Sample records for pbs phosphate-buffered saline

  1. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  2. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.

    PubMed

    Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li

    2013-02-01

    The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.

  3. Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells

    DTIC Science & Technology

    2009-05-01

    temperature to promote a Schiff-base reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered...recombinant protein G from E . coli (Zymed Lab Inc.), at a concentration of 50 mg ml1 in 1 PBS, is incubated on the activated surface overnight at 4 C...reaction. Recombinant protein G from E . coli (Zymed Lab Inc.) 50 μg/ml in Ca- and Mg-free phosphate-buffered saline (CMF-PBS), is incubated on the

  4. Cullin 5 Expression in the Rat: Cellular and Tissue Distribution, and Changes in Response to Water Deprivation and Hemorrhagic Shock

    DTIC Science & Technology

    2003-02-28

    of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed

  5. Program on Resorbable Radio Devices

    DTIC Science & Technology

    2014-05-05

    radio circuit - + PDMS Copper Mg PBS Buffer 1© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com Transient, Biocompatible...way, ZnO provides an alternative to silicon [ 16 ] or organic semi- conductors [ 17–20 ] for physically transient forms of electronics and sensors...immersion in several different types of solutions, such as phosphate buffer saline (PBS, pH 4.0, Sigma- Figure 1 . Materials and designs for

  6. DEVELOPMENT OF BIOMARKER OF EXPOSURE TO VIRAL PATHOGENS

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for a viral exposure study. Twelve-week-old BALB/c mice were intraperitoneally injected with 0.2ml of 104 PFU/ml of coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS on...

  7. Interferon Gamma as a Biomarker of Exposure to Enteric Viruses

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for viral exposure. Twelve-week-old BALB/c mice were intraperitoneally injected with Coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infectio...

  8. Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment

    NASA Astrophysics Data System (ADS)

    Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi

    2013-06-01

    High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.

  9. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  10. Knot Security of 5 Metric (USP 2) Sutures: Influence of Knotting Technique, Suture Material, and Incubation Time for 14 and 28 Days in Phosphate Buffered Saline and Inflamed Equine Peritoneal Fluid.

    PubMed

    Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A

    2015-08-01

    To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.

  11. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A comparison of the biocompatibility of phosphate-buffered saline and dianeal 3.86% in the rat model of peritoneal dialysis.

    PubMed

    Wieczorowska-Tobis, K; Polubinska, A; Breborowicz, A; Oreopoulos, D G

    2001-01-01

    Phosphate-buffered saline (PBS), an isotonic solution with a physiologic pH can be considered an example of a biocompatible dialysis fluid. This study compared the biocompatibility of PBS with that of Dianeal 3.86% (Baxter Healthcare Corporation, Deerfield, IL, U.S.A.), using a model of peritoneal dialysis in the rat. In an acute experiment, after catheter implantation, rats were infused on day 1 with PBS, on day 5 with standard dialysis solution (Dianeal 3.86%), and on day 7 again with PBS. When rats were injected with Dianeal 3.86%, the inflammatory reaction was suppressed as compared with PBS. The cell count was lower with Dianeal (-85%, p < 0.001), the neutrophil:macrophage ratio in dialysate was 80% lower (p < 0.01), total protein concentration in the Dianeal dialysate was 73% lower (p < 0.01), and the dialysate nitrite level was 45% lower (p < 0.01). In a chronic experiment, after catheter implantation, rats were dialyzed for four weeks with PBS or with Dianeal 3.86%. At the end of the study, a 1-hour peritoneal equilibration test (PET) was performed. As evaluated on a semiquantitative scale, macroscopic changes in the peritoneum were more severe in rats exposed to PBS than in those exposed to Dianeal 3.86% (8.6 +/- 3.2 vs 5.2 +/- 2.6, p < 0.05). The thickness of the visceral peritoneum was comparable in both groups; but, in PBS-treated rats, the peritoneal interstitium contained more inflammatory cells and more new vessels. During the 1-hour PET, peritoneal permeability to water and solutes was comparable in the two groups. Despite a more physiologic composition, PBS is a less biocompatible peritoneal dialysis solutions than is standard, acidic, hypertonic dialysis solution.

  13. Direct, rapid, and label-free detection of enzyme-substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors.

    PubMed

    Mu, Luye; Droujinine, Ilia A; Rajan, Nitin K; Sawtelle, Sonya D; Reed, Mark A

    2014-09-10

    We demonstrate the versatility of Al2O3-passivated Si nanowire devices ("nanoribbons") in the analysis of enzyme-substrate interactions via the monitoring of pH change. Our approach is shown to be effective through the detection of urea in phosphate buffered saline (PBS), and penicillinase in PBS and urine, at limits of detection of <200 μM and 0.02 units/mL, respectively. The ability to extract accurate enzyme kinetics and the Michaelis-Menten constant (Km) from the acetylcholine-acetylcholinesterase reaction is also demonstrated.

  14. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Apoptosis and Tumor Progressionin Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    control. Proc Natl Acad Sci USA 94: 10057- 10062 . 5. Colombel M, Symmans F, et al. (1993): Detection of the apoptosis-suppressing oncoprotein bcl-2 in...hours prior to treatment. After treatment, cells were washed with phosphate buffered saline ( PBS ) and fixed in 500 [tL 0.2% glutaraldehyde in water for

  16. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase.

    PubMed

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes' ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion.

  17. Evaluation of Commercially Available Cold Chain Shipping Systems

    DTIC Science & Technology

    2015-03-19

    instructions for the maceration of heart tissue. Briefly, 10 g of ground beef was placed alone or with 40 mL 4°C phosphate buffered saline (PBS) in...room temperature (25°C) raw ground beef was placed in a 50-mL IKA Turrax tube with rotor-stator elements and 40 mL of 4°C PBS. Temperature probes...were placed in the center of the ground beef to record the starting temperature and removed during the homogenization process. Turrax homogenization

  18. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    USDA-ARS?s Scientific Manuscript database

    We investigated the combined antimicrobial effects of plant essential oils and olive extract. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with the pathogen and then dip-treated in phosphate buffered saline (PBS) control, 3.0% hydrogen peroxide, a 0.1% ...

  19. Biodegradable neural cell culture sheet made of poly(lactic-co-glycolic acid) thin film with micropatterns of Dulbecco’s phosphate-buffered saline (-) containing laminin layers

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Horiuchi, Shunpu; Nishioka, Yasushiro

    2018-02-01

    In the regenerative medicine field of nervous systems, techniques used to fabricate microstructures of neurons on flexible and biodegradable substrates have attracted attention. In this research, biodegradable and flexible neuron culture thin films that enable the selective axonal outgrowth of neurons were fabricated using poly(lactic-co-glycolic acid) (PLGA) thin films with micropatterns of Dulbecco’s phosphate-buffered saline (D-PBS) (-) containing laminin layers. The 100-µm-thick PLGA thin films were fabricated by diluting PLGA in acetone (5% w/w) and the solution was distributed onto a poly(dimethylsiloxane) (PDMS) mold. D-PBS (-) micropatterns containing laminin layers with widths of 10-150 µm were fabricated by micromolding in capillaries (MIMIC) and the microstencil method. Rat neurons were selectively cultured for 3 d on the laminin micropatterns; using the MIMIC method, the cells properly adhered to a pattern wider than 30 µm, while with the microstencil method, the necessary pattern width for proper adhesion was more than 50 µm.

  20. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  1. Dominant Negative Mutants of the Estrogen Receptor as Probes of Estrogen Action and Inhibitors of Breast Cancer Growth

    DTIC Science & Technology

    1996-07-01

    tetrazolium, inner salt; MTS; Promega], 1.9 mg/ml, and an electron coupling reagent ( phenazine methosulfate; PMS; Sigma), 0.044 mg/ml, in Dulbecco’s...acids PBS, phosphate buffered saline PCR, polymerase chain reaction PMS, phenazine methosulfate poly A, polyadenylation s.e., standard error TAE, tris

  2. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase

    PubMed Central

    Gao, Hong-Wei; Li, Su-Bo; Bao, Guo-Qiang; Zhang, Xue; Li, Hui; Wang, Ying-Li; Tan, Ying-Xia; Ji, Shou-Ping; Gong, Feng

    2014-01-01

    Background It is well known that the buffer plays a key role in the enzymatic reaction involved in blood group conversion. In previous study, we showed that a glycine buffer is suitable for A to O or B to O blood group conversion. In this study, we investigated the use of 5% glucose and other buffers for A to O or B to O blood group conversion by α-N-acetylgalactosaminidase or α-galactosidase. Materials and methods We compared the binding ability of α-N-acetylgalactosaminidase/α-galactosidase with red blood cells (RBC) in different reaction buffers, such as normal saline, phosphate-buffered saline (PBS), a disodium hydrogen phosphate-based buffer (PCS), and 5% commercial glucose solution. The doses of enzymes necessary for the A/B to O conversion in different reaction buffers were determined and compared. The enzymes’ ability to bind to RBC was evaluated by western blotting, and routine blood typing and fluorescence activated cell sorting was used to evaluate B/A to O conversion efficiency. Results The A to O conversion efficiency in glucose buffer was similar to that in glycine buffer with the same dose (>0.06 mg/mL pRBC). B to O conversion efficiency in glucose buffer was also similar to that in glycine buffer with the same dose (>0.005 mg/mL pRBC). Most enzymes could bind with RBC in glycine or glucose buffer, but few enzymes could bind with RBC in PBS, PCS, or normal saline. Conclusion These results indicate that 5% glucose solution provides a suitable condition for enzymolysis, especially for enzymes combining with RBC. Meanwhile, the conversion efficiency of A/B to O was similar in glucose buffer and glycine buffer. Moreover, 5% glucose solution has been used for years in venous transfusion, it is safe for humans and its cost is lower. Our results do, therefore, suggest that 5% glucose solution could become a novel suitable buffer for A/B to O blood group conversion. PMID:24333060

  3. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.

  4. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    PubMed

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil < OA-oil < SO-oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  5. SoyCaP: Soy and Prostate Cancer Prevention

    DTIC Science & Technology

    2006-11-01

    2:16-hydroxyestrone ratio in postmenopausal women depends on equol production status but is not influenced by probiotic consumption. J Nutr 2005 Mar...their habitual diets, and received detailed instructions to exclude soy products in order to minimize isoflavone consumption from other sources...deparaffinized in AmeriClear (Scientific Products , Stockton, CA), rehydrated in graded alcohol, and transferred to phosphate buffered saline (PBS) (pH

  6. Korean Hemorrhagic Fever.

    DTIC Science & Technology

    1981-03-31

    secretions, and ectoparasites were prepared in phosphate buffered saline, pH 7.6 containing 0.2% serum bovine albumin(PBS). Penicillin, streptomycin...water source and urine was collected during an interval of 3-5 hours, in sterile bottles containing 10 ml of Hanks balanced solution(BSS) with 1% bovine ...Shope, R. E. and Harrison, A. Physiocochemical and morphological relationships of some arthropod-borne viruses to bluetongue virus - a new taxonomic

  7. Leakage of Intracellular UV Materials of High Hydrostatic Pressure-Injured Escherichia Coli O157:H7 Strains in Tomato Juice

    USDA-ARS?s Scientific Manuscript database

    The effect of high hydrostatic pressure (HHP) treatment on inactivation, injury and recovery of Salmonella Enteritidis and Escherichia coli O157:H7 cocktail inoculated in tomato juice (pH 4.1) and phosphate buffer saline (PBS. pH 7.2) at 8.0 log CFU/ml and treated at 350, 400, 450 MPa for 20 min at ...

  8. Promotor Regions Determining Over-Expression of Metalloproteinase Genes in Breast Cancer

    DTIC Science & Technology

    1999-06-01

    G., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER Royal Prince Alfred Hospital Camperdown, NSW...2050, Australia 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER U.S. Army Medical Research...BioTechniques 3 Research Reports satec , Adelaidetusralia) per reaction. Plasmids ItL of phosphate-buffered saline (PBS)When included,- co petor

  9. Immunobiological Aspects of erbB Receptors in Breast Cancer

    DTIC Science & Technology

    2000-08-01

    receptor . The proliferation of cells expressing these chimeric receptors was EGF-dependent, and cells expressing EGFR/Y882F chimeric receptors were...determine Cells were washed twice with cold phosphate-buffered saline which cellular substrates couple with the receptor complex. (PBS) and lysed with 1...turnover, receptor proteins suggests that these substrates are properly lo- and cellular transformation in NEN757 cells (Qian et al., cated for

  10. Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Rieth, Loren; Tathireddy, Prashant; Harrison, Reid; Solzbacher, Florian

    2010-02-01

    We herein report in vitro functional stability and recording longevity of a fully integrated wireless neural interface (INI). The INI uses biocompatible Parylene-C as an encapsulation layer, and was immersed in phosphate buffered saline (PBS) for a period of over 150 days. The full functionality (wireless radio-frequency power, command, and signal transmission) and the ability of INI to record artificial action potentials even after 150 days of PBS soaking without any change in signal/noise amplitude constitutes a major milestone in long term stability, and evaluate the encapsulation reliability, functional stability, and potential usefulness for future chronic implants.

  11. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.

    PubMed

    Lewis, A C; Kilburn, M R; Heard, P J; Scott, T B; Hallam, K R; Allen, G C; Learmonth, I D

    2006-08-01

    Physical wear of orthopedic implants is inevitable. CoCr alloy samples, typically used in joint reconstruction, corrode rapidly after removal of the protective oxide layer. The behavior of CoCr pellets immersed in human serum, foetal bovine serum (FBS), synovial fluid, albumin in phosphate-buffered saline (PBS), EDTA in PBS, and water were studied using X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). The difference in the corrosive nature of human serum, water, albumin in PBS and synovial fluid after 5 days of immersion was highlighted by the oxide layer, which was respectively 15, 3.5, 1.5, and 1.5 nm thick. The thickness of an additional calcium phosphate deposit from human serum and synovial fluid was 40 and 2 nm, respectively. Co and Cr ions migrated from the bulk metal surface and were trapped in this deposit by the phosphate anion. This may account for the composition of wear debris from CoCr orthopedic implants, which is known to consist predominantly of hydroxy-phosphate compounds. Known components of synovial fluid including proteoglycans, pyrophosphates, phospholipids, lubricin, and superficial zone protein (SZP), have been identified as possible causes for the lack of significant calcium phosphate deposition in this environment. Circulation of these compounds around the whole implant may inhibit calcium phosphate deposition.

  12. Targeted Ablation of CML Stem Cells

    DTIC Science & Technology

    2007-01-01

    centuries .12 More recently, PTL has been found to have several other properties, including antitumor activity, inhibition of DNA synthesis, and...as a chemopreventive agent in a UVB-induced skin cancer animal model. 21 PTL is a potent inhibitor of NF-B activation and has been shown to directly...diluted in phosphate buffer saline (PBS). Ara-C was obtained from Sigma ( St Louis, MO). Total cell numbers were determined before and after culture for

  13. Plasma-Mediated Release of Morphine from Synthesized Prodrugs

    DTIC Science & Technology

    2013-01-01

    UPLC )9 (Waters Inc.) was utilized for measurements of morphine, PDA and PDB. UPLC has the capability to perform rapid (< 10 min) and reproducible...for UPLC versus ~30-50 µL for HPLC. The term “morphine” refers to the free morphine alkaloid base (Malinkrodt, etc.) unless otherwise stated...Baseline UPLC profiles were obtained for phosphate buffered saline (PBS), morphine and PDA in esterase de-activated plasma. Plasma was precipitated by the

  14. Comparative Analysis of Two Biological Warfare Air Samplers Using Live Surrogate Agents

    DTIC Science & Technology

    2012-03-01

    extensively for Phosphate Buffer Saline (PBS) solution and water , and, to a very limited degree in AF evaluations, for virus preserving media, specifically...or water . Furthermore, viral studies have been conducted comparing the effectiveness of utilizing the reduced secondary flow rate on the XMX/2L...with using bioagent aerosols rated BSL-2 or higher. Male Specific Coliphage 2 (MS2), American Type Culture Collection (ATCC) 15597-B1, was selected

  15. The Limitations of Diazepam as a Treatment for Nerve Agent-Induced Seizures and Neuropathology in Rats: Comparison with UBP302

    DTIC Science & Technology

    2014-11-01

    to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the cur- rent US Food and Drug... status epilepticus (SE), which are initiated by the excessive stimulation of cholinergic receptors. If immediate death is prevented by adequate...5-yl)ethyl] decahydroisoquinoline-3-carboxylic acid; PBS, phosphate-buffered saline; SE, status epilepticus ; UBP302, (S)-3-(2-carboxybenzyl

  16. Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

    PubMed

    Gye, Hyun Jung; Nishizawa, Toyohiko

    2016-09-02

    Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enzyme entrapment in polyaniline films observed via fluorescence anisotropy and antiquenching

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis R.; McCaffrey, Marisa; Epstein, Arthur J.

    2014-05-01

    The facile entrapment of oxidoreductase enzymes within polyaniline polymer films by inducing hydrophobic collapse using phosphate buffered saline (PBS) has been shown to be a cost-effective method for fabricating organic biosensors. Here, we use fluorescence anisotropy measurements to verify enzyme immobilization and subsequent electron donation to the polymer matrix, both prerequisites for an effective biosensor. Specifically, we measure a three order of magnitude decrease in the ratio of the fluorescence to rotational lifetimes. In addition, the observed fluorescence antiquenching supports the previously proposed model that the polymer chain assumes a severely coiled conformation when exposed to PBS. These results help to empirically reinforce the theoretical basis previously laid out for this biosensing platform.

  20. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  1. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution

    NASA Astrophysics Data System (ADS)

    Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.

    2012-09-01

    We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.

  3. In-Vitro Corrosion Studies of Bioabsorbable Alloys

    NASA Astrophysics Data System (ADS)

    Gill, P.; Munroe, N.

    Magnesium alloys have inspired a significant amount of attention from researchers all over the world for cardiovascular and orthopedic applications due to their light weight, mechanical integrity and degradation behavior. In this investigation, cast manufactured binary, ternary and quaternary magnesium alloys were studied for their degradation behavior by potentiodynamic polarization tests in phosphate buffer saline solution (PBS) and PBS containing amino acids (cysteine, C and tryptophan, W) at 37 °C. Electrochemical impedance spectroscopy (EIS) tests were performed to determine the charge transfer resistance and immersion tests were performed to assess corrosion rate and hydrogen evolution from the alloys. Furthermore, the surface morphology and surface chemistry of the alloys were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

  4. Antibacterial Effects of Toothpastes Evaluated in an 
In Vitro Biofilm Model.

    PubMed

    Fernández, Eva; Sánchez, María Del Carmen; Llama-Palacios, Arancha; Sanz, Mariano; Herrera, David

    To test the antibacterial effects of different toothpastes with the slurry method of toothpaste application in an in vitro oral biofilm model including relevant periodontal pathogens. Four commercially available toothpastes, two containing sodium fluoride (NaF) at different concentrations (1450 and 2500 ppm), two NaF with either triclosan or stannous fluoride, and a control phosphate-buffered saline (PBS) were used. Multispecies biofilms containing 6 species of oral bacteria were grown on hydroxyapatite disks for 72 h and then exposed for 2 min to the toothpaste slurries or phosphate buffer saline (PBS) by immersion, under continuous agitation at 37°C. Biofilms were then analysed by means of real-time polymerase chain reaction (PCR), combined with propidium monoazide (PMA). Statistical evaluation was performed using ANOVA and Student's t-test, with Bonferroni correction for multiple comparisons. The toothpastes containing NaF and stannous fluoride demonstrated superior antimicrobial activity for A. actinomycetencomitans, P. gingivalis and F. nucleatum when compared to those containing NaF and triclosan, 1450 ppm NaF or 2500 ppm NaF in this multispecies biofilm model. The proposed model for the evaluation of toothpastes in the form of slurries detected significant differences in the antimicrobial effects among the tested NaF-containing toothpastes, with the stannous fluoride-based formulation achieving better results than the other formulations. The use of toothpaste as slurries and real-time PCR with PMA is an adequate method for comparing the in vitro antimicrobial effect of different toothpastes.

  5. Composite chitosan hydrogels for extended release of hydrophobic drugs.

    PubMed

    Delmar, Keren; Bianco-Peled, Havazelet

    2016-01-20

    A composite chitosan hydrogel durable in physiological conditions intended for sustained release of hydrophobic drugs was investigated. The design is based on chitosan crosslinked with genipin with embedded biocompatible non-ionic microemulsion (ME). A prolonged release period of 48 h in water, and of 24h in phosphate buffer saline (PBS) of pH 7.4 was demonstrated for Nile red and curcumin. The differences in release patterns in water and PBS were attributed to distinct dissimilarities in the swelling behaviors; in water, the hydrogels swell enormously, while in PBS they expel water and shrink. The release mechanism dominating this system is complex due to intermolecular bonding between the oil droplets and the polymeric network, as confirmed by Fourier transform infrared spectroscopy (FTIR) experiments. This is the first time that oil in water microemulsions were introduced into a chitosan hydrogels for the creation of a hydrophobic drug delivery system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparative analysis of toxin detection in biological and enviromental samples

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Burans, James; O'Brien, Tom; Ligler, Frances S.

    1994-03-01

    The basic recognition schemes underlying the principles of standard enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) protocols are increasingly being adapted for use with new detection devices. A direct comparison was made using a fiber optic biosensor that employs evanescent wave detection and an ELISA using avidin-biotin. The assays were developed for the detection of Ricinus communis agglutinin II, also known as ricin or RCA60. Detection limits between the two methods were comparable for ricin in phosphate buffered saline (PBS), however results in complex samples differed slightly. In PBS, sensitivity for ricin was 1 ng/ml using the fiber optic device and 500 pg/ml using the ELISA. The fiber optic sensor could not detect ricin directly in urine or serum spiked with 5 ng/ml ricin, however, the ELISA showed detection but at reduced levels to the PBS control.

  7. Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection

    PubMed Central

    Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo

    2017-01-01

    A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071

  8. Development of an enzyme-linked immunosorbent assay for seven sulfonamide residues and investigation of matrix effects from different food samples.

    PubMed

    Zhang, Hongyan; Wang, Lei; Zhang, Yan; Fang, Guozhen; Zheng, Wenjie; Wang, Shuo

    2007-03-21

    Direct competitive enzyme-linked immunosorbent assays (ELISA) were developed to detect a broad range of sulfonamides in various matrices. Screening for this class of antibiotics in pig muscle, chicken muscle, fish, and egg extracts was accomplished by simple, rapid extraction methods carried out with only phosphate-buffered saline (PBS) buffer. Twenty milliliters of extract solution was added to 4 g of sample to extract the sulfonamide residues, and sample extracts diluted with assay buffer were directly analyzed by ELISA; matrix effects could be avoided with 1:5 dilution of pig muscle, chicken muscle, and egg extracts with PBS and 1:5 dilution of fish extract with 1% bovine serum albumin (BSA)-PBS. For liver sample, the extraction method was a little more complicated; 2 g of sample was added to 20 mL of ethanol, mixed, and then centrifuged. The solvent of 10 mL of the upper liquid was removed, and the residues were dissolved in 10 mL of PBS and then filtered; the filtrate was diluted two-fold with 0.5% BSA-PBS for ELISA. These common methods were able to detect seven sulfonamide residues such as sulfisozole, sulfathiazole, sufameter, sulfamethoxypyridazine, sulfapyridine, sulfamethizole, and sulfachlorpyridazine in pig muscle, liver, chicken muscle, egg, and fish. The assay's detection limits for these compounds were less than 100 microg kg-1. Various extraction methods were tested, and the average recovery (n=3) of 100 microg kg-1 for the matrices was found to range from 77.3 to 123.7%.

  9. Genotoxicity Assessment of Chlorotrifluoroethylene Trimer Acid Using a Battery of In Vitro and In Vivo/In Vitro Assays

    DTIC Science & Technology

    1990-12-01

    in liquid nitrogen. Laboratory cultures were maintained as monolayers at 37 t 1.50C in a humidified atmosphere containing 5 t 1.5% CO2 and were... atmosphere containing 5% CO2. The cells were then washed twice with Dulbecco’s phosphate buffered saline (PBS) and incubated in F12 culture medium for six...time cell cultures ware treated with test or control material for 4 h at 37 t 1.SIA in a humidified atmosphere with 5% CO2 . After treatment, the

  10. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl.

  11. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  12. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparison of bend angle measurements in fresh cryopreserved cartilage specimens after electromechanical reshaping

    NASA Astrophysics Data System (ADS)

    Karimi, Koohyar; Protsenko, Dimitry; Wu, Edward C.; Foulad, Allen; Manuel, Cyrus T.; Lim, Amanda; Wong, Brian J. F.

    2010-02-01

    Cryopreservation of cartilage has been investigated for decades and is currently an established protocol. However, the reliability and applicability of cartilage cryopreservation for the use in electromechanical reshaping (EMR) has not been studied exclusively. A system to cryopreserve large numbers of tissue specimens provides a steady source of cartilage of similar quality for experimentation at later dates. This will reduce error that may arise from different cartilage stock, and has the potential to maximize efficiency under time constraints. Our study utilizes a unique methodology to cryopreserve septal cartilage for use in EMR studies. Rabbit septal cartilage specimens were harvested and standardized to 20 x 8 x 1 mm, and placed in one of three solutions (normal saline, PBS, 10% DMSO in PBS) for four hours in a cold storage room at 4 degrees Celsius. Then, each cartilage specimen was vacuumed and sealed in an anti-frost plastic bag and stored in a freezer at -80 degrees Celsius for 1 to 3 weeks duration. EMR was performed using 2 and 6 volts for 2 minutes application time. Bend angle measurements of the cryopreserved cartilage specimens were compared to bend angles of fresh cartilage which underwent EMR using the same parameters. Results demonstrate that normal saline, phosphate buffered saline (PBS), and PBS with DMSO were effective in cryopreservation, and indicated no significant differences in bend angle measurements when compared to no cryopreservation. Our methodology to cryopreserve cartilage specimens provides a successful approach for use in conducting large-scale EMR studies.

  14. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period. © 2014 Wiley Periodicals, Inc.

  16. Effect of dissolution of magnesium alloy AZ31 on the rheological properties of Phosphate Buffer Saline.

    PubMed

    Riaz, Usman; Rakesh, Leela; Shabib, Ishraq; Haider, Waseem

    2018-06-05

    The issue of long-term incompatible interactions associated with the permanent implants can be eliminated by using various biodegradable metal implants. The recent research is focusing on the use of degradable stents to restore most of the hindrances of capillaries, and coronary arteries by supplying instant blood flow with constant mechanical and structural support. However, internal endothelialization and infection due to the corrosion of implanted stents are not easy to diagnose in the long run. In the recent past, magnesium (Mg) has been widely investigated for the cardiovascular stent applications. Here we made an attempt to understand the biodegradation process of Mg alloy stent by studying the degradation of Mg alloy AZ31 (3 wt% Aluminum, 1 wt% Zn) powder at various time-intervals in simulated blood fluid using the Rheological methods. The degradability of the Mg stent in the arteries affects the stress-strain properties of blood plasma and the subsequent flow conditions. Blood and plasma viscosities alter due to the degradation of Mg resulting from the stress-strain experienced in the blood vessels, in which the stent is inserted. Here our objective was to explore the influence of Mg degradation on the blood plasma viscosity by studying the viscoelastic properties. In this work, the effect of dissolution of Mg alloy AZ31 on the rheological properties of Phosphate Buffer Saline (PBS) at various time intervals have been investigated. The viscosity of the PBS-AZ31 solution increased with the dissolution of both slurries and percolated clear solution. The only exception was day-7 of the percolated clear solution, where viscosity was decreased showing a reduction in viscosity at initial stages of dissolution. The frequency sweep showed the tendency of the PBS-AZ31 gelation up to 100 rad/s frequency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Analysis of the Postoperative Periarticular Environment and Influence on Sustained Drug Delivery from a Gel Formulation.

    PubMed

    Svirskis, Darren; Martis, Waldron; Bhusal, Prabhat; Sharma, Manisha; Stowers, Renus; Young, Simon W

    2018-05-16

    Regional intraarticular delivery of local anaesthetics is effective in treating postoperative pain following total knee or hip replacement. Recent research efforts have been only partially successful in achieving sustained release of the analgesic agent, in part due to limited understanding of the biological environment into which these formulations are administered. This study aimed to detail the composition and properties of postoperative periarticular fluid (PO-PAF). PO-PAF was collected from 8 patients and the composition and physicochemical properties determined. A number of components were identified which are lacking from phosphate buffered saline (PBS) or other synthetic media. The differences in composition led to variation in the physicochemical properties of PO-PAF compared with PBS. Notably, significantly lower surface tension (p<0.05) and higher buffer capacity (p<0.05) were observed in the biological fluid. We demonstrated the solubility of lidocaine is almost double in PO-PAF compared to PBS (p<0.05) and that lidocaine release from a poloxamer gelling system occurred faster into PO-PAF under both sink and non-sink conditions. Collectively, these data indicate PBS is inappropriate for the in-vitro evaluation of intraarticular drug delivery systems. The presented data describes PO-PAF and will support the future development of biorelevant media to ultimately improve in-vivo in-vitro correlation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  19. Assessment of the synergic effect of immunomodulation on nerve repair using multiparametric magnetic resonance imaging.

    PubMed

    Zheng, Chu-Shan; Zhang, Xiang; Chen, Yue-Yao; Zhang, Fang; Duan, Xiao-Hui; Chen, Mei-Wei; Lu, Lie-Jing; Shen, Jun

    2018-01-01

    The immune system plays a pivotal role in nerve injury. The aim of this study was to determine the role of multiparametric magnetic resonance imaging (MRI) in evaluation of the synergic effect of immunomodulation on nerve regeneration in neurotmesis. Rats with sciatic nerve neurotmesis and surgical repair underwent serial multiparametric MR examinations over an 8-week period after subepineurial microinjection of lipopolysaccharide (LPS) and subsequent subcutaneous injection of FK506 or subepineurial microinjection of LPS or phosphate-buffered saline (PBS) alone. Nerves treated with immunomodulation showed more prominent regeneration than those treated with LPS or PBS alone and more rapid restoration toward normal T2, fractional anisotropy (FA), and radial diffusivity (RD) values than nerves injected with LPS or PBS. Nerves treated with immunomodulation exert synergic beneficial effects on nerve regeneration that can be predicted by T2 measurements and FA and RD values. Muscle Nerve 57: E38-E45, 2018. © 2017 Wiley Periodicals, Inc.

  20. Zinc oxide nano-rods based glucose biosensor devices fabrication

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  1. Covalent conjugation of graphene oxide with methotrexate and its antitumor activity

    NASA Astrophysics Data System (ADS)

    Wojtoniszak, M.; Urbas, K.; Perużyńska, M.; Kurzawski, M.; Droździk, M.; Mijowska, E.

    2013-05-01

    Here, we have functionalized graphene oxide with anticancer drug methotrexate through amide bonding. A kinetics of the drug release from graphene oxide in physiological solution - phosphate buffered saline (PBS) containing different biocompatible polymers have been investigated. Dispersion of MTX-GO in poly sodium-4-styrene sulfonate and poly ethylene glycol resulted in increase of the release time. The material was characterized with transmission electron microscopy, atomic force microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, antineoplastic action against human breast adenocarcinoma cell line MCF7 of MTX-GO and empty graphene oxide was explored.

  2. Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2018-05-01

    The work found that the electron-donating properties of ferrous ions (Fe 2+ ) can be used for the conversion of nitrite (NO 2 - ) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe 2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe 2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe 2+ -to-Fe 3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe 2+ and reduce its autoxidation to Fe 3+ . These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe 2+ was observed on nitrifying bacteria biofilms in PBS at pH 6. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Photophysical investigations of squaraine and cyanine dyes and their interaction with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Saikiran, M.; Sato, D.; Pandey, S. S.; Kato, T.

    2016-04-01

    A model far-red sensitive symmetrical squaraine dye (SQ-3) and unsymmetrical near infra-red sensitive cyanine dye (UCD-1) bearing direct-COOH functionalized indole ring were synthesized, characterized and subjected to photophysical investigations including their interaction with bovine serum albumin (BSA) as a model protein in phosphate buffer solution (PBS). Both of the dyes exhibit strong interaction with BSA in phosphate buffer with high apparent binding constant. A judicious tuning of hydrophobic main backbone with reactive functionality for associative interaction with active site of BSA has been found to be necessary for BSA detection in PBS.

  4. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    PubMed

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  5. Resuscitation of acid-injured Salmonella in enrichment broth, in apple juice and on the surfaces of fresh-cut cucumber and apple.

    PubMed

    Liao, C-H; Fett, W F

    2005-01-01

    To investigate the resuscitation of acid-injured Salmonella enterica in selected enrichment broths, in apple juice and on cut surfaces of apple and cucumber slices. Following exposure to 2.4% acetic acid for 7 min, S. enterica (serovars Mbandaka, Chester and Newport) cells were used to inoculate enrichment broths, phosphate-buffered saline (PBS), apple juice and fruit slices. Injured Salmonella cells resuscitated and regained the ability to form colonies on selective agar (Xylose-Lysine-Tergitol 4) if they were incubated in lactose broth (LB), universal pre-enrichment broth (UPB) or buffered peptone water (BPW), but not in tetrathionate broth, PBS or apple juice. The resuscitation occurred at a significantly (P > 0.05) faster rate in UPB than in LB or BPW. The resuscitation also occurred on the surfaces of fresh-cut cucumber at 20 degrees C, but not at 4 degrees C. Acid-injured Salmonella cells resuscitated in nonselective enrichment broths at different rates, but not in selective enrichment broth, apple juice, PBS or on fresh-cut apple. Pre-enrichment of food samples in UPB prior to selective enrichment is recommended. Injured Salmonella cells have the ability to resuscitate on fresh-cut surfaces of cucumber when stored at abusive temperatures.

  6. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  7. Effects of solutions treated with oxygen radicals in neutral pH region on inactivation of microorganism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-09-01

    The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.

  8. Validation of dilution of plasma samples with phosphate buffered saline to eliminate the problem of small volumes associated with children infected with HIV-1 for viral load testing using Cobas AmpliPrep/COBAS TaqMan HIV-1 test, version 2.0 (CAP CTM HIV v2.0).

    PubMed

    Mine, Madisa; Nkoane, Tapologo; Sebetso, Gaseene; Sakyi, Bright; Makhaola, Kgomotso; Gaolathe, Tendani

    2013-12-01

    The sample requirement of 1 mL for the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 test, version 2.0 (CAP CTM HIV v2.0) limits its utility in measuring plasma HIV-1 RNA levels for small volume samples from children infected with HIV-1. Viral load monitoring is the standard of care for HIV-1-infected patients on antiretroviral therapy in Botswana. The study aimed to validate the dilution of small volume samples with phosphate buffered saline (1× PBS) when quantifying HIV-1 RNA in patient plasma. HIV RNA concentrations were determined in undiluted and diluted pairs of samples comprising panels of quality assessment standards (n=52) as well as patient samples (n=325). There was strong correlation (R(2)) of 0.98 and 0.95 within the dynamic range of the CAP CTM HIV v2.0 test between undiluted and diluted samples from quality assessment standards and patients, respectively. The difference between viral load measurements of diluted and undiluted pairs of quality assessment standards and patient samples using the Altman-Bland test showed that the 95% limits of agreement were between -0.40 Log 10 and 0.49 Log 10. This difference was within the 0.5 Log 10 which is generally considered as normal assay variation of plasma RNA levels. Dilution of samples with 1× PBS produced comparable viral load measurements to undiluted samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles.

    PubMed

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.

    PubMed

    Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong

    2013-08-01

    Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.

  11. [Wavelength Selection in Hemolytic Evaluation Systems with Spectrophotometry Detection].

    PubMed

    Zhang, Hong; Su, Baochang; Ye, Xunda; Luo, Man

    2016-04-01

    Spectrophotometry is a simple hemolytic evaluation method commonly used in new drugs,biomedical materials and blood products.It is for the quantitative analysis of the characteristic absorption peaks of hemoglobin.Therefore,it is essential to select the correct detection wavelength when the evaluation system has influences on the conformation of hemoglobin.Based on the study of changes in the characteristic peaks over time of the hemolysis supernatant in four systems,namely,cell culture medium,phosphate buffered saline(PBS),physiological saline and banked blood preservation solution,using continuous wavelength scanning,the selections of detection wavelength were proposed as follows.In the cell culture medium system,the wavelength of 415 nm should be selected within 4h;,near 408 nm should be selected within 4~72h.In PBS system,within 4h,541 nm,577nm or 415 nm should be selected;4~72h,541 nm,577nm or near 406 nm should be selected.In physiological saline system,within 4h,414 nm should be selected;4~72h,near 405 nm should be selected;within 12 h,541nm or 577 nm could also be selected.In banked blood preservation solution system,within 72 h,415nm,540 nm or 576 nm should be selected.

  12. Cold physical plasma treated buffered saline solution as effective agent against pancreatic cancer cells.

    PubMed

    Bekeschus, Sander; Kading, Andre; Schroder, Tim; Wende, Kristian; Hackbarth, Christine; Liedtke, Kim Rouven; van der Linde, Julia; von Woedtke, Thomas; Heidecke, Claus-Dieter; Partecke, Lars-Ivo

    2018-05-07

    Cold physical plasma has been suggested as a new anticancer tool recently. However, direct use of plasma is limited to visible tumors and in some clinical situations not feasible. This includes repetitive treatment of peritoneal metastases which commonly occur in advanced gastrointestinal cancer and in pancreatic cancer in particular. In case of diffuse intraperitoneal metastatic spread Hyperthermic Intraperitoneal Intraoperative Chemotherapy (HIPEC) is used as therapeutic approach. Plasma treated solutions may combine their suspected systemic non-toxic characteristics with the anticancer effects of HIPEC. Previous work has provided evidence for an anti-cancer efficacy of plasma treated cell culture medium but the clinical relevance of such an approach is low due to its complex formulation and lack of medical accreditation. Therefore, plasma treated phosphate-buffered saline (PBS) which closely resembles medically certified solutions was investigated for its cytotoxic effect on 2D monolayer murine pancreatic cancer cells in vitro. It significantly decreased cancer cell metabolisms and proliferation whereas plasma treated Dulbecco's Modified Eagle Medium had no effect. Moreover, tumor cell growth attenuation was significantly higher when compared to syngeneic primary murine fibroblasts. Both results were confirmed in a human pancreatic cancer cell line. Finally, plasma treated PBS also decreased tumor sizes of pancreatic tumors in the TUM-CAM model in a three-dimensional manner, and induction of apoptosis was found to be responsible for all anticancer effects identified. Altogether, plasma treated PBS inhibited cell growth in 2D and 3D models of cancer. These results may help facilitating the development of new plasma derived anticancer agent with clinical relevance in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET

    PubMed Central

    Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel

    2008-01-01

    Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788

  14. Influence of silica nanospheres on corrosion behavior of magnesium matrix syntactic foam

    NASA Astrophysics Data System (ADS)

    Qureshi, W.; Kannan, S.; Vincent, S.; Eddine, N. N.; Muhammed, A.; Gupta, M.; Karthikeyan, R.; Badari, V.

    2018-04-01

    Over the years, the development of Magnesium alloys as biodegradable implants has seen significant advancements. Magnesium based materials tend to provide numerous advantages in the field of biomedical implants over existing materials such as titanium or stainless steel. The present research focuses on corrosive behavior of Magnesium reinforced with different volume percentages of Hollow Silica Nano Spheres (HSNS). These behaviors were tested in two different simulated body fluids (SBF) namely, Hank’s Buffered Saline Solution (HBSS) and Phosphate Buffered Solution (PBS). This corrosion study was done using the method of electrochemical polarization with a three-electrode configuration. Comparative studies were established by testing pure Mg which provided critical information on the effects of the reinforcing material. The HSNS reinforced Mg displayed desirable characteristics after corrosion experiments; increased corrosion resistance was witnessed with higher volume percentage of HSNS.

  15. Swabs as a tool for monitoring the presence of norovirus on environmental surfaces in the food industry.

    PubMed

    Rönnqvist, Maria; Rättö, Marjaana; Tuominen, Pirkko; Salo, Satu; Maunula, Leena

    2013-08-01

    Human norovirus (HuNoV), which causes gastroenteritis, can be transmitted to food and food contact surfaces via viruscontaminated hands. To investigate this transmission in food processing environments, we developed a swabbing protocol for environmental samples, evaluated the stability of HuNoV in the swabs, and applied the method in the food industry. Swabs made of polyester, flocked nylon, cotton wool, and microfiber were moistened in either phosphate-buffered saline (PBS) or glycine buffer (pH 9.5) and used to swab four surfaces (latex, plastic, stainless steel, and cucumber) inoculated with HuNoV. HuNoV was eluted with either PBS or glycine buffer and detected with quantitative reverse transcription PCR. HuNoV recoveries were generally higher with an inoculation dose of 100 PCR units than 1,000 PCR units. The highest recoveries were obtained when surfaces were swabbed with microfiber cloth moistened in and eluted with glycine buffer after a HuNoV inoculation dose of 100 PCR units: 66% ± 18% on latex, 89% ±2% on plastic, and 79% ±10% on stainless steel. The highest recovery for cucumber, 45% ±5%, was obtained when swabbing the surface with microfiber cloth and PBS. The stability of HuNoV was tested in microfiber cloths moistened in PBS or glycine buffer. HuNoV RNA was detected from swabs after 3 days at 4 and 22°C, although the RNA levels decreased more rapidly in swabs moistened with glycine buffer than in those moistened with PBS at 22°C. In the field study, 172 microfiber and 45 cotton wool swab samples were taken from environmental surfaces at three food processing companies. Five (5.6%) of 90 swabs collected in 2010 and 7 (8.5%) of 82 swabs collected in 2012 were positive for HuNoV genogroup II; all positive samples were collected with microfiber swabs. Three positive results were obtained from the production line and nine were obtained from the food workers' break room and restroom areas. Swabbing is a powerful tool for HuNoV RNA detection from environmental surfaces and enables investigation of virus transmission during food processing.

  16. Remote-loading labeling of liposomes with (99m)Tc-BMEDA and its stability evaluation: effects of lipid formulation and pH/chemical gradient.

    PubMed

    Li, Shihong; Goins, Beth; Phillips, William T; Bao, Ande

    2011-03-01

    Efficient, convenient, and stable radiolabeling plays a critical role for the monitoring of liposome behavior via either blood sampling, organ distribution, or noninvasive nuclear imaging. The direct labeling of liposome-carrying drugs without any prior modification undoubtedly is convenient and optimal for liposomal drug testing. In this article, we investigated the effect of various lipid formulations and pH/chemical gradients on the radiolabeling efficiency and entrapment stability of technetium-99m ((99m)Tc) remotely loaded into liposomes, using (99m)Tc-N,N-bis(2-mercaptoethyl)-N',N'-diethyl-ethylenediamine ((99m)Tc-BMEDA) complex. The tested liposomes either contained unsaturated lipid or possessed various surface charges. (99m)Tc could be efficiently loaded into various premanufactured liposomes containing either an ammonium sulfate pH, citrate pH, or glutathione (GSH) chemical gradient. (99m)Tc-entrapment stabilities of these liposomes in phosphate-buffered saline (PBS; pH 7.4) buffer at 25°C were mainly dependent on the pH/chemical gradient, but not lipid formulation. Stability sequence was ammonium sulfate pH-gradient>citrate pH-gradient>GSH-gradient. Stabilities of (99m)Tc-liposomes in 50% fetal bovine serum (FBS)/PBS (pH 7.4) buffer at 37°C are dependent on both lipid formulation and pH/chemical gradient. Specifically, (99m)Tc labeling of the ammonium sulfate pH-gradient liposomes were less stable in 50% FBS/PBS than in PBS, whereas noncationic liposomes with citrate pH- or GSH-gradient displayed higher stability, except that anionic citrate pH-gradient liposomes showed no stability difference in these two media. Cationic liposomes aggregated in 50% FBS/PBS, forming a new discrete fraction with larger particle sizes. These in vitro characterization results have indicated the optimism of using (99m)Tc-BMEDA for labeling pH/GSH gradient liposomes without the requirement of modifying lipid formulation for liposomal therapeutic-agent development.

  17. The effects of dietary chromium(III) picolinate on growth performance, vital signs, and blood measurements of pigs during immune stress.

    PubMed

    Kim, Beob G; Lindemann, Merlin D; Cromwell, Gary L

    2010-06-01

    This experiment used 24 pigs (26.0 kg) to investigate the effects of dietary chromium (Cr) on pigs challenged with lipopolysaccharide (LPS). Following 35 days of diet exposure, the immune stress treatments were: (1) phosphate-buffered saline (PBS) injection and no Cr, (2) LPS injection and no Cr, (3) LPS injection and Cr 1,000 ppb, and (4) LPS injection and Cr 2,000 ppb. At 0 h, PBS or LPS was injected intraperitoneally in each pig. During the first 12 h post-injection, pigs challenged with LPS lost 951 g, while the PBS group gained 170 g (p < 0.001). Compared with the PBS group, LPS-challenged pigs consumed less feed (p < 0.01) during the first 24 h. The LPS group had higher rectal temperature at 2 and 4 h and higher respiratory rate at 1.3 and 8.5 h than the PBS group (p < 0.05). Plasma collected at 3 h had higher cortisol (p < 0.001) and lower glucose (p < 0.05) concentrations in the LPS group than the PBS group. However, supplemental Cr did not affect the response variables. Overall, the LPS challenge affects growth performance, vital signs, and plasma variables, but dietary Cr is unable to moderate stress-related effects associated with an LPS challenge.

  18. Fundamental and Applied Studies of Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ˜1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization. We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively. Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).

  19. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  20. Iron as a catalyst of human low-density lipoprotein oxidation: Critical factors involved in its oxidant properties.

