Sample records for pc interfaced cosmic

  1. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Danforth, Charles W.

    2018-01-01

    We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.

  2. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wei-Dong; Center of Super-Diamond and Advanced Films; Huang, Shu-Ping

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc andmore » CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.« less

  3. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface

    PubMed Central

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-01-01

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM. PMID:27734957

  4. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface.

    PubMed

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-10-13

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC 71 BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC 71 BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC 61 BM. At the PTB7/PC 71 BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC 61 BM interface. The measured photovoltaic energy gap (E PVG ) was 1.10 eV for PTB7/PC 71 BM and 0.90 eV for P3HT/PC 61 BM. This difference in the E PVG leads to a larger open-circuit voltage of PTB7/PC 71 BM than that of P3HT/PC 61 BM.

  5. Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes

    NASA Technical Reports Server (NTRS)

    Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.

    1986-01-01

    An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.

  6. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  7. An ab-initio density functional theory investigation of fullerene/Zn-phthalocyanine (C60/ZnPc) interface with face-on orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javaid, Saqib; National Centre of Physics, Islamabad; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com

    2015-07-28

    We have employed density functional theory to study the C60/ZnPc interface with face-on orientation, which has recently been tailored experimentally. For this purpose, adsorption of ZnPc on C60 has been studied, while taking into account different orientations of C60. Out of various adsorption sites investigated, 6:6 C-C bridge position in apex configuration of C60 has been found energetically the most favourable one with C60-ZnPc adsorption distance of ∼2.77 Å. The adsorption of ZnPc on C60 ensues both charge re-organization and charge transfer at the interface, resulting in the formation of interface dipole. Moreover, by comparing results with that of C60/CuPc interface,more » we show that the direction of interface dipole can be tuned by the change of the central atom of the phthalocyanine molecule. These results highlight the complexity of electronic interactions present at the C60/Phthalocyanine interface.« less

  8. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  9. Electronic structures at the interface between CuPc and black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Can; Niu, Dongmei; Xie, Haipeng; Liu, Baoxing; Wang, Shitan; Zhu, Menglong; Gao, Yongli

    2017-08-01

    The electronic structure at the organic-inorganic semiconductor interface of π -conjugated copper phthalocyanine (CuPc) on a black phosphorus (BP) crystal surface is studied with photoemission spectroscopy and density functional theory calculations. From the photoemission spectra, we observe a shift of about 0.7 eV for the highest occupied molecular orbital, which originates from the transition of phase in the organic molecular thin film (from the interface phase to the bulk phase). On the other hand, we find 0.2 eV band bending at the CuPc/BP interface while the formation of an interface dipole is very small. According to our photoemission spectrum and theoretical simulation, we also define that the interaction between CuPc and BP is physisorption via van der Waals forces, rather than chemisorption. Our results provide a fundamental understanding of CuPc/BP interfacial interactions that could be important for future two-dimensional organic/inorganic heterostructure devices.

  10. Origin of the energy level alignment at organic/organic interfaces: The role of structural defects

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Jinpeng; Hinderhofer, Alexander; Huang, Yuli; Chen, Wei; Kera, Satoshi; Wee, Andrew T. S.; Ueno, Nobuo

    2014-03-01

    In this paper, the electronic properties of as-deposited and N2-exposedCuPc/F16CuPc interface, a prototype system for organic photovoltaic applications, are investigated by using ultralow background, high-sensitivity photoemission spectroscopy. It is found that (i) N2 exposure significantly modifies the energy level alignment (ELA) at the interface between CuPc and F16CuPc layer and (ii) the direction of the N2-induced energy level shift of the CuPc depends on the position of the Fermi level (EF) in the CuPc highest occupied molecular orbital-lowest unoccupied molecular orbital gap of the as-deposited film. These observations are related to the changes in the density of gap states (DOGS) produced by structural imperfections in the molecular packing geometry, as introduced by the N2 penetration into the CuPc layer. This result demonstrates the key role of structure-induced DOGS in controlling the ELA at organic/organic interfaces.

  11. Cosmic reionization on computers. I. Design and calibration of simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolutionmore » reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.« less

  12. Electronic properties of the interface between hexadecafluoro copper phthalocyanine and unsubstituted copper phthalocyanine films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komolov, A. S., E-mail: akomolov07@ya.ru; Lazneva, E. F.; Pshenichnyuk, S. A.

