3-benzotriazole in absence and presence of calcium(II) ion in aqueous and some selected different aquated organic solvents have been recorded in the visible and near infrared regions. From the data available in the absorption spectra, various spectroscopic parameters such as Slator-Condon (F(k)), Lande spin-orbit coupling constant (ξ(4f)), nephelauxetic ratio (β), bonding parameter (b(1/2)), percent covalency (δ), oscillator strength (P) and Judd-Ofelt intensity (T(λ)) parameters have been evaluated. The Judd-Ofelt intensity, T(λ) (λ=2, 4, 6) parameters are utilized in evaluating the P(cal) from various excited states of trivalent neodymium ions and ratifying as an inner sphere complexations.

  7. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. II. ELECTRON HEATING EFFICIENCY AS A FUNCTION OF FLOW CONDITIONS

    SciTech Connect

    Sironi, Lorenzo

    2015-02-20

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T {sub 0e}/T {sub 0i} ≲ 0.2, the ion cyclotron instability is the dominant mode for ion betas β{sub 0i} ∼ 5-30 (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-luminosity accretion flows. In this work, we employ analytical theory and one-dimensional PIC simulations (with the box aligned with the fastest-growing wave vector of the ion cyclotron mode) to fully characterize how the electron heating efficiency during the growth of the ion cyclotron instability depends on the electron-to-proton temperature ratio, the plasma beta, the Alfvén speed, the amplification rate of the mean field (in units of the ion Larmor frequency), and the proton-to-electron mass ratio. Our findings can be incorporated as a physically grounded subgrid model into global fluid simulations of low-luminosity accretion flows, thus helping to assess the validity of the two-temperature assumption.

  8. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. II. Electron Heating Efficiency as a Function of Flow Conditions

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    2015-02-01

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T 0e /T 0i <~ 0.2, the