    PubMed

    Lapenna, Domenico; Ciofani, Giuliano; Obletter, Gabriele

    2017-05-01

    Iron-induced human LDL oxidation, which is relevant to atherosclerosis, has not yet been properly investigated. We addressed such issue using iron(II) and (III) basically in the presence of phosphates, which are present in vivo and influence iron oxidative properties, at pH 4.5 and 7.4, representative, respectively, of the lysosomal and plasma environment. In 10mM phosphate buffered saline (PBS), iron(II) induces substantial LDL oxidation at pH 4.5 at low micromolar concentrations, while at pH 7.4 has low oxidative effects; iron(III) promotes small LDL oxidation only at pH 4.5. In 10mM sodium acetate/NaCl buffer, pH 4.5, iron-induced LDL oxidation is far higher than in PBS, highlighting the relevance of phosphates in the inhibitory modulation of iron-induced LDL oxidation. LDL oxidation is related to iron binding to the protein and lipid moiety of LDL, and requires the presence of iron(II) bound to LDL together with iron(III). Chemical modification of LDL carboxyl groups, which could bind iron especially at pH 4.5, decreases significantly iron binding to LDL and iron-induced LDL oxidation. Hydroxyl radical scavengers are ineffective on iron-induced LDL oxidation, which is inhibited by metal chelation, scavengers of alkoxyl/peroxyl radicals, or removal of LDL lipid hydroperoxides (LOOH). Overall, substantial human LDL oxidation is induced LOOH-dependently by iron(II) at pH 4.5 even in the presence of phosphates, suggesting the occurrence of iron(II)-induced LDL oxidation in vivo within lysosomes, where pH is about 4.5, iron(II) and phosphates coexist, plasma with its antioxidants is absent, and glutathione peroxidase is poorly expressed resulting in LOOH accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment

    PubMed Central

    Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia; Hsu, Yih-Chih

    2016-01-01

    Photodynamic therapy (PDT) is believed to promote hypoxic conditions to tumor cells leading to overexpression of angiogenic markers such as vascular endothelial growth factor (VEGF). In this study, PDT was combined with lipid–calcium–phosphate nanoparticles (LCP NPs) to deliver VEGF-A small interfering RNA (siVEGF-A) to human head and neck squamous cell carcinoma (HNSCC) xenograft models. VEGF-A were significantly decreased for groups treated with siVEGF-A in human oral squamous cancer cell (HOSCC), SCC4 and SAS models. Cleaved caspase-3 and in situ TdT-mediated dUTP nick-end labeling assay showed more apoptotic cells and reduced Ki-67 expression for treated groups compared to phosphate buffered saline (PBS) group. Indeed, the combined therapy showed significant tumor volume decrease to ~70 and ~120% in SCC4 and SAS models as compared with untreated PBS group, respectively. In vivo toxicity study suggests no toxicity of such LCP NP delivered siVEGF-A. In summary, results suggest that PDT combined with targeted VEGF-A gene therapy could be a potential therapeutic modality to achieve enhanced therapeutic outcome for HNSCC. PMID:26373346

  2. Effect of bioactive glass-containing resin composite on dentin remineralization.

    PubMed

    Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su

    2018-05-25

    The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.

  3. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study

    PubMed Central

    Yoo, Jun Sang; Chang, Seok-Woo; Oh, So Ram; Perinpanayagam, Hiran; Lim, Sang-Min; Yoo, Yeon-Jee; Oh, Yeo-Rok; Woo, Sang-Bin; Han, Seung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-01-01

    The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate (MTA) was studied by scanning electron microscopy (SEM). Single-rooted human premolars (n=60) were instrumented to an apical size #50/0.06 using ProFile and treated as follows: Group 1 (n=10) was filled with phosphate buffered saline (PBS); Group 2 (n=10) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3 (n=20) was obturated orthograde with a paste of OrthoMTA (BioMTA, Seoul, Korea) and PBS; and Group 4 (n=20) was incubated with E. faecalis for 3 weeks and then obturated with OrthoMTA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material (IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoMTA-filled roots (Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots (Group 4). Therefore, the orthograde obturation of root canals with OrthoMTA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. PMID:25012869

  4. Exposure to buffer solution alters tendon hydration and mechanics.

    PubMed

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.

  6. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  7. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  8. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  9. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs.

    PubMed

    Holden, Christopher A; Tyagi, Puneet; Thakur, Ashish; Kadam, Rajendra; Jadhav, Gajanan; Kompella, Uday B; Yang, Hu

    2012-07-01

    Dendrimer hydrogel (DH), made from ultraviolet-cured polyamidoamine dendrimer G3.0 tethered with three polyethylene glycol (PEG, 12,000 Da)-acrylate chains (8.1% w/v) in pH 7.4 phosphate buffered saline (PBS), was studied for the delivery of brimonidine (0.1% w/v) and timolol maleate (0.5% w/v), two antiglaucoma drugs. DH was found to be mucoadhesive to mucin particles and nontoxic to human corneal epithelial cells. DH increased the PBS solubility of brimonidine by 77.6% and sustained the in vitro release of both drugs over 56-72 hours. As compared to eye drop formulations (PBS-drug solutions), DH brought about substantially higher human corneal epithelial cells uptake and significantly increased bovine corneal transport for both drugs. DH increased timolol maleate uptake in bovine corneal epithelium, stroma, and endothelium by 0.4- to 4.6-fold. This work demonstrated that DH can enhance the delivery of antiglaucoma drugs in multiple aspects and represents a novel platform for ocular drug delivery. Dendrimer hydrogel was studied as agent for simultaneous delivery of two anti-glaucoma drugs, one hydrophobic and one hydrophilic. Superiority over standard PBS-based formulation was clearly demonstrated for both drugs. The work may be a novel platform for ocular drug delivery. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Drug Release as a function of bioactivity, incubation regime, liquid, and initial load: Release of bortezomib from calcium phosphate-containing silica/collagen xerogels.

    PubMed

    Kruppke, Benjamin; Hose, Dirk; Schnettler, Reinhard; Seckinger, Anja; Rößler, Sina; Hanke, Thomas; Heinemann, Sascha

    2018-04-01

    The ability of silica-/collagen-based composite xerogels to act as drug delivery systems was evaluated by taking into account the initial drug concentration, bioactivity of the xerogels, liquid, and incubation regime. The proteasome inhibitor bortezomib was chosen as a model drug, used for the systemic treatment of multiple myeloma. Incubation during 14 days in phosphate-buffered saline (PBS) or simulated body fluid (SBF) showed a weak initial burst and was identified to be of first order with subsequent release being independent from the initial load of 0.1 or 0.2 mg bortezomib per 60 mg monolithic sample. Faster drug release occurred during incubation in SBF compared to PBS, and during static incubation without changing the liquid, compared to dynamic incubation with daily liquid changes. Drug-loaded xerogels with hydroxyapatite as a third component exhibited enhanced bioactivity retarding drug release, explained by formation of a surface calcium phosphate layer. The fastest release of 50% of the total drug load was observed for biphasic xerogels after 7 days during dynamic incubation in SBF. As a result, the presented concept is suitable for the intended combination of the advantageous bone substitution properties of xerogels and local application of drugs exemplified by bortezomib. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1165-1173, 2018. © 2017 Wiley Periodicals, Inc.

  11. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    PubMed

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  12. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.).

    PubMed

    Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-02-15

    Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus

    PubMed Central

    Price, Daniel L.; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G.; Yu, Yong A.; Szalay, Aladar A.; Cappello, Joseph; Fong, Yuman; Wong, Richard J.

    2016-01-01

    Background Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Methods Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. Results GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. Conclusion The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. PMID:25244076

  14. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  15. Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Krause, Wendy E.; Colby, Ralph H.

    2006-03-01

    Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.

  16. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  17. [A simple and efficient method for establishing a mouse model of orthotopic MB49 bladder cancer].

    PubMed

    Liang, Zhong-kun; Zhang, Lin; Hu, Zhi-ming; Chen, Zhong; Huang, Xin; Shi, Xiang-hua; Tan, Wan-long; Gao, Ji-min

    2009-04-01

    To establish a simple and efficient method for establishing a mouse model of orthotopic superficial bladder cancer. C57BL/6 mice were anesthetized with sodium pentobarbital and catheterized with modified IV catheter (24 G). The mice were intravesically pretreated with HCl and then with NaOH, and after washing the bladders with phosphate-buffered saline (PBS), 100 microl (1 x 10(7)) MB49 cells were infused and allowed to incubate in the bladder for 2 h followed intravesical mitomycin C (MMC) administration. The tumor formation rate, survival, gross hematuria, and bladder weight were determined as the outcome variables, and the pathology of the bladders was observed. Instillation of MB49 tumor cells resulted in a tumor formation rates of 100% in all the pretreated groups while 0% in the control group without pretreatment. MMC significantly reduced the bladder weight as compared to PBS. We have successfully established a stable, reproducible, and reliable orthotopic bladder cancer model in mice.

  18. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  19. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids.

    PubMed

    Roosjen, Astrid; de Vries, Joop; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2005-05-01

    Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum. (c) 2005 Wiley Periodicals, Inc.

  20. Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions.

    PubMed

    Hedberg, Yolanda; Odnevall Wallinder, Inger

    2014-05-01

    The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 µM H2 O2 (PBS + H2 O2 ), and 10 g L(-1) bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2 O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2 O2 . As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution. Copyright © 2013 Wiley Periodicals, Inc.

  1. The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Lee, Jun Sik; Kim, Geun Hyung; Jung, Won-Kyo; Pak, Sok Cheon

    2016-12-01

    Propofol is the most commonly used intravenous (IV) anesthetic agent and is associated with hypotension upon induction of anesthesia. Intravenous propofol infusion has several properties that may be beneficial to patients undergoing middle ear surgery. Topical application of concentrated epinephrine is a valuable tool for achieving hemostasis in the middle ear and during mastoid surgery. The purpose of the present study was to determine the effects of propofol infusion with topical epinephrine on cochlear blood flow (CBF) and hearing in rats. Twenty one male Sprague-Dawley rats were divided into three groups. The rate of intravenous infusion of propofol was 4-6 ml/kg/hour. The first group (control group, n = 7) was given IV infusion of phosphate buffered saline (PBS) with topical application of PBS in the round window. In study group A (n = 7), the effect of topical phosphate buffered saline with IV infusion of propofol on CBF and hearing was evaluated. In study group B (n = 7), additional effects of topical epinephrine with IV infusion of propofol on CBF and hearing were evaluated. The laser Doppler blood flowmeter, CBF, and the mean arterial blood pressure (MAP) were measured and analyzed. Additionally, hearing test using auditory brainstem response (ABR) was performed in both groups. In both groups, infusion of propofol induced a time-dependent decrease in MAP. Approximately 30 min after the start of the propofol infusion, the CBF started to decrease slowly. The decrease in CBF was significantly greater in the study group compared to the control group. The threshold was elevated in the study group relative to the control group. During middle ear surgery, use of IV infusion of propofol with topical epinephrine cotton ball or cottonoid application is not recommended. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The effect of passive ultrasonic activation of 2% chlorhexidine or 5.25% sodium hypochlorite irrigant on residual antimicrobial activity in root canals.

    PubMed

    Weber, Carol Diener; McClanahan, Scott B; Miller, Glenn A; Diener-West, Marie; Johnson, James D

    2003-09-01

    Ninety-four single-canal roots were prepared using the step-down technique. Forty-two canals were irrigated with 2% chlorhexidine, 42 canals with 5.25% sodium hypochlorite (NaOCl), and 10 control canals with phosphate-buffered saline (PBS). The chlorhexidine and NaOCl groups were each then equally divided into a final irrigation group and a 1-min passive ultrasonic irrigation group. Canals were enlarged with a Parapost drill. The apical 3-5 mm was covered with nail polish. Canals were rinsed with PBS, dried, refilled with PBS, and stored. At 6 h, 20 microl of fluid was pipetted from each canal and placed into wells on agar plates, which were inoculated with Streptococcus sanguinis. The plates were incubated, and zones of inhibition were measured. Sampling was repeated at 24, 48, 72, 96, 120, 144, and 168 h. Residual antimicrobial activity with 2% chlorhexidine was statistically significantly superior to 5.25% NaOCl with irrigation alone and with final passive ultrasonic activation (p < 0.001). Chlorhexidine experimental groups demonstrated residual antimicrobial activity for as long as 168 h.

  4. Effect of Fasciola gigantica excretory secretory antigen on rat hematological indices

    PubMed Central

    Ganga, G.; Sharma, R. L.

    2006-01-01

    The present study was undertaken to investigate the effect of Fasciola gigantica excretory secretory antigen (Fg-ESA) on rat hematological indices. Fg-ESA was prepared by keeping thoroughly washed 40 F. gigantica flukes in 100 ml phosphate buffer saline (PBS) for 2 h at 37℃, and centrifuging the supernatant at 12,000 g at 4℃ for 30 min. The protein content of Fg-ESA was adjusted to 1.8 mg/ml. The rats were randomly divided into two groups of six rats each. Rats in group A received 0.5 ml of Fg-ESA intraperitoneally (i.p.) for 7 days, whereas control rats in group B received 0.5 ml of PBS i.p. for 7 days. Hemograms of both groups were studied initially and on days 0, 2, 4, 14 and 21 after the final injection of Fg-ESA or PBS. Progressive and significant (p < 0.01) declines in the values of hemoglobin, hematocrit, and total erythrocyte count were observed without significant (p > 0.05) changes in the values of mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, or mean corpuscular volume in group A. Thus, we conclude that Fg-ESA induces normocytic normochromic anemia in rats. PMID:16645335

  5. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  6. Characterizing fretting damage in different test media for cardiovascular device durability testing.

    PubMed

    Weaver, J D; Ramirez, L; Sivan, S; Di Prima, M

    2018-06-01

    In vitro durability tests of cardiovascular devices are often used to evaluate the potential for fretting damage during clinical use. Evaluation of fretting damage is important because severe fretting can concentrate stress and lead to the loss of structural integrity. Most international standards call for the use of phosphate buffered saline (PBS) for such tests although there has been little evidence to date that the use of PBS is appropriate in terms of predicting the amount of fretting damage that would occur in vivo. In order to determine an appropriate test media for in vitro durability tests where fretting damage is being evaluated, we utilized an in vitro test that is relevant to cardiovascular devices both in terms of dimensions and materials (nitinol, cobalt-chromium, and stainless steel) to characterize fretting damage in PBS, deionized water (DIW), and heparinized porcine blood. Overall, tests conducted in blood were found to have increased levels of fretting damage over tests in DIW or PBS, although the magnitude of this difference was smaller than the variability for each test media. Tests conducted in DIW and PBS led to mostly similar amounts of fretting damage with the exception of one material combination where DIW had greatly reduced damage compared to PBS and blood. Differences in fretting damage among materials were also observed with nitinol having less fretting damage than stainless steel or cobalt-chromium. In general, evaluating fretting damage in PBS or DIW may be appropriate although caution should be used when selecting test media and interpreting results given some of the differences observed across different materials. Published by Elsevier Ltd.

  7. Ex vivo evaluation of various instrumentation techniques and irrigants in reducing E. faecalis within root canals.

    PubMed

    Basmaci, F; Oztan, M D; Kiyan, M

    2013-09-01

    To evaluate ex vivo the effectiveness of single-file instrumentation techniques compared with serial Ni-Ti rotary instrumentation with several irrigation regimens in reducing E. faecalis within root canals. A total of 81 extracted human mandibular premolar teeth with a single root canal were infected with E. faecalis before and after canal preparation. Samples were divided randomly into 9 groups, as follows: group 1-A: sterile phosphate-buffered saline + Self-adjusting file, group 1-B: 5% sodium hypochlorite + 15% EDTA + Self-adjusting file, group 1-C: 5% sodium hypochlorite + 7% maleic acid + Self-adjusting file, group 2-A: sterile phosphate-buffered saline + Reciproc (R25), group 2-B: 5% sodium hypochlorite + 15% EDTA + Reciproc (R25), group 2-C: 5% sodium hypochlorite + 7% maleic acid + Reciproc (R25), group 3-A: sterile phosphate-buffered saline + ProTaper, group 3-B: 5% sodium hypochlorite + 15% EDTA + ProTaper, group 3-C: 5% sodium hypochlorite + 7% maleic acid + ProTaper. anova was used to analyse statistically the differences in terms of reduction in colony counts between the groups, and Dunn's post hoc test was used for multiple comparisons. All techniques and irrigation regimens significantly reduced the number of bacterial cells in the root canal (P < 0.001). Comparisons amongst the groups revealed significant differences between group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 1B (5% sodium hypochlorite + 15% EDTA + Self-adjusting file) (P = 0.031), group 1A (sterile phosphate-buffered saline + Self-adjusting file)/group 2C (5% sodium hypochlorite + 7% maleic acid + Reciproc) (P = 0.003), group 2A (sterile phosphate-buffered saline + Reciproc)/group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper) (P = 0.036), group 3B (5% sodium hypochlorite + 15% EDTA + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P < 0.001), and group 3C (5% sodium hypochlorite + 7% maleic acid + ProTaper)/group 1A (sterile phosphate-buffered saline + Self-adjusting file) (P = 0.033). No significant differences in terms of reduction in microbial counts were observed between single-file techniques (SAF and Reciproc) and serial Ni-Ti instrumentation technique (ProTaper) in combination with irrigants. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Asymmetric reduction of benzil to (S)-benzoin with whole cells of Bacillus cereus.

    PubMed

    Saito, Tomoya; Maruyama, Reiji; Ono, Shin; Yasukawa, Nobuo; Kodaira, Ken-ichi; Nishizawa, Mikio; Ito, Seiji; Inoue, Masami

    2003-12-01

    Benzil (1) was selectively reduced to (S)-benzoin (2) in the presence of a wild-type Bacillus cereus Tim-r01. A 92% yield of 2 with 94% enantiomeric excess ratio was attained in phosphate-buffered saline (PBS) (pH 7.5) by using glucose as a nutrient at 37 degrees C for 12 h. Compound 2 was not reduced further to hydrobenzoin (3) at all. The reduction activity differed greatly depending on the strain of B. cereus. Under these conditions the B. cereus strains IFO3001, IFO15305, IAM1110, IAM1229, IAM1656, and IAM1729 gave 2 in yields ranging from 23 to 46% and the configuration of 2 was (S)-form (7 to 86% ee).

  9. A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Thu Thuy Nguyen, Thi; Duong Le, Quang; Ngoan Nguyen, Thi; Cham Ba, Thi; Binh Nguyen, Hai; Bich Hoa Phan, Thi; Tran, Dai Lam; Phuc Nguyen, Xuan; Park, Jun Seo

    2012-06-01

    Curcumin (Cur), extracted from the Curcuma longa L. plant, is well known for its anti-tumor, anti-oxidant, anti-inflammatory and anti-bacterial properties. Nanofiber mats of polylactic acid (PLA) loading Cur (5 wt%) were fabricated by electrospinning (e-spinning). Morphology and structure of the fibers were characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The diameters of the obtained fibers varied from 200 to 300 nm. The release capacity of curcumin from curcumin-loaded PLA fibers was investigated in phosphate buffer saline (PBS) containing ethanol. After 24 h, 50% of the curcumin was released from curcumin-loaded PLA fibers. These results of electrospun (e-spun) fibers exhibit the potential for biomedical application.

  10. The effect of ICG on mitomycin C cytotoxicity in human tenon fibroblasts.

    PubMed

    Reeves, Graham; Wallis, Richard; Crowston, Jonathan G; Small, Keith M; Wells, Anthony P

    2007-08-01

    To examine the effects of indocyanine green (ICG) with and without mitomycin C (MMC) on proliferation of cultured human Tenon fibroblasts. Fibroblast monolayers were exposed to either MMC [0.4 mg/mL in phosphate buffered saline (PBS)] or PBS containing ICG (0.0625%, 0.125%, 0.25%, and 0.5% in 200 microL PBS) or a combination of MMC (0.4 mg/mL in PBS) and ICG (0.25% and 0.5%) for 5 minutes. Controls were exposed for 5 minutes to MMC, PBS, or culture medium containing no ICG. After treatment, the monolayers were washed and incubated in culture medium for 24, 48, 72 hours, and 1 week periods after which the number of viable cells was quantified. The presence of ICG alone, at concentrations ranging from 0.0625% to 0.5%, had no effect on the rate of fibroblast proliferation measured at any of the incubation periods. As expected, MMC treatment resulted in a significant reduction in viable fibroblast number (8.4+/-0.13x10(3)). ICG in combination with MMC did not significantly alter fibroblast numbers (8.5+/-0.05x10(3)) up to 1 week compared with MMC alone (8.4+/-0.12x10(3)). ICG at concentrations of 0.5% and below do not reduce proliferation of Tenon capsule fibroblasts. ICG did not potentiate or diminish the effect of MMC on Tenon capsule fibroblast proliferation.

  11. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity

    PubMed Central

    Yuan, Z; Syrkin, G; Adem, A; Geha, R; Pastoriza, J; Vrikshajanani, C; Smith, T; Quinn, T J; Alemu, G; Cho, H; Barrett, C J; Arap, W; Pasqualini, R; Libutti, S K

    2013-01-01

    In the current study, we examined whether the combination of tumor vasculature-targeted gene therapy with adeno-associated virus bacteriophage-tumor necrosis factor-α (AAVP-TNF-α) and/or the orally administered LCL161, an antagonist of inhibitors of apoptosis proteins (IAPs), enhanced antitumor efficacy without systemic toxicity. M21 human melanoma xenografts were grown subcutaneously in nude mice. Mice were treated according to one of four treatment regimens: AAVP-TNF-α alone (AAVP-TNF-α plus sodium acetate-acetic acid (NaAc) buffer) via tail vein injection; LCL161 alone (phosphate-buffered saline (PBS) plus LCL161) via oral gavage; AAVP-TNF-α plus LCL161; and PBS plus NaAc Buffer as a control group. Tumor volume, survival and toxicity were analyzed. AAVP trafficking and TNF-α production in vivo were detected on days 7 and 21 by real-time PCR, enzyme-linked immunosorbent assay and immunofluorescence. The levels of apoptosis and activation of caspases were assessed on days 7 and 21 by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) and immunofluorescence assays. Our results showed that the combination of AAVP-TNF-α and LCL161 significantly inhibited tumor growth and prolonged survival in mice with melanoma xenografts. The combination of AAVP-TNF-α and LCL161 was also significantly more effective than either agent alone, showing a synergistic effect without systemic toxicity. PMID:23154431

  12. A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn.

    PubMed

    Zochodne, D W; Murray, M; Nag, S; Riopelle, R J

    1994-02-01

    We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells.

  13. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

    PubMed

    Hedberg, Jonas; Karlsson, Hanna L; Hedberg, Yolanda; Blomberg, Eva; Odnevall Wallinder, Inger

    2016-05-01

    Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride

    PubMed Central

    Liang, H; Baudouin, C; Pauly, A; Brignole-Baudouin, F

    2008-01-01

    Aim: To compare the conjunctival and corneal reactions of commercially available solution of latanoprost (Xalatan) and preservative-free (PF) tafluprost in rabbits. Methods: The rabbits received 50 μl of phosphate-buffered saline (PBS), PF-tafluprost 0.0015%, latanoprost 0.005% or benzalkonium chloride (BAK) 0.02%; all solutions were applied at 5 min intervals for a total of 15 times. The ocular surface toxicity was investigated using slit-lamp biomicroscopy examination, flow cytometry (FCM) and on imprints for CD45 and tumour necrosis factor-receptor 1 (TNFR1) conjunctival impression cytology (CIC) and corneal in vivo confocal microscopy (IVCM). Standard immunohistology also assessed inflammatory/apoptotic cells. Results: Clinical observation and IVCM images showed the highest ocular surface toxicity with latanoprost and BAK, while PF-tafluprost and PBS eyes presented almost normal corneoconjunctival aspects. FCM showed a higher expression of CD45+ and TNFR1+ in latanoprost- or BAK-instilled groups, compared with PF-tafluprost and PBS groups. Latanoprost induced fewer positive cells for inflammatory marker expressions in CIC specimens compared with BAK-alone, both of which were higher than with PF-tafluprost or PBS. Immunohistology showed the same tendency of toxic ranking. Conclusion: The authors confirm that rabbit corneoconjunctival surfaces presented a better tolerance when treated with PF-tafluprost compared with commercially available latanoprost or BAK solution. PMID:18723745

  15. Chronic methamphetamine exposure induces cardiac fas-dependent and mitochondria-dependent apoptosis.

    PubMed

    Liou, Cher-Ming; Tsai, Shiow-Chwen; Kuo, Chia-Hua; Williams, Timothy; Ting, Hua; Lee, Shin-Da

    2014-06-01

    Very limited information regarding the influence of chronic methamphetamine exposure on cardiac apoptosis is available. In this study, we evaluate whether chronic methamphetamine exposure will increase cardiac Fas-dependent (type I) and mitochondria-dependent (type II) apoptotic pathways. Thirty-two male Wistar rats at 3-4 months of age were randomly divided into a vehicle-treated group [phosphate-buffered saline (PBS) 0.5 ml SQ per day] and a methamphetamine-treated group (MA 10 mg/kg SQ per day) for 3 months. We report that after 3 months of exposure, abnormal myocardial architecture, more minor cardiac fibrosis and cardiac TUNEL-positive apoptotic cells were observed at greater frequency in the MA group than in the PBS group. Protein levels of TNF-α, Fas ligand, Fas receptor, Fas-associated death domain, activated caspase-8, and activated caspase-3 (Fas-dependent apoptosis) extracted from excised hearts were significantly increased in the MA group, compared to the PBS group. Protein levels of cardiac Bak, t-Bid, Bak to Bcl-xL ratio, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptosis) were significantly increased in the MA group, compared with the PBS group. The results from this study reveal that chronic methamphetamine exposure will activate cardiac Fas-dependent and mitochondria-dependent apoptotic pathways, which may indicate a possible mechanism for developing cardiac abnormalities in humans with chronic methamphetamine abuse.

  16. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D MW,PBS ) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D MW values above 4. Renewal of the medium resulted in linear sorption isotherms. D MW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D MW,PBS . Log D MW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D MW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  17. Material Properties of a Tricalcium Silicate-containing, a Mineral Trioxide Aggregate-containing, and an Epoxy Resin-based Root Canal Sealer.

    PubMed

    Prüllage, Raquel-Kathrin; Urban, Kent; Schäfer, Edgar; Dammaschke, Till

    2016-12-01

    The aim was to compare the solubility, radiopacity, and setting times of a tricalcium silicate-containing (BioRoot RCS; Septodont, St Maur-des-Fossés, France) and a mineral trioxide aggregate-containing sealer (MTA Fillapex; Angelus, Londrina, Brazil) with an epoxy resin-based sealer (AH Plus; Dentsply DeTrey, Konstanz, Germany). Solubility in distilled water, radiopacity, and setting time were evaluated in accordance with ISO 6876:2012. The solubility was also measured after soaking the materials in phosphate-buffered saline buffer (PBS). All data were analyzed using 1-way analysis of variance and the Student-Newman-Keuls test. After immersion for 1 minute in distilled water, BioRoot RCS was significantly less soluble than AH Plus and MTA Fillapex (P < .05). At all other exposure times, AH Plus was significantly less soluble than BioRoot RCS, whereas BioRoot RCS was significantly more soluble than the other 2 sealers (P < .05). All sealers had the same solubility in PBS and distilled water, except for BioRoot RCS after 28 days. At this exposure time, BioRoot RCS was significantly less soluble in PBS than in distilled water and less soluble than MTA Fillapex (P < .05). All BioRoot RCS specimens immersed in PBS had a surface precipitate after 14 and 28 days. The radiopacity of all sealers was greater than 3 mm aluminum with no statistical significant difference between the sealers (P > .05). The final setting time was 324 (±1) minutes for BioRoot RCS and 612 (±4) minutes for AH Plus. The difference was statistically significant (P < .05). MTA Fillapex did not set completely even after 1 week. The solubility and radiopacity of the sealers were in accordance with ISO 6876:2012. PBS decreased the solubility of BioRoot RCS. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  19. Long-term corrosion of a Ga-containing restorative material.

    PubMed

    Sarkar, N K; Moiseyeva, R; Berzins, D W; Osborne, J W

    2000-03-01

    The aim was to simulate and characterize the long-term corrosion of a Ga-containing alloy (Galloy, SDI). To induce corrosion, cylindrical specimens, 8 x 4 mm, of the material were subject to potentiostatic polarization at -0.1 V (SCE) in a phosphated buffered saline (PBS) solution at 20 degrees C for d. The current-time transients during polarization were recorded and the corresponding anodic charge, Q, was calculated. Parallel potentiostatic corrosion tests in a Cl-free PBS solution were also conducted to demonstrate the significance of the Cl- ion in corrosion. In addition, potentiodynamic anodic polarization tests were performed to characterize the overall corrosion behavior of the alloy in both electrolytes. The external and internal corroded layers, formed during potentiostatic corrosion in PBS, were measured by optical microscopy. SEM and EDXA were used to characterize the morphology and composition of the potentiostatically polarized surfaces. Galloy was passive in Cl-free PBS. The Cl- ion in PBS destroyed passivity and initiated a "dissolution-precipitation" type reaction during potentiostatic corrosion. The latter led to circumferential internal corrosion and growth of a layer of external corrosion products. The thickness of the internal and external corrosion layers was 0.77 +/- 0.07 and 0.86 +/- 0.37 mm, respectively. The Q value (89.3 +/- 13.7 C/cm2) in PBS was about two orders of magnitude higher than that (0.66 +/- 0.24 C/cm2) in Cl-free PBS. The corrosion products contained Sn, Ga, In, Cu, O and Cl. Massive internal and external corrosion in a Cl-containing medium as in saliva, accumulation of corrosion products at the cavity wall, and the consequent stress build-up contribute to post-operative pain, tooth straining, marginal breakdown and fractured teeth reported with the clinical use of Galloy.

  20. Effects of repeated 9 and 30-day exposure to extremely low-frequency electromagnetic fields on social recognition behavior and estrogen receptors expression in olfactory bulb of Wistar female rats.

    PubMed

    Bernal-Mondragón, C; Arriaga-Avila, V; Martínez-Abundis, E; Barrera-Mera, B; Mercado-Gómez, O; Guevara-Guzmán, R

    2017-02-01

    We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E 2 : ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E 2 : replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.

  1. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  2. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release.

    PubMed

    Giammarco, James; Mochalin, Vadym N; Haeckel, James; Gogotsi, Yury

    2016-04-15

    The unique properties and tailorable surface of detonation nanodiamonds have given rise to an abundance of potential biomedical applications. Very little is known about the details of adsorption/desorption equilibria of drugs on/from nanodiamonds with different purity, surface chemistry, and agglomeration state. The studies presented here delve into the details of adsorption and desorption of tetracycline (TET) and vancomycin (VAN) on nanodiamond, which are critically important for the rational design of the nanodiamond drug delivery systems. The nanodiamonds studied in these experiments were as-received (ND), purified and carboxyl terminated (ND-COOH), and aminated (ND-NH2). The monolayer capacities of the drugs loaded onto the nanodiamonds are reported herein using Langmuir and Freundlich isotherm models. The results from the desorption studies demonstrate that, by changing the pH environment of drug loaded nanodiamond using buffers of pH 4.09, 7.45, 8.02, and a phosphate buffered saline (PBS) solution, the drug release can effectively be triggered. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Diluents for stabilization of tuberculin

    PubMed Central

    Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans

    1958-01-01

    Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720

  4. Effect of inflammatory challenge on hypothalamic neurons expressing orexinergic and melanin-concentrating hormone.

    PubMed

    Palomba, Maria; Seke Etet, Paul Faustin; Veronesi, Carlo

    2014-06-06

    Neurons containing the hypothalamic peptides orexin-A (hypocretin 1) and melanin-concentrating hormone (MCH) have been reported numerous roles in the regulation of the sleep-wake cycle, energy balance and feeding behavior. We investigated the response of these cells to repeated administration of low doses of endotoxin lipopolysaccharide (LPS) in mice. Adult male C57/6J mice where intraperitoneally (i.p.) injected with either LPS or phosphate-buffered saline (PBS) weekly for either 4 or 8 weeks, and afterwards were sacrificed at different time intervals from last injection. A significant drop in orexin-containing neuron number, but not in numbers of MCH or neuronal nuclear antigen (NeuN)-immunoreactive neurons, was observed after 8 weeks of LPS treatment, as compared to PBS treatment. Orexin expression entirely returned to control levels 30 days after the last LPS injection in mice treated for 8 weeks. These data strongly suggest the occurrence of selective alterations of orexinergic system, reversible over time, following repeated and intermittent systemic inflammatory challenge in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  7. Infectivity of Theileria parva sporozoites following cryopreservation in four suspension media and multiple refreezing: evaluation by in vitro titration.

    PubMed

    Mbao, V; Berkvens, D; Dolan, T; Speybroeck, N; Brandt, J; Dorny, P; Van den Bossche, P; Marcotty, T

    2006-09-01

    Theileria parva sporozoite stabilates are used for immunizing cattle against East Coast fever and in in vitro sporozoite neutralization assays. In this study, we attempted to identify a cheaper freezing medium and quantified the infectivity loss of sporozoites due to refreezing of stabilates, using an in vitro technique. Pools of stabilates prepared using Minimum Essential Medium (MEM), Roswell Park Memorial Institute (RPMI 1640), foetal calf serum (FCS) and phosphate-buffered saline (PBS) were compared. All were supplemented with bovine serum albumin except the FCS. RPMI 1640 was as effective as MEM in maintaining sporozoite infectivity while the infectivity in PBS and FCS reached only 59% and 67%, respectively. In a second experiment, a stabiiate based on MEM was subjected to several freeze-thaw cycles including various holding times on ice between thawing and refreezing. Refrozen stabilate gave an average sporozoite infectivity loss of 35% per cycle. The results indicate that RPMI can be used as a cheaper freezing medium for T. parva stabilates and that refrozen stabilate doses need to be adjusted for the 35% loss of infectivity.

  8. MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria

    2012-09-01

    Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.

  9. Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method.

    PubMed

    Boldt, Jeffrey; Tidswell, Non; Sayers, Amy; Kilani, Rami; Cline, Donald

    2006-07-01

    A slow freezing/rapid thawing method for the cryopreservation of human oocytes has been employed using a sodium-depleted culture media. In 53 frozen egg-embryo transfer (FEET) cycles, a 60.4% survival rate post-thaw was obtained and a 62.0% fertilization rate following intracytoplasmic sperm injection. Overall pregnancy rates were 26.4% per thaw attempt, 30.4% per patient, and 32.6% per embryo transfer. Pregnancy rates using sodium-depleted phosphate-buffered saline (PBS) as the base medium were 20.0% per thaw, 21.7% per patient, and 26.3% per transfer. With sodium-depleted modified human tubal fluid (mHTF) as the base for the cryopreservation medium, rates were 32.1% per thaw attempt, 39.1% per patient, 37.5% per transfer. The overall implantation rates were 4.2% per thawed oocyte and 13.6% per embryo, (PBS: 3.0% per egg, 10.6% per embryo; mHTF:5.3% per oocyte; 15.9% per embryo). These data indicate that the use of a sodium-depleted media with slow freezing and rapid thawing can yield acceptable pregnancy rates after FEET.

  10. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.

    PubMed

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  11. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Giardino, R

    2005-03-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBS

  12. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    NASA Astrophysics Data System (ADS)

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  13. Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application.

    PubMed

    Jayalekshmi, A C; Sharma, Chandra P

    2015-02-01

    The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Imaging the Drosophila retina: zwitterionic buffers PIPES and HEPES induce morphological artifacts in tissue fixation.

    PubMed

    Nie, Jing; Mahato, Simpla; Zelhof, Andrew C

    2015-02-03

    Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure. We found that piperazine-N,N'-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging. We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.

  15. Enhanced Biocompatibility of Porous Nitinol

    PubMed Central

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-01-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08. PMID:19956797

  16. Enhanced Biocompatibility of Porous Nitinol

    NASA Astrophysics Data System (ADS)

    Munroe, Norman; Pulletikurthi, Chandan; Haider, Waseem

    2009-08-01

    Porous Nitinol (PNT) has found vast applications in the medical industry as interbody fusion devices, synthetic bone grafts, etc. However, the tendency of the PNT to corrode is anticipated to be greater as compared to solid nitinol since there is a larger surface area in contact with body fluids. In such cases, surface preparation is known to play a major role in a material’s biocompatibility. In an effort to check the effect of surface treatments on the in vitro corrosion properties of PNT, in this investigation, they were subjected to different surface treatments such as boiling in water, dry heating, and passivation. The localized corrosion resistance of alloys before and after each treatment was evaluated in phosphate buffer saline solution (PBS) using cyclic polarization tests in accordance with ASTM F 2129-08.

  17. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    NASA Astrophysics Data System (ADS)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  18. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    NASA Astrophysics Data System (ADS)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  19. Optimising methods of red cell sedimentation from cord blood to maximise nucleated cell recovery prior to cryopreservation.

    PubMed

    Madkaikar, M; Gupta, M; Ghosh, K; Swaminathan, S; Sonawane, L; Mohanty, D

    2007-01-01

    Human cord blood is now an established source of stem cells for haematopoietic reconstitution. Red blood cell (RBC) depletion is required to reduce the cord blood unit volume for commercial banking. Red cell sedimentation using hydroxy ethyl starch (HES) is a standard procedure in most cord blood banks. However, while standardising the procedure for cord blood banking, a significant loss of nucleated cells (NC) may be encountered during standard HES sedimentation protocols. This study compares four procedures for cord blood processing to obtain optimal yield of nucleated cells. Gelatin, dextran, 6% HES and 6% HES with an equal volume of phosphate-buffered saline (PBS) were compared for RBC depletion and NC recovery. Dilution of the cord blood unit with an equal volume of PBS prior to sedimentation with HES resulted in maximum NC recovery (99% [99.5 +/- 1.3%]). Although standard procedures using 6% HES are well established in Western countries, they may not be applicable in India, as a variety of factors that can affect RBC sedimentation (e.g., iron deficiency, hypoalbuminaemia, thalassaemia trait, etc.) may reduce RBC sedimentation and thus reduce NC recovery. While diluting cord blood with an equal volume of PBS is a simple method to improve the NC recovery, it does involve an additional processing step.

  20. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

    PubMed

    Li, Mei; Zhu, Lizhong; Lin, Daohui

    2011-03-01

    Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.

  1. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    PubMed

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  2. Fully Enzymatic Membraneless Glucose|Oxygen Fuel Cell That Provides 0.275 mA cm(-2) in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data.

    PubMed

    Ó Conghaile, Peter; Falk, Magnus; MacAodha, Domhnall; Yakovleva, Maria E; Gonaus, Christoph; Peterbauer, Clemens K; Gorton, Lo; Shleev, Sergey; Leech, Dónal

    2016-02-16

    Coimmobilization of pyranose dehydrogenase as an enzyme catalyst, osmium redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) or [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) as mediators, and carbon nanotube conductive scaffolds in films on graphite electrodes provides enzyme electrodes for glucose oxidation. The recombinant enzyme and a deglycosylated form, both expressed in Pichia pastoris, are investigated and compared as biocatalysts for glucose oxidation using flow injection amperometry and voltammetry. In the presence of 5 mM glucose in phosphate-buffered saline (PBS) (50 mM phosphate buffer solution, pH 7.4, with 150 mM NaCl), higher glucose oxidation current densities, 0.41 mA cm(-2), are obtained from enzyme electrodes containing the deglycosylated form of the enzyme. The optimized glucose-oxidizing anode, prepared using deglycosylated enzyme coimmobilized with [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) and carbon nanotubes, was coupled with an oxygen-reducing bilirubin oxidase on gold nanoparticle dispersed on gold electrode as a biocathode to provide a membraneless fully enzymatic fuel cell. A maximum power density of 275 μW cm(-2) is obtained in 5 mM glucose in PBS, the highest to date under these conditions, providing sufficient power to enable wireless transmission of a signal to a data logger. When tested in whole human blood and unstimulated human saliva maximum power densities of 73 and 6 μW cm(-2) are obtained for the same fuel cell configuration, respectively.

  3. Investigation of drug loading and in vitro release mechanisms of insulin-lauryl sulfate complex loaded PLGA nanoparticles.

    PubMed

    Shi, K; Cui, F; Yamamoto, H; Kawashima, Y

    2008-12-01

    Insulin, a water soluble peptide hormone, was hydrophobically ion-paired with sodium lauryl sulfate (SDS) at the stoichiometric molar ratio of 6:1. The obtained insulin-SDS complex precipitation was subsequently formulated in biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles by a modified spontaneous emulsion solvent diffusion method. Compared with a conventional method for free insulin encapsulation, direct dissolution of SDS-paired insulin in the non-aqueous organic phase led to an increase in drug recovery from 42.5% to 89.6%. The more hydrophobic complex contributes to the improved affinity of insulin to the polymer matrix, resulting in a higher drug content in the nanoparticles. The drug loading was investigated by determining initial burst release at the first 30 min. The results showed that 64.8% of recovered drug were preferentially surface bound on complex loaded nanoparticles. The in vitro drug release was characterized by an initial burst and subsequent delayed release in dissolution media of deionized water and phosphate buffer saline (PBS). Compared with that in PBS, nanoparticles in deionized water medium presented very low initial burst release (15% vs. 65%) and incomplete cumulative release (25% vs. 90%) of the drug. In addition, dialysis experiments were performed to clarify the form of the released insulin in the dissolution media. The results suggested that the ion-pair complex was sensitive to ionic strength, insulin was released from the particular matrix as complex form and subsequently suffered dissociation from SDS in buffer saline. Moreover, the in vivo bioactivity of the SDS-paired insulin and nanoparticulate formulations were evaluated in mice by estimation of their blood sugar levels. The results showed that the bioactivity of insulin was unaltered after the ion-pairing process.

  4. Snow leopard (Panthera uncia) spermatozoa are sensitive to alkaline pH, but motility in vitro is not influenced by protein or energy supplements.

    PubMed

    Roth, T L; Swanson, W F; Collins, D; Burton, M; Garell, D M; Wildt, D E

    1996-01-01

    To better understand the biology of snow leopard spermatozoa and to facilitate developing assisted reproduction, a series of studies was conducted to: 1) identify the component(s) of complex culture media responsible for the detrimental effect on sperm survival in vitro, 2) optimize medium for supporting sperm viability, and 3) evaluate sperm capacitation in vitro. Constituents of complex media were added systematically to phosphate-buffered saline (PBS) to isolate the factor(s) influencing snow leopard sperm motility in vitro. Sperm capacitation was also assessed following incubation in PBS with bovine serum albumin (BSA), fetal calf serum (FCS), or heparin. For maintaining sperm motility, there was no benefit (P > or = 0.05) to supplementing PBS with low (5%) or high (20%) concentrations of snow leopard serum (SLS) versus FCS or BSA. Likewise, adding supplemental energy substrates (pyruvate, glucose, lactate, or glutamine) did not enhance or hinder (P > or = 0.05) sperm motility. However, motility rapidly decreased (P < 0.05) with the addition of NaHCO3 to PBS or Ham's F10 nutrient mixture. Surprisingly, Ham's F10 with no buffering component or with both NaHCO3 and N-Z-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) maintained sperm motility at levels similar (P > or = 0.05) to PBS. Although sperm motility in all treatments decreased with time, there was a strong inverse relationship (P < 0.01; r = 0.90) between motility and sample pH at 6 hours. Spermatozoa incubated in PBS containing FCS, BSA, or heparin did not undergo the acrosome reaction when exposed to calcium ionophore. In summary, alkaline pH has a profound detrimental effect on snow leopard sperm motility, and capacitation does not occur under conditions that normally promote this event in other felid species. These results clearly demonstrate a high degree of interspecific variation among felids in fundamental sperm function, and they provide evidence for the necessity of basic research when developing assisted reproduction in little-studied nondomestic species.

  5. Protective effects of systemic treatment with methylprednisolone in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION).

    PubMed

    Huang, Tzu-Lun; Huang, Shun-Ping; Chang, Chung-Hsing; Lin, Kung-Hung; Chang, Shu-Wen; Tsai, Rong-Kung

    2015-02-01

    This study investigated the protective effects of the administration of steroids on optic nerves (ON) and retinal ganglion cells (RGCs) in a rodent model of non-arteritic anterior ischemic optic neuropathy (rAION). We induced rAION using rose bengal and argon laser irradiation in a photodynamic procedure on the optic discs of rats. The treated groups received methylprednisolone (MP) via peritoneal injection for 2 weeks. The control group received intraperitoneal injections of phosphate-buffered saline (PBS) post-rAION. At the 4th week post-infarct, MP treatments significantly rescued the RGCs (mm(2)) in the central retinas (1920 ± 210, p < 0.001) and mid-peripheral retinas (950 ± 240, respectively, p = 0.018) compared with those of the PBS-treated rats (central: 900 ± 210 and mid-peripheral: 440 ± 180). Functional assessment with flash visual-evoked potentials demonstrated that P1 latency (ms) was shortened in the MP group compared to the PBS group (108 ± 14 and 147 ± 9, respectively, p < 0.001). In addition, the P1 amplitude (uV) was enhanced in the MP group compared to the PBS group (55 ± 12 and 41 ± 13, respectively, p < 0.05). TUNEL assays showed a decrease in the number of apoptotic cells in the RGC layers of MP-treated retinas compared to the PBS-treated group (p < 0.05). ED1 positive cells (/HPF) were significantly decreased in the ONs of the MP group compared to the PBS group (p < 0.001). In conclusion, systemic administration of MP had neuroprotective effects on RGC survival and ON function in the rAION animal model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of the efficiency of three extraction conditions for the immunochemical detection of allergenic soy proteins in different food matrices.

    PubMed

    Amponsah, Amma; Nayak, Balunkeswar

    2018-04-01

    Recent studies have shown the need to improve soy allergen extraction using different extraction conditions to ensure more accurate results in allergen detection. This study investigated some of these extraction conditions to confirm that these methods, especially ultrasound-assisted extraction (UAE) and the use of Laemmli buffer instead of the conventional extraction with phosphate-buffered saline (PBS), could be helpful in improving the extraction step in allergen detection. Higher total soluble protein was obtained in all samples extracted with Laemmli buffer alone and in combination with ultrasound. For immunochemical detection of soy proteins by enzyme-linked immunosorbent assay (ELISA), comparable detection was observed in extracts from all extraction conditions in all commercial samples with the exception of table cracker and veggie burger, where significantly higher detection was seen in extracts from Laemmli buffer only. For the dry mix and cookie samples, the degree of soy protein detection with ELISA varied among the different extraction conditions, but overall, extraction with only Laemmli buffer showed higher detection. Laemmli buffer with conventional extraction and UAE may be better alternatives or additional extraction methods in soy allergen detection. Different food matrices performed differently (whether it was for the recovery of total proteins or detection by ELISA) under different extraction conditions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis

    PubMed Central

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30–300 mg kg−1 HIE, 30 mg kg−1 prednisolone, 10 mg kg−1 chlorpheniramine, or 10 mL kg−1 PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg−1 HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01–0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression. PMID:26681960

  9. Possible Mechanism of Action of the Antiallergic Effect of an Aqueous Extract of Heliotropium indicum L. in Ovalbumin-Induced Allergic Conjunctivitis.

    PubMed

    Kyei, Samuel; Koffuor, George Asumeng; Ramkissoon, Paul; Abokyi, Samuel; Owusu-Afriyie, Osei; Wiredu, Eric Addo

    2015-01-01

    Heliotropium indicum is used traditionally as a remedy for conjunctivitis in Ghana. This study therefore evaluated the antiallergic potential of an aqueous whole plant extract of Heliotropium indicum (HIE) in ovalbumin-induced allergic conjunctivitis and attempted to predict its mode of action. Clinical scores for allergic conjunctivitis induced by intraperitoneal ovalbumin sensitization (100 : 10 μg OVA/Al(OH)3 in phosphate-buffered saline [PBS]) and topical conjunctival challenge (1.5 mg OVA in 10 μL PBS) in Dunkin-Hartley guinea pigs were estimated after a week's daily treatment with 30-300 mg kg(-1) HIE, 30 mg kg(-1) prednisolone, 10 mg kg(-1) chlorpheniramine, or 10 mL kg(-1) PBS. Ovalbumin-specific IgG and IgE and total IgE in serum were estimated using Enzyme-Linked Immunosorbent Assay. Histopathological assessment of the exenterated conjunctivae was also performed. The 30 and 300 mg kg(-1) HIE treatment resulted in a significantly (p ≤ 0.001) low clinical score of allergic conjunctivitis. Ovalbumin-specific IgG and IgE as well as total serum IgE also decreased significantly (p ≤ 0.01-0.001). The conjunctival tissue in HIE treated guinea pigs had mild mononuclear infiltration compared to the PBS-treated ones, which had intense conjunctival tissue inflammatory infiltration. HIE exhibited antiallergic effect possibly by immunomodulation or immunosuppression.

  10. Effects of diluting medium and holding time on sperm motility analysis by CASA in ram.

    PubMed

    Mostafapor, Somayeh; Farrokhi Ardebili, Farhad

    2014-01-01

    The aim of this study was to evaluate the effects of dilution rate and holding time on various motility parameters using computer-assisted sperm analysis (CASA). The semen samples were collected from three Ghezel rams. Samples were diluted in seminal plasma (SP), phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and Bioexcell. The motility parameters that computed and recorded by CASA include curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF). In all diluters, there was a decrease in the average of all three parameters of sperms movement velocity as the time passed, but density of this decrease was more intensive in SP. The average of ALH between diluters indicated a significant difference, as it was more in Bioexcell in comparison with the similar amount in SP and PBS. The average of LIN in the diluted sperms in Bioexcell was less than two other diluters in all three times. The motility parameters of the diluted sperms in Bioexcell and PBS indicated an important and considerable difference with the diluted sperms in SP. According to the gained results, the Bioexcell has greater ability in preserving motility of sperm in comparison with the other diluters but as SP is considered as physiological environment for sperm. It seems that the evaluation of the motility parameters in Bioexcell and PBS cannot be an accurate and comparable evaluation with SP.

  11. Lubricin: A novel means to decrease bacterial adhesion and proliferation

    PubMed Central

    Aninwene, George E.; Abadian, Pegah N.; Ravi, Vishnu; Taylor, Erik N.; Hall, Douglas M.; Mei, Amy; Jay, Gregory D.; Goluch, Edgar D.; Webster, Thomas J.

    2015-01-01

    This study investigated the ability of lubricin (LUB) to prevent bacterial attachment and proliferation on model tissue culture polystyrene surfaces. The findings from this study indicated that LUB was able to reduce the attachment and growth of Staphylococcus aureus on tissue culture polystyrene over the course of 24 h by approximately 13.9% compared to a phosphate buffered saline (PBS)-soaked control. LUB also increased S. aureus lag time (the period of time between the introduction of bacteria to a new environment and their exponential growth) by approximately 27% compared to a PBS-soaked control. This study also indicated that vitronectin (VTN), a protein homologous to LUB, reduced bacterial S. aureus adhesion and growth on tissue culture polystyrene by approximately 11% compared to a PBS-soaked control. VTN also increased the lag time of S. aureus by approximately 43%, compared to a PBS-soaked control. Bovine submaxillary mucin was studied because there are similarities between it and the center mucin-like domain of LUB. Results showed that the reduction of S. aureus and Staphylococcus epidermidis proliferation on mucin coated surfaces was not as substantial as that seen with LUB. In summary, this study provided the first evidence that LUB reduced the initial adhesion and growth of both S. aureus and S. epidermidis on a model surface to suppress biofilm formation. These reductions in initial bacteria adhesion and proliferation can be beneficial for medical implants and, although requiring more study, can lead to drastically improved patient outcomes. PMID:24737699

  12. Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery

    PubMed Central

    Ferrández-Rives, Mariola; Gómez Ribelles, José Luis

    2017-01-01

    Electrospun mats and films of polyvinyl alcohol (PVA) hydrogel are produced for drug delivery. To provide mechanical consistency to the gel a reinforcement by nanoclays is introduced in the polymer matrix. Four different suspensions of nanoparticles in the polymer solution are prepared in an adequate solvent. These suspensions are subjected to an electrospinning process to produce the nanofiber mat, while films are produced by casting. The influence of the process parameters over the nanofibers microstructure is analyzed by scanning electron microscopy (SEM). The effectiveness of nanoclay encapsulation in the nanocomposites is tested by a thermogravimetric analysis. A crosslinking reaction in solution is carried out to prevent the dissolution of the nanocomposites in aqueous media. A model protein (bovine serum albumin, BSA) is absorbed in the nanocomposites to characterize the release kinetics in phosphate-buffered saline (PBS). PMID:29261123

  13. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene-derived aminophosphonates.

    PubMed

    Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela

    2016-01-01

    A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).

  14. Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions.

    PubMed

    Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk

    2017-04-01

    Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. ELISA (Enzyme-linked Immunosorbent Assay) to Detect Humoral Antibodies Specific for Clostridium botulinum Type A Neurotoxin

    DTIC Science & Technology

    1985-11-19

    10.6). Unbound toxoid was removed by washing three times with phosphate-buffered saline (pH 7.4) containing 0.05% Triton X-100 (Eastman Organic...MD) in phosphate-buffered saline was added. After a 90 min incubation period at 37*C, the excess conjugate was removed by washing each well three times...3. Cardella, M. A. 1964. Botulinum toxoids, p. 113-129. In K . H. Lewis and K . Cassel, Jr., (ed.), Botulism. U. S. Department of Health, Education

  16. Antibacterial Effect of Autologous Platelet-Rich Gel Derived from Subjects with Diabetic Dermal Ulcers In Vitro

    PubMed Central

    Chen, Lihong; Wang, Chun; Liu, Hengchuan; Liu, Guanjian; Ran, Xingwu

    2013-01-01

    Background. Autologous platelet-rich gel (APG) is an effective method to improve ulcer healing. However, the mechanisms are not clear. This study aimed to investigate the antibacterial effect of APG in vitro. Methods. Platelet-rich plasma (PRP), platelet-poor plasma (PPP) and APG were prepared from whole blood of sixteen diabetic patients with dermal ulcers. Antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were evaluated by bacteriostasis assay of APG, PRP, and APG-APO (APG combined with apocynin), with phosphate-buffered saline (PBS) and PPP as the control group. Results. (1) Compared to the PBS and PPP, the APG and APG-APO groups showed strong antibacterial activity against Staphylococcus aureus. There was no significant difference (P > 0.05) between APG and APG-APO. (2) Compared to PBS, APG, APG-APO, and PRP showed obvious antibacterial effects against Escherichia coli and Pseudomonas aeruginosa. No significant difference (P > 0.05) was revealed among the three groups. Compared to the PPP group, they did not show antibacterial effect against Escherichia coli and Pseudomonas aeruginosa (P > 0.05). Conclusions. APG has antibacterial effect against Staphylococcus aureus mediated by platelet activation in the diabetic patients with dermal ulcer, and does not present obvious antibacterial effect against Escherichia coli or Pseudomonas aeruginosa. Combination of APG and antibiotics may have synergistic antibacterial effect. PMID:23671863

  17. Antibacterial effect of autologous platelet-rich gel derived from subjects with diabetic dermal ulcers in vitro.

    PubMed

    Chen, Lihong; Wang, Chun; Liu, Hengchuan; Liu, Guanjian; Ran, Xingwu

    2013-01-01

    Background. Autologous platelet-rich gel (APG) is an effective method to improve ulcer healing. However, the mechanisms are not clear. This study aimed to investigate the antibacterial effect of APG in vitro. Methods. Platelet-rich plasma (PRP), platelet-poor plasma (PPP) and APG were prepared from whole blood of sixteen diabetic patients with dermal ulcers. Antibacterial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were evaluated by bacteriostasis assay of APG, PRP, and APG-APO (APG combined with apocynin), with phosphate-buffered saline (PBS) and PPP as the control group. Results. (1) Compared to the PBS and PPP, the APG and APG-APO groups showed strong antibacterial activity against Staphylococcus aureus. There was no significant difference (P > 0.05) between APG and APG-APO. (2) Compared to PBS, APG, APG-APO, and PRP showed obvious antibacterial effects against Escherichia coli and Pseudomonas aeruginosa. No significant difference (P > 0.05) was revealed among the three groups. Compared to the PPP group, they did not show antibacterial effect against Escherichia coli and Pseudomonas aeruginosa (P > 0.05). Conclusions. APG has antibacterial effect against Staphylococcus aureus mediated by platelet activation in the diabetic patients with dermal ulcer, and does not present obvious antibacterial effect against Escherichia coli or Pseudomonas aeruginosa. Combination of APG and antibiotics may have synergistic antibacterial effect.

  18. Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells.

    PubMed

    Chen, Yue-Hwa; Tu, Ching-Jung; Wu, Hsiao-Ting

    2004-02-01

    The objective of this study was to investigate the effects of Gelidium amansii, an edible red agar cultivated off the northeast coast of Taiwan, on the growth of two lines of cancer cells, murine hepatoma (Hepa-1) and human leukemia (HL-60) cells, as well as a normal cell line, murine embryo fibroblast cells (NIH-3T3). The potential role of G. amansii on the induction of apoptosis was also examined. The results indicated that all extracts from G. amansii, including phosphate-buffered saline (PBS) and methanol extracts from dried algae as well as the dimethyl sulfoxide (DMSO) extract from freeze-dried G. amansii agar, inhibited the growth of Hepa-1 and NIH-3T3 cells, but not the growth of HL-60 cells. Annexin V-positive cells were observed in methanol and DMSO extract-treated, but not PBS extract-treated Hepa-1 and NIH-3T3 cells, suggesting that the lipid-soluble extracts of G. amansii induced apoptosis. In summary, extracts of G. amansii from various preparations exhibited antiproliferative effects on Hepa-1 and NIH-3T3 cells, and apoptosis may play a role in the methanol and DMSO extract-induced inhibitory effects. However, the antiproliferative effects of PBS extracts was not through apoptosis. Moreover, the growth-inhibitory effects of G. amansii were not specific to cancer cells.

  19. Cationic, anionic and neutral dyes: effects of photosensitizing properties and experimental conditions on the photodynamic inactivation of pathogenic bacteria.

    PubMed

    Sabbahi, Sonia; Ben Ayed, Layla; Boudabbous, Abdellatif

    2013-12-01

    The aim of this study was to evaluate the photobactericidal effect of four photosensitizers (PSs) with different structural and physico-photochemical properties, namely mesotetracationic porphyrin (T4MPyP), dianionic rose Bengal (RB), monocationic methylene blue (MB) and neutral red (NR). Their photokilling activity was tested in vitro on pathogenic bacteria such as Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) suspended in nutrient broth (NB) and in phosphate buffered saline (PBS) through following their influence on the PSs antimicrobial efficacy. Photodynamic inactivation (PDI) experiments were performed using visible light (L) and different PSs concentrations (20-70 μM). The ability of these PSs to mediate bacterial photodynamic inactivation was investigated as a function of type of PS and its concentrations, spectral and physico-chemical properties, bacterial strain, irradiation time and suspending medium. Indeed, they showed antibacterial effects against S. aureus and P. aeruginosa with significant difference in potency. Staphylococcus aureus suspended in NB showed 0.92 log units reduction in viable count in the presence of T4MPyP at 20 μM. Changing the suspending medium from NB to PBS, S. aureus was successfully photoinactivated by T4MPyP (20 μM) when suspended in PBS at least time exposure (10 and 30 min), followed by MB and RB.

  20. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  1. Short-term storage of canine preantral ovarian follicles using a powdered coconut water (ACP)-based medium.

    PubMed

    Lima, G L; Costa, L L M; Cavalcanti, D M L P; Rodrigues, C M F; Freire, F A M; Fontenele-Neto, J D; Silva, A R

    2010-07-01

    The objective was to investigate the use of powdered coconut water (ACP)-based medium for short-term preservation of canine preantral follicles. Pairs of ovaries from mongrel bitches (n=9) were divided into fragments. One ovarian fragment, treated as a fresh control, was immediately fixed for histological analysis, whereas the other six ovarian fragments were stored either in phosphate-buffered saline (PBS; control group) or ACP medium in isothermal Styrofoam boxes containing biological ice packs. The boxes were sealed and opened only after 12, 24, or 36h. After opening each box, the ovarian fragments were submitted to histological analysis. In total, 12,302 preantral follicles were evaluated, with 64.5% primordial, 33.3% primary, and 2.3% secondary follicles. There were multiple oocytes in 1.3% of the follicles analyzed. At 24h, ACP was more efficient in preserving follicular morphology than PBS (P<0.05). Compared with the fresh control group, a significant reduction in the percentage of morphologically normal ovarian follicles was observed for PBS, starting at 24h; however, the decline started only at 36h for the ACP medium. During the experiment, the temperature inside the isothermal boxes increased from 3 to 9 degrees C (P<0.05), despite a constant room temperature. In conclusion, powdered coconut water (ACP) was an appropriate medium for short-term storage of canine preantral ovarian follicles.

  2. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.

    PubMed

    Gutierrez, H; Portman, T; Pershin, V; Ringuette, M

    2013-03-01

    To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper phosphate nanocrystals/nanoflowers. © 2012 The Society for Applied Microbiology.

  3. Effect of Biomineralization Ability on Push-out Strength of Proroot Mineral Trioxide Aggregate, Mineral Trioxide Aggregate Branco, and Calcium Phosphate Cement on Dentin: An In vitro Evaluation.

    PubMed

    Revankar, Vanita D; Prathap, M S; Shetty, K Harish Kumar; Shahul, Azmin; Sahana, K

    2017-11-01

    Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. A two-way analysis of variance and post hoc analysis by Bonferroni test. All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group ( P < 0.05). MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.

  4. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  5. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  6. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice

    NASA Astrophysics Data System (ADS)

    Sokołowska, Barbara; Skąpska, Sylwia; Niezgoda, Jolanta; Rutkowska, Małgorzata; Dekowska, Agnieszka; Rzoska, Sylwester J.

    2014-01-01

    Cells exposed to different physical and chemical treatments, including high hydrostatic pressure (HHP), suffer from injuries that could be reversible in food materials when stored. Escherichia coli and Listeria innocua cells suspended in phosphate-buffered saline (PBS) (model suspensions), and acidified beetroot juice were subjected to a pressure of 400 MPa at a temperature of 20°C for up to 10 min. The difference between the viable and non-injured cells was used to estimate the number of injured survivors. The reduction in E. coli cell number was 3.4-4.1 log after 10 min pressurization in model suspensions and 6.2 log in beetroot juice. Sublethally injured cells in PBS accounted for up to 2.7 log after 10 min HHP treatment and 0.8 log in beetroot juice. The reduction in L. innocua cell number after 10 min pressure treatment reached from 3.8 to 4.8 log, depending on the initial concentration in model suspensions. Among the surviving L. innocua cells, even up to 100% were injured. L. innocua cells were completely inactivated after 1 min HHP treatment in beetroot juice.

  7. Effect of Manufacturing Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy

    NASA Astrophysics Data System (ADS)

    Gill, P.; Munroe, N.; Pulletikurthi, C.; Pandya, S.; Haider, W.

    2011-07-01

    Ti alloys have been widely used in the aerospace, chemical, and biomedical industries for their high strength/weight ratio and corrosion resistance. However, Nitinol's usage in the latter industry has been fraught with concerns of allergic and toxic effects of Ni released from implants. Recently, much attention has been placed on the development of Ni-free Ti-Ta alloys, which are considered prime candidates for applications such as metal-on-metal spinal disk replacements, orthopedic implants, cardiovascular stents, dental posts, and guide wires. In this research, the biocompatibility of Ti-30Ta alloys manufactured by powder metallurgy (PM) and arc melting (ARC) were investigated. The corrosion resistance of each alloy was determined in accordance with ASTM F 2129-08 in phosphate buffered saline (PBS) and PBS with amino acids at 37 °C. The concentration of metal ions released during corrosion was measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Scanning Electron Microscopy (SEM) was used to assess the morphology of the alloys before and after corrosion. Vicker's hardness tests were performed to compare the hardness and tensile strength of the alloys. Human osteoblast cells were successfully grown on the surface of both alloys.

  8. Bacterial adhesion to orthopedic implant polymers.

    PubMed

    Barton, A J; Sagers, R D; Pitt, W G

    1996-03-01

    The degradable polymers poly(orthoester) (POE), poly(L-lactic acid) (PLA), and the nondegradable polymers polysulfone (PSF), polyethylene (PE), and poly(ether ether ketone) (PEEK) were exposed to cultures of Staphylococcus epidermidis, Pseudomonas aeruginosa, or Escherichia coli. Bacteria washed and resuspended in phosphate buffered saline (PBS) adhered to polymers in amounts nearly twice those of bacteria that were left in their growth medium, tryptic soy broth (TSB). In TSB, there was variation in adhesion from species to species, but no significant variation from polymer to polymer within one species. In PBS there were significant differences in the amounts of bacteria adhering to the various polymers with the exception, of S. epidermidis, which had similar adhesion to all polymers. As a whole, P. aeruginosa was the most adherent while S. epidermidis was the least adherent. The estimated values of the free energy of adhesion (delta Fadh) correlated with the amount of adherent P. aeruginosa. When POE, PLA, and PSF were exposed to hyaluronic acid (HA) before exposure to the bacteria, there was 50% more adhesion of E. coli and P. aeruginosa on POE and PLA. With respect to bacterial adhesion, the biodegradable polymers (POE and PLA) in general were not significantly different from the nondegradable polymers.

  9. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  10. Scavenging dissolved oxygen via acoustic droplet vaporization.

    PubMed

    Radhakrishnan, Kirthi; Holland, Christy K; Haworth, Kevin J

    2016-07-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.

    PubMed

    Zeng, Peng; Pi, Rong-biao; Li, Peng; Chen, Rong-xin; Lin, Li-mian; He, Hong; Zhou, Shi-you

    2015-01-01

    To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all p<0.01). After treatment with 100 μM fasudil, the intensity of DHE fluorescence was reduced in the corneal epithelium and stroma than with PBS treatment (n=5, all p<0.01), and the number of filtrated PMNs decreased. There were significant differences between the expressions of VEGF, TNF-a, MMP-8, and MMP-9 in the 100 μM fasudil group and the PBS group (n=8, all p<0.05). The production of HO-1 protein in the 100 μM fasudil group was 1.52±0.34 times more than in the PBS group (n=5 sample, p<0.05). 100 μM fasudil eye drops administered four times daily can significantly inhibit alkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment.

  12. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    PubMed

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Scavenging dissolved oxygen via acoustic droplet vaporization

    PubMed Central

    Radhakrishnan, Kirthi; Holland, Christy K.; Haworth, Kevin J.

    2016-01-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5 to 6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20 s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. PMID:26964964

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp; Nitta, Norihisa; Yamamoto, Takefumi

    PurposeWe investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads{sup ®}) to be used for transarterial chemoembolization.MethodAfter separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loadedmore » samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope.ResultsSpectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar.DiscussionThe use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.« less

  15. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    PubMed

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction.

  16. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR

    PubMed Central

    Yong, Dongeun; Ki, Chang-Seok; Kim, Jae-Seok; Seong, Moon-Woo; Lee, Hyukmin

    2016-01-01

    Background Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. Methods We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). Results While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1–35.4 with the PK-DNase method, 34.7–39.0 with the PBS method, and 33.9–38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both P<0.0001). Conclusions The PK-DNase method is suitable for homogenizing sputum samples prior to RNA extraction. PMID:27374711

  17. An Attempt to Shorten Loading Time of Epirubicin into DC Beads® Using Vibration and a Sieve.

    PubMed

    Sonoda, Akinaga; Nitta, Norihisa; Yamamoto, Takefumi; Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi

    2017-04-01

    We investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads ® ) to be used for transarterial chemoembolization. After separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope. Spectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar. The use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.

  18. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    PubMed

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cross-reactive protection against enterohemorrhagic Escherichia coli infection by enteropathogenic E. coli in a mouse model.

    PubMed

    Calderon Toledo, Carla; Arvidsson, Ida; Karpman, Diana

    2011-06-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.

  20. Inactivation kinetics of Vibrio vulnificus in phosphate-buffered saline at different freezing and storage temperatures and times.

    PubMed

    Seminario, Diana M; Balaban, Murat O; Rodrick, Gary

    2011-03-01

    Vibrio vulnificus (Vv) is a pathogen that can be found in raw oysters. Freezing can reduce Vv and increase the shelf life of oysters. The objective of this study was to develop predictive inactivation kinetic models for pure cultures of Vv at different frozen storage temperatures and times. Vv was diluted in phosphate-buffered saline (PBS) to obtain about 10(7) CFU/mL. Samples were frozen at -10, -35, and -80 °C (different freezing rates), and stored at different temperatures. Survival of Vv was followed after freezing and storage at -10 °C (0, 3, 6, and 9 d) and at -35 and -80 °C (every week for 6 wk). For every treatment, time-temperature data was obtained using thermocouples in blank vials. Predictive models were developed using first-order, Weibull and Peleg inactivation kinetics. Different freezing temperatures did not significantly (α = 0.05) affect survival of Vv immediately after freezing. The combined effect of freezing and 1 wk frozen storage resulted in 1.5, 2.6, and 4.9 log10 reductions for samples stored at -80, -35, and -10 °C, respectively. Storage temperature was the critical parameter in survival of Vv. A modified Weibull model successfully predicted Vv survival during frozen storage: log10 Nt = log 10No - 1.22 - ([t/10{-1.163-0.0466T}][0.00025T(2) + 0.049325]). N(o) and N(t) are initial and time t (d) survival counts, T is frozen storage temperature, Celsius degree. Vibrio vulnificus can be inactivated by freezing. Models to predict survival of V. vulnificus at different freezing temperatures and times were developed. This is the first step towards the prediction of V. vulnificus related safety of frozen oysters.

  1. The effects of chemical and physical penetration enhancers on the percutaneous permeation of lidocaine through equine skin

    PubMed Central

    2014-01-01

    Background The effect of physical and chemical permeation enhancers on in vitro transdermal permeation of lidocaine was investigated in the horse. Therefore, the effect of six vehicles (phosphate-buffered saline (PBS), 50% ethanol, 50% propylene glycol, 50% isopropylalcohol, 50% isopropylalcohol/isopropylmyristate and 50% dimethylsulfoxide) was examined as well as the effect of microneedle pretreatment with different needle lengths on transdermal drug delivery of lidocaine. The skin was obtained from the thorax of six Warmblood horses and was stored up to two weeks at - 20°C. Franz-type diffusion cells were used to study the transdermal permeation through split skin (600 μm thickness). The amount of lidocaine in the receptor fluid was determined by UV–VIS high-performance liquid chromatography. Results All investigated vehicle supplementations diminished the transdermal flux of lidocaine through equine skin in comparison to pure PBS except dimethylsulfoxide, which resulted in comparable permeation rates to PBS. The maximum flux (Jmax) was 1.6-1.8 fold lower for lidocaine applied in 50% ethanol, propylene glycol, isopropylalcohol and isopropylalcohol/isopropylmyristate. A significant higher Jmax of lidocaine was observed when lidocaine was applied in PBS onto microneedle pretreated skin with similar permeation rates in both needle lengths. After 6 hours, 1.7 fold higher recovery rates were observed in the microneedle pretreated skin samples than in the untreated control samples. The lagtimes were reduced to 20–50% in the microneedle pretreated skin samples. Conclusion Microneedles represent a promising tool for transdermal lidocaine application in the horse with a rapid systemic bioavailability. PMID:24950611

  2. Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound

    NASA Astrophysics Data System (ADS)

    Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah

    2017-06-01

    The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.

  3. Characterization of drug release from liposomal formulations in ocular fluid.

    PubMed

    Jafari, M R; Jones, A B; Hikal, A H; Williamson, J S; Wyandt, C M

    1998-01-01

    The successful application of liposomes in topical ophthalmic drug delivery requires knowledge of vesicle stabilization in the presence of tear fluid. The release of procaine hydrochloride (PCH) from large unilamellar liposomes in the presence of simulated tear fluid was studied in vitro as a function of bilayer lipid content and tear protein composition. Reverse-phase evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine or dicetyl phosphate, and cholesterol. The relationship between lipid composition and encapsulation efficiency, vesicle size, drug leakage upon storage at 4 degrees C, and the release of PCH-loaded liposomes was studied. The encapsulation efficiency was found to be dependent upon the lipid composition used in the liposome preparation. In particular, phosphatidylcholine vesicles containing cholesterol and/or charged lipids had a lower entrapment efficiency than liposomes prepared with phosphatidylcholine alone. However, the drug release rate was reduced significantly by inclusion of cholesterol and/or charged lipids in the liposomes. The release kinetics of the entrapped agent seemed to be a biphasic process and the drug-release in both simulated tear fluid (STF) and pH 7.4 phosphate buffered saline (PBS) solutions followed pseudo first-order kinetics in the early stage of the release profile. The drug-release appeared to be diffusion and/or partition controlled. Drug release from liposomes into STF, pH 7.4 PBS, and five different modified tear formulations was also evaluated. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, it was determined that lactoferrin might be the protein component in tear fluid that has the primary influence on the liposome-entrapped drug release rate. Five local anesthetics, benoxinate, proparacaine, procaine, tetracaine, and benzocaine were entrapped in liposomal vesicles by a reverse-phase evaporation (REV) technique. The release of these structurally similar topical anesthetics entrapped in positively charged liposomes (egg phosphatidylcholine, stearylamine, and cholesterol in a 7:2:1 molar ratio) was evaluated in a simulated tear fluid and pH 7.4 phosphate buffered saline solution. The liposomes appeared to be useful carriers for these drugs to retard their in vitro release in tear fluid and perhaps sustain or control their release in the eye for better therapeutic efficacy. An analysis of the release data demonstrated that for this series of drugs, drug partition coefficient has the largest effect on release rate, with molecular weight exhibiting a smaller effect. Release rate was found to decrease with increased lipophilicity or increased molecular weight.

  4. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    PubMed

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  5. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (flurbiprofen) comprising natural waxes.

    PubMed

    Baviskar, D T; Amritkar, A S; Chaudhari, H S; Jain, D K

    2012-08-01

    In this study, flurbiprofen (FLB) Solid Lipid Nanoparticles (SLN) composed from a mixture of beeswax and carnauba wax, Tween 80 and egg lecithin as emulsifiers have been prepared. FLB was incorporated as model lipophilic drug to assess the influence of matrix composition in the drug release profile. SLN were produced by microemulsion technique. In vitro studies were performed in Phosphate Buffered Saline (PBS). The FLB loaded SLN showed a mean particle size of 75 +/- 4 nm, a polydispersity index approximately 0.2 +/- 0.02 and an entrapment efficiency (EE) of more than 95%. Suspensions were stable, with zeta potential values in the range of -15 to -17 mV. DSC thermograms and UV analysis indicated the stability of nanoparticles with negligible drug leakage. Nanoparticles with higher beeswax content in their core exhibited faster drug release than those containing more carnauba wax.

  6. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    PubMed Central

    Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Gajek, Gabriela

    2016-01-01

    Summary A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM). PMID:27559373

  7. Synthesis and biological assessment of folate-accepted developer (99m)Tc-DTPA-folate-polymer.

    PubMed

    Chen, Fei; Shao, Kejing; Zhu, Bao; Jiang, Mengjun

    2016-05-15

    A novel cancer-targetable folate-poly(2-hydroxyethyl methacrylate) (PFDH) copolymer containing DTPA segment was prepared by conventional chemical synthesis and labeled with (99m)Tc subsequently. The (99m)Tc-labled PFDH could be produced easily with high radiochemical yield of 91% and radiochemical purity of 95%. The LogP octanol-water value for the (99m)Tc-labled PFDH was -2.19 and the radiotracer was stable in phosphate-buffered saline and human serum for 2h (>95% in PBS or ∼90% in human serum). To investigate (99m)Tc-labled PFDH tumor targeting, the in vitro and in vivo stability, cell uptake, in vivo biodistribution, and SPECT imaging were evaluated, respectively. These preliminary results strongly suggest that the novel folate conjugated dendrimer maybe developed to be potential for delivery of therapeutic radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  9. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  10. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    PubMed

    Arjunan, Krishna P; Clyne, Alisa Morss

    2011-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), recently emerged as an efficient tool in medical applications. Liquids and endothelial cells were treated with a non-thermal dielectric barrier discharge plasma. Plasma treatment of phosphate buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration in serum-free medium. ROS concentration in cells peaked 1 hour after treatment. 4.2 J/cm(2) increased cell proliferation, 2D and 3D migration, as well as tube formation. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers for hydrogen peroxide and hydroxyl radicals abrogated these angiogenic effects. Non-thermal plasma may be a potential tool for applying ROS in precise doses to enhance vascularization.

  11. Methotrexate intercalated ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  12. Ultra-high-performance liquid chromatography-tandem mass spectrometry measurement of climbazole deposition from hair care products onto artificial skin and human scalp.

    PubMed

    Chen, Guoqiang; Hoptroff, Michael; Fei, Xiaoqing; Su, Ya; Janssen, Hans-Gerd

    2013-11-22

    A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal standard. Atmospheric pressure chemical ionization (APCI) in positive mode was applied for the detection of climbazole. For quantification, multiple reaction monitoring (MRM) transition 293.0>69.0 was monitored for climbazole, and MRM transition 296.0>225.1 for the deuterated climbazole. The linear range ran from 4 to 2000 ng mL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 1 ng mL(-1) and 4 ng mL(-1), respectively, which enabled quantification of climbazole on artificial skin and human scalp at ppb level (corresponding to 16 ng cm(-2)). For the sampling of climbazole from human scalp the buffer scrub method using a surfactant-modified phosphate buffered saline (PBS) solution was selected based on a performance comparison of tape stripping, the buffer scrub method and solvent extraction in in vitro studies. Using this method, climbazole deposition in in vitro and in vivo studies was successfully quantified. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    PubMed

    Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  14. Glutamine Supplementation Stimulates Protein-Synthetic and Inhibits Protein-Degradative Signaling Pathways in Skeletal Muscle of Diabetic Rats

    PubMed Central

    Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980

  15. Long-Term In Vitro Degradation of a High-Strength Brushite Cement in Water, PBS, and Serum Solution

    PubMed Central

    Ajaxon, Ingrid; Öhman, Caroline; Persson, Cecilia

    2015-01-01

    Bone loss and fractures may call for the use of bone substituting materials, such as calcium phosphate cements (CPCs). CPCs can be degradable, and, to determine their limitations in terms of applications, their mechanical as well as chemical properties need to be evaluated over longer periods of time, under physiological conditions. However, there is lack of data on how the in vitro degradation affects high-strength brushite CPCs over longer periods of time, that is, longer than it takes for a bone fracture to heal. This study aimed at evaluating the long-term in vitro degradation properties of a high-strength brushite CPC in three different solutions: water, phosphate buffered saline, and a serum solution. Microcomputed tomography was used to evaluate the degradation nondestructively, complemented with gravimetric analysis. The compressive strength, chemical composition, and microstructure were also evaluated. Major changes from 10 weeks onwards were seen, in terms of formation of a porous outer layer of octacalcium phosphate on the specimens with a concomitant change in phase composition, increased porosity, decrease in object volume, and mechanical properties. This study illustrates the importance of long-term evaluation of similar cement compositions to be able to predict the material's physical changes over a relevant time frame. PMID:26587540

  16. A cohabitation challenge to compare the efficacies of vaccines for bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.

    2005-01-01

    The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.

  17. Rebamipide suppresses TNF-α production and macrophage infiltration in the conjunctiva.

    PubMed

    Tajima, Kazuki; Hattori, Takaaki; Takahashi, Hiroki; Katahira, Haruki; Narimatsu, Akitomo; Kumakura, Shigeto; Goto, Hiroshi

    2017-12-18

    To evaluate the anti-inflammatory effect of rebamipide during corneal epithelial wound healing using a mouse wound repair model. A 2-mm circular disc of the central cornea was demarcated in the right eye of C57BL/6 mice and the epithelium removed. Rebamipide 2% eyedrop was instilled onto the wounded eye 5 times a day (n = 26). Phosphate-buffered saline (PBS) was used in the control group (n = 26). Corneal and conjunctival IL-1β and TNF-α levels were measured at 6 h and 24 h postinjury by ELISA. The wounded area was evaluated by fluorescein staining at 24 h postinjury. Macrophage infiltration was assessed immunohistochemically, and TNF-α secretion from macrophages was examined in vitro. Conjunctival IL-1β and corneal IL-1β levels were not significantly different between PBS-treated and rebamipide-treated groups. However, conjunctival TNF-α level was significantly lower in the rebamipide-treated group compared with the PBS-treated group. Macrophage migration into the conjunctiva, but not into the cornea, was suppressed by rebamipide treatment. In addition, TNF-α secretion from cultured macrophages was suppressed by rebamipide in a concentration-dependent manner. Rebamipide treatment significantly accelerated corneal epithelial wound healing at 24 h postinjury. In a mouse corneal epithelial wound model, rebamipide suppressed TNF-α secretion and macrophage infiltration in the conjunctiva, which might have contributed to accelerated corneal epithelial wound healing in the first 24 h following injury. © 2017 American College of Veterinary Ophthalmologists.

  18. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads.

    PubMed Central

    Mader, J T; Calhoun, J; Cobos, J

    1997-01-01

    Antibiotic-impregnated beads are used in the dead bone space following debridement surgery to deliver local, high concentrations of antibiotics. Polymethylmethacrylate (PMMA), 2,000-molecular-weight (MW) polylactic acid (PLA), Poly(DL-lactide)-coglycolide (PL:CG; 90:10, 80:20, and 70:30), and the combination 2,000-MW PLA-70:20 PL:CG were individually mixed with clindamycin, tobramycin, or vancomycin. Beads were placed in 1 ml of phosphate-buffered saline (PBS) and incubated at 37 degrees C. The PBS was changed daily, and the removed PBS samples were stored at -70 degrees C until the antibiotic in each sample was determined by microbiological disk diffusion assay. Nondissolving PMMA beads with tobramycin and clindamycin had concentrations well above breakpoint sensitivity concentrations (i.e., the antibiotic concentrations at the transition point between bacterial killing and resistance to the antibiotic) for more than 90 days, but vancomycin concentrations dropped by day 12. ALl PLA, PL:CG, and the 2,000-MW PLA-70:30 PL:CG biodegradable beads release high concentrations of all the antibiotics in vitro for the period of time needed to treat bone infections (i.e., 4 to 8 weeks). Antibiotic-loaded PLA and PL:CG beads have the advantage of better antibiotic elution and the ability to biodegradable (thereby averting the need for secondary surgery for bead removal) compared to the PMMA beads presently used in the clinical setting. PMID:9021200

  19. A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

    PubMed Central

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml. PMID:25229830

  20. Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells.

    PubMed

    Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Nakao, Yasuaki; Maeda, Minoru

    2005-07-01

    The effect of transplantation of adult bone marrow stromal cells (MSCs) into the freeze-lesioned left barrel field cortex in the rat was investigated by measurement of local cerebral glucose utilization (lCMR(glc)) in the anatomic structures of the whisker-to-barrel cortex sensory pathway. Bone marrow stromal cells or phosphate-buffered saline (PBS) were injected intracerebrally into the boundary zone 1 h after induction of the freezing cortical lesion. Three weeks after surgery, the 2-[(14)C]deoxyglucose method was used to measure lCMR(glc) during right whisker stimulation. The volume of the primary necrotic freezing lesion was significantly reduced (P<0.05), and secondary retrograde degeneration in the left ventral posteromedial (VPM) thalamic nucleus was diminished in the MSC-treated group. Local cerebral glucose utilization measurements showed that the freezing cortical lesion did not alter the metabolic responses to stimulation in the brain stem trigeminal nuclei, but eliminated the responses in the left VPM nucleus and periphery of the barrel cortex in the PBS-treated group. The left/right (stimulated/unstimulated) lCMR(glc) ratios were significantly improved in both the VPM nucleus and periphery of the barrel cortex in the MSC-treated group compared with the PBS-treated group (P<0.05). These results indicate that MSC transplantation in adults may stimulate metabolic and functional recovery in injured neuronal pathways.

  1. Biocompatible polymeric implants for controlled drug delivery produced by MAPLE

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2011-10-01

    Implants consisting of drug cores coated with polymeric films were developed for delivering drugs in a controlled manner. The polymeric films were produced using matrix assisted pulsed laser evaporation (MAPLE) and consist of poly(lactide-co-glycolide) (PLGA), used individually as well as blended with polyethylene glycol (PEG). Indomethacin (INC) was used as model drug. The implants were tested in vitro (i.e. in conditions similar with those encountered inside the body), for predicting their behavior after implantation at the site of action. To this end, they were immersed in physiological media (i.e. phosphate buffered saline PBS pH 7.4 and blood). At various intervals of PBS immersion (and respectively in blood), the polymeric films coating the drug cores were studied in terms of morphology, chemistry, wettability and blood compatibility. PEG:PLGA film exhibited superior properties as compared to PLGA film, the corresponding implant being thus more suitable for internal use in the human body. In addition, the implant containing PEG:PLGA film provided an efficient and sustained release of the drug. The kinetics of the drug release was consistent with a diffusion mediated mechanism (as revealed by fitting the data with Higuchi's model); the drug was gradually released through the pores formed during PBS immersion. In contrast, the implant containing PLGA film showed poor drug delivery rates and mechanical failure. In this case, fitting the data with Hixson-Crowell model indicated a release mechanism dominated by polymer erosion.

  2. Induction of AhR-Mediated Gene Transcription by Coffee

    PubMed Central

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health. PMID:25007155

  3. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  4. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-molecular-weight polyethylene glycol inhibits myocardial ischemia-reperfusion injury in vivo.

    PubMed

    Xu, Xianyao; Philip, Jennifer L; Razzaque, Md Abdur; Lloyd, James W; Muller, Charlie M; Akhter, Shahab A

    2015-02-01

    Cardiac ischemia-reperfusion (I-R) injury remains a significant problem as there are no therapies available to minimize the cell death that can lead to impaired function and heart failure. We have shown that high-molecular-weight polyethylene glycol (PEG) (15-20 kD) can protect cardiac myocytes in vitro from hypoxia-reoxygenation injury. In this study, we investigated the potential protective effects of PEG in vivo. Adult rats underwent left anterior descending artery occlusion for 60 minutes followed by 48 hours or 4 weeks of reperfusion. One milliliter of 10% PEG solution or phosphate-buffered saline (PBS) control (n = 10 per group) was administered intravenously (IV) immediately before reperfusion. Fluorescein-labeled PEG was robustly visualized in the myocardium 1 hour after IV delivery. The PEG group had significant recovery of left ventricular ejection fraction at 4 weeks versus a 25% decline in the PBS group (P < .01). There was 50% less LV fibrosis in the PEG group versus PBS with smaller peri-infarct and remote territory fibrosis (P < .01). Cell survival signaling was upregulated in the PEG group with increased Akt (3-fold, P < .01) and ERK (4-fold, P < .05) phosphorylation compared to PBS controls at 48 hours. PEG also inhibited apoptosis as measured by TUNEL-positive nuclei (56% decrease, P < .02) and caspase 3 activity (55% decrease, P < .05). High-molecular-weight PEG appears to have a significant protective effect from I-R injury in the heart when administered IV immediately before reperfusion. This may have important clinical translation in the setting of acute coronary revascularization and myocardial protection in cardiac surgery. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina.

    PubMed

    Tang, Liujiu; Bao, Shuyin; Du, Yu; Jiang, Zengyan; Wuliji, A O; Ren, Xiang; Zhang, Chenghong; Chu, Haiying; Kong, Li; Ma, Haiying

    2018-04-20

    We assessed the neuroprotective effects of Lycium barbarum Polysaccharides (LBP) on photoreceptor degeneration and the mechanisms involved in oxidative stress in light-exposed mouse retinas. Mice were given a gavage of LBP (150 mg/kg or 300 mg/kg) or phosphate buffered saline (PBS) for 7 days before exposure to light (5000 lx for 24 h). We found that LBP significantly improved the electroretinography (ERG) amplitudes of the a- and b-waves that had been attenuated by light exposure. In addition, changes caused by light exposure including photoreceptor cell loss, nuclear condensation, an increased number of mitochondria vacuoles, outer membrane disc swelling and cristae fractures were distinctly ameliorated by LBP. LBP treatment also significantly prevented the generation of reactive oxygen species (ROS) compared with PBS treatment. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and thioredoxin reductase (TrxR1) mRNA were decreased in PBS-treated mice compared with controls but increased remarkably in LBP-treated mice. The mRNA levels of the DNA repair gene Poly (ADP-ribose) polymerase (PARP14) was increased in PBS-treated mice but decreased significantly in the LBP-treated mice. Our findings indicate that pretreatment with LBP effectively protected photoreceptor cells against light-induced retinal damage probably through the up-regulation of the antioxidative genes Nrf2 and TrxR1, the elimination of oxygen free radicals, and the subsequent reduction in the mitochondrial reaction to oxidative stress and enhancement in antioxidant capacity. In addition, the decreased level of PARP14 mRNA in LBP-treated mice also indicated a protective effect of LBP on delaying photoreceptor in the light-damaged retina. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration.

    PubMed

    Zhang, S; Chu, W C; Lai, R C; Lim, S K; Hui, J H P; Toh, W S

    2016-12-01

    Clinical and animal studies have demonstrated the efficacy of mesenchymal stem cell (MSC) therapies in cartilage repair. As the efficacy of many MSC-based therapies has been attributed to paracrine secretion, particularly extracellular vesicles/exosomes, we determine here if weekly intra-articular injections of human embryonic MSC-derived exosomes would repair and regenerate osteochondral defects in a rat model. In this study, osteochondral defects were created on the trochlear grooves of both distal femurs in 12 adult rats. In each animal, one defect was treated with 100 μg exosomes and the contralateral defect treated with phosphate buffered saline (PBS). Intra-articular injections of exosomes or PBS were administered after surgery and thereafter weekly for a period of 12 weeks. Three unoperated age-matched animals served as native controls. Analyses were performed by histology, immunohistochemistry, and scoring at 6 and 12 weeks after surgery. Generally, exosome-treated defects showed enhanced gross appearance and improved histological scores than the contralateral PBS-treated defects. By 12 weeks, exosome-treated defects displayed complete restoration of cartilage and subchondral bone with characteristic features including a hyaline cartilage with good surface regularity, complete bonding to adjacent cartilage, and extracellular matrix deposition that closely resemble that of age-matched unoperated control. In contrast, there were only fibrous repair tissues found in the contralateral PBS-treated defects. This study demonstrates for the first time the efficacy of human embryonic MSC exosomes in cartilage repair, and the utility of MSC exosomes as a ready-to-use and 'cell-free' therapeutic alternative to cell-based MSC therapy. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Corrosion of tungsten microelectrodes used in neural recording applications.

    PubMed

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The effect of the plasma needle on the human keratinocytes related to the wound healing process

    NASA Astrophysics Data System (ADS)

    Korolov, Ihor; Fazekas, Barbara; Széll, Márta; Kemény, Lajos; Kutasi, Kinga

    2016-01-01

    In the present study we aim to verify the influence of a non-thermal atmospheric pressure plasma on the wound healing process. In this process the major contributors are the keratinocytes, which migrate to fill in the gap created by the wound. Therefore, we performed the direct treatment of HPV-immortalized human keratinocytes, protected by a layer of phosphate buffered saline (PBS) solution, with the glow discharge generated in flowing helium by a plasma needle. To mimick a wound, a 4 mm scratch was performed on the cell culture (scratch assay). We conducted two types of experiments: (i) cell proliferation and (ii) wound-healing model experiments. The plasma needle configuration, the plasma treatment conditions and the thickness of the protecting PBS layer were set based on viability experiments. The proliferation studies showed that short, 5-10 s, and low power treatments, such as 18 W and 20 W input power, could positively influence the cell proliferation when keratinocytes were protected by PBS. On the other hand, the plasma treatment of cell medium covered keratinocytes resulted in the decrease of proliferation. The wound-healing model (scratch assay) studies showed, that there was a maximum in the wound reduction as a function of the input power and treatment time, namely, at 18 W and 5 s. Furthermore, the wound reduction strongly depended on the treated cell—PBS interaction time. To mimic an infected wound, the scratch assay was covered with a 1× {{10}9} cfu ml-1 Propionibacterium acnes suspension. The plasma treatment of this infected assay resulted in closing of the scratch, while in the non-treated assay the wound did not close at all.

  10. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor.

    PubMed

    Lin, Guiting; Yang, Rong; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Li, Long-Cheng; Lue, Tom F; Lin, Ching-Shwun

    2010-07-01

    Obesity is a risk factor for prostate cancer development, but the underlying mechanism is unknown. The present study tested the hypothesis that stromal cells of the adipose tissue might be recruited by cancer cells to help tumor growth. PC3 prostate cancer cells were transplanted into the subcutaneous space of the right flank of athymic mice. One week later, adipose tissue-derived stromal or stem cells (ADSC) or phosphate-buffered saline (PBS, as control) was transplanted similarly to the left flank. Tumor size was monitored for the next 34 days; afterwards, the mice were sacrificed and their tumors harvested for histological examination. The ability of PC3 cells to attract ADSC was tested by migration assay. The involvement of the CXCL12/CXCR4 axis was tested by migration assay in the presence of a specific inhibitor AMD3100. Throughout the entire course, the average size of PC3 tumors in ADSC-treated mice was larger than in PBS-treated mice. ADSC were identified inside the tumors of ADSC-treated mice; CXCR4 expression was also detected. Migration assay indicated the involvement of the CXCL12/CXCR4 axis in the migration of ADSC toward PC3 cells. Capillary density was twice as high in the tumors of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF expression was similar but FGF2 expression was significantly higher in tumors of ADSC-treated mice than in the tumors of PBS-tread mice. Prostate cancer cells recruited ADSC by the CXCL12/CXCR4 axis. ADSC helps tumor growth by increasing tumor vascularity, and which was mediated by FGF2.

  11. Deoxycholate-hydrogels: novel drug carrier systems for topical use.

    PubMed

    Valenta, C; Nowack, E; Bernkop-Schnürch, A

    1999-08-05

    Na-deoxycholate (Na-DOC) forms a viscous thixotropic gel when in contact with excess buffer systems. The resulting gels have been tested as novel drug carrier systems for topical use. The influence of differing amounts of mannitol, glycerol and xylitol on the viscous modulus (G"/Pa) was evaluated by oscillatory measurements. Na-DOC (0.5%) in phosphate buffered saline (PBS) with 5% mannitol was chosen as an optimised formulation, taking into account viscosity, distribution and appearance. The release rate of the model drug rutin through an artificial membrane was higher than those from hydroxyethylcellulose- (HEC) and sodium polyacrylate (NaC934)-gels; permeation through excised rat skin was also highest for the Na-DOC systems. The results indicate that Na-DOC significantly increases the membrane permeability. The microbial stability was in the same range as HEC- and NaC934-gels, making a preservation necessary. Na-DOC-gels are novel low molecular weight, multifunctional drug carriers, which also act as penetration enhancers. Their thixotropy is an additional advantage for better application to large skin areas, nasal, vaginal and buccal membranes. Therefore, Na-DOC-gels can be considered promising, alternative drug carrier systems for topical pharmaceutical as well as cosmetic use.

  12. Stability of polymer encapsulated quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.

    2013-04-01

    The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.

  13. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking.

    PubMed

    Choi, Eun-Hye; Lee, Sang Kwang; Ihm, Chunhwa; Sohn, Young-Hak

    2014-12-01

    Dried blood spot (DBS) technology is a microsampling alternative to traditional plasma or serum sampling for pharmaco- or toxicokinetic evaluation. DBS technology has been applied to diagnostic screening in drug discovery, nonclinical, and clinical settings. We have developed an improved elution protocol involving boiling of blood spots dried on Whatman filter paper. The purpose of this study was to compare the quality, purity, and quantity of DNA isolated from frozen blood samples and DBSs. We optimized a method for extraction and estimation of DNA from blood spots dried on filter paper (3-mm FTA card). A single DBS containing 40 μL blood was used. DNA was efficiently extracted in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer by incubation at 37°C overnight. DNA was stable in DBSs that were stored at room temperature or frozen. The housekeeping genes GAPDH and beta-actin were used as positive standards for polymerase chain reaction (PCR) validation of general diagnostic screening. Our simple and convenient DBS storage and extraction methods are suitable for diagnostic screening by using very small volumes of blood collected on filter paper, and can be used in biobanks for blood sample storage.

  14. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.

    PubMed

    Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A

    2011-04-27

    Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.

  15. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  16. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.

    PubMed

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-12-21

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  17. Protective effect of a lipid-based preparation from Mycobacterium smegmatis in a murine model of progressive pulmonary tuberculosis.

    PubMed

    García, Maria de los Angeles; Borrero, Reinier; Lanio, Maria E; Tirado, Yanely; Alvarez, Nadine; Puig, Alina; Aguilar, Alicia; Canet, Liem; Mata Espinoza, Dulce; Barrios Payán, Jorge; Sarmiento, María Elena; Hernández-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2014-01-01

    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  18. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats.

    PubMed

    Tal, Haim; Weinreb, Miron; Shely, Asaf; Nemcovsky, Carlos E; Moses, Ofer

    2016-07-01

    The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.

  19. Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery.

    PubMed

    Wahlberg, Brendon; Ghuman, Harmanvir; Liu, Jessie R; Modo, Michel

    2018-06-15

    Intracerebral implantation of cell suspensions is finding its clinical translation with encouraging results in patients with stroke. However, the survival of cells in the brain remains poor. Although the biological potential of neural stem cells (NSCs) is widely documented, the biomechanical effects of delivering cells through a syringe-needle remain poorly understood. We here detailed the biomechanical forces (pressure, shear stress) that cells are exposed to during ejection through different sized needles (20G, 26G, 32G) and syringes (10, 50, 250 µL) at relevant flow rates (1, 5, 10 µL/min). A comparison of 3 vehicles, Phosphate Buffered Saline (PBS), Hypothermosol (HTS), and Pluronic, indicated that less viscous vehicles are favorable for suspension with a high cell volume fraction to minimize sedimentation. Higher suspension viscosity was associated with greater shear stress. Higher flow rates with viscous vehicle, such as HTS reduced viability by ~10% and also produced more apoptotic cells (28%). At 5 µL/min ejection using a 26G needle increased neuronal differentiation for PBS and HTS suspensions. These results reveal the biological impact of biomechanical forces in the cell delivery process. Appropriate engineering strategies can be considered to mitigate these effects to ensure the efficacious translation of this promising therapy.

  20. Nanoribbon field-effect transistors as direct and label-free sensors of enzyme-substrate interactions

    NASA Astrophysics Data System (ADS)

    Mu, Luye; Droujinine, Ilia; Rajan, Nitin; Sawtelle, Sonya; Reed, Mark

    2015-03-01

    The ability to measure enzyme-substrate interactions is essential in areas such as diagnostics, treatment, and biochemical screens. Many enzymatic reactions alter the pH of its environment, suggesting of a simple and direct method for detection. We show the ability of Al2O3-coated Si nanoribbon field-effect transistor biosensors to sensitively measure various aspects of enzyme-substrate interactions through measuring the pH. Urea in phosphate buffered saline (PBS) and penicillinase in PBS and urine were measured to limits of <200 μM and 0.02 units/mL, respectively. We also show the ability to extract accurate kinetics from the interaction of acetylcholine and its esterase. Prior work on FET sensors has been limited by the use of surface functionalization, which not only alters enzyme-substrate affinity, but also makes enzyme activity quantification difficult. Our method involves direct detection of reactions in solution without requiring alteration to the reactants, allowing us to obtain repeatable results and sensitive limits of detection. This method is a simple, inexpensive, and effective platform for detection of enzymatic reactions, and can be readily generalized to many unrelated classes of reactants. This work was supported in part by U.S. Army Research Office and Air Force Research Laboratory.

  1. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    PubMed

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In Vivo and In Vitro Nitinol Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Lonn, Melissa K.; Metcalf, Justin M.; Choules, Brian D.

    2015-09-01

    Regulatory authorities often require in vitro testing on medical devices prior to approval. Current standardized corrosion testing methods (ASTM F2129) require testing in a non-physiologic, de-oxygenated solution for a pre-exposure time of ≤1 h; however, no correlations between the prescribed simulated environment and whole blood conditions have been elucidated. This study compared open circuit potential (OCP), breakdown potentials (Eb), Eb - OCP, and cyclic polarization curves tested in vivo (OCP only) and in vitro in whole blood to those tested in phosphate-buffered saline (PBS). Two oxide thicknesses of Nitinol, two solution oxygen contents (deaerated and aerated solutions), and two pre-exposure durations (acute and chronic) were investigated. The in vitro OCP in whole blood was not significantly different than the in vivo OCP, suggesting that whole blood in vitro can be used to determine baseline corrosion behavior of medical implants. Eb - OCP tested per ASTM F2129 was comparable to acute whole blood and was conservative compared to chronic whole blood for both oxide thicknesses. However, OCP, Eb, and cyclic polarization curves were not always comparable to whole blood. Testing in aerated PBS achieved Eb, Eb - OCP, and cyclic polarization curves that were comparable to or more conservative than whole blood testing, regardless of pre-exposure duration and oxide thickness.

  3. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  4. Tribological and Rheological Properties of a Synovial Fluid Model

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca; Liang, Jing; Krause, Wendy

    2010-03-01

    Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.

  5. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  6. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    PubMed

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.

    PubMed

    Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf

    2010-08-01

    The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.

  8. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  9. Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas

    PubMed Central

    Ratto, Marcelo H; Huanca, Wilfredo; Singh, Jaswant; Adams, Gregg P

    2005-01-01

    Background Camelids are induced (reflex) ovulators. We have recently documented the presence of an ovulation-inducing factor (OIF) in the seminal plasma of alpacas and llamas. The objective was to test the hypothesis that OIF exerts its effect via a systemic rather than a local route and that endometrial curettage will enhance the ovulatory response to intrauterine deposition of seminal plasma in alpacas. Methods Female alpacas were assigned randomly to 6 groups (n = 15 to 17 per group) in a 2 × 3 factorial design to test the effect of seminal plasma versus phosphate-buffered saline (PBS) given by intramuscular injection, by intrauterine infusion, or by intrauterine infusion after endometrial curettage. Specifically, alpacas in the respective groups were given 1) 2 ml of alpaca seminal plasma intramuscularly, 2) 2 ml of PBS intramuscularly (negative control group), 3) 2 ml of alpaca seminal plasma by intrauterine infusion, 4) 2 ml of PBS by intrauterine infusion (negative control group), 5) 2 ml of alpaca seminal plasma by intrauterine infusion after endometrial curettage, or 6) 2 ml of PBS by intrauterine infusion after endometrial curettage (negative control group). The alpacas were examined by transrectal ultrasonography to detect ovulation and measure follicular and luteal diameters. Results Intramuscular administration of seminal plasma resulted in a higher ovulation rate than intrauterine administration of seminal plasma (93% versus 41%; P < 0.01), while intrauterine seminal plasma after endometrial curettage was intermediate (67%). None of the saline-treated controls ovulated. The diameter of the CL after treatment-induced ovulation was not affected by the route of administration of seminal plasma. Conclusion We conclude that 1) OIF in seminal plasma effects ovulation via a systemic rather than a local route, 2) disruption of the endometrial mucosa by curettage facilitated the absorption of OIF and increased the ovulatory effect of seminal plasma, and 3) ovulation in alpacas is not associated with a physical stimulation of the genital tract, and 4) the alpaca represents an excellent biological model to evaluate the bioactivity of OIF. PMID:16018817

  10. The characterisation and design improvement of a paper-based E.coli impedimetric sensor

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Kumar, S.; Wiederoder, M.; Schoeman, J.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper describes the development and optimisation of a paper-based E. coli impedimetric biosensor for water quality monitoring. Impedimetric biosensing is advantageous because it is a highly sensitive, label-free, real-time method for the detection of biological species. An impedimetric biosensor measures the change in impedance caused by specific capture of a target on the sensor surface. Each biosensor consists of a pair of photo paper-based inkjet printed electrodes. An impedance analyser was used to measure the impedance at frequencies ranging from 1 kHz to 1 MHz at 1V. The parameters that were investigated to achieve enhanced sensor performance were buffer type, antibody attachment method, measurement frequency, electrode layout, and conductive material. A 0.04M PBS (phosphate buffered saline) solution achieves better results compared to a less conductive 0.04M PB (potassium phosphate dibasic) solution. The direct adsorption of anti-E. coli antibodies onto the sensor surface yielded better results than attaching the sensor to a lateral flow test. The resistive component had a greater impact on the detected impedance, therefore an optimal frequency of 1 MHz was identified. Geometrical electrode designs that maximise the resistive change between the electrodes were utilised. Both lower cost silver and bio-compatible gold ink were validated as electrode materials. The impedance change generated by the selective capture of E. coli K-12, ranging in concentration from 103 to 107 colony forming units per millilitre (cfu/ml), showed a detection limit of 105 cfu/ml.

  11. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications

    PubMed Central

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key factors to consider in order to satisfy the degradation requirements for next-generation biodegradable implants and devices. PMID:23799028

  12. Vehicle influence on permeation through intact and compromised skin.

    PubMed

    Gujjar, Meera; Banga, Ajay K

    2014-09-10

    The purpose of this study was to compare the transdermal permeation of a model compound, diclofenac diethylamine, from a hydrophilic and lipophilic vehicle across in vitro models simulating compromised skin. Mineral oil served as a lipophilic vehicle while 10mM phosphate buffered saline served as a hydrophilic vehicle. Compromised skin was simulated by tape stripping, delipidization, or microneedle application and compared with intact skin as a control. Transepidermal water loss was measured to assess barrier function. Skin compromised with tape stripping and delipidization significantly (p<0.05) increased permeation of diclofenac diethylamine compared to intact and microneedle treated skin with phosphate buffered saline vehicle. A similar trend in permeation was observed with mineral oil as the vehicle. For both vehicles, permeation across skin increased in the same order and correlated with degree of barrier impairment as indicated by transepidermal water loss values: intact

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marín-Moreno, Alba; Espinosa, Juan-Carlos; Fernánd

    The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrP{sup C} transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by threemore » and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrP{sup Res} persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations. - Highlights: • Prion infectivity resists long term incubations in aquatic environments. • Infectivity persistence in wastewater is reduced when compared to PBS. • In this study PrPRes fails as a marker for prion detection. • Mice bioassay is the most powerful tool for assessing prion presence. • Wastewater conventional treatment would not eliminate prion infectivity.« less

  14. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    PubMed

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  15. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  16. Immunogold Staining of Ultrathin Thawed Cryosections for Transmission Electron Microscopy (TEM).

    PubMed

    Skepper, Jeremy N; Powell, Janet M

    2008-06-01

    INTRODUCTIONA pre-embedding method of immunochemical staining is used if antigens are damaged by resin embedding, or if the best preservation of membranes is required. Applying immunogold reagents to sections of lightly fixed tissue, free of embedding medium, can be a very sensitive method of immunochemical staining. Cells or tissues are fixed as strongly as possible and then treated with a cryoprotectant, which is usually a mixture of sucrose and polyvinylpyrrolidone (PVP). They are frozen onto pins in liquid nitrogen and sectioned at approximately -100°C. The frozen sections are thaw-mounted on to Formvar/nickel film grids and the cryoprotectant is removed by floating the grids on drops of phosphate-buffered saline (PBS). The immunogold staining is performed on the unembedded sections, which are subsequently contrast counterstained and infiltrated with a mixture of methylcellulose and uranyl acetate. In this protocol, samples are sectioned at low temperature, thaw-mounted onto film grids, immunochemically stained, contrast counterstained, and embedded/encapsulated in situ on the grid before viewing by transmission electron microscopy (TEM).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Leyre; Cebrian, Virginia; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid

    Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also beenmore » characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent.« less

  18. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys

    PubMed Central

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma

    2009-01-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791

  19. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys

    NASA Astrophysics Data System (ADS)

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Gill, Puneet K. Singh; Amruthaluri, Sushma

    2009-08-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.

  20. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys.

    PubMed

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K; Amruthaluri, Sushma

    2009-08-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.

  1. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    PubMed

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  2. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Large-scale purification and acute toxicity of hygromycin B phosphotransferase.

    PubMed

    Zhuo, Qin; Piao, Jian-Hua; Tian, Yuan; Xu, Jie; Yang, Xiao-Guang

    2009-02-01

    To provide the acute toxicity data of hygromycin B phosphotransferase (HPT) using recombinant protein purified from E. coli. Recombinant HPT protein was expressed and purified from E. coli. To exclude the potential adverse effect of bacteria protein in recombinant HPT protein, bacterial control plasmid was constructed, and bacteria control protein was extracted and prepared as recombinant HPT protein. One hundred mice, randomly assigned to 5 groups, were administrated 10 g/kg, 5 g/kg, or 1 g/kg body weight of HPT or 5 g/kg body weight of bacterial control protein or phosphate-buffered saline (PBS) respectively by oral gavage. All animals survived with no significant change in body weight gain throughout the study. Macroscopic necropsy examination on day 15 revealed no gross pathological lesions in any of the animals. The maximum tolerated dose (MTD) of HPT was 10 g/kg body weight in mice and could be regarded as nontoxic. HPT protein does not have any safety problems to human health.

  4. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  5. Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin

    2015-12-14

    We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.

  6. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  7. Dependency of plasmon resonance sensitivity of colloidal gold nanoparticles on the identity of surrounding ionic media

    NASA Astrophysics Data System (ADS)

    Mehrdel, B.; Aziz, A. Abdul

    2018-03-01

    The plasmon resonance sensitivity of gold nanoparticles (AuNPs) in sodium chloride (NaCl) liquid in near-infrared to the visible spectral region was investigated. The correlation between NaCl concentration and refractive index was analyzed using concentration dependency and Lorenz-Lorenz methods. The first derivative method was applied to the measured absorption spectra to quantitatively evaluate the plasmon resonance sensitivity. To understand the influence of the identity of the surrounding medium on the plasmon resonance sensitivity, experiments were repeated by replacing NaCl with sodium hydroxide (NaOH), followed by phosphate buffered saline (PBS). Experimental results showed that NaCl is the most effective ionic surrounding medium, which gives prominent plasmon resonance response. AuNPs size can have a significant influence on the plasmon resonance sensitivity. For tiny AuNPs (∼10 nm AuNPs), the plasmon resonance is insensitive to the identity of the surrounding medium due to their low cross-section value.

  8. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid.

    PubMed

    Oh, Dongyeop X; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-09-06

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin's poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e. , catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions.

  9. Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre.

    PubMed

    Khanna, Venkatesan Gopiesh; Kannabiran, Krishnan; Getti, Giulia

    2009-02-01

    To evaluate the leishmanicidal activity of saponin, dasyscyphin C of Eclipta prostrata and sapogenin, gymnemagenol from Gymnema sylvestre leaves under in vitro conditions. Dasyscyphin C/Gymnemagenol were dissolved in phosphate buffered saline (PBS) and diluted with liquid medium to obtain concentrations ranging from 1000 to 15 mug /ml. The leishmanicidal activity against leishmanial parasites, Leishmania major, Leishmania aethiopica and Leishmania tropica promastigotes was studied by the MTS assay. The Dasyscyphin C isolated from E. prostrata showed good leishmanicidal activity at 1000mug/ml concentration, with the IC(50) value of 450mug/ml against L. major promastigote and the percentage of parasitic death was 73; whereas, gymnemagenol of G. sylvestre showed only 52% parasitic death at 1000 mug/ml concentration. The other Leishmania species, L. aethiopica and L. tropica promastigotes, were less sensitive to the saponins of E. prostrata and G. sylvestre. From this study, it can be concluded that the dasyscyphin C of E. prostrata has significant leishmanicidal activity against L. major promastigote.

  10. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release.

    PubMed

    Osman, Asila; Oner, Ebru Toksoy; Eroglu, Mehmet S

    2017-06-01

    Levan based cross-linker was successfully synthesized and used to prepare a series of more biocompatible and temperature responsive levan/N-isopropyl acrylamide (levan/pNIPA) hydrogels by redox polymerization at room temperature. Volume phase transition temperature (VPTT) of the hydrogels were precisely determined by derivative differential scanning calorimetry (DDSC). Incorporation of levan into the pNIPA hydrogel increased the VPTT from 32.8°C to 35.09°C, approaching to body temperature. Swelling behavior and 5-aminosalicylic acid (5-ASA) release of the hydrogels were found to vary significantly with temperature and composition. Moreover, a remarkable increase in thermal stability of levan within hydrogel with increase of pNIPA content was recorded. The biocompatibility of the hydrogels were tested against mouse fibroblast L929 cell line in phosphate buffer saline (PBS, pH 7.4). The hydrogels showed increasing biocompatibility with increasing levan ratio, indicating levan enhanced the hydrogel surface during swelling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Physico-chemical characterization of grain dust in storage air of Bangalore.

    PubMed

    Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R

    1998-06-01

    An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.

  12. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles.

    PubMed

    Toropova, Alla P; Toropov, Andrey A; Benfenati, Emilio; Puzyn, Tomasz; Leszczynska, Danuta; Leszczynski, Jerzy

    2014-10-01

    The development of quantitative structure-activity relationships for nanomaterials needs representation of molecular structure of extremely complex molecular systems. Obviously, various characteristics of nanomaterial could impact associated biochemical endpoints. Following features of TiO2 and ZnO nanoparticles (n=42) are considered here: (i) engineered size (nm); (ii) size in water suspension (nm); (iii) size in phosphate buffered saline (PBS, nm); (iv) concentration (mg/L); and (v) zeta potential (mV). The damage to cellular membranes (units/L) is selected as an endpoint. Quantitative features-activity relationships (QFARs) are calculated by the Monte Carlo technique for three distributions of data representing values associated with membrane damage into the training and validation sets. The obtained models are characterized by the following average statistics: 0.78

  13. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.

    PubMed

    Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie

    2008-07-01

    The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.

  14. Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.

    PubMed

    She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei

    2015-11-01

    To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P < 0.01). Mice administered CMC+HA also showed significantly lower corneal fluorescein staining and higher goblet cell density, compared with CMC (P < 0.01) and HA (P < 0.05) in both regimens 1 and 2. The artificial tear formulation containing CMC and HA was effective in preventing and treating environmentally induced dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.

  15. In vivo photoacoustic imaging of chorioretinal oxygen gradients

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Wang, Junxin; Kim, Yeji; Jhunjhunwala, Anamik; Chao, Daniel L.; Jokerst, Jesse V.

    2018-03-01

    Chorioretinal imaging has a crucial role for the patients with chorioretinal vascular diseases, such as neovascular age-related macular degeneration. Imaging oxygen gradients in the eye could better diagnose and treat ocular diseases. Here, we describe the use of photoacoustic ocular imaging (PAOI) in measuring chorioretinal oxygen saturation (CR - sO2) gradients in New Zealand white rabbits (n = 5) with ocular ischemia. We observed good correlation (R2 = 0.98) between pulse oximetry and PAOI as a function of different oxygen percentages in inhaled air. We then used an established ocular ischemia model in which intraocular pressure is elevated to constrict ocular blood flow, and notice a positive correlation (R2 = 0.92) between the injected volume of phosphate buffered saline (PBS) and intraocular pressure (IOP) as well as a negative correlation (R2 = 0.98) between CR - sO2 and injected volume of PBS. The CR - sO2 was measured before (baseline), during (ischemia), and after the infusion (600-μL PBS). The ischemia-reperfusion model did not affect the measurement of the sO2 using a pulse oximeter on the animal's paw, but the chorioretinal PAOI signal showed a nearly sixfold decrease in CR - sO2 (n = 5, p = 0.00001). We also observe a sixfold decrease in CR - sO2 after significant elevation of IOP during ischemia, with an increase close to baseline during reperfusion. These data suggest that PAOI can detect changes in chorioretinal oxygenation and may be useful for application to imaging oxygen gradients in ocular disease.

  16. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics

    PubMed Central

    Obara, H.; Sapkota, A.; Takei, M.

    2016-01-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247

  17. Evaluation of the use of a needle-free injection syringe as a cause of non-specific reactions in the intradermal tuberculin test used for the diagnosis of bovine tuberculosis.

    PubMed

    Díez-Guerrier, A; Roy, A; de la Cruz, M L; Sáez, J L; Sanz, C; Boschiroli, M L; Romero, B; de Juan, L; Domínguez, L; Bezos, J

    2018-05-24

    The objective of the study was to elucidate whether the use of the needle-free Dermojet syringe, which is based on a high pressure inoculation and is used to inject tuberculin in cattle in several countries, may, in itself, cause skin reactions that can be interpreted as positive reactions to the intradermal tests that are not, in fact, related to the real infection status of the animals. Forty-four cattle from an officially tuberculosis-free (OTF) herd were selected, and four single intradermal tuberculin (SIT) tests were performed on each animal, two on each side of the neck. Three different Dermojet (D1, D2 and D3) and one McLintock (M4) syringes were used to carry out sterile phosphate buffer saline (PBS) with 10% of glycerol and bovine PPD injections. No positive reactions to the SIT test were observed when using the D1-D3 syringes in the case of either bovine PPD or PBS. With regard to M4 (PBS), all the tests were negative when using a standard interpretation but three were positive in the case of the severe interpretation. Significant differences (p < 0.05) in the skin fold thickness measured were found only between certain Dermojet and McLintock syringes at certain inoculation sites. The results showed that the needle-free Dermojet syringe used for PPD intradermal testing in cattle did not cause significant reactions that could be misunderstood as positives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Lubrication of chocolate during oral processing.

    PubMed

    Rodrigues, S A; Selway, N; Morgenstern, M P; Motoi, L; Stokes, J R; James, B J

    2017-02-22

    The structure of chocolate is drastically transformed during oral processing from a composite solid to an oil/water fluid emulsion. Using two commercial dark chocolates varying in cocoa solids content, this study develops a method to identify the factors that govern lubrication in molten chocolate and saliva's contribution to lubrication following oral processing. In addition to chocolate and its individual components, simulated boluses (molten chocolate and phosphate buffered saline), in vitro boluses (molten chocolate and whole human saliva) and ex vivo boluses (chocolate expectorated after chewing till the point of swallow) were tested. The results reveal that the lubrication of molten chocolate is strongly influenced by the presence of solid sugar particles and cocoa solids. The entrainment of particles into the contact zone between the interacting surfaces reduces friction such that the maximum friction coefficient measured for chocolate boluses is much lower than those for single-phase Newtonian fluids. The addition of whole human saliva or a substitute aqueous phase (PBS) to molten chocolate dissolves sugar and decreases the viscosity of molten chocolate so that thinner films are achieved. However, saliva is more lubricating than PBS, which results in lower friction coefficients for chocolate-saliva mixtures when compared to chocolate-PBS mixtures. A comparison of ex vivo and in vitro boluses also suggests that the quantity of saliva added and uniformity of mixing during oral processing affect bolus structure, which leads to differences in measured friction. It is hypothesized that inhomogeneous mixing in the mouth introduces large air bubbles and regions of non-emulsified fat into the ex vivo boluses, which enhance wetting and lubrication.

  19. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis.

    PubMed

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2017-03-01

    There is no effective vaccine for the prevention and elimination of leishmaniasis. For this reason, we assessed the protective effects of DNA vaccines containing LeIF, TSA genes alone, or LeIF-TSA fusion against cutaneous leishmaniasis pEGFP-N1 plasmid (empty vector) and phosphate buffer saline (PBS) were used as control groups. Therefore, cellular and humoral immune responses were evaluated before and after the challenge with Leishmania major. Lesion diameter was also measured 3-12 weeks after challenge. All immunized mice with plasmid DNA encoding Leishmania antigens induced the partial immunity characterized by increased IFN-γ and IgG2a levels compared with control groups (p < 0.001). Furthermore, the immunized mice showed significant reduction in mean lesion sizes compared with mice in empty vector and PBS groups (p < 0.05). The reduction in lesion diameter was 29.3%, 34.1%, and 46.2% less in groups vaccinated with LeIF, TSA, and LeIF-TSA, respectively, than in PBS group at 12th week post infection. IFN/IL-4 and IgG2a/IgG1 ratios indicated that group receiving LeIF-TSA fusion had the highest IFN-γ and IgG2a levels. In this study, DNA immunization promoted Th1 immune response characterized by higher IFN-γ and IgG2a levels and also reduction in lesion size. These results showed that a bivalent vaccine containing two distinct antigens may induce more potent immune responses against leishmaniasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  20. Elution of Clindamycin and Enrofloxacin From Calcium Sulfate Hemihydrate Beads In Vitro.

    PubMed

    Phillips, Heidi; Boothe, Dawn M; Bennett, R Avery

    2015-11-01

    To compare the in vitro elution characteristics of clindamycin and enrofloxacin from calcium sulfate hemihydrate beads containing a single antibiotic, both antibiotics, and each antibiotic incubated in the same eluent well. Experimental in vitro study. Calcium sulfate hemihydrate beads were formed by mixing with clindamycin and/or enrofloxacin to create 4 study groups: (1) 160 mg clindamycin/10 beads; (2) 160 mg enrofloxacin/10 beads; (3) 160 mg clindamycin + 160 mg enrofloxacin/10 beads; and (4) 160 mg clindamycin/5 beads and 160 mg enrofloxacin/5 beads. Chains of beads were formed in triplicate and placed in 5 mL phosphate buffered saline (PBS; pH 7.4 and room temperature) with constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1 hour to 30 days. Clindamycin and enrofloxacin concentrations in PBS were determined using high-performance liquid chromatography. Eluent concentrations from clindamycin-impregnated beads failed to remain sufficiently above minimum inhibitory concentration (MIC) for common infecting bacteria over the study period. Enrofloxacin eluent concentrations remained sufficiently above MIC for common wound pathogens of dogs and cats and demonstrated an atypical biphasic release pattern. No significant differences in elution occurred as a result of copolymerization of the antibiotics into a single bead or from individual beads co-eluting in the same eluent well. Clindamycin-impregnated beads cannot be recommended for treatment of infection at the studied doses; however, use of enrofloxacin-impregnated beads may be justified when susceptible bacteria are cultured. © Copyright 2015 by The American College of Veterinary Surgeons.

  1. Opioid Abuse after TBI

    DTIC Science & Technology

    2015-09-01

    hippocampal formation (Paxinos and Watson, 2005). The sections were mounted on 1% gelatin -coated slides and stored at -20°C until further histological... drying at room temperature overnight. Finally, sections were rinsed in xylene (2 times for 5 min) and coverslipped with DPX mounting media (Electron...0.1M phosphate buffered saline (3 x 5 min) and 0.1M phosphate buffer (3 x 5 min) and slides were allowed to dry for one hour before being

  2. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    PubMed

    Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  3. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer

    PubMed Central

    Burgess, Emma M.; Karlsson, Jens O. M.; Eroglu, Ali

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants. PMID:29304068

  4. Anodic stripping voltammetry of nickel ions and nickel hydroxide nanoparticles at boron-doped diamond electrodes

    NASA Astrophysics Data System (ADS)

    Musyarofah, N. R. R.; Gunlazuardi, J.; Einaga, Y.; Ivandini, T. A.

    2017-04-01

    Anodic stripping voltammetry (ASV) of nickel ions in phosphate buffer solution (PBS) have been investigated at boron-doped diamond (BDD) electrodes. The deposition potential at 0.1 V (vs. Ag/AgCl) for 300 s in 0.1 M PBS pH 3 was found as the optimum condition. The condition was applied for the determination of nickel contained in nickel hydroxide nanoparticles. A linear calibration curve can be achieved of Ni(OH)2-NPs in the concentration range of x to x mM with an estimated limit of detection (LOD) of 5.73 × 10-6 mol/L.

  5. Simple Reversed-Phase HPLC Method with Spectrophotometric Detection for Measuring Acetaminophen-Protein Adducts in Rat Liver Samples

    PubMed Central

    Acharya, Miteshkumar; Lau-Cam, Cesar A.

    2012-01-01

    A simple reversed-phase HPLC method for measuring hepatic levels of acetaminophen- (APAP-) protein adduct following an overdose of APAP was developed. An aliquot of liver homogenate in phosphate-buffered saline pH 7.4 (PBS) was placed on a Nanosep centrifugal device, which was centrifuged to obtain a protein residue. This residue was incubated with a solution of p-aminobenzoic acid (PABA), the internal standard, and bacterial protease in PBS, transferred to a Nanosep centrifugal device, and centrifuged. A 100 μL portion of the filtrate was analyzed on a YMC-Pack ODS-AMQ C18 column, using 100 mM potassium dihydrogen phosphate-methanol-acetic acid (100 : 0.6 : 0.1) as the mobile phase, a flow rate of 1 mL/min, and photometric detection at 254 nm. PABA and APAP-cystein-S-yl (APAP-Cys) eluted at ~14.7 min and 22.7 min, respectively. Method linearity, based on on-column concentrations of APAP-Cys, was observed over the range 0.078–40 μg. Recoveries of APAP-Cys from spiked blank liver homogenates ranged from ~83% to 91%. Limits of detection and of quantification of APAP-Cys, based on column concentrations, were 0.06 μg and 0.14 μg, respectively. RSD values for interday and intraday analyses of a blank liver homogenate spiked with APAP-Cyst at three levels were, in all cases, ≤1.0% and <1.5%, respectively. The proposed method was found appropriate for comparing the antidotal properties of N-acetylcysteine and taurine in a rat model of APAP poisoning. PMID:22619591

  6. Fiber-optic multiphoton flow cytometry in whole blood and in vivo

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.

    2010-07-01

    Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.

  7. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Xu, Yunqiang; Wang, Chunfeng; Zhou, Guowei; Wu, Yue; Chen, Jing

    2012-06-01

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  8. Non-hermetic encapsulation for implantable electronic devices based on epoxy.

    PubMed

    Boeser, Fabian; Ordonez, Juan S; Schuettler, Martin; Stieglitz, Thomas; Plachta, Dennis T T

    2015-08-01

    Hermetic and non-hermetic implant packaging are the two strategies to protect electronic systems from the humid conditions inside the human body. Within the scope of this work twelve different material combinations for a non-hermetic, high-reliable epoxy based encapsulation technique were characterized. Three EPO-TEK (ET) epoxies and one low budget epoxy were chosen for studies with respect to their processability, water vapor transmission rate (WVTR) and adhesion to two different ceramic-based substrates as well as to one standard FR4-substrate. Setups were built to analyze the mentioned properties for at least 30 days using an aging test in a moist environment. As secondary test subjects, commercially available USB flash drives (UFD) were successfully encapsulated inside the epoxies, soaked in phosphate buffered saline (PBS, pH=7.4), stored in an incubator (37°C) and tested for 256 days without failure. By means of epoxy WVTR (0.0278 g/day/m(2)) and degrease of adhesion (24.59 %) during 30 days in PBS, the combination of the standard FR4-substrate and the epoxy ET 301-2 was found to feature the best encapsulation properties. If a ceramic-based electronic system has to be used, the most promising combination consists of the alumina substrate and the epoxy ET 302-3M (WVTR: 0.0588 g/day/m(2); adhesion drop: 49.58 %).

  9. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  10. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.

    PubMed

    Chang, Debby P; Garripelli, Vivek Kumar; Rea, Jennifer; Kelley, Robert; Rajagopal, Karthikan

    2015-10-01

    Achieving long-term drug release from polymer-based delivery systems continues to be a challenge particularly for the delivery of large hydrophilic molecules such as therapeutic antibodies and proteins. Here, we report on the utility of an in situ-forming and injectable polymer-solvent system for the long-term release of a model antibody fragment (Fab1). The delivery system was prepared by dispersing a spray-dried powder of Fab1 within poly(lactide-co-glycolide) (PLGA)-triacetin solution. The formulation viscosity was within the range 1.0 ± 0.3 Pa s but it was injectable through a 27G needle. The release profile of Fab1, measured in phosphate-buffered saline (PBS), showed a lag phase followed by sustained-release phase for close to 80 days. Antibody degradation during its residence within the depot was comparable to its degradation upon long-term incubation in PBS. On the basis of temporal changes in surface morphology, stiffness, and depot mass, a mechanism to account for the drug release profile has been proposed. The unprecedented release profile and retention of greater than 80% of antigen-binding capacity even after several weeks demonstrates that PLGA-triacetin solution could be a promising system for the long-term delivery of biologics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    PubMed

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm

    PubMed Central

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    Objectives The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. Materials and methods The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test (P<0.05). Results There were significant differences in brackets’ biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting (P<0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS (P<0.05). Conclusion The antimicrobial activities of CHX were similar for CL and SL brackets (P>0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets. PMID:29719422

  13. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes.

    PubMed

    Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh

    2010-04-01

    In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  14. Erythropoietin Improves the Survival of Fat Tissue after Its Transplantation in Nude Mice

    PubMed Central

    Hamed, Saher; Egozi, Dana; Kruchevsky, Danny; Teot, Luc; Gilhar, Amos; Ullmann, Yehuda

    2010-01-01

    Background Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO) has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. Methodology/Principal Findings Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF)-treated and phosphate-buffered saline (PBS)-treated fat grafts. The weight and volume of the EPO-treated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. Conclusions/Significance Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fat transplants following EPO treatment. PMID:21085572

  15. Erythropoietin improves the survival of fat tissue after its transplantation in nude mice.

    PubMed

    Hamed, Saher; Egozi, Dana; Kruchevsky, Danny; Teot, Luc; Gilhar, Amos; Ullmann, Yehuda

    2010-11-15

    Autologous transplanted fat has a high resorption rate, providing a clinical challenge for the means to reduce it. Erythropoietin (EPO) has non-hematopoietic targets, and we hypothesized that EPO may improve long-term fat graft survival because it has both pro-angiogenic and anti-apoptotic properties. We aimed to determine the effect of EPO on the survival of human fat tissue after its transplantation in nude mice. Human fat tissue was injected subcutaneously into immunologically-compromised nude mice, and the grafts were then treated with either 20 IU or 100 IU EPO. At the end of the 15-week study period, the extent of angiogenesis, apoptosis, and histology were assessed in the fat grafts. The results were compared to vascular endothelial growth factor (VEGF)-treated and phosphate-buffered saline (PBS)-treated fat grafts. The weight and volume of the EPO-treated grafts were higher than those of the PBS-treated grafts, whose weights and volumes were not different from those of the VEGF-treated grafts. EPO treatment also increased the expression of angiogenic factors and microvascular density, and reduced inflammation and apoptosis in a dose-dependent manner in the fat grafts. Our data suggest that stimulation of angiogenesis by a cluster of angiogenic factors and decreased fat cell apoptosis account for potential mechanisms that underlie the improved long-term survival of fat transplants following EPO treatment.

  16. Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy.

    PubMed

    Del Gaudio, Costantino; Bagalà, Paolo; Venturini, Marco; Grandi, Claudio; Parnigotto, Pier Paolo; Bianco, Alessandra; Montesperelli, Giampiero

    2012-10-01

    Magnesium alloys represent a valuable option for the production of bioresorbable implantable medical devices aimed to improve the therapeutic approach and minimize the potential risks related to biostable materials. In this regard, the degradation process needs to be carefully evaluated in order to assess the effectiveness of the regenerative support and the eventual toxic effects induced by the released corrosion products. Aluminium is one of the most common alloying element that raised several safety concerns, contributing to shift the investigation toward Al-free alloys. To delve into this issue, a long-term investigation (up to 28 days) was performed using AZ91D alloy, due to its relevant Al content. Immersion tests in phosphate buffered saline (PBS) solution was performed following the ASTM standards and the corrosion behaviour was evaluated at fixed time points by means of electrochemical techniques. Cytotoxic effects were assessed by culturing human neuroblastoma cells with conditioned medium derived from immersion tests at different dilution degree. An increase in the resistance corrosion with the time was observed. In all the investigated cases the presence of Al in the conditioned media did not induce significant toxic effects directly correlated to its content. A decrease of cell viability was only observed in the case of 50 % dilution of PBS conditioned for the longest immersion period (i.e., 28 days).

  17. Antimicrobial action of chlorhexidine digluconate in self-ligating and conventional metal brackets infected with Streptococcus mutans biofilm.

    PubMed

    Dias, Ana Paula; Paschoal, Marco Aurélio Benini; Diniz, Rafael Soares; Lage, Lucas Meneses; Gonçalves, Letícia Machado

    2018-01-01

    The objectives of this study were to assess the adherence of Streptococcus mutans biofilms grown over conventional ligature (CL) or self-ligating (SL) metal brackets and their bacterial viability after 0.12% chlorhexidine (CHX) digluconate treatment. The sample consisted of 48 metallic orthodontic brackets divided randomly into two groups: CL (n=24) and SL brackets (n=24). S. mutans biofilms were grown over the bracket surface (96 h) and treated with CHX (positive control) or 0.9% phosphate-buffered saline (PBS) (negative control) for 1 min each. Quantitative analysis was assessed by colony-forming units, and fluorescence microscopy was performed aiming to illustrate the outcomes. The tests were done in triplicate at three different times (n=9). Data were analyzed using ANOVA and Tukey test ( P <0.05). There were significant differences in brackets' biofilm formation, being CL largely colonized compared with SL, which was observed by colony-forming unit counting ( P <0.05) and microcopy images. Significant reduction in the viability of S. mutans was found in both brackets treated with CHX compared to PBS ( P <0.05). The antimicrobial activities of CHX were similar for CL and SL brackets ( P >0.05). In conclusion, a lower colonization was achieved in SL brackets and S. mutans biofilms were susceptible to CHX treatment to both studied brackets.

  18. Malaria vaccine research.

    PubMed

    Ballou, W R; Diggs, C L; Landry, S; Hall, B F

    1994-12-16

    In our report "Activation of Raf as a result of recruitment to the plasma membrane" (3 June, p. 1463) (1), panels E and F of figure 1 on page 1464 were incorrect. The correct photographs appear below. In addition, the [See figure in the PDF file] second sentence of the legend to figure 1 should have read, "The Raf constructs were tagged at the COOH-terminus with a Glu-Glu epitope (MEYMPME) (24) for c-Raf, or at the NH(2)-terminus with both the Glu-Glu and the Myc (MEQKLISEEDL) (23) epitopes for RafCAAX"; the next-to-the-last sentence of the legend to figure 1 should have read, "The c-Raf constructs in (A through D) are Glu-Glu-tagged and were detected by using an anti Glu-Glu antibody, and the RafCAAX and Raf6QCAAX constructs used in E and F were detected by using the antibody to Raf COOH-terminal peptide"; and the third sentence of note 26 should have read, "After blocking with 5% milk in phosphate-buffered saline (M-PBS), cells were incubated with a mouse monoclonal antibody to Glu-Glu or a rabbit polyclonal antibody to a 20-amino acid COOH-terminal peptide of Raf-1 (Santa Cruz Biotechnology, Santa Cruz, California), washed, and incubated with donkey antibodies to mouse or rabbit IgG combined with Texas Red (Jackson) in M-PBS, washed, and mounted in FITC-Guard (Testog)."

  19. EFFICACY of P188 ON LAPINE MENISCUS PRESERVATION FOLLOWING BLUNT TRAUMA

    PubMed Central

    Coatney, Garrett A.; Abraham, Adam C.; Fischenich, Kristine M.; Button, Keith D.; Haut, Roger C.; Haut Donahue, Tammy L.

    2015-01-01

    Traumatic injury to the knee leads to the development of posttraumatic osteoarthritis. The objective of this study was to characterize the effects of a single intra-articular injection of a non-ionic surfactant, Poloxamer 188 (P188), in preservation of meniscal tissue following trauma through maintenance of meniscal glycosaminoglycan (GAG) content and mechanical properties. Flemish Giant rabbits were subjected to a closed knee joint, traumatic compressive impact with the joint constrained to prevent anterior tibial translation. The contralateral limb served as an un-impacted control. Six animals (treated) received an injection of P188 in phosphate buffered saline (PBS) post trauma, and another six animals (sham) received a single injection of PBS to the impacted limb. Histological analyses for GAG was determined 6 weeks post trauma, and functional outcomes were assessed using stress relaxation micro-indentation. The impacted limbs of the sham group demonstrated a significant decrease in meniscal GAG coverage compared to non-impacted limbs (p < 0.05). GAG coverage of the impacted P188 treated limbs was not significantly different than contralateral non-impacted limbs in all regions except the medial anterior (p < 0.05). No significant changes were documented in mechanics for either the sham or treated groups compared to their respective control limbs. This suggests that a single intra-articular injection of P188 shows promise in prevention of trauma induced GAG loss. PMID:25846264

  20. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    PubMed

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. Terrence

    2002-11-01

    In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.

  2. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.

    PubMed

    Muñoz, A Igual; Mischler, S

    2011-03-01

    The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour.

  3. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  4. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  5. The effect of vascular endothelial growth factor on a rat model of traumatic arteriogenic erectile dysfunction.

    PubMed

    Lee, Ming-Chan; El-Sakka, Ahmed I; Graziottin, Tulio M; Ho, Hao-Chung; Lin, Ching-Shwun; Lue, Tom F

    2002-02-01

    We tested the hypothesis that intracavernous injection of vascular endothelial growth factor (VEGF) can restore erectile function in a rat model of traumatic arteriogenic erectile dysfunction. Exploration of bilateral internal iliac arteries was performed in 50, 3-month-old male rats. A total of 44 rats underwent bilateral ligation of the internal iliac arteries and 6 that underwent exploration only served as the sham operated group. Minutes later intracavernous injection of phosphate buffered saline (PBS) plus bovine serum albumin in 16 rats, 2 microg. VEGF plus PBS plus BSA in 12 and 4 microg. VEGF plus PBS plus BSA in 16 was performed. At weeks 1, 2 and 6 about a third of the rats in each group underwent electrostimulation of the cavernous nerves to assess erectile function and were then sacrificed. Penile tissues were collected for histochemical and electron microscopy examinations. No impairment of erectile function was noted in sham operated rats. Immediately after arterial ligation all rats showed little or no erectile response to neurostimulation. In PBS treated rats modest recovery of erectile function was noted at week 6. Significant recovery of erectile function was noted in VEGF treated rats at weeks 1 and 2 in the 4 microg. group only and at week 6 in the 2 and 4 microg. groups. Neuronal nitric oxide synthase staining showed a reduction in neuronal nitric oxide synthase positive nerve fibers in the dorsal or intracavernous nerves at week 1. Moderate recovery of neuronal nitric oxide synthase positive nerve fibers was noted in the 2 and 4microg. VEGF treated groups but not in the PBS treated group. Electron microscopy revealed no pathological change in sham operated rats. In dorsal nerves the atrophy of myelinated and nonmyelinated nerve fibers was noted in ligated plus PBS treated rats. Partial recovery was observed in VEGF treated rats. Scattered atrophic smooth muscle cells were seen in PBS and occasionally in VEGF treated rats but not in the sham operated group. The most dramatic findings in VEGF treated rats were hypertrophy and hyperplasia of the endothelial cells, especially those lining the small capillaries. Ligation of bilateral internal iliac arteries produced a reliable animal model of traumatic arteriogenic erectile dysfunction. Intracavernous injection of VEGF minutes after arterial ligation facilitated the recovery of erectile function.

  6. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Early metabolite changes after melatonin treatment in neonatal rats with hypoxic-ischemic brain injury studied by in-vivo 1H MR spectroscopy

    PubMed Central

    Nyman, Axel K. G.; Morken, Tora Sund; Vettukattil, Riyas; Brubakk, Ann-Mari; Widerøe, Marius

    2017-01-01

    Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain injury. We used in-vivo 1H magnetic resonance spectroscopy to investigate effects of melatonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with unilateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and contralateral hemisphere were acquired 1 day after HI. Our results showed that injured animals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels and lower lipid concentrations compared to DMSO treatment as well as higher macromolecule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower concentrations of glucose, creatine, phosphocholine and macromolecules compared to sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a more favorable metabolic profile including reduced lipid levels that likely represents reduced cell injury. Neuroprotective effects may also be related to the influence of melatonin on glutamate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral energy metabolism might have masked additional beneficial effects of melatonin. PMID:28934366

  8. Variables that affect the mechanism of drug release from osmotic pumps coated with acrylate/methacrylate copolymer latexes.

    PubMed

    Jensen, J L; Appel, L E; Clair, J H; Zentner, G M

    1995-05-01

    The feasibility of using modified Eudragit acrylic latexes as microporous coatings for osmotic devices was investigated. Potassium chloride tablets were coated with mixtures of Eudragit RS30D and RL30D acrylic latexes that also contained a plasticizer (triethyl citrate or acetyl tributyl citrate) and a pore-forming agent (urea). A 2(5-1) fractional factorial experimental design was employed to determine the effect of five formulation variables (RS30D:RL30D polymer ratio plasticizer type, plasticizer level, urea level, and cure) on the in vitro release rate of KCl in deionized water (di water), lag time, and coat burst strength. The RS30D:RL30D polymer ratio had the greatest effect on the release rate, and both lag time and burst strength were most affected by the urea level. Statistical optimization was performed, and a coat formulation with predicted desirable in vitro performance was prepared and tested. The in vitro release rate (di water), lag time, and coat burst strength agreed well with the prediction. Dissolutions were also performed in phosphate buffered saline (PBS; pH 7.4); several formulations released markedly slower in PBS than in di water. This discrepancy was dependent on the type of plasticizer and the amount of pore former. Only those coat formulations containing acetyl tributyl citrate as the plasticizer and a 100% urea [(g urea/g polymer solids) x 100] level exhibited similar release rates in di water and PBS. The mechanism of release from these devices was primarily osmotic, whereas the release from devices coated with a formulation containing triethyl citrate and 50% urea was not dependent on the osmotic pressure difference. Devices with an osmotic release mechanism behaved similarly in vivo and in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    PubMed Central

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  10. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China.

    PubMed

    Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E

    2018-05-28

    Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.

  11. Preconditioning methods influence tumor property in an orthotopic bladder urothelial carcinoma rat model

    PubMed Central

    MIYAZAKI, KOZO; MORIMOTO, YUJI; NISHIYAMA, NOBUHIRO; SATOH, HIROYUKI; TANAKA, MASAMITSU; SHINOMIYA, NARIYOSHI; ITO, KEIICHI

    2014-01-01

    Urothelial carcinoma (UC) is an extremely common type of cancer that occurs in the bladder. It has a particularly high rate of recurrence. Therefore, preclinical studies using animal models are essential to determine effective forms of treatment. In the present study, in order to establish an orthotopic bladder UC animal model with clinical relevance, the effects of preconditioning methods on properties of the developed tumor were evaluated. The bladder cavity was pretreated with phosphate-buffered saline (PBS), acid-base, trypsin (TRY) or poly (L-lysine) (PLL) and then rat UC cells (AY-27) (4×106 cells) were inoculated. The results demonstrated that, two weeks later, the tumorigenic rate (88%) and tumor count (2.3 per rat) were not significantly different among the preconditioning methods, whereas tumor volume and invasion depth into bladder tissue were significantly different. Average tumor volumes were >50 mm3 in the PBS and acid-base-treated groups and <10 mm3 in the TRY- and PLL-treated groups. The percentage of invasive tumors (T2 or more advanced stage) was ∼75% of total tumors in the PBS- and acid-base-treated groups, whereas the percentages were reduced in the TRY- and PLL-treated groups (58 and 32%, respectively). Non-invasive tumors (Ta or T1) accounted for 54% of tumors in the PLL-treated group, which was 2-5-fold higher than the percentages in the remaining groups. Properties of the developed tumor in the rat orthotopic UC model were different depending on preconditioning methods. Therefore, different animal models suitable for a discrete preclinical examination may be established by using the appropriate preconditioning condition. PMID:24649309

  12. Dietary Quercetin Reduces Chemotherapy-Induced Fatigue in Mice

    PubMed Central

    Mahoney, Sara E.; Davis, J. Mark; Murphy, E. Angela; McClellan, Jamie L.; Pena, Marjory M.

    2014-01-01

    Purpose While fatigue is the most commonly reported symptom of chemotherapy, there are currently no effective treatments for chemotherapy-induced fatigue (CIF). We used a mouse model to examine the benefits of quercetin on CIF as measured by voluntary wheel running activity and sought to determine whether quercetin may be associated with a decrease in inflammation and/or anemia. Methods Mice were assigned to 1 of 4 groups: placebo-vehicle (Plac-PBS), placebo-5-fluorouracil (Plac-5FU), quercetin-vehicle (Quer-PBS), or quercetin-5-fluorouracil (Quer-5FU). All mice were given a daily injection of either 60 mg/kg of 5-FU or phosphate buffered saline (PBS) for 5 days. Quercetin (0.02%) treatment was administered in the food 3 days prior to 5-FU administration and for the duration of the experiment (ie, days −2 to 14). A second group of mice was sacrificed at 5 and 14 days post initial injection for assessment of monocyte chemoattractant protein-1 (MCP-1) and anemia. Results Voluntary wheel running was reduced in both the Plac-5FU and Quer-5FU groups following 5-FU injection (P < .05). However, the Quer-5FU group recovered to baseline levels by approximately day 7, whereas the Plac-5FU group remained suppressed. MCP-1 was significantly elevated at 14 days in Plac-5FU (P < .001), but no changes were seen with Quer-5FU. Treatment with 5-FU resulted in anemia at both 5 days and 14 days; however, quercetin blocked this effect at 14 days (P < .001). Conclusion These results demonstrate the beneficial effect of quercetin on improving recovery of voluntary physical activity following 5-FU treatment, which may be linked to a decrease in inflammation and anemia. PMID:24626097

  13. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization.

    PubMed

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P <0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P <0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery.

  14. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    PubMed Central

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  15. Effect of trapping vascular endothelial growth factor-A in a murine model of dry eye with inflammatory neovascularization

    PubMed Central

    Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung

    2016-01-01

    AIM To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. METHODS We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. RESULTS Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P<0.05), but with no such effects in non-dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P<0.05). The levels of RNA expression of VEGF-A, TNF-alpha, and IL-6 in the aflibercept subgroup were significantly decreased compared with those in the PBS subgroup in the dry eye group. CONCLUSION Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery. PMID:27990354

  16. ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model.

    PubMed

    Miyazaki, Shingo; Diwan, Ashish D; Kato, Kenji; Cheng, Kevin; Bae, Won C; Sun, Yang; Yamada, Junichi; Muehleman, Carol; Lenz, Mary E; Inoue, Nozomu; Sah, Robert L; Kawakami, Mamoru; Masuda, Koichi

    2018-04-01

    To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.

  17. Boxb mediate BALB/c mice corneal inflammation through a TLR4/MyD88-dependent signaling pathway in Aspergillus fumigatus keratitis.

    PubMed

    Liu, Min; Li, Cui; Zhao, Gui-Qiu; Lin, Jing; Che, Cheng-Ye; Xu, Qiang; Wang, Qian; Xu, Rui; Niu, Ya-Wen

    2018-01-01

    To investigate whether high-mobility group box 1 (HMGB1) Boxb exacerbates BALB/c mice corneal immune responses and inflammatory through the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)-dependent signaling pathway in Aspergillus fumigatus ( A. fumigatus ) keratitis. The mice corneas were pretreated with phosphate buffer saline (PBS), Boxb before A. fumigatus infection. The abdominal cavity extracted macrophages were pretreated with PBS, Boxb, TLR4 inhibitor (CLI-095), Dimethyl sulfoxide (DMSO) separately before A. fumigatus hyphae stimulation. HMGB1 was detected in normal and infected mice corneas and macrophages by real-time reverse transcriptase polymerase chain reaction (RT-PCR), the TLR4, MyD88, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) were detected by Western blot and PCR. In BALB/c mice corneas, the expressions of TLR4, HMGB1, IL-1β, TNF-α were increased after A. fumigatus infection. While pretreatment with Boxb significantly increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α compared with PBS control after infection. In BALB/c mice abdominal cavity extracted macrophages, pretreatment with Boxb increased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α, while pretreatment with CLI-095 and Boxb significantly decreased the expressions of TLR4, HMGB1, MyD88, IL-1β, TNF-α. In A. fumigatus keratitis, Boxb play a pro-inflammatory role in corneal anti-fungi immune response through the HMGB1-TLR4-MyD88 signal pathway.

  18. The effect of topically administered latanoprost on the cochlear blood flow and hearing.

    PubMed

    Jang, Chul Ho; Cho, Yong Beom; Choi, Cheol Hee; Um, Jae-Young; Wang, Pa-Chun; Pak, Sok Cheon

    2013-06-01

    The application of intratympanic latanoprost (PGF2α analog) has been recently used to alleviate vertigo, disequilibrium and to improve hearing in Meniere's disease patients. However, there is no known report on the effect of topically applied latanoprost on hearing and cochlear hemodynamic parameters including cochlear blood flow (CBF) and vascular conductance. Our goal was to assess the influence of topically applied latanoprost on cochlear blood flow (CBF) and hearing. Twenty male Sprague-Dawley rats were randomly divided into the group A, 50 μl of latanoprost (1 ml containing 50 μg, n=10) and group B, 100 μl (1 ml containing 50 μg, n=10). Topical application of latanoprost was performed at the right side, and the left side was applied with phosphate buffered saline (PBS) as a negative control. Five rats at each group were used to measure cochlear blood flow (CBF). And the others at each group were used for hearing test by auditory brainstem response (ABR). After physiological examination, bullas were extracted. The changes of cochlear hair cells were observed by performing the field emission-scanning electron microscopy (FE-SEM). The CBF of both groups was found to be decreased compared to the PBS applied left side. Significant decrement of CBF was observed in group B compared to the group A. Significant elevation of hearing threshold at high frequencies was observed in both groups compared to the PBS applied group. However, inner and outer hair cells were intact. Topically administered latanoprost decreased the CBF and impaired hearing. Based on our findings, additional studies are required to evaluate the side effects of intratympanic latanoprost before its use in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Analytical ultracentrifugation with fluorescence detection system reveals differences in complex formation between recombinant human TNF and different biological TNF antagonists in various environments

    PubMed Central

    Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu

    2017-01-01

    ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583

  20. Differential activation of peritoneal cells by subcutaneous treatment of rats with cryptococcal antigens.

    PubMed

    Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T

    2009-08-01

    Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.

  1. In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection

    PubMed Central

    Ballo, Myriam K. S.; Pulgarin, César; Hopf, Nancy; Berthet, Aurélie; Kiwi, John; Moreillon, Philippe; Bizzini, Alain

    2016-01-01

    In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo. Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 104 to 108 CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (107 CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 104 to 107 CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 108 CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces. PMID:27353266

  2. Kinetics of Innate Immune Response to Yersinia pestis after Intradermal Infection in a Mouse Model

    PubMed Central

    Jarrett, Clayton O.; Gardner, Donald; Hinnebusch, B. Joseph

    2012-01-01

    A hallmark of Yersinia pestis infection is a delayed inflammatory response early in infection. In this study, we use an intradermal model of infection to study early innate immune cell recruitment. Mice were injected intradermally in the ear with wild-type (WT) or attenuated Y. pestis lacking the pYV virulence plasmid (pYV−). The inflammatory responses in ear and draining lymph node samples were evaluated by flow cytometry and immunohistochemistry. As measured by flow cytometry, total neutrophil and macrophage recruitment to the ear in WT-infected mice did not differ from phosphate-buffered saline (PBS) controls or mice infected with pYV−, except for a transient increase in macrophages at 6 h compared to the PBS control. Limited inflammation was apparent even in animals with high bacterial loads (105 to 106 CFU). In addition, activation of inflammatory cells was significantly reduced in WT-infected mice as measured by CD11b and major histocompatibility complex class II (MHC-II) expression. When mice infected with WT were injected 12 h later at the same intradermal site with purified LPS, Y. pestis did not prevent recruitment of neutrophils. However, significant reduction in neutrophil activation remained compared to that of PBS and pYV− controls. Immunohistochemistry revealed qualitative differences in neutrophil recruitment to the skin and draining lymph node, with WT-infected mice producing a diffuse inflammatory response. In contrast, focal sites of neutrophil recruitment were sustained through 48 h postinfection in pYV−-infected mice. Thus, an important feature of Y. pestis infection is reduced activation and organization of inflammatory cells that is at least partially dependent on the pYV virulence plasmid. PMID:22966041

  3. Angiotensin II improves random-flap viability in a rat model.

    PubMed

    Okuyama, N; Roda, N; Sherman, R; Guerrero, A; Dougherty, W; Nguyen, T; diZerega, G; Rodgers, K

    1999-03-01

    Angiotensin II (AII) is a naturally occurring peptide that has been shown to be angiogenic, cause the proliferation of several primary cell types (including endothelial cells), accelerate the repair of dermal injuries, and increase production of growth factors and extracellular matrix. The effect of a single administration of AII on the viability and vascularity of a random flap was assessed in a rat model. In the control model, the viability of the distal portion of the flap was reduced consistently by postoperative day 8. Initially, AII was administered in an aqueous vehicle (phosphate-buffered saline [PBS]) and a viscous vehicle (10% carboxymethyl cellulose [CMC]). Administration of 1 mg per milliliter AII in PBS did not affect the viability of random flaps (1.2 x 7 cm) in this animal model. However, a single administration of a higher dose of AII in PBS (10 mg per milliliter) or 1 mg per milliliter AII in the CMC vehicle resulted in 67% of the grafts being fully viable at postsurgical day 12, in contrast to vehicle-treated control flaps, none of which were fully viable at day 12. Furthermore, the portion of the flap that was viable was increased significantly (p < or = 0.05). Subsequently, a study was conducted to assess the dose-response curve for AII in a CMC vehicle in this rat model. As the dose of AII was reduced, the percentage of animals with fully viable flaps and the percentage of the flap that was viable decreased correspondingly. Administration of 0.03 mg per milliliter AII and greater increased significantly (p < or = 0.05) the viability of the flaps. In conclusion, AII appears to be highly efficacious in increasing the percentage of distal flap surface area survival when administered as a single topical dose to the wound bed.

  4. In vitro and ex vivo characterisation of an in situ gelling formulation for sustained lidocaine release with potential use following knee arthroplasty.

    PubMed

    Sharma, Manisha; Chandramouli, Kaushik; Curley, Louise; Pontre, Beau; Reilly, Keryn; Munro, Jacob; Hill, Andrew; Young, Simon; Svirskis, Darren

    2018-06-01

    Sustained lidocaine release via a thermoresponsive poloxamer-based in situ gelling system has the potential to alleviate pain following knee arthroplasty. A previously developed formulation showed a promising drug release profile in synthetic phosphate-buffered saline (PBS). To support the translation of this formulation, ex vivo characterisation was warranted. This study therefore aimed (1) to modify the previously developed formulation to reduce the burst release, (2) to compare the release behaviour into ex vivo human intra-articular fluid (IAF) and PBS and (3) to determine the formulation spread in an ex vivo human knee using magnetic resonance imaging (MRI). All formulations provided sustained release out to 72 h; polyvinyl pyrrolidone was the most effective additive yielding a small yet significant decrease (p < 0.05) in the burst release. Release of lidocaine from the formulation occurred significantly faster into IAF compared to PBS (1.4 times greater release in the first 24 h), correlating with faster rates of gel erosion in IAF. Injection was easily achieved through a 21-gauge (G) needle into the synovial space of a human cadaveric knee, and MRI scans revealed effective spreading of the formulation throughout the joint cavity. The pattern of spread is promising for the drug to reach the widespread nerve endings in the joint capsule; the effect of this spread on release in an in vivo setting will be the subject of future studies. The demonstrated properties indicate that the in situ gelling formulation has the potential to be used clinically to treat post-operative pain following knee arthroplasty.

  5. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    PubMed

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  7. Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids in a Rat Model of Anterior Ischemic Optic Neuropathy.

    PubMed

    Georgiou, Tassos; Wen, Yao-Tseng; Chang, Chung-Hsing; Kolovos, Panagiotis; Kalogerou, Maria; Prokopiou, Ekatherine; Neokleous, Anastasia; Huang, Chin-Te; Tsai, Rong-Kung

    2017-03-01

    The purpose of this study was to investigate the therapeutic effect of omega-3 polyunsaturated fatty acid (ω-3 PUFA) administration in a rat model of anterior ischemic optic neuropathy (rAION). The level of blood arachidonic acid/eicosapentaenoic acid (AA/EPA) was measured to determine the suggested dosage. The rAION-induced rats were administered fish oil (1 g/day EPA) or phosphate-buffered saline (PBS) by daily gavage for 10 consecutive days to evaluate the neuroprotective effects. Blood fatty acid analysis showed that the AA/EPA ratio was reduced from 17.6 to ≤1.5 after 10 days of fish oil treatment. The retinal ganglion cell (RGC) densities and the P1-N2 amplitude of flash visual-evoked potentials (FVEP) were significantly higher in the ω-3 PUFA-treated group, compared with the PBS-treated group (P < 0.05). The number of apoptotic cells in the RGC layer of the ω-3 PUFA-treated rats was significantly decreased (P < 0.05) compared with that of the PBS-treated rats. Treatment with ω-3 PUFAs reduced the macrophage recruitment at the optic nerve (ON) by 3.17-fold in the rAION model. The M2 macrophage markers, which decrease inflammation, were induced in the ω-3 PUFA-treated group in contrast to the PBS-treated group. In addition, the mRNA levels of tumor necrosis factor-alpha, interleukin-1 beta, and inducible nitric oxide synthase were significantly reduced in the ω-3 PUFA-treated group. The administration of ω-3 PUFAs has neuroprotective effects in rAION, possibly through dual actions of the antiapoptosis of RGCs and anti-inflammation via decreasing inflammatory cell infiltration, as well as the regulation of macrophage polarization to decrease the cytokine-induced injury of the ON.

  8. Effects of Quercetin in a Mouse Model of Experimental Dry Eye.

    PubMed

    Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook

    2015-09-01

    To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.

  9. [Two Outbreaks of Yersinia enterocolitica O:8 Infections in Tokyo and the Characterization of Isolates].

    PubMed

    Konishi, Noriko; Ishitsuka, Rie; Yokoyama, Keiko; Saiki, Dai; Akase, Satoru; Monma, Chie; Hirai, Akihiko; Sadamasu, Kenji; Kai, Akemi

    2016-01-01

    Although the number of outbreaks caused by Yersinia enterocolitica has been very small in Japan, 4 outbreaks were occurred during the 2 years between 2012 and 2013. We describe herein 2 outbreaks which were examined in Tokyo in the present study. Outbreak 1: A total of 39 people (37 high school students and 2 staff) stayed at a hotel in mountain area in Japan had experienced abdominal pain, diarrhea and fever in August, 2012. The Y. enterocolitica serogroup O:8 was isolated from 18 (64.3%) out of 28 fecal specimens of 28 patients. The infection roots could not be revealed because Y. enterocolitica was not detected from any meals at the hotel or its environment. Outbreak 2: A total of 52 students at a dormitory had diarrhea and fever in April, 2013. The results of the bacteriological and virological examinations of fecal specimens of patients showed that the Y. enterocolitica serogroup O:8 was isolated from 24 fecal specimens of 21 patients and 3 kitchen staff. We performed bacteriological and virological examination of the stored and preserved foods at the kitchen of the dormitory to reveal the suspect food. For the detection of Y. enterocolitica, food samples. together with phosphate buffered saline (PBS) were incubated at 4 degrees C for 21 days. Then, a screening test for Y. enterocolitica using realtime-PCR targeting the ail gene was performed against the PBS culture. One sample (fresh vegetable salad) tested was positive on realtime-PCR. No Y. enterocolitica was isolated on CIN agar from the PBS culture because many bacteria colonies other than Y. enterocolitica appeared on the CIN agar. After the alkaline-treatments of the culture broth or the immunomagnetic beads concentration method using anti-Y. enterocolitica O:8 antibodies, Y. enterocolitica O:8 which was the same serogroup as the patients' isolates was successfully isolated from the PBS culture. The fresh vegetable salad was confirmed as the incrimination food of this outbreak.

  10. The effect of fatigue on the corrosion resistance of common medical alloys.

    PubMed

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

    DTIC Science & Technology

    2011-07-01

    for 18-20 h, bacteria were harvested in sterile saline, and the sus- pension was diluted in phosphate-buffered saline to the ap- propriate...Levine MM, Merson MM. Serologic differentiation between antitoxin responses to infection with Vibrio cholerae and enterotoxin-producing Escherichia coli

  12. Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction.

    PubMed

    Watase, Tetsuro; Shimizu, Kohei; Ohara, Kinuyo; Komiya, Hiroki; Kanno, Kohei; Hatori, Keisuke; Noma, Noboru; Honda, Kuniya; Tsuboi, Yoshiyuki; Katagiri, Ayano; Shinoda, Masamichi; Ogiso, Bunnai; Iwata, Koichi

    2018-01-01

    Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.

  13. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as preliminary results to continue developing fungi DNA extraction methods. Developing these methods will be important as dust storms are predicted to increase due to increased draughts and anthropogenic activity, and the fungal communities of these dust-storms are currently relatively understudied.

  14. In vitro behaviour of three biocompatible glasses in composite implants.

    PubMed

    Varila, Leena; Lehtonen, Timo; Tuominen, Jukka; Hupa, Mikko; Hupa, Leena

    2012-10-01

    Poly(L,DL-lactide) composites containing filler particles of bioactive glasses 45S5 and S53P4 were compared with a composite containing a slowly dissolving glass S68. The in vitro reactivity of the composites was studied in simulated body fluid, Tris-buffered solution, and phosphate buffered saline. The high processing temperature induced thermal degradation giving cavities in the composites containing 45S5 and S53P4, while good adhesion of S68 to the polymer was observed. The cavities partly affected the in vitro reactivity of the composites. The degradation of the composites containing the bioactive glasses was faster in phosphate buffered saline than in the two other solutions. Hydroxyapatite precipitation suggesting bone tissue bonding capability was observed on these two composites in all three solutions. The slower dissolution of S68 glass particles and the limited hydroxyapatite precipitation suggested that this glass has potential as a reinforcing composition with the capability to guide bone tissue growth in biodegradable polymer composites.

  15. High-Q whispering-gallery mode sensor in liquids

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay L.; Ilchenko, Vladimir S.; Kossakovski, Dmitri; Bearman, Gregory H.; Maleki, Lute

    2002-06-01

    Optical sensing of biomolecules on microfabricated glass surfaces requires surface coatings that minimize nonspecific binding while preserving the optical properties of the sensor. Microspheres with whispering-gallery (WG) modes can achieve quality factor (Q) levels many orders of magnitude greater than those of other WG-based microsensors: greater than 1010 in air, and greater than 109 in a variety of solvents, including methanol, H2O and phosphate buffered saline (PBS). The presence of dyes that absorb in the wavelength of the WG excitation in the evanescent zone can cause this Q value to drop by almost 3 orders of magnitude. Silanization of the surface with mercapto-terminal silanes is compatible with high Q (>109), but chemical cross-linking of streptavidin reduces the Q to 105-106 due to build-up of a thick, irregular layer of protein. However, linkage of biotin to the silane terminus preserves the Q at a ~2x107 and yields a reactive surface sensitive to avidin-containing ligands in a concentration-dependent manner. Improvements in the reliability of the surface chemistry show promise for construction of an ultrasensitive biosensor.

  16. Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection

    PubMed Central

    Tokel, Onur; Yildiz, Umit Hakan; Inci, Fatih; Durmus, Naside Gozde; Ekiz, Okan Oner; Turker, Burak; Cetin, Can; Rao, Shruthi; Sridhar, Kaushik; Natarajan, Nalini; Shafiee, Hadi; Dana, Aykutlu; Demirci, Utkan

    2015-01-01

    Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~105 to 3.2 × 107 CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings. PMID:25801042

  17. Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Jeffery, B.; Peppler, M.; Lima, R. S.; McDonald, A.

    2010-01-01

    Titanium dioxide (TiO2) has been shown to exhibit photocatalytic bactericidal activity. This preliminary study focused on examining the photocatalytic activity of high-velocity oxy-fuel (HVOF) sprayed nanostructured TiO2 coatings to kill Pseudomonas aeruginosa. The surfaces of the nanostructured TiO2 coatings were lightly polished before addition of the bacterial solution. Plates of P. aeruginosa were grown, and then suspended in a phosphate buffer saline (PBS) solution. The concentration of bacteria used was determined by a photo-spectrometer, which measured the amount of light absorbed by the bacteria-filled solution. This solution was diluted and pipetted onto the coating, which was exposed to white light in 30-min intervals, up to 120 min. It was found that on polished HVOF-sprayed coatings exposed to white light, 24% of the bacteria were killed after exposure for 120 min. On stainless steel controls, approximately 6% of the bacteria were not recovered. These preliminary results show that thermal-sprayed nanostructured TiO2 coatings exhibited photocatalytic bactericidal activity with P. aeruginosa.

  18. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  19. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    PubMed

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The anticancer effect related to disturbances in redox balance on Caco-2 cells caused by an alkynyl gold(I) complex.

    PubMed

    Sánchez-de-Diego, Cristina; Mármol, Inés; Pérez, Rocío; Gascón, Sonia; Rodriguez-Yoldi, Mª Jesús; Cerrada, Elena

    2017-01-01

    The alkynyl gold(I) derivative [Au(C≡CPh)(PTA)] (PTA=1,3,5-triaza-7-phosphaadamantane) induces apoptosis in colorectal carcinoma tumour cells (Caco-2) without affecting to normal enterocytes. [Au(C≡CPh)(PTA)] is a slight lipophilic drug, stable in PBS (Phosphate Buffered Saline) and able to bind BSA (Bovin Serum Albumin) by hydrophobic interactions. Once inside the cell, [Au(C≡CPh)(PTA)] targets seleno proteins such as Thioredoxin Reductase 1, increasing ROS (Reactive Oxygen Species) levels, reducing cell viability and proliferation and inducing mitochondrial apoptotic pathway, pro-apoptotic and anti-apoptotic protein imbalance, loss of mitochondrial membrane potential, cytochrome c release and activation of caspases 9 and 3. Moreover, unlike other metal-based drugs such as cisplatin, [Au(C≡CPh)(PTA)] does not target nucleic acid, reducing the risk of side mutation in the DNA. In consequence, our results predict a promising future for [Au(C≡CPh)(PTA)] as a chemotherapeutic agent for colorectal carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Anti-Vibriocholerae IgY Antibody Inhibits Mortality in Suckling Mice Model.

    PubMed

    Akbari, Mohammad Reza; Ahmadi, Ali; Mirkalantari, Shiva; Salimian, Jafar

    2018-02-01

    Regarding to the importance of cholera in Iran and the potential advantages of egg yolk antibody (IgY) for immunotherapy, the aim of this study was to produce IgY antibody against V. cholerae Lipopolysaccharide (LPS) and determine its potential for V. cholerae treatment. LPS was prepared, and the Anti-V. cholerae LPS IgY was purified from egg yolk and serially diluted in phosphate-buffered saline (PBS), mixed with V. cholerae and then gavaged into several groups of suckling mice. The yield of Anti-LPS IgY extraction was 40 mg/Egg yolk. The results demonstrated that up to approximately 75 ng of IgY can detect specifically V. cholerae. The lowest protective dose of anti-V. cholerae LPS IgY was 2.5 μg. The produced anti-Vibrio LPS specific IgY showed a good reactivity with its specific antigen and it may use as a complimentary oral immunotherapy for cholera disease. Copyright © 2018. Published by Elsevier Inc.

  2. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair.

    PubMed

    Beladi, Faranak; Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2017-06-01

    In the past few decades, artificial graft materials for bone tissue engineering have gained much importance. In this study, novel porous 3D nanocomposite scaffolds composed of polyacrylamide grafted cellulose and hydroxyapatite were proposed. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The swelling behavior of the scaffolds was examined in both water and phosphate buffer saline (PBS) solution. The cytotoxicity of the scaffolds was determined by MTT assays on human fibroblast gum (HuGu) cells. Results showed that the nanocomposite scaffolds were highly porous with maximum porosity of 85.7% interconnected with a pore size of around 72-125μm. The results of cell culture experiments showed that the scaffolds extracts do not have cytotoxicity in any concentration. Obtained results suggested that the introduced scaffolds are comparable with the trabecular bone from the compositional, structural, and mechanical perspectives and have a great potential as a bone substitute. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.

    PubMed

    Jeong, Jinmo; Chou, Namsun; Kim, Sohee

    2016-06-01

    This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

  4. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection.

    PubMed

    Xu, Mei Ling; Wi, Ga Ram; Kim, Hyoung Jin; Kim, Hong-Jin

    2016-01-01

    Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in infants. The lack of proper prophylactics and therapeutics for controlling hRSV infection has been of great concern worldwide. Xylitol is a well-known sugar substitute and its effect against bacteria in the oral cavity is well known. However, little is known of its effect on viral infections. In this study, the effect of dietary xylitol on hRSV infection was investigated in a mouse model for the first time. Mice received xylitol for 14 d prior to virus challenge and for a further 3 d post challenge. Significantly larger reductions in lung virus titers were observed in the mice receiving xylitol than in the controls receiving phosphate-buffered saline (PBS). In addition, fewer CD3(+) and CD3(+)CD8(+) lymphocytes, whose numbers reflect inflammatory status, were recruited in the mice receiving xylitol. These results indicate that dietary xylitol can ameliorate hRSV infections and reduce inflammation-associated immune responses to hRSV infection.

  5. Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid

    PubMed Central

    Oh, Dongyeop X.; Shin, Sara; Lim, Chanoong; Hwang, Dong Soo

    2013-01-01

    Chitin is a promising structural material for biomedical applications, due to its many advantageous properties and abundance in nature. However, its usage and development in the biomedical field have been stagnant, because of chitin’s poor mechanical properties in wet conditions and the difficulties in transforming it into an applicable form. To overcome these challenges, we created a novel biomimetic chitin composite. This regenerated chitin, prepared with ionic liquid, showed improved mechanical properties in wet conditions by mimicking insect cuticle and squid beak sclerotization, i.e., catechol-meditated cross-linking. By ionic liquid-based heat treatment, dopamine oxidation produced melanin-like compounds and dopamine-meditated cross-links without any solvent evaporation and oxidant utilization. The dopamine-meditated sclerotization increased the ultimate tensile strength (UTS) of the regenerated chitin by 2.52-fold, measured after six weeks of phosphate-buffered saline (PBS) submersion. In addition, the linear swelling ratio (LSR) of the chitin film was reduced by about 22%. This strategy raises a possibility of using regenerated chitin as an artificial hard tissue in wet conditions. PMID:28788308

  6. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes

    PubMed Central

    Baj-Rossi, Camilla; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    We report on the electrochemical detection of anti-cancer drugs in human serum with sensitivity values in the range of 8–925 nA/μM. Multi-walled carbon nanotubes were functionalized with three different cytochrome P450 isoforms (CYP1A2, CYP2B6, and CYP3A4). A model used to effectively describe the cytochrome P450 deposition onto carbon nanotubes was confirmed by Monte Carlo simulations. Voltammetric measurements were performed in phosphate buffer saline (PBS) as well as in human serum, giving well-defined current responses upon addition of increasing concentrations of anti-cancer drugs. The results assert the capability to measure concentration of drugs in the pharmacological ranges in human serum. Another important result is the possibility to detect pairs of drugs present in the same sample, which is highly required in case of therapies with high side-effects risk and in anti-cancer pharmacological treatments based on mixtures of different drugs. Our technology holds potentials for inexpensive multi-panel drug-monitoring in personalized therapy. PMID:22778656

  7. Engineering Amyloid-Like Assemblies from Unstructured Peptides via Site-Specific Lipid Conjugation

    PubMed Central

    López Deber, María Pilar; Hickman, David T.; Nand, Deepak; Baldus, Marc; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer’s disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1–2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures. PMID:25207975

  8. Porous magnesium loaded with gentamicin sulphate and in vitro release behavior.

    PubMed

    Li, Qiuyan; Jiang, Guofeng; Wang, Dong; Wang, Huang; Ding, Liang; He, Guo

    2016-12-01

    Our aim was to develop a biocompatible bone repair material that has the advantage of preventing postoperative infections. Finally, the porous magnesium (p-Mg) loaded with gentamicin sulphate (GS-loaded Mg-G) was fabricated. The GS release behavior of the GS-loaded Mg-G in phosphate buffer saline (PBS) was investigated. The effective release time of GS reached to 14days. In addition, the effects of porosity and pore diameter of p-Mg on the GS release behavior of the GS-loaded Mg-G were studied. In the initial burst release stage, the GS release rate of the GS-loaded Mg-G increased with the increasing porosity or the increasing pore diameter of p-Mg. The GS-loaded Mg-G with larger original pore diameter has higher burst release of GS. Moreover, the in vitro antibacterial test of the GS-loaded Mg-G indicated that this biomaterial has obvious antibacterial effect. This study can provide information for p-Mg loaded with drug(s) as functional bone repair materials with drug-delivery capabilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre

    PubMed Central

    Khanna, Venkatesan Gopiesh; Kannabiran, Krishnan; Getti, Giulia

    2009-01-01

    Objective: To evaluate the leishmanicidal activity of saponin, dasyscyphin C of Eclipta prostrata and sapogenin, gymnemagenol from Gymnema sylvestre leaves under in vitro conditions. Materials and Methods: Dasyscyphin C/Gymnemagenol were dissolved in phosphate buffered saline (PBS) and diluted with liquid medium to obtain concentrations ranging from 1000 to 15 μg /ml. The leishmanicidal activity against leishmanial parasites, Leishmania major, Leishmania aethiopica and Leishmania tropica promastigotes was studied by the MTS assay. Result: The Dasyscyphin C isolated from E. prostrata showed good leishmanicidal activity at 1000μg/ml concentration, with the IC50 value of 450μg/ml against L. major promastigote and the percentage of parasitic death was 73; whereas, gymnemagenol of G. sylvestre showed only 52% parasitic death at 1000 μg/ml concentration. The other Leishmania species, L. aethiopica and L. tropica promastigotes, were less sensitive to the saponins of E. prostrata and G. sylvestre. Conclusion: From this study, it can be concluded that the dasyscyphin C of E. prostrata has significant leishmanicidal activity against L. major promastigote. PMID:20177579

  10. Wettability of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  11. Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua

    2015-11-01

    Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.

  12. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Minjie; Tang, Jieli; Li, Xiaozhou; Zhang, Hanqi; Zhang, Yihua

    2008-08-01

    This paper described a novel assay of enzyme based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the electrostatic and coordination interaction of functionalized CdTe nanoparticles with enzyme. The CdTe nanoparticles which were modified with 3-mercaptocarboxylic acid (MPA) have abundant carboxylic groups ( sbnd COOH). So the nanoparticles are water-soluble, stable and biocompatible. At pH 8.3 phosphate buffered saline (PBS), the RLS signals of functionalized nano-CdTe are greatly enhanced by bromelain and papain in the region of 220-800 nm characterized by the peak around 318-314 nm, respectively. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the enhanced RLS intensity is linearly proportional to the concentration of bromelain and papain. The liner range is (0.09-0.9) × 10 -6 mol/L for bromelain and (0.048-0.702) × 10 -6 mol/L for papain. The influences of some foreign substances were also examined. This method can be applied to the determination of enzyme.

  13. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms

    DOE PAGES

    Stone, R. C.; Fellows, B. D.; Qi, B.; ...

    2015-08-05

    Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this paper includes multiple nitroDOPA anchors for robust binding to the surface tied to themore » same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. Finally, the work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.« less

  14. Development of a monoclonal antibody-based sandwich-type enzyme-linked immunosorbent assay (ELISA) for detection of abrin in food samples.

    PubMed

    Zhou, Yu; Tian, Xiang-Li; Li, Yan-Song; Pan, Feng-Guang; Zhang, Yuan-Yuan; Zhang, Jun-Hui; Wang, Xin-Rui; Ren, Hong-Lin; Lu, Shi-Ying; Li, Zhao-Hui; Liu, Zeng-Shan; Chen, Qi-Jun; Liu, Jing-Qiu

    2012-12-15

    Abrin is a plant toxin, which can be easily isolated from the seeds of Abrus precatorius. It may be used as a biological warfare agent. In order to detect abrin in food samples, a two-layer sandwich format enzyme-linked immunosorbent assay based on the monoclonal antibody (mAb) (as capture antibody) and rabbit polyclonal serum (as detecting antibody) was developed and applied for the determination of abrin in some food matrices. The linear range of the mAb was 1-100 μg L(-1) with a detection limit of 0.5 μg L(-1) for abrin in phosphate buffered saline (PBS). The recoveries of abrin from sausage, beer and milk samples ranged 97.5-98.6%, 95.8-98.4% and 94.8-9.6%, respectively, with a coefficient of variation (CV) of 3.7% or less. The newly developed sandwich ELISA using the mAb appears to be a reliable and useful method for detection of abrin in sausage, beer and milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Visible‐Light‐Mediated Selective Arylation of Cysteine in Batch and Flow

    PubMed Central

    Bottecchia, Cecilia; Rubens, Maarten; Gunnoo, Smita B.; Hessel, Volker; Madder, Annemieke

    2017-01-01

    Abstract A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time. PMID:28805276

  16. A Study for Tooth Bleaching via Carbamide Peroxide-Loaded Hollow Calcium Phosphate Spheres.

    PubMed

    Qin, Tao; Mellgren, Torbjörn; Jefferies, Steven; Xia, Wei; Engqvist, Håkan

    2016-12-26

    The objective of this study was to investigate if a prolonged bleaching effect of carbamide peroxide-loaded hollow calcium phosphate spheres (HCPS) can be achieved. HCPS was synthesized via a hydrothermal reaction method. Carbamide peroxide (CP) was-loaded into HCPS by mixing with distilled water as solvent. We developed two bleaching gels containing CP-loaded HCPS: one gel with low HP concentration as at-home bleaching gel, and one with high HP concentration as in-office gel. Their bleaching effects on stained human permanent posterior teeth were investigated by measuring the color difference before and after bleaching. The effect of gels on rhodamine B degradation was also studied. To investigate the potential effect of remineralization of using HCPS, bleached teeth were soaked in phosphate buffer solution (PBS) containing calcium and magnesium ions. Both bleaching gels had a prolonged whitening effect, and showed a strong ability to degrade rhodamine B. After soaking in PBS for 3 days, remineralization was observed at the sites where HCPS attached to the teeth surface. CP-loaded HCPS could prolong the HP release behavior and improve the bleaching effect. HCPS was effective in increasing the whitening effect of carbamide peroxide and improving remineralization after bleaching process.

  17. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.

    PubMed

    Chang, C-W; Wang, L-J

    2015-10-01

    Staphylococcus aureus has been detected indoors and is associated with human infection. Reliable quantification of S. aureus using a sampling technique followed by culture assay helps in assessing the risks of human exposure. The efficiency of five culture media and eight sampling methods in recovering S. aureus aerosols were evaluated. Methods to extract cells from filters were also studied. Tryptic soy agar (TSA) presented greater bacterial recovery than mannitol salt agar (MSA), CHROMagar staph aureus, Chapman stone medium, and Baird-Park agarose (P < 0.05). Moreover, 93 ± 2%-95 ± 2% and 42 ± 1%-49 ± 2% of S. aureus were, respectively, recovered by a 15-min heating of gelatin filters and 2-min vortex of polycarbonate (PC) filters. Evaluation of two filtration (IOM with gelatin filter and cassette with PC filter), two impaction (Andersen 1-STG loaded with TSA and MSA) and four impingement methods [AGI-30 and BioSampler filled with Tween mixture (TM) and phosphate-buffered saline (PBS)] revealed the BioSampler/TM performed best over 30 and 60 min of sampling (P < 0.05), while low recovery efficiencies were associated with the IOM/gelatin, cassette/PC, and AGI-30/PBS combinations (P < 0.05). In addition to BioSampler/TM, collecting S. aureus onto TSA from the Andersen 1-STG is also recommended, as it is the second best method at the 60-min sampling (P < 0.05). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    NASA Astrophysics Data System (ADS)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  19. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin.

    PubMed

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O

    2016-11-16

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  20. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    PubMed Central

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O

    2016-01-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders. PMID:27848996

  1. The targeted behavior of folate-decorated N-succinyl-N'-octyl chitosan evaluated by NIR system in mouse model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Deng, Dawei; Chen, Haiyan; Qian, Zhiyu; Gu, Yueqing

    2010-11-01

    The development of more selective delivery systems for cancer diagnosis and chemotherapy is one of the most important goals of current anticancer research. The purpose of this study is to construct and evaluate the folate-decorated, self-assembled nanoparticles as candidates to deliver near infrared fluorescent dyes into tumors and to investigate the mechanisms underlying the tumor targeting with folate-decorated, self-assembled nanoparticles. Folate-decorated N-succinyl-N'-octyl chitosan (folate-SOC) were synthesized. The chemical modification chitosan could self-assemble into stable micelles in aqueous medium. Micelle size determined by size analysis was around 140 nm in a phosphate-buffered saline (PBS, PH 7.4). Folate-SOC could maintain their structure for up to 15 days in PBS. Near infrared dye ICG-Der-01 as a mode drug was loaded in the micelles, and the entrapment efficiency (EE) and drug loading (DL) were investigated. The targeted behavior of folate-SOC was evaluated by near-infrared fluorescence imaging in vivo on different groups of denuded mice, with A549 or Bel-7402 tumors. The optical imaging results indicated that folated-decorated SOC showed an excellent tumor specificity in Bel-7402 tumor-bearing mice, and weak tumor specificity in A549 tumor bearing mice. We believe that this work can provide insight for the engineering of nanoparticles and be extended to cancer therapy and diagnosis so as to deliver multiple therapeutic agents and imaging probes at high local concentrations.

  2. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer.

    PubMed

    Siddiqa, Akhtar Jahan; Chaudhury, Koel; Adhikari, Basudam

    2014-04-01

    The present work focuses on the design of a drug delivery system for systemic, controlled release of the poorly soluble breast cancer drug, letrozole. The drug delivery system was prepared in two steps: a low density polyethylene (LDPE) substrate surface was grafted with maleic anhydride (MA) via solution grafting technique. Next, the grafted substrate was used to anchor a hydrophilic polymeric drug release system consisting of poly (vinyl alcohol) (PVA). The PVA anchored MA grafted LDPE (PVA/MA-g-LDPE) drug release system was used for the controlled release of letrozole. This system was characterized using ATR-FTIR spectrophotometry, surface profilometry, and scanning electron microscopy. Biocompatibility studies were also carried out. In vitro release studies of letrozole from the system were performed in distilled water and phosphate buffer saline (PBS) at 37°C. Release of ∼90% letrozole from hydrophilic PVA matrix was observed within a period of 35 days. A high correlation coefficient (R(2)=0.99) was seen between the release of letrozole in distilled water and PBS. Cytotoxicity studies using MTT colorimetric assay suggested that all samples were biocompatible. It is concluded that the letrozole delivery system appears to overcome the limitations associated with letrozole by providing enhanced drug dissolution rate, controlled release and improved bioavailability of the incorporated drug and, therefore, seems to have extended therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. In vitro and ex vivo angiogenic effects of roxarsone on rat endothelial cells.

    PubMed

    Zhu, Jiaqiao; Cui, Weibo; Liu, Xue; Ying, Jun; Hu, Chengyun; Zhang, Yumei

    2013-11-25

    Roxarsone, a feed additive, is being used worldwide to promote animal growth. However, the potential effect of roxarsone on angiogenesis has not been extensively characterized. We examined the ability of roxarsone to promote angiogenesis of rat endothelial cells in vitro and from rat aorta rings ex vivo. Endothelial cells from rats were exposed to 0.01-10.00μM roxarsone, 5ng/mL vascular endothelial growth factor (VEGF) as a positive control or phosphate buffer saline (PBS) as a negative control. Cell proliferation was measured by MTT assay, and the content of VEGF in supernatants was measured by enzyme-linked immunosorbent assay and Western blotting. A Matrigel-induced tube formation assay was used to evaluate the effects of roxarsone on endothelial cells. Additionally, the total number and length of microvessels sprouted from rat aortic rings were measured for ex vivo investigation of angiogenesis. Results showed that the cell viability and total number and length of capillary-like tube formations after roxarsone treatment was significantly higher than that of negative (P<0.05), with a maximum effect at 1.00μM exposure. Furthermore, the number of microvessels sprouted from aortic rings treated for 4h with 0.1-10.0μM roxarsone was significantly higher than that of PBS treatment, with a peak value of 1.0μM. These results further demonstrate the potential of roxarsone to promote angiogenesis in vitro and ex vivo. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    NASA Astrophysics Data System (ADS)

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O.

    2016-11-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  5. Cpg-ODN, a TLR9 Agonist, Aggravates Myocardial Ischemia/Reperfusion Injury by Activation of TLR9-P38 MAPK Signaling.

    PubMed

    Xie, Liang; He, Songqing; Kong, Na; Zhu, Ying; Tang, Yi; Li, Jianhua; Liu, Zhengbing; Liu, Jing; Gong, Jianbin

    2018-06-19

    Toll-like receptors (TLRs) have been implicated in myocardial ischemia/ reperfusion (I/R) injury. We examined the effect of CpG-oligodeoxynucleotide (ODN) on myocardial I/R injury. Male Sprague-Dawley rats were treated with either CpG-ODN or control ODN 1 h prior to myocardial ischemia (30 min) followed by reperfusion. Rats treated with phosphate-buffered saline (PBS) served as I/R controls (n = 8/group). Infarct size was determined by 2,3,5-triphenyltetrazolium chloride and Evans blue straining. Cardiac function was examined by echocardiography before and up to 14 days after myocardial I/R. CpG-ODN administration significantly increased infarct size and reduced cardiac function and survival rate after myocardial I/R, compared to the PBS-treated I/R group. Control-ODN did not alter I/R-induced myocardial infarct size, cardiac dysfunction, and survival rate. Additionally, CpG-ODN promoted I/R-induced myocardial apoptosis and cleaved caspase-3 levels in the myocardium. CpG-ODN increased TLR9 activation and p38 phosphorylation in the myocardium. In vitro data also suggested that CpG-ODN treatment induced TLR9 activation and p38 phosphorylation. Importantly, p38 mitogen-activated protein kinase (MAPK) inhibition abolished CpG-ODN-induced cardiac injury. CpG-ODN, the TLR9 ligand, accelerates myocardial I/R injury. The mechanisms involve activation of the TLR9-p38 MAPK signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Sm14 of Schistosoma mansoni in Fusion with Tetanus Toxin Fragment C Induces Immunoprotection against Tetanus and Schistosomiasis in Mice

    PubMed Central

    Abreu, Patrícia A. E.; Miyasato, Patrícia A.; Vilar, Mônica M.; Dias, Waldely O.; Ho, Paulo L.; Tendler, Míriam; Nascimento, Ana L. T. O.

    2004-01-01

    We have constructed vectors that permit the expression in Escherichia coli of Schistosoma mansoni fatty acid-binding protein 14 (Sm14) in fusion with the nontoxic, but highly immunogenic, tetanus toxin fragment C (TTFC). The recombinant six-His-tagged proteins were purified by nickel affinity chromatography and used in immunization and challenge assays. Animals inoculated with TTFC in fusion with or coadministered with Sm14 showed high levels of tetanus toxin antibodies, while animals inoculated with Sm14 in fusion with or coadministered with TTFC showed high levels of Sm14 antibodies. In both cases, there were no changes in the type of immune response (Th2) obtained with the fusion proteins compared to those obtained with the nonfused proteins. Mice immunized with the recombinant proteins (TTFC in fusion with or coadministered with Sm14) survived the challenge with tetanus toxin and did not show any symptoms of the disease. Control animals inoculated with either phosphate-buffered saline (PBS) or Sm14 died with severe symptoms of tetanus after 24 h. Mice immunized with the recombinant proteins (Sm14 in fusion with or coadministered with TTFC) showed a 50% reduction in worm burden when they were challenged with S. mansoni cercariae, while control animals inoculated with either PBS or TTFC were not protected. The results show that the expression of other antigens in fusion at the carboxy terminus of TTFC is feasible for the development of a multivalent recombinant vaccine. PMID:15385496

  7. A simple biofuel cell cathode with human red blood cells as electrocatalysts for oxygen reduction reaction.

    PubMed

    Ayato, Yusuke; Sakurai, Kenichiro; Fukunaga, Saori; Suganuma, Takuya; Yamagiwa, Kiyofumi; Shiroishi, Hidenobu; Kuwano, Jun

    2014-05-15

    A red blood cell (RBC) from human exhibited direct electron transfer (DET) activity on a bare indium tin oxide (ITO) electrode. A formal potential of -0.152 V vs. a silver-silver chloride saturated potassium chloride (Ag|AgCl|KCl(satd.)) was estimated for the human RBC (type AB) from a pair of redox peaks at around 0.089 and -0.215 V (vs. Ag|AgCl|KCl(satd.)) on cyclic voltammetric (CV) measurements in a phosphate buffered saline (PBS; 39 mM; pH 7.4) solution. The results agreed well with those of a redox couple for iron-bearing heme groups in hemoglobin molecules (HbFe(II)/HbFe(III)) on the bare ITO electrodes, indicated that DET active species were hemoglobin (Hb) molecules encapsulated by a phospholipid bilayer membrane of the human RBC. The quantity of electrochemically active Hb in the human RBC was estimated to be 30 pmol cm(-2). In addition, the human RBC exhibited oxygen reduction reaction (ORR) activity in the dioxygen (O2) saturated PBS solution at the negative potential from ca. -0.15 V (vs. Ag|AgCl|KCl(satd.)). A single cell test proved that a biofuel cell (BFC) with an O2|RBC|ITO cathode showed the open-circuit voltage (OCV) of ca. 0.43 V and the maximum power density of ca. 0.68 μW cm(-2). © 2013 Published by Elsevier B.V.

  8. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  9. Chitinase Induction Prior to Caspofungin Treatment of Experimental Invasive Aspergillosis in Neutropenic Rats Does Not Enhance Survival.

    PubMed

    Refos, Jeannine M; Vonk, Alieke G; Ten Kate, Marian T; Verbrugh, Henri A; Bakker-Woudenberg, Irma A J M; van de Sande, Wendy W J

    2018-01-01

    Host chitinases, chitotriosidase and acidic mammalian chitinase (AMCase), improved the antifungal activity of caspofungin (CAS) against Aspergillus fumigatus in vitro These chitinases are not constitutively expressed in the lung. Here, we investigated whether chitosan derivatives were able to induce chitinase activity in the lungs of neutropenic rats and, if so, whether these chitinases were able to prolong survival of rats with invasive pulmonary aspergillosis (IPA) or of rats with IPA and treated with CAS. An oligosaccharide-lactate chitosan (OLC) derivative was instilled in the left lung of neutropenic rats to induce chitotriosidase and AMCase activities. Rats instilled with OLC or with phosphate-buffered saline (PBS) were subsequently infected with A. fumigatus and then treated with suboptimal doses of CAS. Survival, histopathology, and galactomannan indexes were determined. Instillation of OLC resulted in chitotriosidase and AMCase activities. However, instillation of OLC did not prolong rat survival when rats were subsequently challenged with A. fumigatus In 5 of 7 rats instilled with OLC, the fungal foci in the lungs were smaller than those in rats instilled with PBS. Instillation of OLC did not significantly enhance the survival of neutropenic rats challenged with A. fumigatus and treated with a suboptimal dosage of CAS. Chitotriosidase and AMCase activities can be induced with OLC, but the presence of active chitinases in the lung did not prevent the development of IPA or significantly enhance the therapeutic outcome of CAS treatment. Copyright © 2017 American Society for Microbiology.

  10. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    PubMed Central

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  11. Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model.

    PubMed

    Andriotis, O G; Chang, S W; Vanleene, M; Howarth, P H; Davies, D E; Shefelbine, S J; Buehler, M J; Thurner, P J

    2015-10-06

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. © 2015 The Authors.

  12. Use of fibrin sealants for the localized, controlled release of cefazolin

    PubMed Central

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  13. Effect of preserved and preservative-free timolol eye drops on tear film stability in healthy Africans

    PubMed Central

    Ilechie, Alex; Abokyi, Samuel; Boateng, Gifty; Koffuor, George Asumeng

    2016-01-01

    Background: Preserved versus nonpreserved formulations for ophthalmic use have been well described in the literature although not specifically in the African population where beta blockers are frequently used as the first-line therapy due to economic and availability issues. This study sought to determine the effect of preserved and preservative-free Timolol eye drops on tear film stability in healthy black Africans. Materials and Methods: Sixty healthy nondry eye subjects aged 19–25 years were randomly assigned into four groups (n = 15) and differently treated with eye drops of phosphate buffered saline (PBS), preservative-free timolol (PFT), benzalkonium chloride (BAK) only, and BAK-preserved timolol (BPT). Noninvasive tear break-up time (NITBUT) was measured using the keratometer at baseline and 30, 60, and 90 min after drop application. Results: No significant decline in NITBUT was observed following treatment with PFT and PBS. However, BAK treatment showed a positive time-dependent significant decline in NITBUT (P < 0.001) while a significant decline in the BPT-treated group was only found at 90 min (−3.52 s; P < 0.001). In comparison to the PFT-treated group, treatment with BAK and BPT showed significantly lower NITBUT (P < 0.001). Conclusion: BPT is associated with a significant decline in tear film stability in black Africans. This finding has implications in the management of glaucoma in patients with high-risk of dry eyes in this population. PMID:27226684

  14. Ultrasensitive and low-volume point-of-care diagnostics on flexible strips - a study with cardiac troponin biomarkers

    NASA Astrophysics Data System (ADS)

    Shanmugam, Nandhinee Radha; Muthukumar, Sriram; Prasad, Shalini

    2016-09-01

    We demonstrate a flexible, mechanically stable, and disposable electrochemical sensor platform for monitoring cardiac troponins through the detection and quantification of cardiac Troponin-T (cTnT). We designed and fabricated nanostructured zinc oxide (ZnO) sensing electrodes on flexible porous polyimide substrates. We demonstrate ultrasensitive detection is capable at very low sample volumes due to the confinement phenomenon of target species within the ZnO nanostructures leading to enhancement of biomolecular binding on the sensor electrode surface. The performance of the ZnO nanostructured sensor electrode was evaluated against gold and nanotextured ZnO electrodes. The electrochemical sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for cTnT were immobilized on the sensor electrodes using thiol based chemistry. Detection of cTnT in phosphate buffered saline (PBS) and human serum (HS) buffers was achieved at low sample volumes of 20 μL using non-faradaic electrochemical impedance spectroscopy (EIS). Limit of detection (LOD) of 1E-4 ng/mL (i.e. 1 pg/mL) at 7% CV (coefficient of variation) for cTnT in HS was demonstrated on nanostructured ZnO electrodes. The mechanical integrity of the flexible biosensor platform was demonstrated with cyclic bending tests. The sensor performed within 12% CV after 100 bending cycles demonstrating the robustness of the nanostructured ZnO electrochemical sensor platform.

  15. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03867g

  16. Conserved Receptor-Binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Shared Receptor

    DTIC Science & Technology

    2006-04-14

    virion, because of the functional importance of and limited variation in this region (44, 45). In some cases, such as murine and feline leukemia viruses ...murine leukemia virus ; PBS, phos- phate-buffered saline; RBD, receptor-binding domain; SARS, severe acute respiratory syndrome; VSV, vesicular stomatitis...entryofpseudotypedret- roviruses. A Moloney murine leukemia virus vector expressing GFP was pseudotyped with the GP1,2 of MARV-Mus (MARV/MLV), a mucin-like

  17. Role of copper oxides in contact killing of bacteria.

    PubMed

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  18. Effects of topical fluoride prophylactic agents on the mechanical properties of orthodontic nickel-titanium closed coil springs and stainless steel closed coil springs

    NASA Astrophysics Data System (ADS)

    Carpenter, Brittany Gelene

    The purpose of this study was to investigate the effects of topical fluoride prophylactic agents on the mechanical unloading properties of nickel-titanium (NiTi) and stainless steel (SS) closed coil springs. Spring were stored at 37°C under static load in phosphate buffered saline (PBS) and treated with either neutral sodium fluoride (NaF) or acidulated phosphate fluoride (APF) five days per week for two minutes. Mechanical testing was done in a dH2O bath at 37°C at 0-, 1-, 4-, 8-, and 12 weeks. Unloading forces for NiTi and SS springs were measured at 9-, 6-, and 3 mm and 2-, 1.5-, and 1 mm, respectively. Scanning electron microscopy was used to evaluate surface topography of selected springs after 12 weeks. Based on a 1-Factor ANOVA and Dunnett's post hoc, 3M NiTi springs showed a significant decrease (p <0.01) in the unloading force at each extension following exposure to both fluoride treatments, but only after 12 weeks. The AO NiTi springs showed a significant decrease in unloading force at each extension after 12 weeks following exposure to NaF. However, with SS springs, there was no significant effect of either fluoride treatment on the SS springs at any extension or time point. SS also springs showed no significant surface topography changes, irrespective of storage conditions, which correlates with the lack of fluoride effects on SS mechanical property effects. In contrast, while there were NiTi surface topography changes (pitting and mottling) following PBS+APF exposure, those changes could not be directly linked to the observed changes in mechanical properties. Results suggest topical fluoride used with NiTi springs could potentially lead to prolonged treatment time due to decreased unloading properties. However, topical fluoride used with SS springs should not affect treatment duration.

  19. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    PubMed Central

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  20. Microwave fixation versus formalin fixation of surgical and autopsy tissue.

    PubMed

    Login, G R

    1978-05-01

    Microwave irradiation of surgical and autopsy tissue penetrates, fixes, and hardens the tissue almost immediately (the fluid media used in the microwave consisted of saline, ten percent phosphate buffered formalin, and distilled water). Tissue sections from a representative sample of organs were tested. Comparable sections were simultaneously fixed in a phosphate buffered ten percent formalin bath in a vaccum oven as a control. Hematoxylin and eosin were used to stain the sections. Results equal to and superior to the control method were obtained. Saline microwave fixation was superior to formalin microwave fixation. Tissues placed in Zenker's solution and fixed in standard microwave oven (for approximately one minute) yielded results at least equal to conventional Zenker fixation (approximately two hours). No tissue hardening resulted from Zenker microwave fixation. A unique time versus temperature graph (microwave heating curve) reduces individual variation with this technique.

  1. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  2. Candidate's thesis: Platelet-activating factor-induced hearing loss: mediated by nitric oxide?

    PubMed

    Rhee, Chung-Ku

    2003-12-01

    Platelet-activating factor (PAF)in middle ear effusion is thought to induce hearing loss. The purpose of this study is to investigate the role of nitric oxide (NO) in the mechanism of PAF-induced hearing loss by studying the effects of PAF application on the round window membrane (RWM) with and without PAF-antagonist NO-blocker. Longitudinal study on randomized guinea pigs using PAF to induce hearing loss. METHODS Guinea pigs were divided into four groups: PBS, PAF, PAF-antagonist, and L-NAME. The PBS group received phosphate buffered saline (PBS) and the PAF groups received 10, 20, and 40 microg of PAF soaked into gelfoam and placed on the RWM. PAF-antagonist (WEB 2170) and NOS inhibitor NG-nitro-l-arginine-methylester (L-NAME) were injected intraperitoneally prior to PAF 20 microg application on the RWM. The following three tests were performed on each animal group: Hearing was tested with an auditory brainstem response (ABR) test over 24 hours. At the end of 24 hours, cochlear hair cells were examined by scanning electron microscopy (SEM) and immunohistochemistry was carried out on the cochlea to test the expression of inducible nitric oxide synthase (iNOS). The PAF group developed significant elevation of ABR threshold and cochlear hair cell damage in the SEM group as compared with the PBS control group. The PAF-antagonist (WEB 2170) and the L-NAME groups did not show significant elevation of ABR threshold and cochlear hair cell damage compared with the group administered PAF 20 microg, but in the PAF-antagonist group, the elevation of ABR threshold was significant compared with that of the PBS control group, whereas it was not significant compared with the PBS group in the L-NAME group. Strong expression of iNOS on cochlea was observed in the PAF group and lighter expression was seen in PBS, WEB 2170, and L-NAME groups. This study demonstrated that PAF placed on the RWM induced hearing loss and cochlear hair cell damage. The PAF-antagonists and L-NAME prevented the PAF-induced hearing loss and inhibited iNOS expression in the cochlea. These findings suggest that the PAF-induced hearing loss caused by cochlear hair cell damage may have been mediated by NO. PAF-antagonists and L-NAME may have future therapeutic implications in preventing sensorineural hearing loss associated with chronic otitis media. The results of this study have significant potential clinical application.

  3. Host plasma proteins on the surface of pathogenic Trichomonas vaginalis.

    PubMed

    Peterson, K M; Alderete, J F

    1982-08-01

    Sodium dodecyl sulfate-gel electrophoresis and fluorography and fluorography technology revealed that pathogenic Trichomonas vaginalis was able to acquire numerous loosely associated plasma proteins during incubation in normal human plasma. These proteins were readily removed by repeated washing of the parasite in phosphate-buffered saline. Plasma proteins avidly bound to the surface of T. vaginalis were also detected using a highly sensitive and specific agglutination assay with protein A-bearing Staphylococcus aureus pretreated with monospecific antiserum directed against individual human serum proteins. These avidly associated plasma proteins could not be removed by repeated washing in phosphate-buffered saline or by treatment of washed, live organisms with surface-modifying reagents such as trypsin and periodate. A combined radioimmunoprecipitation-gel electrophoresis-fluorography methodology indicated that parasite biosynthesis of hostlike macromolecules was not responsible for the observed agglutination and reinforced the idea of trichosomal acquisition of plasma components. Finally, incubation of trichomonads with plasma in various buffers at different pH values did not alter the agglutination patterns. These and other data suggest that specific membrane sites trichomonal binding of host proteins. The biological significance of our results is discussed.

  4. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits.

    PubMed

    Cai, Feng; Wu, Xiao-Tao; Xie, Xin-Hui; Wang, Feng; Hong, Xin; Zhuang, Su-Yang; Zhu, Lei; Rui, Yun-Feng; Shi, Rui

    2015-01-01

    The aim of the study was to investigate the curative effects of transplantation of bone marrow mesenchymal stem cells (BMSCs) on intervertebral disc regeneration and to investigate the feasibility of the quantitative T2 mapping method for evaluating repair of the nucleus pulposus after implantation of BMSCs. Forty-eight New Zealand white rabbits were used to establish the lumber disc degenerative model by stabbing the annulus fibrosus and then randomly divided into four groups, i.e. two weeks afterwards, BMSCs or phosphate-buffered saline (PBS) were transplanted into degenerative discs (BMSCs group and PBS group), while the operated rabbits without implantation of BMSCs or PBS served as the sham group and the rabbits without operation were used as the control group. At weeks two, six and ten after operation, the T2 values and disc height indices (DHI) were calculated by magnetic resonance imaging (MRI 3.0 T), and the gene expressions of type II collagen (COL2) and aggrecan (ACAN) in degenerative discs were evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR). T2 values for the nucleus pulposus were correlated with ACAN or COL2 expression by regression analysis. Cell clusters, disorganised fibres, interlamellar glycosaminoglycan (GAG) matrix and vascularisation were observed in lumber degenerative discs. BMSCs could be found to survive in intervertebral discs and differentiate into nucleus pulposus-like cells expressing COL2 and ACAN. The gene expression of COL2 and ACAN increased during ten weeks after transplantation as well as the T2 signal intensity and T2 value. The DHI in the BMSCs group decreased more slowly than that in PBS and sham groups. The T2 value correlated significantly with the gene expression of ACAN and COL2 in the nucleus pulposus. Transplantation of BMSCs was able to promote the regeneration of degenerative discs. Quantitative and non-invasive T2 mapping could be used to evaluate the regeneration of the nucleus pulposus with good sensitivity.

  5. TH-CD-201-11: Optimizing the Response and Cost of a DNA Double-Strand Break Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeidat, M; Cline, K; Stathakis, S

    Purpose: A DNA double-strand break (DSB) dosimeter was developed to measure the biological effect of radiation. The goal here is to refine the fabrication method of this dosimeter to reproducibly create a low coefficient of variation (CoV) and reduce the cost for the dosimeter. Methods: Our dosimeter consists of 4 kilo-base pair DNA strands (labeled on one end with biotin and on the other with fluorescein) attached to streptavidin magnetic beads. The final step of the DNA dosimeter fabrication is to suspend these attached beads in phosphate-buffered saline (PBS). The amount of PBS used to suspend the attached beads andmore » the relative volume of the DNA strands to the beads both affect the CoV and dosimeter cost. We diluted the beads attached with DNA in different volumes of PBS (100, 200, and 400 µL) to create different concentrations of the DNA dosimeter. Then we irradiated these dosimeters (50 µL samples) in a water-equivalent plastic phantom at 25 and 50 Gy (three samples per dose) and calculated the CoV for each dosimeter concentration. Also, we used different masses of DNA strands (1, 2, 8, 16, 24, and 32 µg) to attach to the same volume of magnetic beads (100 µL) to explore how this affects the cost of the dosimeter. Results: The lowest CoV was produced for the highest concentration of dosimeter (100 µL of PBS), which created CoV of 2.0 and 1.0% for 25 and 50 Gy, respectively. We found that the lowest production cost for the dosimeter occurs by attaching 16 µg of DNA strands with 100 µL of beads. Conclusion: : We optimized the fabrication of the DNA dosimeter to produce low CoV and cost, but we still need to explore ways to further improve the dosimeter for use at lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less

  6. Zoledronic acid increases the circulating soluble RANKL level in mice, with a further increase in lymphocyte-derived soluble RANKL in zoledronic acid- and glucocorticoid-treated mice stimulated with bacterial lipopolysaccharide.

    PubMed

    Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Hori, Naoko; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya

    2016-07-01

    The nitrogen-containing bisphosphonate (BP) zoledronic acid (ZA) is a potent antiresorptive drug used in conjunction with standard cancer therapy to treat osteolysis or hypercalcemia due to malignancy. However, it is unclear how ZA influences the circulating levels of bone remodeling factors. The aim of this study was to evaluate the effects of ZA on the serum levels of soluble receptor activator of NF-kB ligand (sRANKL) and osteoprotegerin (OPG). The following four groups of C57BL/6 mice were used (five mice per group): (1) the placebo+phosphate-buffered saline (PBS) group, in which placebo-treated mice were injected once weekly with PBS for 4weeks; (2) the placebo+ZA group, in which placebo-treated mice were injected once weekly with ZA for 4weeks; (3) the prednisolone (PSL)+PBS group, in which PSL-treated mice were injected once weekly with PBS for 4weeks; and (4) the PSL+ZA group, in which PSL-treated mice were injected once weekly with ZA for 4weeks. At the 3-week time point, all mice were subjected to oral inflammatory stimulation with bacterial lipopolysaccharide (LPS). The sera of these mice were obtained every week and the levels of sRANKL and OPG were measured using enzyme-linked immunosorbent assay. At the time of sacrifice, femurs were prepared for micro-computed tomography (micro-CT), histological, and histomorphometric analyses. Our data indicated that ZA administration remarkably reduced bone turnover and significantly increased the basal level of sRANKL. Interestingly, the PSL+ZA group showed a dramatically elevated sRANKL level after LPS stimulation. In contrast, the PSL+ZA group in nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice), which are characterized by the absence of functional T- and B-lymphocytes, showed no increase in the sRANKL level. Our data suggest that, particularly with combination treatment of ZA and glucocorticoids, surviving lymphocytes might be the source of inflammation-induced sRANKL. Thus, circulating sRANKL levels might be modulated by ZA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma.

    PubMed

    Secor, Eric R; Shah, Sonali J; Guernsey, Linda A; Schramm, Craig M; Thrall, Roger S

    2012-01-01

    Allergic asthma continues to increase despite new pharmacological advances for both acute treatment and chronic-disease management. Asthma is a multifactorial disease process with genetic, allergic, infectious, environmental, and dietary origins. Researchers are investigating the benefits of lifestyle changes and alternative asthma treatments, including the ability of bromelain to inhibit inflammation. Bromelain is a commonly used, proteolytically active pineapple extract. The present study intended to determine the ability of bromelain to reduce the inflammation of preexisting asthma via an ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). The research team designed a study examining the effects of bromelain in a control group of mice that received phosphate buffered saline (PBS) only and in an intervention group that received bromelain in PBS. Setting The study took place in the Department of Immunology at the University of Connecticut's School of Medicine, Farmington. Intervention The research team sensitized female C57BL/6J mice with intraperitoneal OVA/alum and then challenged them with OVA aerosolization for 10 consecutive days. On day 4, the team began administering daily doses of PBS to the control group (n = 10) and bromelain (6mg/kg) in PBS to the bromelain (intervention) group (n = 10). The primary measures included bronchoalveolar lavage (BAL) cellular differential, cellular phenotype via flow cytometry, and lung histology. Additional outcomes included testing for serum cytokines and immunoglobulin. Bromelain treatment of AAD mice (bromelain group) resulted in significant anti-inflammatory activity as indicated by reduced BAL total leukocytes (P < .05), eosinophils (P < .05), and cellular infiltrates via lung pathology (P < .005), as compared to the control group. In addition, bromelain significantly reduced BAL CD4+ and CD8+ T cells without affecting cell numbers in the spleen or hilar lymph node. The study found decreased interleukins IL-4, IL-12, IL-17, as well as IFN-α in the serum of bromelain-treated animals. The results suggest that bromelain has a therapeutic effect in established AAD, which may translate into an effective adjunctive therapy in patients with similar conditions, such as allergic asthma, who have chosen to initiate treatment after the onset of symptoms.

  8. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    PubMed

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Platelets and Plasma Stimulate Sheep Rotator Cuff Tendon Tenocytes When Cultured in an Extracellular Matrix Scaffold

    PubMed Central

    Kelly, Brian A.; Proffen, Benedikt L.; Haslauer, Carla M.; Murray, Martha M.

    2015-01-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: 1) Plasma (PPP), 2) Plasma and platelets (PAP), 3) Plasma and macrophages (PPPM), 4) Plasma, platelets and macrophages (PAPM), 5) Phosphate buffered saline (PBS), and 6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine if these changes in cellular function will translate into improved tendon healing. PMID:26419602

  10. Preventive effects of Lactobacillus mixture on experimental E. coli urinary tract infection in infant rats.

    PubMed

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee; Lee, Seung Joo

    2013-03-01

    Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not.

  11. Preventive Effects of Lactobacillus Mixture on Experimental E. coli Urinary Tract Infection in Infant Rats

    PubMed Central

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee

    2013-01-01

    Purpose Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. Materials and Methods The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Results Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. Conclusion The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not. PMID:23364986

  12. SN-38 loaded polymeric micelles to enhance cancer therapy

    NASA Astrophysics Data System (ADS)

    Gu, Quanrong; Xing, James Z.; Huang, Min; He, Chuan; Chen, Jie

    2012-05-01

    7-Ethyl-10-hydroxycamptothecin (SN-38) loaded poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) and poly(ethylene glycol)-block-poly(ɛ-caprolactone) (PEG-b-PCL) nanoparticles were successfully prepared by a modified film hydration method and characterized by scanning electric microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Satisfactory drug loading of 20.73 ± 0.66% and a high encapsulation efficiency of 83.83 ± 1.32% were achieved. The SN-38 nanoparticles (SN-38 NPs) can completely disperse into a phosphate buffered saline (PBS) medium to produce a clear aqueous suspension that remains stable for up to three days. Total drug releases were 67.91% and 91.09% after 24 h in a PBS or fetal bovine serum (FBS) medium. Half maximal inhibitory concentration (IC50) tests of SN-38 and SN-38 NPs on A549 lung cells produced results of 200.0 ± 14.9 ng ml-1 and 80.0 ± 4.6 ng ml-1, respectively. Similarly, IC50 tests of SN-38 and SN-38 NPs on MCF-7 breast cells yielded results of 16.0 ± 0.7 ng ml-1 and 8.0 ± 0.5 ng ml-1, respectively. These in vitro IC50 studies show significant (p < 0.01) enhancement of the SN-38 NP drug efficiency in killing cancer cells in comparison to the free drug SN-38 control. All the materials used for this nanoformulation are approved by the US FDA, with the virtue of extremely low toxicity to normal cells.

  13. Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice

    PubMed Central

    Danesh-Bahreini, Mohammad Ali; Shokri, Javad; Samiei, Afshin; Kamali-Sarvestani, Eskandar; Barzegar-Jalali, Mohammad; Mohammadi-Samani, Soliman

    2011-01-01

    Background: Leishmaniasis is a protozoan disease, affecting 12 million people in different regions of the world with a wide spectrum of diseases. Although several chemotherapeutic agents have been used for treating the disease, long-term therapy, limited efficacy and the development of drug-resistant parasites remain the major limitations. Methods: To develop a new nanovaccine for leishmaniasis, recombinant Leishmania superoxide dismutase (SODB1) was loaded onto chitosan nanoparticles by the ionotropic gelation method. Size and loading efficiency of the nanoparticles were evaluated and optimized, and an immunization study was undertaken on BALB/c mice. The mice received phosphate buffer saline (PBS), superoxide dismutase B1 (SODB1) in PBS and nanoparticles via subcutaneous injection. Soluble Leishmania Antigens (SLA) and complete Freund’s adjuvant (CFA) were also injected subcutaneously three times every three weeks (some groups received only a single dose). Three weeks after the last injection, blood samples were collected and assessed with ELISA to detect IgG2a and IgG1. Results: Immunological analysis showed that in single and triple doses of SODB1 nanoparticles, IgG2a and IgG2a/IgG1 were significantly higher than the other groups (P<0.05). Conclusion: The results revealed that formulations of SODB1 in biodegradable and stable chitosan nanoparticles can increase the immunogenicity toward cell-mediated immunity (TH1 cells producing IgG2a in mice) that is effective in Leishmania eradication and could be presented as a single dose nanovaccine for leishmaniasis. PMID:21589651

  14. Evaluation of cell-mediated immune responses against porcine circovirus type 2 (PCV2) Cap and Rep proteins after vaccination with a commercial PCV2 sub-unit vaccine.

    PubMed

    Fort, Maria; Sibila, Marina; Nofrarías, Miquel; Pérez-Martín, Eva; Olvera, Alex; Mateu, Enric; Segalés, Joaquim

    2012-11-15

    This study investigated the development of cellular immunity to Porcine circovirus type 2 (PCV2) Cap and Rep proteins in pigs vaccinated with a commercial PCV2 genotype a (PCV2a) based sub-unit vaccine, before and after a heterologous challenge with a PCV2b isolate. At three weeks of age, 20 pigs were inoculated intramuscularly with either the vaccine product (V group, n=9) or phosphate buffered saline solution (PBS) (NV group, n=11). Three weeks after vaccination, pigs were challenged intranasally with PCV2b (V-C and NV-C groups) or PBS (V-NC and NV-NC groups). None of the pigs developed clinical signs during the whole experiment, but all NV-C and 3/5 V-C pigs developed viraemia. Vaccination induced the development IFN-γ-secreting cells in response to the Cap protein of PCV2, which appeared three weeks post-vaccination and increased after challenge. By that time, no significant differences were detected on PCV2 antibody titres between vaccinated and non-vaccinated pigs, although there were significant differences on day 7 post-challenge. PCV2-inoculation induced a cellular response against the Rep protein. Such response was significantly reduced or even absent in PCV2-inoculated pigs that were previously vaccinated (V-C group), presumably as a result of a lower PCV2 replication in vaccinated animals compared to non-vaccinated ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Anthelmintic efficacy of Clerodendrum viscosum on fowl tapeworm Raillietina tetragona.

    PubMed

    Nandi, Suranjana; Ukil, Bidisha; Roy, Saptarshi; Kundu, Suman; Lyndem, Larisha Mawkhlieng

    2017-12-01

    Clerodendrum viscosum Vent. (Verbenaceae) is a shrub, widely used amongst the natives of India against various diseases. Crude extract of the plant was tested in vitro on a tapeworm Raillietina tetragona Molin (Davaineidae) to evaluate its potential anthelmintic efficacy and ultrastructural changes in the parasite. Parasites were exposed to different concentrations of ethanolic leaf extract (10-80 mg/mL) and praziquantel (0.0005-0.005 mg/mL) and incubated in phosphate-buffered saline (PBS). The pH was 7.4 at 37 °C, while one set of worms was incubated only with PBS as a control. Permanent immobilization of worms was determined visually when no motility occurred on physically disturbing them. The parasites exposed to high concentrations of leaf extract and praziquantel treatments were processed for histological and electron microscopic studies, as these concentrations took the least time for paralysis and death to occur. With an increase in the concentration of the leaf extract from 10 to 80 mg/mL and praziquantel from 0.0005 to 0.005 mg/mL, the time for the onset of paralysis and death was shortened. The treated parasites lost their spontaneous movement rapidly followed by death. Electron microscopic observations revealed disruptions in the tegument and parenchymal layer, accompanied by deformities in cell organelles. Extensive structural alterations in the tegument indicate that the plant-derived components cause permeability changes in the parasite leading to paralysis and subsequent death. These observations suggest that phytochemicals present in C. viscosum have vermifugal or vermicidal activity, and thus may be exploited as alternative chemotherapeutic agents.

  16. Small-animal dark-field radiography for pulmonary emphysema evaluation

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz

    2014-03-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.

  17. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Platelets and plasma stimulate sheep rotator cuff tendon tenocytes when cultured in an extracellular matrix scaffold.

    PubMed

    Kelly, Brian A; Proffen, Benedikt L; Haslauer, Carla M; Murray, Martha M

    2016-04-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets, and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: (1) plasma (PPP), (2) plasma and platelets (PAP), (3) plasma and macrophages (PPPM), (4) plasma, platelets and macrophages (PAPM), (5) phosphate buffered saline (PBS), and (6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype, and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine whether these changes in cellular function will translate into improved tendon healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. In vitro modifications of the scala tympani environment and the cochlear implant array surface.

    PubMed

    Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit

    2012-09-01

    To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes

    PubMed Central

    Wang, Yanhan; Kao, Ming-Shan; Yu, Jinghua; Huang, Stephen; Marito, Shinta; Gallo, Richard L.; Huang, Chun-Ming

    2016-01-01

    Acne dysbiosis happens when there is a microbial imbalance of the over-growth of Propionibacterium acnes (P. acnes) in the acne microbiome. In our previous study, we demonstrated that Staphylococcus epidermidis (S. epidermidis, a probiotic skin bacterium) can exploit glycerol fermentation to produce short-chain fatty acids (SCFAs) which have antimicrobial activities to suppress the growth of P. acnes. Unlike glycerol, sucrose is chosen here as a selective fermentation initiator (SFI) that can specifically intensify the fermentation activity of S. epidermidis, but not P. acnes. A co-culture of P. acnes and fermenting S. epidermidis in the presence of sucrose significantly led to a reduction in the growth of P. acnes. The reduction was abolished when P. acnes was co-cultured with non-fermenting S. epidermidis. Results from nuclear magnetic resonance (NMR) analysis revealed four SCFAs (acetic acid, butyric acid, lactic acid, and succinic acid) were detectable in the media of S. epidermidis sucrose fermentation. To validate the interference of S. epidermidis sucrose fermentation with P. acnes, mouse ears were injected with both P. acnes and S. epidermidis plus sucrose or phosphate buffered saline (PBS). The level of macrophage-inflammatory protein-2 (MIP-2) and the number of P. acnes in ears injected with two bacteria plus sucrose were considerably lower than those in ears injected with two bacteria plus PBS. Our results demonstrate a precision microbiome approach by using sucrose as a SFI for S. epidermidis, holding future potential as a novel modality to equilibrate dysbiotic acne. PMID:27834859

  1. A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes.

    PubMed

    Wang, Yanhan; Kao, Ming-Shan; Yu, Jinghua; Huang, Stephen; Marito, Shinta; Gallo, Richard L; Huang, Chun-Ming

    2016-11-09

    Acne dysbiosis happens when there is a microbial imbalance of the over-growth of Propionibacterium acne s ( P. acnes ) in the acne microbiome. In our previous study, we demonstrated that Staphylococcus epidermidis ( S. epidermidis , a probiotic skin bacterium) can exploit glycerol fermentation to produce short-chain fatty acids (SCFAs) which have antimicrobial activities to suppress the growth of P. acnes . Unlike glycerol, sucrose is chosen here as a selective fermentation initiator (SFI) that can specifically intensify the fermentation activity of S. epidermidis , but not P. acnes . A co-culture of P. acnes and fermenting S. epidermidis in the presence of sucrose significantly led to a reduction in the growth of P. acnes . The reduction was abolished when P. acnes was co-cultured with non-fermenting S. epidermidis . Results from nuclear magnetic resonance (NMR) analysis revealed four SCFAs (acetic acid, butyric acid, lactic acid, and succinic acid) were detectable in the media of S. epidermidis sucrose fermentation. To validate the interference of S. epidermidis sucrose fermentation with P. acnes , mouse ears were injected with both P. acnes and S. epidermidis plus sucrose or phosphate buffered saline (PBS). The level of macrophage-inflammatory protein-2 (MIP-2) and the number of P. acnes in ears injected with two bacteria plus sucrose were considerably lower than those in ears injected with two bacteria plus PBS. Our results demonstrate a precision microbiome approach by using sucrose as a SFI for S. epidermidis , holding future potential as a novel modality to equilibrate dysbiotic acne.

  2. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a σR1-Dependent Mechanism

    PubMed Central

    Zhao, Jing; Mysona, Barbara A.; Qureshi, Azam; Kim, Lily; Fields, Taylor; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2016-01-01

    Purpose To evaluate, in vivo, the effects of the sigma-1 receptor (σR1) agonist, (+)-pentazocine, on N-methyl-D-aspartate (NMDA)-mediated retinal excitotoxicity. Methods Intravitreal NMDA injections were performed in C57BL/6J mice (wild type [WT]) and σR1−/− (σR1 knockout [KO]) mice. Fellow eyes were injected with phosphate-buffered saline (PBS). An experimental cohort of WT and σR1 KO mice was administered (+)-pentazocine by intraperitoneal injection, and untreated animals served as controls. Retinas derived from mice were flat-mounted and labeled for retinal ganglion cells (RGCs). The number of RGCs was compared between NMDA and PBS-injected eyes for all groups. Apoptosis was assessed using TUNEL assay. Levels of extracellular-signal–regulated kinases (ERK1/2) were analyzed by Western blot. Results N-methyl-D-aspartate induced a significant increase in TUNEL-positive nuclei and a dose-dependent loss of RGCs. Mice deficient in σR1 showed greater RGC loss (≈80%) than WT animals (≈50%). (+)-Pentazocine treatment promoted neuronal survival, and this effect was prevented by deletion of σR1. (+)-Pentazocine treatment resulted in enhanced activation of ERK at the 6-hour time point following NMDA injection. The (+)-pentazocine–induced ERK activation was diminished in σR1 KO mice. Conclusions Targeting σR1 activation prevented RGC death while enhancing activation of the mitogen-activated protein kinase (MAPK), ERK1/2. Sigma-1 receptor is a promising therapeutic target for retinal neurodegenerative diseases. PMID:26868747

  3. Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions.

    PubMed

    Rossetti, Tiziana; Nicholls, Francesca; Modo, Michel

    2016-01-01

    Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.

  4. Preventive Effect of Geraniol on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats.

    PubMed

    Sawada, Shintaro; Okano, Jun-Ichi; Imamoto, Ryu; Yasunaka, Yuki; Abe, Ryo; Koda, Masahiko; Murawaki, Yoshikazu; Isomoto, Hajime

    2016-03-01

    Geraniol is a plant-derived phytochemical possessing anti-cancer action. The anti-carcinogenic effect of geraniol was investigated in the diethylnitrosamine (DEN)-induced hepatocarcinogenic rat model. Male Wistar rats were intraperitoneally injected with 300 μL of phosphate-buffered saline (PBS) (G1; n = 4) or DEN (100 mg/kg body weight) dissolved in PBS (G2; n = 8) every 2 weeks on experimental weeks 2, 4 and 6. The rats were treated with a low concentration (0.07%) of geraniol (G3; n = 9) and high concentration (0.35%) of geraniol (G4; n = 7) for 12 weeks. To evaluate the effects of geraniol on the DEN-induced hepatocarcinogenesis, we compared the relative liver weight, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and expression levels of proliferating cell nuclear antigen (PCNA) and glutathione S transferase-P (GST-P) by immunohistochemical analyses among each group. Relative liver weight was significantly higher in G2 than in G1 (P < 0.01). Both serum AST and ALT levels were significantly higher in G2 than in G3 and in G4 (P < 0.05). Serum ALP levels did not show a significant difference among each group. Percentages of both PCNA- and GST-P- positive area were significantly decreased in G3 and in G4 compared to in G2 (P < 0.001, respectively), suggesting anti-hepatocarcinogenic effects of geraniol. Geraniol is a promising compound useful for suppression of hepatocellular carcinoma. The mechanisms of action are required to be clarified in the future intensive study.

  5. Experimental studies on soft contact lenses for controlled ocular delivery of pirfinedone: in vitro and in vivo.

    PubMed

    Yang, Mei; Yang, Yangfan; Lei, Ming; Ye, Chengtian; Zhao, Chunshun; Xu, Jiangang; Wu, Kaili; Yu, Minbin

    2016-11-01

    Pirfinedone (PFD) is a novel agent which has the potential to prevent scarring in the eyes. The 0.5% PFD eye drops exhibits poor bioavailability. Whereas, the feasibility of using contact lens as ocular drug delivery device initiated novel possibilities. To evaluate the delivery of PFD by soft contact lens (SCL) in vivo, we screened the most suitable lens material for PFD among various commercially available SCL materials in vitro. Firstly, 11 different SCLs (-1.00 diopter) were respectively soaked in 2 ml of 0.05% PFD-loading solution for 24 h to fully absorb drug, and then placed in fresh phosphate buffered saline (PBS) to release the drug. PFD concentration in PBS was determined by ultraviolet absorbance at 310 nm. Secondly, by immersing in 2 ml of 0.5% PFD eye drops for 24 h, the polymacon lens (0.00 diopter) was then placed on the cornea of New Zealand rabbits. PFD concentrations were detected by high performance liquid chromatography (HPLC) in tears, aqueous humor, conjunctiva, cornea, and sclera at different time points. PFD showed some affinity for pHEMA-based lenses and the polymacon lens more slowly released more amount of PFD than any other lens in vitro (p < 0.001). Compared with eye drops, drug-loaded SCLs greatly enhanced the retention time and concentrations of PFD in cornea and aqueous humor and consequently improved the bioavailability of PFD. Polymacon-based SCL is probably a promising vehicle to be an effective ophthalmic delivery system for PFD.

  6. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection.

    PubMed

    Wang, Zhongyi; Chi, Hang; Wang, Xiwen; Li, Wenliang; Li, Zhiping; Li, Jiaming; Fu, Yingying; Lu, Bing; Xia, Zhiping; Qian, Jun; Liu, Linna

    2018-01-01

    Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 10 7 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.

  7. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    PubMed

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  8. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  9. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    PubMed

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  10. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  11. Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice.

    PubMed

    Bhat, Owais Mohammad; Kumar, P Uday; Rao, K Rajender; Ahmad, Ashfaq; Dhawan, Veena

    2018-04-01

    Terminalia arjuna is a medicinal plant well known as a cardiotonic in Ayurvedic system of medicine. We hypothesized that aqueous stem bark extract of T. arjuna (TAE) may inhibit IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice. 12-week-old, male Apo E-/- mice divided into four groups (n = 6/group) fed with normal chow-diet were employed: GP I: phosphate buffer saline (PBS) (2 month); GP II: rIL-18 (1 month) followed by PBS (1 month); GP III: rIL-18 (1 month) followed by TAE (1 month); GP IV: rIL-18 (1 month) followed by atorvastatin (1 month). IL-18 treatment induced a significant increase (p < 0.001) in pro-inflammatory marker (IL-18) (170 ± 9.16 vs. 1178.66 ± 8.08, pg/ml), and downregulated cholesterol efflux gene (PPAR-γ) by ~0.6-fold vs. 1.00 in IL-18-treated mice as compared to the control animals, respectively. TAE treatment to both groups caused a significant reduction in IL-18 to 281.66 ± 9.60 vs. 1178.66 ± 8.08 (pg/ml), upregulated cholesterol efflux gene by ~1.5- vs. 0.6-fold in TAE-treated group, decreased atherogenic lipids, and percentage atherosclerotic lesion area, demonstrating comparable effects with atorvastatin. Our data demonstrate that TAE protects against IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway.

  12. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation.

    PubMed

    Migheli, Rossana; Puggioni, Giulia; Dedola, Sonia; Rocchitta, Gaia; Calia, Giammario; Bazzu, Gianfranco; Esposito, Giovanni; Lowry, John P; O'Neill, Robert D; Desole, M S; Miele, Egidio; Serra, Pier A

    2008-09-15

    A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.

  13. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    PubMed

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Involvement of high mobility group box-1 in imiquimod-induced psoriasis-like mice model.

    PubMed

    Chen, Tao; Fu, Li-Xin; Guo, Zai-Pei; Yin, Bin; Cao, Na; Qin, Sha

    2017-05-01

    In the previous work, we have indicated that HMGB1, a pro-inflammatory cytokine, is closely associated with the pathogenesis of psoriasis. To further clarify the role of HMGB1 in the pathogenesis of psoriasis, we investigated the direct function of HMGB1 application and HMGB1 blockade in imiquimod (IMQ)-induced psoriatic mouse model in this study. Mice were treated with imiquimod (IMQ) to induce psoriasis-like inflammation, and consecutively injected with recombinant HMGB1 or phosphate-buffered saline (PBS) i.d. Abundant cytoplasmic expression of HMGB1 was observed in lesional skin from IMQ-treated skin. The injection of HMGB1 into the IMQ-treated skin further aggravated the psoriasis-like disease, enhanced the infiltration of CD3 + T cells, myeloperoxidase + neutrophils and CD11c + dendritic cells, increased the number of γδ T cells, and upregulated the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-17 compared with the PBS injection. Finally, by using anti-HMGB1 monoclonal antibody or HMGB1 inhibitor glycyrrhizin, we indicated that HMGB1 blockade reduced the number of γδ T cells, suppressed the mRNA expression of IL-6, TNF-α, IFN-γ and IL-17, and moderated clinical and histological evolvement in the IMQ-treated skin. Our data suggest that HMGB1 may act as a pro-inflammatory cytokine, and contribute to the development of IMQ-induced psoriasis-like inflammation. HMGB1 blockade may represent a new direction in the suppression of psoriasis. © 2016 Japanese Dermatological Association.

  15. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Luo, Shi-Hua; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E; Zhang, Chang-Qing; Xie, Zong-Ping; Wang, Jian-Qiang

    2010-03-01

    Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks' implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.

    PubMed

    Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi

    2017-09-23

    SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice.

    PubMed

    Qu, Daofeng; Han, Jianzhong; Du, Aifang

    2013-07-01

    The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.

  18. A photoacoustic tool for therapeutic drug monitoring of heparin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Junxin; Hartanto, James; Jokerst, Jesse V.

    2017-03-01

    Heparin is used broadly in cardiac, pulmonary, surgical, and vascular medicine to treat thrombotic disorders with over 500 million doses per year globally. Despite this widespread use, it has a narrow therapeutic window and is one of the top three medication errors. The active partial thromboplastin time (PTT) monitors heparin, but this blood test suffers from long turnaround times, a variable reference range, and limited utility with low molecular weight heparin. Here, we describe an imaging technique that can monitor heparin concentration and activity in real time using photoacoustic spectroscopy via methylene blue as a simple and Federal Drug Agency-approved contrast agent. We found a strong correlation between heparin concentration and photoacoustic signal measured in phosphate buffered saline (PBS) and blood (R2>0.90). Clinically relevant concentrations were detected in blood with a heparin detection limit of 0.28 U/mL and a low molecular weight heparin (enoxaparin) detection limit of 72 μg/mL. We validated this imaging approach by correlation to the PTT (Pearson's r = 0.86; p<0.05) as well as with protamine sulfate treatment. To the best of our knowledge, this is the first report to use imaging data to monitor anticoagulation.

  19. Reduction of allergenicity of irradiated ovalbumin in ovalbumin-allergic mice

    NASA Astrophysics Data System (ADS)

    Seo, Ji-Hyun; Lee, Ju-Woon; Kim, Jae-Hun; Byun, Eui-Baek; Lee, Soo-Young; Kang, Il-Jun; Byun, Myung-Woo

    2007-11-01

    Egg allergy is one of the most serious of the immediate hypersensitivity reactions to foods. Such an allergic disorder is mediated by IgE antibodies stimulated by T-helper type 2 (Th2) lymphocytes. This study was undertaken to evaluate changes of allergenicity and cytokine profiles by exposure of irradiated ovalbumin (OVA), a major allergen of egg white, in the OVA-allergic mice model. OVA solutions (2 mg/ml in 0.01 M phosphate buffered saline (PBS) were gamma-irradiated to 50 and 100 kGy. The allergenicity in the OVA-allergy-induced mice model was remarkably reduced when challenged with irradiated OVA. Cultures of spleen cells harvested from OVA-sensitized mice showed a significant decrease in Th2 cytokine levels of ILs-4 and -5 with a concomitant increase in Th1 cytokine levels of IL-12 when co-cultured with irradiated OVA. However, IFN- γ level decreased dependant on the radiation dose of co-cultured OVA. The levels of IgEs and Th2-cytokine were reduced dependant on the radiation dose. These data show that the irradiated OVA could downregulate the activity of Th2 lymphocytes in OVA-sensitized mice.

  20. Development of a test for bovine tuberculosis in cattle based on measurement of gamma interferon mRNA by real-time PCR.

    PubMed

    Gan, W; Zhou, X; Yang, H; Chen, H; Qiao, J; Khan, S H; Yang, L; Yin, X; Zhao, D

    2013-08-03

    The infection status of cattle for bovine tuberculosis (bTB) was determined by real-time PCR, comparing the levels of IFN-γ mRNA in blood cultures stimulated with either bovine or avian tuberculin with non-stimulated control (phosphate buffer saline, PBS) blood culture. Totally, 137 cattle were tested to validate the assay, in which 54 were IFN-γ real-time quantitative PCR (RT-qPCR) positive, while the remaining 83 were found negative. Meanwhile, the IFN-γ ELISA test was carried out using the Bovigam IFN-γ detection ELISA kit and these results were used as a standard. The results of the single intradermal tuberculin tests (SIDT) and IFN-γ RT-qPCR tests were compared and revealed that the RT-qPCR correlated better with the ELISA and its accuracy was higher than SIDT. This indicates the RT-qPCR is a useful diagnostic method for bTB in cattle. However, several limitations remain for our approach, such as lack of a TB lesions or postmortem test results as a gold standard. Further improvements should be made in the future to increase accuracy of diagnosis of bTB in cattle.

  1. Electrochemical study on the corrosion resistance of plasma nanocoated 316L stainless steel in albumin- and lysozyme-containing electrolytes

    PubMed Central

    Jones, John Eric; Chen, Meng; Chou, Ju; Yu, Qingsong

    2017-01-01

    The physiological corrosion resistance of plasma nanocoated 316L stainless steel was studied in protein-containing electrolytes using electrochemical methods. Plasma nanocoatings with thicknesses of 20–30 nm were deposited onto 316L stainless steel coupons in a glow discharge of trimethylsilane (TMS) or its mixture with oxygen gas under various gas ratios. The surface chemistries of the plasma nanocoatings were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Corrosion properties of the plasma nanocoated 316L stainless steel coupons were assessed using potentiodynamic polarization, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in phosphate-buffered saline (PBS) electrolytes that contain bovine serum albumin (BSA) or lysozyme. It was found that BSA adsorption on the plasma nanocoated 316L coupons was heavily favored. BSA adsorption on the plasma nanocoating surfaces could block charge-transfer reactions between the electrolyte and 316L substrate, and thus stabilize the 316L substrates from further corrosion. In contrast, lysozyme adsorption on the plasma nanocoated specimens was not as pronounced and mildly influenced the corrosion properties of the plasma nanocoated 316L stainless steel. PMID:29422723

  2. Development of solid dispersions of artemisinin for transdermal delivery.

    PubMed

    Shahzad, Yasser; Sohail, Sadia; Arshad, Muhammad Sohail; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-11-30

    Solid dispersions of the poorly soluble drug artemisinin were developed using polymer blends of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) with the aim of enhancing solubility and in vitro permeation of artemisinin through skin. Formulations were characterised using a combination of molecular dynamics (MD) simulations, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Solubility of artemisinin was determined in two solvents: de-ionised water and phosphate buffered saline (PBS; pH 7.4), while in vitro drug permeation studies were carried out using rabbit skin as a model membrane. MD simulations revealed miscibility between the drug and polymers. DSC confirmed the molecular dispersion of the drug in the polymer blend. Decrease in crystallinity of artemisinin with respect to polymer content and the absence of specific drug-polymer interactions were confirmed using XRD and FT-IR, respectively. The solubility of artemisinin was dramatically enhanced for the solid dispersions, as was the permeation of artemisinin from saturated solid-dispersion vehicles relative to that from saturated solutions of the pure drug. The study suggests that high energy solid forms of artemisinin could possibly enable transdermal delivery of artemisinin. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Preparation of Cu₂O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection.

    PubMed

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-12

    Cu₂O-reduced graphene oxide nanocomposite (Cu₂O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu₂O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu₂O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu₂O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10 -8 mol/L~1 × 10 -6 mol/L and 1 × 10 -6 mol/L~8 × 10 -5 mol/L with the detection limit 6.0 × 10 -9 mol/L (S/N = 3). The proposed Cu₂O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results.

  4. Comparative study of kanamycin sulphate microparticles and nanoparticles for intramuscular administration: preparation in vitro release and preliminary in vivo evaluation.

    PubMed

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2016-11-01

    Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. KS is polycationic, a property responsible for KS poor oral absorption half-life (2.5 h) and rapid renal clearance, which results in serious nephrotoxicity/ototoxicity. The current study aimed to develop KS-loaded PLGA vitamin-E-TPGS microparticles (MPs) and nanoparticles (NPs) to reduce the dosing frequency and dose-related adverse effect. In vitro release was sustained up to 10 days for KS PLGA-TPGS MPs and 13 days for KS PLGA-TPGS NPs in phosphate-buffered saline (PBS) pH 7.4. The in vivo pharmacokinetic test in Wistar rats showed that the AUC 0-∞ of KS PLGA-TPGS NPs (280.58 μg/mL*min) was about 1.62-fold higher than that of KS PLGA-TPGS MPs (172.30 μg/mL*min). Further, in vivo protein-binding assay ascribed 1.20-fold increase in the uptake of KS PLGA-TPGS NPs through the alveolar macrophage (AM). The studies, therefore, could provide another useful tool for successful development of KS MPs and NPs.

  5. Early diagnosis of orthopedic implant failure using macromolecular imaging agents.

    PubMed

    Ren, Ke; Dusad, Anand; Zhang, Yijia; Purdue, P Edward; Fehringer, Edward V; Garvin, Kevin L; Goldring, Steven R; Wang, Dong

    2014-08-01

    To develop and evaluate diagnostic tools for early detection of wear particle-induced orthopaedic implant loosening. N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer was tagged with a near infrared dye and used to detect the inflammation induced by polymethylmethacrylate (PMMA) particles in a murine peri-implant osteolysis model. It was established by inserting an implant into the distal femur and challenging with routine PMMA particles infusion. The osteolysis was evaluated by micro-CT and histological analysis at different time points. Significant peri-implant osteolysis was found 3-month post PMMA particle challenge by micro-CT and histological analysis. At 1-month post challenge, when there was no significant peri-implant bone loss, the HPMA copolymer-near infrared dye conjugate was found to specifically target the femur with PMMA particles deposition, but not the contralateral control femur with phosphate buffered saline (PBS) infusion. The results from this study demonstrate the feasibility of utilizing the macromolecular diagnostic agent to detect particle-induced peri-implant inflammation prior to the development of detectable osteolysis. Recognition of this early pathological event would provide the window of opportunity for prevention of peri-implant osteolysis and subsequent orthopaedic implant failure.

  6. Differential-Mode Biosensor Using Dual Extended-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeon; Lee, Hee Ho; Ahn, Jungil; Seo, Sang-Ho; Shin, Jang-Kyoo

    2012-06-01

    In this paper, we present a differential-mode biosensor using dual extended-gate metal-oxide-semiconductor field-effect transistors (MOSFETs), which possesses the advantages of both the extended-gate structure and the differential-mode operation. The extended-gate MOSFET was fabricated using a 0.6 µm standard complementary metal oxide semiconductor (CMOS) process. The Au extended gate is the sensing gate on which biomolecules are immobilized, while the Pt extended gate is the dummy gate for use in the differential-mode detection circuit. The differential-mode operation offers many advantages such as insensitivity to the variation of temperature and light, as well as low noise. The outputs were measured using a semiconductor parameter analyzer in a phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl reference electrode was used to apply the gate bias. We measured the variation of output voltage with time, temperature, and light intensity. The bindings of self-assembled monolayer (SAM), streptavidin, and biotin caused a variation in the output voltage of the differential-mode detection circuit and this was confirmed by surface plasmon resonance (SPR) experiment. Biotin molecules could be detected up to a concentration of as low as 0.001 µg/ml.

  7. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release.

    PubMed

    Kong, Seong Deok; Sartor, Marta; Hu, Che-Ming Jack; Zhang, Weizhou; Zhang, Liangfang; Jin, Sungho

    2013-03-01

    Stimuli-responsive nanoparticles (SRNPs) offer the potential of enhancing the therapeutic efficacy and minimizing the side-effects of chemotherapeutics by controllably releasing the encapsulated drug at the target site. Currently controlled drug release through external activation remains a major challenge during the delivery of therapeutic agents. Here we report a lipid-polymer hybrid nanoparticle system containing magnetic beads for stimuli-responsive drug release using a remote radio frequency (RF) magnetic field. These hybrid nanoparticles show long-term stability in terms of particle size and polydispersity index in phosphate-buffered saline (PBS). Controllable loading of camptothecin (CPT) and Fe(3)O(4) in the hybrid nanoparticles was demonstrated. RF-controlled drug release from these nanoparticles was observed. In addition, cellular uptake of the SRNPs into MT2 mouse breast cancer cells was examined. Using CPT as a model anticancer drug the nanoparticles showed a significant reduction in MT2 mouse breast cancer cell growth in vitro in the presence of a remote RF field. The ease of preparation, stability, and controllable drug release are the strengths of the platform and provide the opportunity to improve cancer chemotherapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian

    2018-05-01

    Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.

  9. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.

    PubMed

    Bartolomeu, F; Sampaio, M; Carvalho, O; Pinto, E; Alves, N; Gomes, J R; Silva, F S; Miranda, G

    2017-05-01

    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100-500µm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37°C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100µm designed open-cell size due to the higher apparent area of contact to support tribological loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy

    PubMed Central

    Usukura, Eiji; Narita, Akihiro; Yagi, Akira; Ito, Shuichi; Usukura, Jiro

    2016-01-01

    An improved unroofing method enabled the cantilever of an atomic force microscope (AFM) to reach directly into a cell to visualize the intracellular cytoskeletal actin filaments, microtubules, clathrin coats, and caveolae in phosphate-buffered saline (PBS) at a higher resolution than conventional electron microscopy. All of the actin filaments clearly exhibited a short periodicity of approximately 5–6 nm, which was derived from globular actins linked to each other to form filaments, as well as a long helical periodicity. The polarity of the actin filaments appeared to be determined by the shape of the periodic striations. Microtubules were identified based on their thickness. Clathrin coats and caveolae were observed on the cytoplasmic surface of cell membranes. The area containing clathrin molecules and their terminal domains was directly visualized. Characteristic ridge structures located at the surface of the caveolae were observed at high resolution, similar to those observed with electron microscopy (EM). Overall, unroofing allowed intracellular AFM imaging in a liquid environment with a level of quality equivalent or superior to that of EM. Thus, AFMs are anticipated to provide cutting-edge findings in cell biology and histology. PMID:27273367

  11. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications

    PubMed Central

    Boakye, Maame A. D.; Rijal, Nava P.; Adhikari, Udhab; Bhattarai, Narayan

    2015-01-01

    Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone)-(PCL), magnesium oxide-(MgO) and keratin (K)-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES). Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS) medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering. PMID:28793426

  12. Progranulin inhibits platelet aggregation and prolongs bleeding time in rats.

    PubMed

    Al-Yahya, A M; Al-Masri, A A; El Eter, E A; Hersi, A; Lateef, R; Mawlana, O

    2018-05-01

    Several adipokines secreted by adipose tissue have an anti-thrombotic and anti-atherosclerotic function. Recently identified adipokine progranulin was found to play a protective role in atherosclerosis. Bearing in mind the central role of platelets in inflammation and atherosclerosis, we aimed, in this study, to examine the effect of progranulin on platelet function and coagulation profile in rats. Healthy male albino Wistar rats weighing (250-300 g) were divided into 4 groups. Three groups were given increasing doses of progranulin (0.001 µg, 0.01 µg, and 0.1 µg) intraperitoneally, while the control group received phosphate-buffered saline (PBS). Bleeding time, prothrombin time, activated partial thromboplastin time and platelet aggregation responses to adenosine diphosphate and arachidonic acid were assessed. Administration of progranulin resulted in a significant inhibition of platelet aggregation in response to both adenosine diphosphate, and arachidonic acid. Bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in all groups that received progranulin, in particular, the 0.1 µg dose, in comparison to the control group. This preliminary data is first suggesting that the antiplatelet and anticoagulant action of progranulin could have a physiological protective function against thrombotic disorders associated with obesity and atherosclerosis. However, these results merit further exploration.

  13. One-Step Fabrication of a Multifunctional Magnetic Nickel Ferrite/Multi-walled Carbon Nanotubes Nanohybrid-Modified Electrode for the Determination of Benomyl in Food.

    PubMed

    Wang, Qiong; Yang, Jichun; Dong, Yuanyuan; Zhang, Lei

    2015-05-20

    Benomyl, as one kind of agricultural pesticide, has adverse impact on human health and the environment. It is urgent to develop effective and rapid methods for quantitative determination of benomyl. A simple and sensitive electroanalytical method for determination of benomyl using a magnetic nickel ferrite (NiFe2O4)/multi-walled carbon nanotubes (MWCNTs) nanohybrid-modified glassy carbon electrode (GCE) was presented. The electrocatalytic properties and electroanalysis of benomyl on the modified electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In the phosphate-buffered saline (PBS) of pH 6.0, this constructed biosensor exhibited two linear relationships with the benomyl concentration range from 1.00 × 10(-7) to 5.00 × 10(-7) mol/L and from 5.00 × 10(-7) to 1.00 × 10(-5) mol/L, respectively. The detection limit was 2.51 × 10(-8) mol/L (S/N = 3). Moreover, the proposed method was successfully applied to determine benomyl in real samples with satisfactory results. The NiFe2O4/MWCNTs/GCE showed good reproducibility and stability, excellent catalytic activity, and anti-interference.

  14. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.

    PubMed

    Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

    2014-06-11

    Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.

  15. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  16. Anisotropic properties of the enamel organic extracellular matrix.

    PubMed

    do Espírito Santo, Alexandre R; Novaes, Pedro D; Line, Sérgio R P

    2006-05-01

    Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. This supramolecular ensemble controls the nucleation of the crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy has been extensively used to detect macromolecular organizations in ordinary histological sections. The aim of this work was to study the birefringence of enamel organic matrix during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were fixed in 2% paraformaldehyde/0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2, and decalcified in 5% nitric acid/4% formaldehyde. After paraffin embedding, 5-microm-thick sections were obtained, treated with xylene, and hydrated. Form birefringence curves were obtained after measuring optical retardations in imbibing media, with different refractive indices. Our observations showed that enamel organic matrix of rat incisor and molar teeth is strongly birefringent, presenting an ordered supramolecular structure. The birefringence starts during the early secretion phase and disappears at the maturation phase. The analysis of enamel organic matrix birefringence may be used to detect the effects of genetic and environmental factors on the supramolecular orientation of enamel matrix and their effects on the structure of mature enamel.

  17. AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension.

    PubMed

    Chen, Peter Gin-Fu; Sun, Zhongjie

    2017-02-01

    Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.

  18. Intramyocardial injection of SERCA2a-expressing lentivirus improves myocardial function in doxorubicin-induced heart failure.

    PubMed

    Mattila, Minttu; Koskenvuo, Juha; Söderström, Mirva; Eerola, Kim; Savontaus, Mikko

    2016-07-01

    Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Neurobehavioral toxicity of carbon nanotubes in mice.

    PubMed

    Gholamine, Babak; Karimi, Isaac; Salimi, Amir; Mazdarani, Parisa; Becker, Lora A

    2017-04-01

    The aim of this study was to evaluate neurobehavioral toxicity of single-walled (SWNTs) and multiwalled carbon nanotubes (MWNTs) in mice. Male NMRI mice were randomized into 5 groups ( n = 10 each): Normal control (NC) group was injected intraperitoneally (i.p.) with phosphate-buffered saline (PBS) solution (pH 7.8; ca. 1 mL), MW80 and MW800 groups were injected with either i.p. 80 or 800 mg kg -1 MWNTs suspended in 1 mL of PBS and SW80 and SW800 groups were injected with either i.p. 80 or 800 mg kg -1 SWNTs suspended in 1 mL of PBS. After 2 weeks, five mice from each group were evaluated for brain-derived neurotrophic factor (BDNF) messenger RNA expression and protein content of brain tissues. Locomotion, anxiety, learning and memory, and depression were measured by open field test (OFT), elevated plus-maze (EPM), object recognition test (ORT), and forced swimming test (FST), respectively. Ambulation time and center arena time in the OFT did not change among groups. In the EPM paradigm, SWNTs (800 mg kg -1 ) and MWNTs (80 and 800 mg kg -1 ) showed an anxiogenic effect. In ORT, MWNTs (80 mg kg -1 ) increased the discrimination ratio while in FST, MWNTs showed a depressant effect as compared to vehicle. The BDNF gene expression in mice treated with 80 and 800 mg kg -1 SWNTs or 80 mg kg -1 MWNTs decreased as compared to NC mice although BDNF gene expression increased in mice that were treated with 800 mg kg -1 MWNTs. The whole brain BDNF protein content did not change among groups. Our study showed that i.p. exposure to carbon nanotubes (CNTs) may result in behavioral toxicity linked with expression of depression or anxiety that depends on the type of CNTs. In addition, exposure to CNTs changed BDNF gene expression.

  20. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy.

    PubMed

    Khanum, B N M K; Guha, R; Sur, V P; Nandi, S; Basak, S K; Konar, A; Hazra, S

    2017-09-01

    PurposeThe purpose of the study was to evaluate the efficacy and safety of intravitreal pirfenidone for inhibition of proliferative vitreoretinopathy (PVR) in a model of penetrating ocular injury.Patients and methodsPenetrating trauma was induced on the retina of rabbit and treated either with 0.1 ml of phosphate-buffered saline (PBS) or 0.1 ml of 0.5% pirfenidone, and development of PVR was evaluated clinically and graded after 1 month. Histopathology and immunohistochemistry with transforming growth factor beta (TGFβ), alpha smooth muscle actin (αSMA), and collagen-1 were performed to assess the fibrotic changes. Expression of cytokines in the vitro-retinal tissues at different time points following pirfenidone and PBS injection was examined by RT-PCR. Availability of pirfenidone in the vitreous of rabbit at various time points was determined by high-performance liquid chromatography following injection of 0.1 ml of 0.5% pirfenidone. In normal rabbit eye, 0.1 ml of 0.5% pirfenidone was injected to evaluate any toxic effect.ResultsClinical assessment and grading revealed prevention of PVR formation in pirfenidone-treated animals, gross histology, and histopathology confirmed the observation. Immunohistochemistry showed prevention in the expression of collagen-I, αSMA, and TGFβ in the pirfenidone-treated eyes compared to the PBS-treated eyes. Pirfenidone inhibited increased gene expression of cytokines observed in control eyes. Pirfenidone could be detected up to 48 h in the vitreous of rabbit eye following single intravitreal injection. Pirfenidone did not show any adverse effect following intravitreal injection; eyes were devoid of any abnormal clinical sign, intraocular pressure, and electroretinography did not show any significant change and histology of retina remained unchanged.ConclusionThis animal study shows that pirfenidone might be a potential therapy for PVR. Further clinical study will be useful to evaluate the clinical application of pirfenidone.

  1. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    PubMed

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, P<0.05). In experiment 2, there was no significant effect of volume in hatching rates (58.3% 1 microL, 61.3% 0.5 microL and 80.5% control, P<0.05). In experiment 3, the composition of the holding medium of warming solution influenced hatching rates (84.1% TCM-199, 74.8% PBS and 91.1% control P<0.05). These data suggest that neither glass capillaries nor reduced sample volume could improve hatching rates after vitrification-warming with open pulled straw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  2. In Vitro Quantified Determination of β-Amyloid 42 Peptides, a Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using a Simple, Cost-Effective Thin Gold Film Biosensor.

    PubMed

    Dai, Yifan; Molazemhosseini, Alireza; Liu, Chung Chiun

    2017-07-20

    A simple in vitro biosensor for the detection of β-amyloid 42 in phosphate-buffered saline (PBS) and undiluted human serum was fabricated and tested based on our platform sensor technology. The bio-recognition mechanism of this biosensor was based on the effect of the interaction between antibody and antigen of β-amyloid 42 to the redox couple probe of K₄Fe(CN)₆ and K₃Fe(CN)₆. Differential pulse voltammetry (DPV) served as the transduction mechanism measuring the current output derived from the redox coupling reaction. The biosensor was a three-electrode electrochemical system, and the working and counter electrodes were 50 nm thin gold film deposited by a sputtering technique. The reference electrode was a thick-film printed Ag/AgCl electrode. Laser ablation technique was used to define the size and structure of the biosensor. Cost-effective roll-to-roll manufacturing process was employed in the fabrication of the biosensor, making it simple and relatively inexpensive. Self-assembled monolayers (SAM) of 3-Mercaptopropionic acid (MPA) was employed to covalently immobilize the thiol group on the gold working electrode. A carbodiimide conjugation approach using N -(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride (EDC) and N -hydroxysuccinimide (NHS) was undertaken for cross-linking antibody of β-amyloid 42 to the carboxylic groups on one end of the MPA. The antibody concentration of β-amyloid 42 used was 18.75 µg/mL. The concentration range of β-amyloid 42 in this study was from 0.0675 µg/mL to 0.5 µg/mL for both PBS and undiluted human serum. DPV measurements showed excellent response in this antigen concentration range. Interference study of this biosensor was carried out in the presence of Tau protein antigen. Excellent specificity of this β-amyloid 42 biosensor was demonstrated without interference from other species, such as T-tau protein.

  3. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  4. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer.

    PubMed

    Jung, Jaehyo; Lee, Jihoon; Shin, Siho; Kim, Youn Tae

    2017-10-23

    In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm² with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride ( Ru III ) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication.

  5. Development of a Telemetric, Miniaturized Electrochemical Amperometric Analyzer

    PubMed Central

    Lee, Jihoon; Shin, Siho; Kim, Youn Tae

    2017-01-01

    In this research, we developed a portable, three-electrode electrochemical amperometric analyzer that can transmit data to a PC or a tablet via Bluetooth communication. We performed experiments using an indium tin oxide (ITO) glass electrode to confirm the performance and reliability of the analyzer. The proposed analyzer uses a current-to-voltage (I/V) converter to convert the current generated by the reduction-oxidation (redox) reaction of the buffer solution to a voltage signal. This signal is then digitized by the processor. The configuration of the power and ground of the printed circuit board (PCB) layer is divided into digital and analog parts to minimize the noise interference of each part. The proposed analyzer occupies an area of 5.9 × 3.25 cm2 with a current resolution of 0.4 nA. A potential of 0~2.1 V can be applied between the working and the counter electrodes. The results of this study showed the accuracy of the proposed analyzer by measuring the Ruthenium(III) chloride (RuIII) concentration in 10 mM phosphate-buffered saline (PBS) solution with a pH of 7.4. The measured data can be transmitted to a PC or a mobile such as a smartphone or a tablet PC using the included Bluetooth module. The proposed analyzer uses a 3.7 V, 120 mAh lithium polymer battery and can be operated for 60 min when fully charged, including data processing and wireless communication. PMID:29065534

  6. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    PubMed

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of diluent and sample processing methods on the recovery of the biocontrol agent Pantoea agglomerans CPA-2 from different fruit surfaces.

    PubMed

    Torres, R; Viñas, I; Usall, J; Remón, D; Teixidó, N

    2012-08-01

    Determining the populations of biocontrol agents applied as a postharvest treatment on fruit surfaces is fundamental to the assessment of the microorganisms' ability to colonise and persist on fruit. To obtain maximum recovery, we must develop a methodology that involves both diluent and processing methods and that does not affect the viability of the microorganisms. The effect of diluent composition was evaluated using three diluents: phosphate buffer, peptone saline and buffered peptone saline. An additional study was performed to compare three processing methods (shaking plus sonication, stomaching and shaking plus centrifugation) on the recovery efficiency of Pantoea agglomerans strain CPA-2 from apples, oranges, nectarines and peaches treated with this biocontrol agent. Overall, slight differences occurred among diluents, although the phosphate buffer maintained the most ideal pH for CPA-2 growth (between 5.2 and 6.2). Stomaching, using the phosphate buffer as diluent, was the best procedure for recovering and enumerating the biocontrol agent; this fact suggested that no lethal effects from naturally occurring antimicrobial compounds present on the fruit skins and/or produced when the tissues were disrupted affected the recovery of the CPA-2 cells, regardless of fruit type. The growth pattern of CPA-2 on fruits maintained at 20°C and under cold conditions was similar to that obtained in previous studies, which confirms the excellent adaptation of this strain to conditions commonly used for fruit storage. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    PubMed

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Distribution of spotted fever group rickettsiae in select tissues of experimentally infected and field-collected Gulf Coast ticks.

    PubMed

    Edwards, Kristine T; Goddard, Jerome; Varela-Stokes, Andrea

    2011-05-01

    Salivary glands, midgut, Malpighian tubules, and ovaries were dissected from infected, colony-derived Amblyomma maculatum (Gulf Coast ticks) injected as nymphs with either Rickettsia parkeri (a spotted fever group rickettsia [SFGR]; treatment) or phosphate-buffered saline (negative control). For comparison, similar tissues were dissected from hemolymph-positive, field-collected ticks. Tissues were analyzed by indirect fluorescent antibody (IFA) tests. All phosphate-buffered saline-injected ticks were IFA negative, whereas SFGR were detected by IFA in 100% of the salivary glands and ovaries and 78 and 75% of midgut and Malpighian tubule samples, respectively, of R. parkeri-injected ticks. Nearly 22% (10/46) of the field-collected ticks were hemolymph positive. Of those, SFGR were detected by IFA in 80% of the salivary glands, 67% of the ovaries, and 60% in the midgut and Malpighian tubules. This is the first study to assess the distribution of SFGR in select tissues of A. maculatum ticks.

  11. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    PubMed

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. Copyright © 2012. Published by Elsevier B.V.

  12. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest to characterize the temperature dependent refractive index relationship, n(T), for phosphate buffered saline. Phosphate buffered saline (PBS) is a water-based solution used with our biological cells because it maintains an ion concentration similar to that found in body fluids. The n(T) characterization was performed using a custom-built isothermal apparatus in which the temperature could be controlled. To check for the accuracy of the PBS refractive index measurements, water was also measured and compared with known values in the literature. The literature source of choice has affiliations to NIST and a formulation of refractive index involving temperature and wavelength dependence, two parameters which are necessary for our specialized infrared wavelength range. From the NIST formula, linear approximations were found to be dn/dT = -1.4x10-4 RIU °C-1 and dn/dlambda = -1.5x10-5 RIU nm-1 for water. A comparison with the formulated refractive indices of water indicated the measured values were off. This was attributed to the fact that light penetration into the HfO2/SiO2 dielectric mirrors had not been considered. Once accounted for, the refractive indices of water were consistent with the literature, and the values for PBS are believed to be accurate. A further discovery was the refractive index values at the discrete resonant wavelengths were monotonically decreasing, such that the dn/dlambda slope for water was considerably close to the NIST formula. Thus, n(T,lambda) was characterized for both water and PBS. A refractive index relationship for PBS with spatial, temperature, and wavelength dependence is particularly useful for non-uniform temperature distributions caused by DEP electrodes. First, a maximum temperature can be inferred, which is the desired measurement for cell viability concerns. In addition, a lateral refractive index distribution can be measured to help quantify the gradient index lenses that are formed by the energized electrodes. The non-uniform temperature distribution was also simulated with a finite element analysis software package. This simulated temperature distribution was converted to a refractive index distribution, and focal lengths were calculated for positive and negative gradient index lenses to a smallest possible length of about 10mm.

  13. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  14. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    PubMed

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF orientation was observed showing cell preference towards PGF.

  15. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  16. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    PubMed

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.

  17. Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment.

    PubMed

    Abbasi Aval, Negar; Pirayesh Islamian, Jalil; Hatamian, Milad; Arabfirouzjaei, Mohammad; Javadpour, Jafar; Rashidi, Mohammad-Reza

    2016-07-25

    In the present study, a series of multifunctional drug delivery systems based on mesostructured hydroxyapatite coating and superparamagnetic nanoparticles with pH-responsive characters was prepared. The structure of each new synthesized nanoscale composite was fully characterized by XRD, FTIR, TEM, VSM and BET. The results showed a good ordered mesostructure having large pores, high pore volume, high surface area, and varied super paramagnetic properties. The mesoporous hydroxyapatite coated super paramagnetic Fe3O4 nanoparticles were applied as a drug delivery carrier loaded with doxorubicin (DOX) as a model drug. The storage/release properties of the developed nonocarriers in phosphate buffer saline (PBS) were studied in two certain pHs: pH=7.4 (the human blood pH) and pH=5.5 (pH of cancer cells). The large pores in the synthesized mesoporous acted as an excellent carrier for DOX molecules with a loading efficiency of ≈93% which is much higher than that of the conventional hydroxyapatite particles. When the pH of the release medium (PBS) was changed from 7.4 to 5.5, the drug release increased significantly from 10% of the adsorbed drug to about 70%. DOX-loaded mesostructure hydroxyapatite reduced the viability of SKBR3 and T47D cells by 54.7 and 57.3%, respectively, which were very similar to 56.8 and 60.4% reduction resulted from free DOX incubation. This new drug delivery system which benefits from both super paramagnetic properties and pH-responsive performances may serve as a suitable platform for developing new biocompatible drug carriers and could have a good potential use in targeted cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electroconvulsive seizures (ECS) do not prevent LPS-induced behavioral alterations and microglial activation.

    PubMed

    van Buel, E M; Bosker, F J; van Drunen, J; Strijker, J; Douwenga, W; Klein, H C; Eisel, U L M

    2015-12-12

    Long-term neuroimmune activation is a common finding in major depressive disorder (MDD). Literature suggests a dual effect of electroconvulsive therapy (ECT), a highly effective treatment strategy for MDD, on neuroimmune parameters: while ECT acutely increases inflammatory parameters, such as serum levels of pro-inflammatory cytokines, there is evidence to suggest that repeated ECT sessions eventually result in downregulation of the inflammatory response. We hypothesized that this might be due to ECT-induced attenuation of microglial activity upon inflammatory stimuli in the brain. Adult male C57Bl/6J mice received a series of ten electroconvulsive seizures (ECS) or sham shocks, followed by an intracerebroventricular (i.c.v.) lipopolysaccharide (LPS) or phosphate-buffered saline (PBS) injection. Brains were extracted and immunohistochemically stained for the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1). In addition, a sucrose preference test and an open-field test were performed to quantify behavioral alterations. LPS induced a short-term reduction in sucrose preference, which normalized within 3 days. In addition, LPS reduced the distance walked in the open field and induced alterations in grooming and rearing behavior. ECS did not affect any of these parameters. Phenotypical analysis of microglia demonstrated an LPS-induced increase in microglial activity ranging from 84 to 213 % in different hippocampal regions (CA3 213 %; CA1 84 %; dentate gyrus 131 %; and hilus 123 %). ECS-induced alterations in microglial activity were insignificant, ranging from -2.6 to 14.3 % in PBS-injected mice and from -20.2 to 6.6 % in LPS-injected mice. We were unable to demonstrate an effect of ECS on LPS-induced microglial activity or behavioral alterations.

  19. [Effects of intra-arterial infusion of 3-bromopyruvate on metastases and survival benefit of hepatic VX2 tumor in rabbits].

    PubMed

    Jiang, Xiong-ying; Zhang, Xiao-ping; Huang, Jin-hua; Luo, Rong-guang; Miao, Bi-jian; Wang, Yan

    2013-10-22

    To evaluate the metastasis and survival of an intra-arterial infusion of 3-bromopyruvate (3-BrPA) on hepatic VX2 tumor in rabbits. VX2 tumor was implanted in left lateral lobe of liver of 18 white New Zealand rabbits. The animals were randomized into 3 groups (n = 6 each) and underwent an intra-arterial infusion of phosphate-buffered saline or 3-BrPA via hepatic artery at 14 days post-implantation. At 28 days post-implantation, 3 rabbits in each group were sacrificed. The abdomen of these rabbits was opened and inspected for metastases. Then the survival of the remaining rabbits was observed. At 28 days post-implantation, in PBS group, there were intrahepatic metastasis and abdominal cavity dissemination (n = 3), renal metastases (n = 2) and lung metastases (n = 2); in early 3-BrPA infusion group, intrahepatic metastasis (n = 2), abdominal cavity dissemination (n = 1) and lung metastases (n = 1); in late 3-BrPA infusion group, intrahepatic metastasis (n = 1) and lung metastases (n = 1). The survival of the remaining animals was observed. Rabbits in early 3-BrPA infusion group survived significantly longer than those in PBS group [(27 ± 5) vs (17 ± 3) days, P = 0.041]; rabbits in late 3-BrPA infusion group [(42 ± 6) days] survived significantly longer than those in early 3-BrPA infusion group (P = 0.007). An intra-arterial infusion of 3-BrPA could reduce metastasis and prolong survival in rabbits with hepatic VX2 tumor. The earlier the infusion, the better the outcome.

  20. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model

    PubMed Central

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai

    2015-01-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. PMID:26416858

  1. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.

    PubMed

    Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard

    2015-01-01

    Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.

  2. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    PubMed Central

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  3. Preclinical safety evaluation of human platelets treated with antimicrobial peptides in severe combined immunodeficient mice.

    PubMed

    Bosch-Marcé, Marta; Mohan, Ketha V K; Gelderman, Monique P; Ryan, Patricia L; Russek-Cohen, Estelle; Atreya, Chintamani D

    2014-03-01

    Bacterial sepsis is a complication attributed to room temperature (RT)-stored platelets (PLTs) in transfusion medicine. Antimicrobial peptides (AMPs) are emerging as new therapeutic agents against microbes. We had previously demonstrated bactericidal activity of select synthetic AMPs against six types of bacteria in stored PLTs. In this report, we tested these AMPs for their potential antibody response and interference with the recovery and survival of human PLTs in an animal model. Two separate studies were conducted to evaluate the safety of the synthetic AMPs. 1) Two AMPs (PD3 and PD4), derived from thrombin-induced human PLT microbicidal protein, and four repeats of arginine-tryptophan (RW), containing two to five repeats (RW2-RW5), were tested in rabbits for potential antibody response. 2) RT-stored human PLTs treated for 2 hours with each of the six AMPs individually or with phosphate-buffered saline (PBS) alone were infused into severe combined immunodeficient (SCID) mice to evaluate their in vivo recovery and survival by flow cytometry. Except for PD3, which showed a weak immune response, all other peptides did not induce any detectable antibodies in rabbits. Furthermore, all six AMPs tested did not significantly affect the in vivo recovery and survival of human PLTs in SCID mice compared to PBS alone-treated PLTs. Preclinical evaluation studies reported here demonstrate that the selected AMPs used in the study did not adversely affect the human PLT recovery and survival in the SCID mouse model, suggesting further study of AMPs toward addressing the bacterial contamination of PLTs. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model.

    PubMed

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai; Zhang, Chang-Qing; Rahaman, Mohamed N

    2015-12-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel

    2012-08-30

    Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Innovative research of plasma physics for life sciences

    NASA Astrophysics Data System (ADS)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  8. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction

    PubMed Central

    O'Mahony, D Shane; Liles, W Conrad; Altemeier, William A; Dhanireddy, Shireesha; Frevert, Charles W; Liggitt, Denny; Martin, Thomas R; Matute-Bello, Gustavo

    2006-01-01

    Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunction and/or injury. Methods We administered intraperitoneal Escherichia coli lipopolysaccharide (LPS; 1 μg/g) to C57BL/6 mice, and 14 hours later subjected the mice to 6 hours of mechanical ventilation with tidal volumes of 10 ml/kg (LPS + MV). Comparison groups received ventilation but no LPS (MV), LPS but no ventilation (LPS), or neither LPS nor ventilation (phosphate-buffered saline; PBS). Results Myeloperoxidase activity and the concentrations of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC were significantly increased in the lungs of mice in the LPS + MV group, in comparison with mice in the PBS group. Interestingly, permeability changes across the alveolar epithelium and histological changes suggestive of lung injury were minimal in mice in the LPS + MV group. However, despite the minimal lung injury, the combination of mechanical ventilation and LPS resulted in chemical and histological evidence of liver and kidney injury, and this was associated with increases in the plasma concentrations of KC, MIP-2, IL-6, and TNF-α. Conclusion Non-injurious mechanical ventilation strategies interact with endotoxemia in mice to enhance pro-inflammatory mechanisms in the lungs and promote extra-pulmonary end-organ injury, even in the absence of demonstrable acute lung injury. PMID:16995930

  9. Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice.

    PubMed

    Ivani, Saeed; Karimi, Isaac; Tabatabaei, Seyed Reza Fatemi; Syedmoradi, Leila

    2016-07-01

    Carbon nanotubes with extraordinary properties may become a novel drug and gene delivery tool in nanomedicine; however, insufficient information is available regarding their biosafety. Therefore, this work was performed to study the effect of prenatal exposure of single-walled carbon nanotubes (SWCNTs) on reproductive and neurobehavioral endpoints in mice. Thirty pregnant female mice were assigned to three groups (n = 10 for each group). The two treated groups were injected intraperitoneally (i.p.) with 1 or 10 mg/kg body weight (b.w.) of SWCNTs suspended in 1 ml of phosphate buffer saline (PBS) on gestational days 0 and 3. The control group was injected i.p. with an equal volume of PBS. The neurobehavioral ontogeny of pups was evaluated using a modified Fox battery. A decrease in litter size on postnatal day 2 was observed in the group treated with 10 mg/kg b.w. of SWCNTs whereas no significant differences between groups were observed in any other parameters. The behavioral development of pups did not show significant differences during growth except for the surface righting reflex, which showed significant delay compared to control in the group treated with 1 mg/kg b.w. SWCNTs. Moreover, exposed offspring (10 mg/kg b.w. SWCNTs) displayed enhanced anxiety in the elevated plus maze; however, other ethological analysis (Morris water maze and open field test) did not show behavioral changes in the experimental groups. In conclusion, the present results demonstrated small changes in offspring sensory and motor development following exposure to SWCNTs and support the idea that SWCNT risk assessment merits further investigation. © The Author(s) 2014.

  10. Behavioral characteristics of capsaicin mediated cutaneous, myogenic, and arthrogenic orofacial nociception in rats.

    PubMed

    Rohrs, Eric L; Neubert, John K; Caudle, Robert M; Allen, Kyle D

    2018-04-30

    To assess changes in orofacial tactile sensitivity and gnawing related to capsaicin-mediated cutaneous, myogenic, and arthrogenic nociception in the rat. After recovery from anesthesia, orofacial tactile sensitivity and gnawing were assessed using operant testing methods following capsaicin application. Twenty female CD-Hairless rats were tested with bilateral capsaicin cream application to the cheek or with isoflurane anesthesia alone. Following several weeks of recovery, animals (n = 20) received either 10 μL unilateral masseter injections of vehicle, or phosphate buffered saline (PBS) to assess injection sensitization. After several weeks, masseter capsaicin (1.0%) injections (10 μL) were assessed compared to vehicle and PBS (n = 13). Weeks later capsaicin TMJ injections were evaluated. Animals (n = 11) received either 10 μL unilateral TMJ injections of capsaicin solution (1%) or vehicle. Capsaicin cream to the skin significantly altered gnawing activity (increased puncture time by 248 s (p = 0.0002)) and tactile sensitivity (decreased tolerated bottle distance by 0.980 cm compared to isoflurane only (p = 0.0001)). Similarly, capsaicin masseter injection increased puncture time (339.6 s, p = 0.07) and decreased tolerated bottle distance (1.04 cm, p = 0.005) compared to vehicle. However, intra-articular capsaicin in the TMJ only modified gnawing (increased puncture time by 133 s), with no changes found in tactile sensitivity compared to vehicle. Application of capsaicin to the skin and masseter had similar behavioral effects; however, intra-articular injections to the TMJ only affected gnawing. These data indicate the behavioral changes in rodent models of myogenic and cutaneous pain may be markedly different than models of arthrogenic pain originating from the TMJ. Copyright © 2018. Published by Elsevier Ltd.

  11. Surface characteristics of Bacillus cereus and its adhesion to stainless steel.

    PubMed

    Peng, J S; Tsai, W C; Chou, C C

    2001-04-11

    The ability of a Bacillus cereus strain, isolated from spoiled milk, to adhere to the surface of stainless steel chips was evaluated during its growth in diluted tryptic soy broth (DTSB). The number of cells that adhered to the surface increased markedly as the culture reached the end of the log phase and entered stationary phase, and continued to increase with further incubation. The surface properties of cells from the log, stationary, and late stationary phases were measured by hydrophobic interaction chromatography (HIC) and electrostatic interaction chromatography (ESIC). It was found that surface hydrophobicity of B. cereus vegetative cells from the late stationary phase was the highest followed by those from the stationary phase and the log phase cultures. While the vegetative cells prepared from stationary phase and log phase cultures, respectively, had the highest and the lowest surface charges. Adhesion of B. cereus vegetative cells to stainless steel was positively correlated with the cell surface hydrophobicity (R = 0.979). Surface hydrophobicity and surface positive charge noted on the spores harvested from diluted tryptic soy agar (DTSA) and Mn2+-tryptone glucose extract agar were higher than those harvested from the sucrose or lactose-added DTSA. A wide variation in the surface charge values was noted on the surface of various spores prepared from cultures grown on the four different media tested, while their ability to adhere to stainless steel chips in phosphate buffered saline (PBS) showed no significant difference (p > 0.05). Similarly, the number of spores or vegetative cells adhering to stainless steel suspended in PBS, milk or diluted milk (1000 x) did not differ significantly (p > 0.05).

  12. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention.

    PubMed

    McFadden, Rita-Marie T; Larmonier, Claire B; Shehab, Kareem W; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A; Besselsen, David G; Chase, John H; Caporaso, J Gregory; Jobin, Christian; Ghishan, Fayez K; Kiela, Pawel R

    2015-11-01

    Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.

  13. Remission of systemic lupus erythematosus disease activity with regulatory cytokine interleukin (IL)-35 in Murphy Roths Large (MRL)/lpr mice.

    PubMed

    Cai, Z; Wong, C K; Dong, J; Chu, M; Jiao, D; Kam, N W; Lam, C W K; Tam, L S

    2015-08-01

    The immunological mechanisms mediated by regulatory cytokine interleukin (IL)-35 are unclear in systemic lupus erythematosus (SLE). We investigated the frequency of CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) regulatory T (Treg ) and IL-10(+) regulatory B (Breg ) cells and related immunoregulatory mechanisms in a female Murphy Roths Large (MRL)/lpr mouse model of spontaneous lupus-like disease, with or without IL-35 treatment. A remission of histopathology characteristics of lupus flare and nephritis was observed in the MRL/lpr mice upon IL-35 treatment. Accordingly, IL-35 and IL-35 receptor subunits (gp130 and IL-12Rβ2) and cytokines of MRL/lpr and BALB/c mice (normal controls) were measured. The increased anti-inflammatory cytokines and decreased proinflammatory cytokines were possibly associated with the restoration of Treg and Breg frequency in MRL/lpr mice with IL-35 treatment, compared to phosphate-buffered saline (PBS) treatment. mRNA expressions of Treg -related FoxP3, IL-35 subunit (p35 and EBI3) and soluble IL-35 receptor subunit (gp130 and IL12Rβ2) in splenic cells were up-regulated significantly in IL-35-treated mice. Compared with the PBS treatment group, IL-35-treated MRL/lpr mice showed an up-regulation of Treg -related genes and the activation of IL-35-related intracellular Janus kinase/signal transducer and activator of transcription signal pathways, thereby indicating the immunoregulatory role of IL-35 in SLE. These in vivo findings may provide a biochemical basis for further investigation of the regulatory mechanisms of IL-35 for the treatment of autoimmune-mediated inflammation. © 2015 British Society for Immunology.

  14. Administration of a Sol-Gel Formulation of Phenylephrine Using Low-Temperature Hollow Microneedle for Treatment of Intermittent Fecal Incontinence.

    PubMed

    Lee, Hyunji; Park, Jung-Hwan; Park, Jung Ho

    2017-12-01

    A low temperature hollow microneedle system was devised to deliver sol-gel transition formulation near the surface of the skin for extended release and local delivery of drug by a non-invasive method. This new system can improve treatment of intermittent fecal incontinence. The low-temperature system was integrated with a hollow microneedle to maintain the low temperature of the sol formulation. Various sol-gel formulations using Pluronic F-127 (PF-127) and Hydroxy-propyl-methyl-cellulose (HPMC) were prepared, and their gelation temperature, flow property, and diffusion retardation were observed. Resting anal sphincter pressure in response to a phenylephrine (PE) sol-gel formulation was measured using an air-charged catheter. The biocompatibility of the sol-gel PE formulation was evaluated by observing the immunological response. When the PF-127 25%, HPMC 1% and PE formulation (PF25-HPMC1-PE) was injected through the peri-anal skin of the rat in vivo, the highest pressure on the anal sphincter muscle occurred at 6-8 h and anal pressure increased and lasted twice as long as with the phosphate-buffered saline (PBS)-PE formulation. There was no significant difference in the number of mast cells after administration into the rat in vivo between the PF25-HPMC1-PE formulation and the PBS-PE formulation. The combination of a low-pain hollow microneedle system and an injectable sol-gel formulation improved the efficacy of treatment of intermittent fecal incontinence. A low-temperature hollow microneedle system using a sol-gel formulation has many applications in medical treatments that require depot effect, local targeting, and pain control.

  15. Injury and subsequent regeneration of muscles for activation of local innate immunity to facilitate the development and relapse of autoimmune myositis in C57BL/6 mice.

    PubMed

    Kimura, Naoki; Hirata, Shinya; Miyasaka, Nobuyuki; Kawahata, Kimito; Kohsaka, Hitoshi

    2015-04-01

    To determine whether injury and regeneration of the skeletal muscles induce an inflammatory milieu that facilitates the development and relapse of autoimmune myositis. The quadriceps of C57BL/6 mice were injured with bupivacaine hydrochloride (BPVC) and evaluated histologically. Macrophages and regenerating myofibers in the treated muscles and differentiating C2C12 myotubes were examined for cytokine expression. Mice were immunized with C protein fragments at the base of the tail and in the right hind footpads (day 0) to evoke systemic anti-C protein immunity and to induce local myositis in the right hind limbs. The contralateral quadriceps muscles were injured with BPVC or phosphate buffered saline (PBS) on day 7 or after spontaneous regression of myositis (day 42). The quadriceps muscle in nonimmunized mice was injured with BPVC on day 7. The muscles were examined histologically 14 days after treatment. The BPVC-injured muscles had macrophage infiltration most abundantly at 3 days after the injection, with emergence of regenerating fibers from day 5. The macrophages expressed inflammatory cytokines, including tumor necrosis factor α, interleukin-1β, and CCL2. Regenerating myofibers and C2C12 myotubes also expressed the cytokines. The BPVC-injected muscles from nonimmunized mice had regenerating myofibers with resolved cell infiltration 14 days after treatment. In mice preimmunized with C protein fragments, the muscles injected with BPVC on day 7 as well as on day 42, but not those injected with PBS, had myositis accompanied by CD8+ T cell infiltration. Injury and regeneration could set up an inflammatory milieu in the muscles and facilitate the development and relapse of autoimmune myositis. Copyright © 2015 by the American College of Rheumatology.

  16. Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy.

    PubMed

    Pelikan, Zdenek

    2013-07-01

    The allergic reaction taking place in the nasal mucosa can induce a secondary ocular (keratoconjunctival) response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type in some patients with keratoconjunctivitis (KC). To investigate the concentration changes of histamine, tryptase, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), eosinophilic peroxidase (EPO), leucotrienes (LTB₄, LTC₄, LTE₄), prostaglandins (PGD₂, PGE₂ and PGF₂α), thromboxane B₂ (TXB₂), myeloperoxidase (MPO), interferon-γ (IFN-γ) and interleukins (IL-2, IL-4 and IL-5) in tears during the SIOR, SLOR and SDYOR. 19 SIORs (p<0.001), 28 SLORs (p<0.001) and 10 SDYORs (p<0.05) recorded in 57 KC patients following nasal challenges with allergens (NPT) and 57 phosphate-buffered saline (PBS) control tests were repeated and supplemented with determination of the mediators in tears. The ocular response types were associated with significant changes (p<0.05) of mediators in tears as follows: (1) SIORs: histamine, tryptase, ECP, LTC₄, PGD₂, PGF₂α, IL-4 and IL-5; (2) SLORs: histamine, ECP, EDN, LTB₄, LTC₄, PGE₂, MPO, IL-4 and IL-5; (3) SDYORs: LTB4, TXB₂, MPO, IFN-γ and IL-2. No significant changes of these factors were measured in tears during the 57 PBS controls (p>0.1). These results demonstrate a causal involvement of nasal allergy in some KC patients, inducing a secondary keratoconjunctival response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type, associated with different inflammatory mediator profiles in the tears, suggesting participation of different hypersensitivity mechanisms. These results also emphasise the diagnostic value of nasal challenge with allergen combined with monitoring of ocular response in KC patients, responding insufficiently to the usual ophthalmologic therapy.

  17. Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiled-coil kinase signaling pathway.

    PubMed

    Deng, Minghong; Luo, Yumei; Li, Yunkui; Yang, Qiuchen; Deng, Xiaoqin; Wu, Ping; Ma, Houxun

    2015-07-01

    The present study aimed to investigate whether klotho gene delivery attenuated renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats. A recombinant adeno-associated virus (rAAV) carrying mouse klotho full-length cDNA (rAAV.mKL), was constructed for in vivo investigation of klotho expression. Diabetes was induced in rats by a single tail vein injection of 60 mg/kg streptozotocin. Subsequently, the diabetic rats received an intravenous injection of rAAV.mKL, rAAV.green fluorescent protein (GFP) or phosphate-buffered saline (PBS). The Sprague-Dawley rat group received PBS and served as the control group. After 12 weeks, all the rats were sacrificed and ELISA, immunohistochemical and histological analyses, fluorescence microscopy, semi-quantitative reverse transcription-polymerase chain reaction and western blottin were performed. A single dose of rAAV.mKL was found to prevent the progression of renal hypertrophy and fibrosis for at least 12 weeks (duration of study). Klotho expression was suppressed in the diabetic rats, but was increased by rAAV.mKL delivery. rAAV.mKL significantly suppressed diabetes-induced renal hypertrophy and histopathological changes, reduced renal collagen fiber generation and decreased kidney hypertrophy index. In addition, rAAV.mKL decreased the protein expression levels of fibronectin and vimentin, while it downregulated the mRNA expression and activity of Rho-associated coiled-coil kinase (ROCK)I in the kidneys of the diabetic rats. These results indicated that klotho gene delivery ameliorated renal hypertrophy and fibrosis in diabetic rats, possibly by suppressing the ROCK signaling pathway. This may offer a novel approach for the long-term control and renoprotection of diabetes.

  18. Microfluidic Fabrication of Cell Adhesive Chitosan Microtubes

    PubMed Central

    Oh, Jonghyun; Kim, Keekyoung; Won, Sung Wook; Cha, Chaenyung; Gaharwar, Akhilesh; Selimović, Šeila; Bae, Hojae; Lee, Kwang Ho; Lee, Dong Hwan; Lee, Sang-Hoon; Khademhosseini, Ali

    2013-01-01

    Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 μm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70-150 μm and 120-185 μm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution and adjusted the pH values of the chitosan pre-polymer solution with gelatin and TPP. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92% with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering. PMID:23355068

  19. Effect of heat-killed Escherichia coli, lipopolysaccharide, and muramyl dipeptide treatments on the immune response phenotype and allergy in neonatal pigs sensitized to the egg white protein ovomucoid.

    PubMed

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah; Wilkie, Bruce

    2012-12-01

    Predisposition to food allergies may reflect a type 2 immune response (IR) bias in neonates due to the intrauterine environment required to maintain pregnancy. The hygiene hypothesis states that lack of early environmental stimulus leading to inappropriate development and bias in IR may also contribute. Here, the ability of heat-killed Escherichia coli, lipopolysaccharide (LPS), or muramyl dipeptide (MDP) to alter IR bias and subsequent allergic response in neonatal pigs was investigated. Three groups of three litters of pigs (12 pigs/litter) were given intramuscular injections of E. coli, LPS, MDP, or phosphate-buffered saline (PBS) (control) and subsequently sensitized to the egg white allergen ovomucoid using an established protocol. To evaluate change in IR bias, immunoglobulin isotype-associated antibody activity (AbA), concentrations of type 1 and 2 and proinflammatory cytokines released from mitogen-stimulated blood mononuclear cells, and the percentage of T-regulatory cells (T-regs) in blood were measured. Clinical signs of allergy were assessed after oral challenge with egg white. The greatest effect on IR bias was observed in MDP-treated pigs, which had a type 2-biased phenotype by isotype-specific AbA, cytokine production, and a low proportion of T-regs. LPS-treated pigs had decreased type 1- and type 2-associated AbA. E. coli-treated pigs displayed increased response to Ovm as AbA and had more balanced cytokine profiles, as well as the highest proportion of T-regs. Accordingly, pigs treated with MDP were more susceptible to allergy than PBS controls, while pigs treated with LPS were less susceptible. Treatment with E. coli did not significantly alter the frequency of clinical signs.

  20. Effect of Heat-Killed Escherichia coli, Lipopolysaccharide, and Muramyl Dipeptide Treatments on the Immune Response Phenotype and Allergy in Neonatal Pigs Sensitized to the Egg White Protein Ovomucoid

    PubMed Central

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah

    2012-01-01

    Predisposition to food allergies may reflect a type 2 immune response (IR) bias in neonates due to the intrauterine environment required to maintain pregnancy. The hygiene hypothesis states that lack of early environmental stimulus leading to inappropriate development and bias in IR may also contribute. Here, the ability of heat-killed Escherichia coli, lipopolysaccharide (LPS), or muramyl dipeptide (MDP) to alter IR bias and subsequent allergic response in neonatal pigs was investigated. Three groups of three litters of pigs (12 pigs/litter) were given intramuscular injections of E. coli, LPS, MDP, or phosphate-buffered saline (PBS) (control) and subsequently sensitized to the egg white allergen ovomucoid using an established protocol. To evaluate change in IR bias, immunoglobulin isotype-associated antibody activity (AbA), concentrations of type 1 and 2 and proinflammatory cytokines released from mitogen-stimulated blood mononuclear cells, and the percentage of T-regulatory cells (T-regs) in blood were measured. Clinical signs of allergy were assessed after oral challenge with egg white. The greatest effect on IR bias was observed in MDP-treated pigs, which had a type 2-biased phenotype by isotype-specific AbA, cytokine production, and a low proportion of T-regs. LPS-treated pigs had decreased type 1- and type 2-associated AbA. E. coli-treated pigs displayed increased response to Ovm as AbA and had more balanced cytokine profiles, as well as the highest proportion of T-regs. Accordingly, pigs treated with MDP were more susceptible to allergy than PBS controls, while pigs treated with LPS were less susceptible. Treatment with E. coli did not significantly alter the frequency of clinical signs. PMID:23081818

  1. Simulated systemic recurrent Mycoplasma infection in rats induces recurrent sickness responses without residual impairment in spatial learning and memory.

    PubMed

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2012-02-01

    In spite of their prevalence and importance, recurrent acute infections seldom have been investigated in the laboratory. We set out to measure fever and sickness behaviour in simulated recurrent Mycoplasma infection; Mycoplasma is a common clinical cause of recurrent acute infection. Male Sprague-Dawley rats had radiotransponders implanted to measure abdominal temperature and cage activity. After recovery, rats received three intraperitoneal (I.P.) injections, 10 days apart, of either fibroblast-stimulating lipopeptide-1 (FLS-1), a pyrogenic moiety of Mycoplasma salivarium, at a dose of 500 μg.kg(-1) in 1 ml.kg(-1) phosphate-buffered saline (PBS), or vehicle (PBS, 1 ml.kg(-1)). Body mass and food intake were measured daily. For measurement of learning and memory, training in a Morris Water Maze commenced 10 days after the last of the three successive injections and continued daily for 4 days. Spatial memory was assessed on the following day. Hippocampal tissue of rats was collected on the day of the last exposure to the maze. Recurrent FSL-1 administration induced recurrent fevers (~1°C) for about 9h, recurrent lethargy (~40-60%) for 1 day, recurrent anorexia (~16-30%) for 1 day, and recurrent reductions in the rate of mass gain (~112%) for 1 day, but did not induce persistent stunting. Recurrent FSL-1 administration did not result in tolerance to fever, lethargy or anorexia. There was no residual histological damage to the hippocampus and no residual detrimental effect in learning or memory in rats. Though we cannot extrapolate our results directly to humans, clinical recurrent acute Mycoplasma infection may not impose a high risk of stunting or impaired spatial learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Dissociation between learning and memory impairment and other sickness behaviours during simulated Mycoplasma infection in rats.

    PubMed

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2011-11-01

    To investigate potential consequences for learning and memory, we have simulated the effects of Mycoplasma infection, in rats, by administering fibroblast-stimulating lipopepide-1 (FSL-1), a pyrogenic moiety of Mycoplasma salivarium. We measured the effects on body temperature, cage activity, food intake, and on spatial learning and memory in a Morris Water Maze. Male Sprague-Dawley rats had radio transponders implanted to measure abdominal temperature and cage activity. After recovery, rats were assigned randomly to receive intraperitoneal (I.P.) injections of FSL-1 (500 or 1000 μg kg(-1) in 1 ml kg(-1) phosphate-buffered saline; PBS) or vehicle (PBS, 1 ml kg(-1)). Body mass and food intake were measured daily. Training in the Maze commenced 18 h after injections and continued daily for four days. Spatial memory was assessed on the fifth day. In other rats, we measured concentrations of brain pro-inflammatory cytokines, interleukin (IL)-1β and IL-6, at 3 and 18 h after injections. FSL-1 administration induced a dose-dependent fever (∼1°C) for two days, lethargy (∼78%) for four days, anorexia (∼65%) for three days and body mass stunting (∼6%) for at least four days. Eighteen hours after FSL-1 administration, when concentrations of IL-1β, but not that of IL-6, were elevated in both the hypothalamus and the hippocampus, and when rats were febrile, lethargic and anorexic, learning in the Maze was unaffected. There also was no memory impairment. Our results support emerging evidence that impaired learning and memory is not inevitable during simulated infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Increased alveolar plasminogen activator in early asbestosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantin, A.; Allard, C.; Begin, R.

    1989-03-01

    Alveolar macrophage-derived plasminogen activator (PA) activity is decreased in some chronic interstitial lung diseases such as idiopathic pulmonary fibrosis and sarcoidosis but increased in experimental models of acute alveolitis. Although asbestos fibers can stimulate alveolar macrophages (AM) to release PA in vitro, the effect of chronic asbestos exposure of the lower respiratory tract on lung PA activity remains unknown. The present study was designed to evaluate PA activity of alveolar macrophages and bronchoalveolar lavage (BAL) fluid in asbestos-exposed sheep and asbestos workers. Forty-three sheep were exposed to either 100 mg UICC chrysotile B asbestos in 100 ml phosphate-buffered saline (PBS)more » or to 100 ml PBS by tracheal infusion every 2 wk for 18 months. At Month 18, chest roentgenograms were analyzed and alveolar macrophage and extracellular fluid PA activity were measured in samples obtained by BAL. Alveolar macrophage PA activity was increased in the asbestos-exposed sheep compared to control sheep (87.2 +/- 17.3 versus 41.1 +/- 7.2 U/10(5) AM-24 h, p less than 0.05) as was the BAL fluid PA activity (674.9 +/- 168.4 versus 81.3 +/- 19.7 U/mg alb-24 h, p less than 0.01). Among the asbestos-exposed sheep, 10 had normal chest roentgenograms (Group SA) and 15 had irregular interstitial opacities (Group SB). Strikingly, whereas Group SA did not differ from the control group in BAL cellularity or PA activity, Group SB had marked increases in alveolar macrophages (p less than 0.005), AM PA activity (p less than 0.02), and BAL PA activity (p less than 0.001) compared to the control group.« less

  4. [Asthma caused by Lucilia Caesar larvae: clinical and immunologic study].

    PubMed

    Siracusa, A; Verga, A; Bacoccoli, R; Fabbri, A; Felicioni, D

    1989-01-01

    Lucilia Caesar larvae (LCL) are used as live fish bait by anglers. Five cases of asthma and rhinoconjunctivitis following exposure to LCL are reported. Three had work-related asthma as they were working on a fish bait farm or shop and two had asthma when they went fishing. In one subject exposure to LCL caused asthma, rhinoconjunctivitis and contact urticaria. In four subjects peak expiratory flow rate (PEFR) was monitored during exposure to LCL. In three out of four subjects there was evidence of LCL-related asthma. In one subject it was not possible to record PEFR during exposure to LCL, as he had not gone fishing since 1985. Two extracts of LCL were prepared: one was the PBS (phosphate-buffered saline) washing fluid of LCL, the other was the PBS extract of homogenized LCL. Positive cutaneous prick tests to both LCL extracts were detected in three out of four symptomatic subjects. Specific IgE against both LCL extract antigens were found by the RAST method in four out of five subjects with LCL-related asthma. One subject had both negative skin tests and RAST. Specificity and potency of LCL-IgE binding was shown by RAST inhibition method performed on the serum pool of four patients with positive RAST results. Significant inhibition of more than 50% by LCL washing fluid at a dilution extract was found at a dilution of 1:10 and by homogenized LCL extract at a dilution of 1:100. No significant inhibition of LCL-IgE binding by dermatophagoides, parietaria and milk antigens was found. This study demonstrated that LCL emanations are potent sensitizers and elicit IgE-mediated asthma.

  5. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  6. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.

    PubMed

    Lee, David E; Brown, Jacob L; Rosa-Caldwell, Megan E; Blackwell, Thomas A; Perry, Richard A; Brown, Lemuel A; Khatri, Bhuwan; Seo, Dongwon; Bottje, Walter G; Washington, Tyrone A; Wiggs, Michael P; Kong, Byung-Whi; Greene, Nicholas P

    2017-05-01

    Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia. Copyright © 2017 the American Physiological Society.

  7. Immune protection of microneme 7 (EmMIC7) against Eimeria maxima challenge in chickens.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    In the present study, the immune protective effects of recombinant microneme protein 7 of Eimeria maxima (rEmMIC7) and a DNA vaccine encoding this antigen (pVAX1-EmMIC7) on experimental challenge were evaluated. Two-week-old chickens were randomly divided into five groups. Experimental groups of chickens were immunized with 100 μg DNA vaccine pVAX1-MIC7 or 200 μg rEmMIC7, while control groups of chickens were injected with pVAX1 plasmid or sterile phosphate buffered saline (PBS). The results showed that the anti-EmMIC7 antibody titres in chickens of both rEmMIC7 and pVAX1-MIC7 groups were significantly higher as compared to PBS and pVAX1 control (P < .05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation response compared with the controls (P < .05). Serum from chickens immunized with pVAX1-MIC7 and rEmMIC7 displayed significantly high levels of interleukin-2, interferon-γ, IL-10, IL-17, tumour growth factor-β and IL-4 (P < .05) compared to those of negative controls. The challenge experiment results showed that both the recombinant antigen and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss and enhance oocyst decrease ratio. The anti-coccidial index (ACI) of the pVAX1-MIC7 group was 167.84, higher than that of the recombinant MIC7 protein group, 167.10. Our data suggested that immunization with EmMIC7 was effective in imparting partial protection against E. maxima challenge in chickens and it could be an effective antigen candidate for the development of new vaccines against E. maxima.

  8. Effect of interleukin-4 on orthodontic tooth movement and associated root resorption.

    PubMed

    Hakami, Zaki; Kitaura, Hideki; Kimura, Keisuke; Ishida, Masahiko; Sugisawa, Haruki; Ida, Hiroto; Jafari, Saeed; Takano-Yamamoto, Teruko

    2015-02-01

    Interleukin-4 (IL-4) is a recognized immunomodulatory cytokine that regulates bone homeostasis. However, the influence of IL-4 on orthodontic tooth movement (OTM) and subsequent root resorption is still unknown. Therefore, the purpose of this study was to investigate the effect of IL-4 on tooth movement and its associated root resorption in a mouse model. The maxillary first molars of four male mice for each experimental group were subjected to mesial force by a nickel titanium coil spring for 12 days. Control mice were not given appliances and injections. Varying doses of IL-4 were injected locally, adjacent to the first molar. Two sets of experiments were designed. The first set was composed of three groups: the control, treatment with phosphate-buffered saline (PBS), or 1.5 µg/day of IL-4. The second set was composed of five groups: the control, treatment with 0 (PBS only), 0.015, 0.15, or 1.5 µg/day of IL-4. The distance of OTM was measured and tartrate-resistant acid phosphatase positive cells along the loaded alveolar bone and root surface were identified. The root resorption associated with OTM was evaluated by a scanning electron microscope. The amount of OTM and the number of osteoclasts were significantly decreased in the IL-4-treated mice. Moreover, IL-4 significantly suppressed force-induced odontoclasts and root resorption. IL-4 inhibits tooth movement and prevents root resorption in the mouse model. These results suggest that IL-4 could be used as a useful adjunct to regulate the extent of OTM and also to control root resorption. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Duration of growth depression and pathogen shedding in experimentally reproduced poult enteritis syndrome.

    PubMed

    Jindal, Naresh; Patnayak, Devi P; Ziegler, Andre F; Lago, Alfonso; Goyal, Sagar M

    2009-12-01

    An experimental study was conducted to determine the duration of growth depression and virus shedding in turkey poults after oral inoculation with intestinal contents from birds affected with poult enteritis syndrome (PES). Poults at day 14 of age were divided into four groups (groups A, B, C, and D) of 40 poults each and inoculated orally with unfiltered supernatant, filtered supernatant, sediment suspended in phosphate-buffered saline (PBS), or PBS alone (control), respectively. The poults were observed daily for clinical signs, and their growth response, pathology, and pathogen shedding were examined at 10, 20, 30, 40, and 50 days postinoculation (DPI). Body weights of eight poults in each group were recorded at each of these intervals followed by euthanasia. Dullness, depression, and diarrhea were observed in birds inoculated with supernatant or sediment suspension. All three treatments significantly reduced body weight gain of poults compared with the control group; average weight loss was 14%. Gross pathologic changes consisted of pale distended intestines with watery contents and distended ceca with frothy and watery contents. Astrovirus and rotavirus were detected in the inoculum by reverse transcription (RT)-PCR, whereas Salmonella was identified on bacterial isolation. Both viruses were detected in treated poults by RT-PCR for up to 10 and 40 DPI, respectively. Of the three treatments, sediment suspension caused maximal decrease in weight gain as well as greatest pathologic lesions followed by unfiltered supernatant and filtered supernatant. These findings suggest a role for bacteria in increasing the severity of PES. Lower weight gain in treated poults (compared with controls) at 9 wk of age also indicates that PES-affected poults may not reach normal weight at marketing, leading to economic losses for the producer.

  10. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections.

    PubMed

    Manicam, Caroline; Pitz, Susanne; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2014-01-01

    The removal of excessive melanin pigments that obscure ocular tissue morphology is important to address scientific questions and for differential diagnosis of ocular tumours based on histology. Thus, the goal of the present study was to establish an effective and fast melanin bleaching method for paraffin and frozen mouse and human ocular tissues. Paraffin-embedded and frozen ocular specimens from mice and human donors were subjected to bleaching employing two methods. The first employed potassium permanganate (KMnO4) with oxalic acid, and the second 10% hydrogen peroxide (H2O2). To determine optimal bleaching conditions, depigmentation was carried out at various incubation times. The effect of diluents used for 10% H2O2 was assessed using phosphate-buffered saline (PBS), and deionized water. Three different slide types and two fixatives, which were ice-cold acetone with 80% methanol, and 4% paraformaldehyde (PFA) were used to determine the optimal conditions for better tissue adherence during bleaching. All tissues were stained in hematoxylin and eosin for histological evaluation. Optimal bleaching was achieved using warm 10% H2O2 diluted in PBS at 65°C for 120 minutes. Chromium-gelatin-coated slides prevented tissue detachment. Adherence of cryosections was also improved with post-fixation using 4% PFA and overnight air-drying at RT after cryosectioning. Tissue morphology was preserved under these conditions. Conversely, tissues bleached in KMnO4/oxalic acid demonstrated poor depigmentation with extensive tissue damage. Warm dilute H2O2 at 65°C for 120 minutes rapidly and effectively bleached both cryo- and paraffin sections of murine and human ocular tissues.

  11. Ascorbic acid as a free radical scavenger in porcine and bovine aqueous humour.

    PubMed

    Erb, Carl; Nau-Staudt, Kerstin; Flammer, Josef; Nau, Werner

    2004-01-01

    To study the antioxidant activity, UV absorption, concentration and stability of ascorbic acid (AA) in porcine and bovine aqueous humour (AH). Porcine and bovine AH was taken within 5 min after death and frozen at -70 degrees C. The characteristic UV absorption band of AA and the concentration of AA in AH was determined by UV spectrophotometry. The antioxidant activity of AA to serve as a free radical scavenger in AH has been determined by using a novel fluorescent probe for antioxidants, the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO). The fluorescence lifetime and intensity of this probe reflect the concentration of dissolved antioxidants. The time-resolved fluorescence of DBO (laser excitation at 351 nm) in AH and in a neutral phosphate-buffered saline (PBS) solution containing only the natural amount of AA as an additive were measured. The characteristic UV absorption band of AA has its maximum at 266 nm in AH. The concentration of AA in porcine and bovine AH was found to be 0.547 +/- 0.044 and 1.09 +/- 0.16 mM, respectively, by spectrophotometry. The fluorescence lifetime of the probe DBO was reduced from 320 +/- 5 ns in pure aerated PBS to 205 +/- 5 ns in porcine AH and 165 +/- 3 ns in bovine AH. A detailed kinetic analysis of the lifetime shortening suggests that AA contributes approximately 75 and 85% to the antioxidant activity of porcine and bovine AH, respectively. Our experiments suggest that AA is the major contributor to the antioxidant activity of porcine and bovine AH. The role of AA to serve as an antioxidant in AH is discussed. In addition, UV spectrophotometry is established as an alternative method to determine the concentration of AA in AH. Copyright 2004 S. Karger AG, Basel

  12. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes.

    PubMed

    Zhu, Yunxiao; Hoshi, Ryan; Chen, Siyu; Yi, Ji; Duan, Chongwen; Galiano, Robert D; Zhang, Hao F; Ameer, Guillermo A

    2016-09-28

    Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus. Altered cell migration due to microcirculatory deficiencies as well as excessive and prolonged reactive oxygen species production are implicated in the delayed healing of DFUs. The goal of this research was to assess whether sustained release of SDF-1, a chemokine that promotes endothelial progenitor cell homing and angiogenesis, from a citrate-based antioxidant thermoresponsive polymer would significantly improve impaired dermal wound healing in diabetes. Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) was synthesized via sequential polycondensation and free radical polymerization reactions. SDF-1 was entrapped via gelation of the PPCN+SDF-1 solution above its lower critical solution temperature (LCST) and its release and bioactivity was measured. The effect of sustained release of SDF-1 from PPCN (PPCN+SDF-1) versus a bolus application of SDF-1 in phosphate buffered saline (PBS) on wound healing was evaluated in a diabetic murine splinted excisional dermal wound model using gross observation, histology, immunohistochemistry, and optical coherence tomography microangiography. Increasing PPCN concentration decreased SDF-1 release rate. The time to 50% wound closure was 11days, 16days, 14days, and 17days for wounds treated with PPCN+SDF-1, SDF-1 only, PPCN only, and PBS, respectively. Wounds treated with PPCN+SDF-1 had the shortest time for complete healing (24days) and exhibited accelerated granulation tissue production, epithelial maturation, and the highest density of perfused blood vessels. In conclusion, sustained release of SDF-1 from PPCN is a promising and easy to use therapeutic strategy to improve the treatment of chronic non-healing DFUs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alteration in plasma and striatal levels of d-serine after d-serine administration with or without nicergoline: An in vivo microdialysis study.

    PubMed

    Onozato, Mayu; Nakazawa, Hiromi; Ishimaru, Katsuyuki; Nagashima, Chihiro; Fukumoto, Minori; Hakariya, Hitomi; Sakamoto, Tatsuya; Ichiba, Hideaki; Fukushima, Takeshi

    2017-09-01

    d-Serine (d-Ser), a co-agonist of N -methyl-d-aspartate receptor (NMDAR), is effective for treating schizophrenia. The present study investigated changes in plasma and striatal d-Ser levels in Sprague-Dawley (SD) rats after intraperitoneal d-Ser administration alone or together with nicergoline (Nic), a commercial cerebral ameliorating drug, using in vivo microdialysis (MD) to explore the function of Nic. Phosphate-buffered saline (PBS) or Nic (0, 1.0, or 3.0 mg/kg) followed by d-Ser (5.0, 10.0, 20.0, and 50.0 mg/kg for PBS or 20.0 mg/kg for Nic) was administered intraperitoneally to male SD rats, and the profiles of d-Ser levels in plasma and striatal MD samples were examined by high-performance liquid chromatography (HPLC) with fluorescence detection. The area under the curve (AUC) for the MD and plasma samples was also calculated and statistically compared among groups. AUC values of d-Ser increased in a d-Ser dose-dependent manner in plasma samples, while a proportional increase in the AUC values of striatal MD samples was only observed in d-Ser doses up to 20 mg/kg. The Nic co-administered group showed a significant increase in the AUC of plasma d-Ser in a Nic dose-dependent manner, but the AUC in striatal d-Ser significantly decreased with increasing Nic doses suggesting that Nic may prevent excess d-Ser from penetrating the central nervous system (CNS). Nic may prevent an excessive distribution of exogenous d-Ser, such as that from a dietary origin, into the CNS by suppressing excitatory neurotransmission through NMDAR.

  14. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice.

    PubMed

    Xin, Jinge; Zeng, Dong; Wang, Hesong; Ni, Xueqin; Yi, Dan; Pan, Kangcheng; Jing, Bo

    2014-08-01

    The increasing prevalence of obesity worldwide is associated with a parallel increase in non-alcoholic fatty liver disease (NAFLD). To investigate the effect of Lactobacillus johnsonii BS15 on NAFLD, 120 male ICR mice were randomly divided into four groups and administrated with BS15 (2 × 10(7) cfu/0.2 mL or 2 × 10(8) cfu/0.2 mL) or phosphate buffered saline (PBS) throughout a 17-week experimental period. The mice were fed with normal chow diet (NCD) 5 weeks before the experimental period. Afterward, with the exception of the PBS group, NCD was changed into high-fat diet (HFD) for the remaining experimental period. Results showed that BS15-treated HFD mice were protected from hepatic steatosis and hepatocyte apoptosis. BS15 exhibited a positive effect on liver lipid peroxidation through an anti-oxidative stress activity by enhancing the liver antioxidant defense system. In addition, BS15 inhibited the insulin resistance; decreased the mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, and peroxisome proliferator-activated receptor γ; and increased the expression of the fasting-induced adipose factor in livers. Meanwhile, BS15 attenuated mitochondria abnormalities when the content of uncoupling protein-2 decreased and cytochrome c increased in NAFLD mice. BS15 also reduced the level of serum lipopolysaccharide in NAFLD mice by lowering the intestinal permeability and adjusting gut flora, followed by the downregulation of the TNFα mRNA level in liver and the serum level of C-reactive protein. These findings suggest that BS15 may be effective in preventing NAFLD induced by HFD.

  15. SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA

    2016-06-15

    Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCAmore » and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.« less

  16. Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion Following Bone Fracture.

    PubMed

    Fukui, Tomoaki; Mifune, Yutaka; Matsumoto, Tomoyuki; Shoji, Taro; Kawakami, Yohei; Kawamoto, Atsuhiko; Ii, Masaaki; Akimaru, Hiroshi; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Alev, Cantas; Kuroda, Ryosuke; Kurosaka, Masahiro; Asahara, Takayuki

    2015-01-01

    We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34(+) cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34(+) cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34(+) cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 10(5) GM-PB CD34(+) cells (CD34(+) group), 1 × 10(7) GM-PB MNCs (containing approximately 1 × 10(5) GM-PB CD34(+) cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34(+) and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34(+) group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34(+) cells is a practical and effective strategy for treatment of nonunion after fracture.

  17. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  18. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain increased with time in culture. Histology demonstrated cell infiltration through the full thickness of all scaffolds and immunofluorescence demonstrated greater expression of type I, but not type III collagen through the full thickness of the scaffold in TDM-scaffolds compared to other treatment groups. Together, these data suggest that nonaligned multilayered electrospun scaffolds permit tenogenic differentiation by hASCs and that TDM may promote some aspects of this differentiation. PMID:23808760

  19. Immunogenicity and therapeutic effects of recombinant Ag85AB fusion protein vaccines in mice infected with Mycobacterium tuberculosis.

    PubMed

    Liang, Yan; Zhang, Junxian; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Ning; Hou, Ying; Shi, Yingchang; Wang, Lan; Wu, Xueqiong

    2017-07-13

    The immune function of tuberculosis (TB) patients is disordered. By using immune regulators to assist chemotherapy for TB the curative effect might be improved. In this study, a vaccine containing Mycobacterium tuberculosis (M. tuberculosis) recombinant Ag85AB fusion protein (rAg85AB) was constructed and evaluated. The mice were immunized intramuscularly three times at two-week intervals with Ag85AB fusion protein combined with Corynebacterium parvum adjuvant (rAg85AB+CP). In comparison to control mice that received either CP alone or saline, the mice that received rAg85AB+CP had significantly higher number of T cells secreting IFN-γ and higher levels of specific antibodies of IgG, IgG1 and IgG2a isotypes in sera. The specific antibodies also had higher ratios of IgG2a to IgG1, indicating a predominant Th1 immune response. To test for immunotherapy of TB, M. tuberculosis infected mice were given three intramuscular doses of 20μg, 40μg or 60μg of rAg85AB in rAg85AB+CP, or phosphate-buffered saline (PBS), or CP or Mycobacterium phlei (M. Phlei) F.U.36. Compared with the PBS group, 20µg, 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups reduced the pulmonary bacterial loads by 0.13, 0.15, 0.42 and 0.40 log 10 , and the liver bacterial loads by 0.64, 0.64, 0.53 and 0.61 log 10 , respectively. Pathological changes of lungs were less, and the lesions were limited to a certain extent in 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups. These results showed that rAg85AB+CP had immunotherapeutic effect on TB, significantly increasing the cellular immune response, and inhibiting the growth of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pleiotrophin as a Growth Factor and Therapeutic Target in Breast Cancer

    DTIC Science & Technology

    1997-10-01

    novel phospholipase A2 related gene. Nucl Acid Res 21:135-143. 11. Gattoni-Celli, S., K . Kirsch, S. Kalled , and K . J. Isselbacher. 1986. Expression...clone (G11-F7) is enlarged. Genomic Southern blot probes (a,b,c) and restriction sites are shown (B=BamHI, H=HindIII, Sc=ScaI, K =KpnI). 10WJ 3fr 4&V...otherwise in 25 mM Tris pH8.3/200 mM glycine/20% methanol. The membrane was blocked in PBS (phospate-buffered saline )/0.1% Tween 20/5% powdered milk and

  1. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  2. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.

    2016-04-01

    Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.

  3. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    PubMed

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  4. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Nourmohammadi, Niki; Bian, Ka; Murad, Ferid; Sherman, Jonathan H.; Keidar, Michael

    2016-05-01

    Over past several years, the cold plasma-stimulated medium (PSM) has shown its remarkable anti-cancer capacity in par with the direct cold plasma irradiation on cancer cells or tumor tissues. Independent of the cold plasma device, PSM has noticeable advantage of being a flexible platform in cancer treatment. Currently, the largest disadvantage of PSM is its degradation during the storage over a wide temperature range. So far, to stabilize PSM, it must be remained frozen at -80 °C. In this study, we first reveal that the degradation of PSM is mainly due to the reaction between the reactive species and specific amino acids; mainly cysteine and methionine in medium. Based on this finding, both H2O2 in PSM and the anti-cancer capacity of PSM can be significantly stabilized during the storage at 8 °C and -25 °C for at least 3 days by using phosphate-buffered saline (PBS) and cysteine/methionine-free Dulbecco’s Modified Eagle Medium (DMEM). In addition, we demonstrate that adding a tyrosine derivative, 3-Nitro-L-tyrosine, into DMEM can mitigate the degradation of PSM at 8 °C during 3 days of storage. This study provides a solid foundation for the future anti-cancer application of PSM.

  5. Preparation of Cu2O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection

    PubMed Central

    He, Quanguo; Liu, Jun; Liu, Xiaopeng; Li, Guangli; Deng, Peihong; Liang, Jing

    2018-01-01

    Cu2O-reduced graphene oxide nanocomposite (Cu2O-RGO) was used to modify glassy carbon electrodes (GCE), and applied for the determination of dopamine (DA). The microstructure of Cu2O-RGO nanocomposite material was characterized by scanning electron microscope. Then the electrochemical reduction condition for preparing Cu2O-RGO/GCE and experimental conditions for determining DA were further optimized. The electrochemical behaviors of DA on the bare electrode, RGO- and Cu2O-RGO-modified electrodes were also investigated using cyclic voltammetry in phosphate-buffered saline solution (PBS, pH 3.5). The results show that the oxidation peaks of ascorbic acid (AA), dopamine (DA), and uric acid (UA) could be well separated and the peak-to-peak separations are 204 mV (AA-DA) and 144 mV (DA-UA), respectively. Moreover, the linear response ranges for the determination of 1 × 10−8 mol/L~1 × 10−6 mol/L and 1 × 10−6 mol/L~8 × 10−5 mol/L with the detection limit 6.0 × 10−9 mol/L (S/N = 3). The proposed Cu2O-RGO/GCE was further applied to the determination of DA in dopamine hydrochloride injections with satisfactory results. PMID:29329206

  6. Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite.

    PubMed

    He, Dawei; Dong, Wei; Tang, Songchao; Wei, Jie; Liu, Zhenghui; Gu, Xiaojiang; Li, Ming; Guo, Han; Niu, Yunfei

    2014-06-01

    Mesoporous magnesium silicate (m-MS) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) composite scaffolds were fabricated by solvent-casting and particulate leaching method. The results suggested that the incorporation of m-MS into PCL-PEG-PCL could significantly improve the water adsorption of the m-MS/PCL-PEG-PCL composite (m-MPC) scaffolds. The in vitro degradation behavior of m-MPC scaffolds were determined by testing weight loss of the scaffolds after soaking into phosphate buffered saline (PBS), and the result showed that the degradation of m-MPC scaffolds was obviously enhanced by addition of m-MS into PCL-PEG-PCL after soaking for 10 weeks. Proliferation of MG63 cells on m-MPC was significantly higher than MPC scaffolds at 4 and 7 days. ALP activity on the m-MPC was obviously higher than MPC scaffolds at 7 days, revealing that m-MPC could promote cell differentiation. Histological evaluation showed that the introduction of m-MS into PCL-PEG-PCL enhanced the efficiency of new bone formation when the m-MPC scaffolds implanted into bone defect of rabbits. The results suggested that the inorganic/organic composite of m-MS and PCL-PEG-PCL scaffolds exhibited good biocompatibility, degradability and osteogenesis.

  7. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  8. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  9. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  10. Mechanical properties, structure, bioadhesion, and biocompatibility of pectin hydrogels.

    PubMed

    Markov, Pavel A; Krachkovsky, Nikita S; Durnev, Eugene A; Martinson, Ekaterina A; Litvinets, Sergey G; Popov, Sergey V

    2017-09-01

    The surface structure, biocompatibility, textural, and adhesive properties of calcium hydrogels derived from 1, 2, and 4% solutions of apple pectin were examined in this study. An increase in the pectin concentration in hydrogels was shown to improve their stability toward elastic and plastic deformation. The elasticity of pectin hydrogels, measured as Young's modulus, ranged from 6 to 100 kPa. The mechanical properties of the pectin hydrogels were shown to correspond to those of soft tissues. The characterization of surface roughness in terms of the roughness profile (Ra) and the root-mean-square deviation of the roughness profile (Rq) indicated an increased roughness profile for hydrogels depending on their pectin concentration. The adhesion of AU2% and AU4% hydrogels to the serosa abdominal wall, liver, and colon was higher than that of the AU1% hydrogel. The adhesion of macrophages and the non-specific adsorption of blood plasma proteins were found to increase as the pectin concentration in the hydrogels increased. The rate of degradation of all hydrogels was higher in phosphate buffered saline (PBS) than that in DMEM and a fibroblast cell monolayer. The pectin hydrogel was also found to have a low cytotoxicity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2572-2581, 2017. © 2017 Wiley Periodicals, Inc.

  11. Local application of periodontal ligament stromal cells promotes soft tissue regeneration.

    PubMed

    Baik, H S; Park, J; Lee, K J; Chung, C

    2014-09-01

    To test the potential stimulatory effect of local application of periodontal ligament (PDL) stromal cells on soft tissue regeneration. Fluorescently labeled PDL cells outgrown from extracted human premolars or phosphate-buffered saline were locally injected to the cutaneous wounds created on mice. Soft tissue regeneration was evaluated for 14 days using photographs and histomorphometry. PDL cell engraftment was tracked with confocal microscopy. To detect the paracrine effect of the PDL cells on soft tissue regeneration, PDL cell-conditioned medium (CM) was evaluated for the concentration of secretory factors, transforming growth factor-beta 1 (TGFβ1). The effect of PDL CM on the proliferation and migration of dermal fibroblast and keratinocyte was tested using MTT assay and migration assay. The application of PDL cells significantly promoted soft tissue regeneration compared with the application of PBS. Self-replicating PDL cells were engrafted into the hair follicles of the host tissue. Dermal fibroblast proliferation and keratinocyte migration were significantly enhanced by the treatment with PDL CM. Physiologically significant amount of TGFβ1 was secreted from PDL cells into the CM. Local injection of PDL cells promoted soft tissue regeneration in part by the enhancement of fibroblast proliferation and keratinocyte migration through a paracrine mechanism. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Application of hanging drop technique for stem cell differentiation and cytotoxicity studies.

    PubMed

    Banerjee, Meenal; Bhonde, Ramesh R

    2006-05-01

    The aim of our study is to explore the possibility of using an ancient method of culture technique- the hanging drop technique for stem cell differentiation and cytotoxicity testing. We demonstrate here a variety of novel applications of this age old technique not only to harness the differentiation potential of stem cells into specific lineages but also for cytotoxicity studies. Here we have prepared hanging drop cultures by placing 20 microl micro-drops of nutrient media and 10% Fetal Calf Serum (FCS) containing cells of interest on the lids of 60 mm dishes. Bottom plates of the dishes were filled with sterile Phosphate Buffer Saline (PBS) to avoid desiccation of samples. Lids were then placed on the bottom plates to achieve hanging drop cultures. We utilized this technique for cultivation of ciliated epithelia to study cytotoxicity and differentiation of bone marrow stromal cells. Most importantly the modified culture technique presented here is simple, economical and cost effective in terms of the time taken and the reagents required and are amenable to goal specific modification such as cytotoxicity testing. It is advantageous over the existing system in terms of retention of viability and functionality for longer duration and for providing three dimensional growth micro-environment making it useful for organotypic cultures and in vivo simulation.

  13. A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Botta, Luigi; Maio, Andrea; Sutera, Fiorenza; Mistretta, Maria Chiara; La Mantia, Francesco Paolo

    2016-10-17

    Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distributions were controlled by NaCl granulometry and PEG solvation. Scaffolds were characterized from a morphological and mechanical point of view. A correlation between the preparation method, the pore architecture and compressive mechanical behavior was found. The interface adhesion strength was quantitatively evaluated by using a custom-designed interfacial strength test. Furthermore, in order to imitate the human physiology, mechanical tests were also performed in phosphate buffered saline (PBS) solution at 37 °C. The method herein presented provides a high control of porosity, pore size distribution and mechanical performance, thus offering the possibility to fabricate three-layered scaffolds with tailored properties by following a simple and eco-friendly route.

  14. Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy.

    PubMed

    Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi

    2014-05-01

    Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma.

    PubMed

    Yoon, Wonsuck; Park, Yoo Chang; Kim, Jinseok; Chae, Yang Seok; Byeon, Jung Hye; Min, Sang-Hyun; Park, Sungha; Yoo, Young; Park, Yong Keun; Kim, Byeong Mo

    2017-01-01

    Salmonella have been experimentally used as anti-cancer agents, because they show selective growth in tumours. In this study, we genetically modified attenuated Salmonella typhimurium to express and secrete interferon-gamma (IFN-γ) as a tumouricidal agent to enhance the therapeutic efficacy of Salmonella. IFN-γ was fused to the N-terminal region (residues 1-160) of SipB (SipB160) for secretion from bacterial cells. Attenuated S. typhimurium expressing recombinant IFN-γ (S. typhimurium (IFN-γ)) invaded the melanoma cells and induced cytotoxicity. Subcutaneous administration of S. typhimurium (IFN-γ) also efficiently inhibited tumour growth and prolonged the survival of C57BL/6 mice bearing B16F10 melanoma compared with administration of phosphate-buffered saline (PBS), unmodified S. typhimurium or S. typhimurium expressing empty vector (S. typhimurium [Vec]) in a natural killer (NK) cell-dependent manner. Moreover, genetically modified Salmonella, including S. typhimurium (IFN-γ), showed little toxicity to normal tissues with no observable adverse effects. However, S. typhimurium (IFN-γ)-mediated tumour suppression was attributed to direct killing of tumour cells rather than to stable anti-tumour immunity. Collectively, these results suggest that tumour-targeted therapy using S. typhimurium (IFN-γ) has potential for melanoma treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

    PubMed

    Lee, Jeong-Jun; Lee, Song Yi; Park, Ju-Hwan; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-07-25

    Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages.

    PubMed

    Zhang, Lei; Xue, Hong; Gao, Changlu; Carr, Louisa; Wang, Jinnan; Chu, Baocheng; Jiang, Shaoyi

    2010-09-01

    Multifunctional magnetic nanoparticles (MNPs) modified by a zwitterionic polymer (pCBMA-DOPA(2)) containing one poly(carboxybetaine methacrylate) (pCBMA) chain and two 3,4-dihydroxyphenyl-L-alanine (DOPA) residue groups were developed. Results showed that MNPs modified by pCBMA were not only stable in complex media, but also provided abundant functional groups for ligand immobilization. The pCBMA-DOPA(2) MNPs had a hydrodynamic particle size of about 130 nm, a strong saturation magnetization of 110.2 emu/g Fe and a high transverse relaxivity of 428 mM(-1)s(-1). Long-term stability in phosphate-buffered saline (PBS) and 10% NaCl solution was achieved for over six months. Compared to MNPs coated with dextran, pCBMA-DOPA(2) MNPs presented better stability in 100% human blood serum at 37 degrees C. Macrophage cell uptake studies revealed that the uptake ratio of pCBMA-DOPA(2) MNPs was much lower than that of dextran MNPs. Furthermore, quantitative analysis results showed that after pCBMA-DOPA(2) MNPs were conjugated with a targeting RGD peptide, uptake by human umbilical vein endothelial cell (HUVEC) was notably increased, which was further visualized by magnetic resonance imaging (MRI). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi.

    PubMed

    Liu, Yu; Xin, Zhao-Zhe; Zhang, Dai-Zhen; Zhu, Xiao-Yu; Wang, Ying; Chen, Li; Tang, Bo-Ping; Zhou, Chun-Lin; Chai, Xin-Yue; Tian, Ji-Wu; Liu, Qiu-Ning

    2018-06-01

    Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    PubMed Central

    Regnier-Golanov, Angelique S.; Britz, Gavin W.

    2017-01-01

    Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN) renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO) global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1) hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS)-injected) animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”. PMID:28934119

  20. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.

    PubMed

    Aw, Moom Sinn; Losic, Dusan

    2013-02-25

    A non-invasive and external stimulus-driven local drug delivery system (DDS) based on titania nanotube (TNT) arrays loaded with drug encapsulated polymeric micelles as drug carriers and ultrasound generator is described. Ultrasound waves (USW) generated by a pulsating sonication probe (Sonotrode) in phosphate buffered saline (PBS) at pH 7.2 as the medium for transmitting pressure waves, were used to release drug-loaded nano-carriers from the TNT arrays. It was demonstrated that a very rapid release in pulsatile mode can be achieved, controlled by several parameters on the ultrasonic generator. This includes pulse length, time, amplitude and power intensity. By optimization of these parameters, an immediate drug-micelles release of 100% that spans a desirable time of 5-50 min was achieved. It was shown that stimulated release can be generated and reproduced at any time throughout the TNT-Ti implant life, suggesting considerable potential of this approach as a feasible and tunable ultrasound-mediated drug delivery system in situ via drug-releasing implants. It is expected that this concept can be translated from an in vitro to in vivo regime for therapeutic applications using drug-releasing implants in orthopedic and coronary stents. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

Top