    2013-07-15

    The formation of an interface during the deposition of unsubstituted copper phthalocyanine (CuPc) films on the surface of hexadecafluoro copper phthalocyanine (F{sub 16}-CuPc) films is studied. An incident low-energy electron beam with energies from 0 to 25 eV is used to test the surface under study according to the very-low-energy electron-diffraction technique (VLEED) in the mode of total current spectroscopy. For F{sub 16}-CuPc films, the structure of the maxima in the total current spectra and its main differences from the structure of the maxima for the CuPc film are determined in the energy range from 5 to 15 eV abovemore » the Fermi level. The differences in the structure of vacant electron orbitals for CuPc and F{sub 16}-CuPc are also revealed using density functional theory calculations. As a result of an analysis of variations in the intensities of the total current spectra of the CuPc and F{sub 16}-CuPc films, it is assumed that an intermediate layer up to 1 nm thick appears during the formation of an interface between these films, which is characterized by a spread of the features in the total current spectrum. The height, width, and change in the work function are determined for the studied F{sub 16}-CuPc/NuPc interface barrier. A decrease in the level of vacuum by 0.7 eV occurs in the boundary region, which corresponds to electron density transfer from the CuPc film toward the F{sub 16}-CuPc substrate.« less

  13. The design of PC/MISI, a PC-based common user interface to remote information storage and retrieval systems. Presentation visuals. M.S. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled, The Design of PC/MISI, a PC-Based Common User Interface to Remote Information Storage and Retrieval Systems, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-15. The paper discusses the following: problem definition; the PC solution; the goals of system design; the design description; future considerations, the research environment; conclusions.

  14. Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.

    PubMed

    Sai, Na; Gearba, Raluca; Dolocan, Andrei; Tritsch, John R; Chan, Wai-Lun; Chelikowsky, James R; Leung, Kevin; Zhu, Xiaoyang

    2012-08-16

    Interface dipole determines the electronic energy alignment in donor/acceptor interfaces and plays an important role in organic photovoltaics. Here we present a study combining first principles density functional theory (DFT) with ultraviolet photoemission spectroscopy (UPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate the interface dipole, energy level alignment, and structural properties at the interface between CuPc and C60. DFT finds a sizable interface dipole for the face-on orientation, in quantitative agreement with the UPS measurement, and rules out charge transfer as the origin of the interface dipole. Using TOF-SIMS, we show that the interfacial morphology for the bilayer CuPc/C60 film is characterized by molecular intermixing, containing both the face-on and the edge-on orientation. The complementary experimental and theoretical results provide both insight into the origin of the interface dipole and direct evidence for the effect of interfacial morphology on the interface dipole.

  15. Fracture of Polymers and Interfaces: A Universal Molecular Approach

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2003-03-01

    Fracture of polymers, linear or crosslinked, can be viewed as a breaking of molecular connectivity via disentanglement or bond rupture. When treated as a vector percolation phenomenon, we find that it captures the essential physics of fracture and makes broad accurate predictions for strength S, and fracture energy G, of polymers and their interfaces. In the bulk, we find that G ˜ [p-pc], and S ˜ [p-pc]^1/2, where p is the local normalized entanglement density and pc is the percolation threshold. For interfaces, p = nL/w, where n is the areal density of chains of length L ˜M (mol wt) in an interface of width w. For incompatible interfaces of width w, G ˜ [w-wc]; when reinforced with n compatibilizers, G ˜ (n - nc]. For welding, p ˜ L, the welding time tw ˜ L. For adhesion with sticker group X on the polymer and receptor groups Y on the solid, the strength first increases with X, Y and X-Y strength and then decreases after a predictable maximum. For thermosets, the modulus E ˜ [p-pc]^3 and the strength S ˜ [p-pc]^2. Numerous experimental examples are given to support the above universal relations for fracture.

  16. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    NASA Astrophysics Data System (ADS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  17. Design and test of data acquisition systems for the Medipix2 chip based on PC standard interfaces

    NASA Astrophysics Data System (ADS)

    Fanti, Viviana; Marzeddu, Roberto; Piredda, Giuseppina; Randaccio, Paolo

    2005-07-01

    We describe two readout systems for hybrid detectors using the Medipix2 single photon counting chip, developed within the Medipix Collaboration. The Medipix2 chip (256×256 pixels, 55 μm pitch) has an active area of about 2 cm 2 and is bump-bonded to a pixel semiconductor array of silicon or other semiconductor material. The readout systems we are developing are based on two widespread standard PC interfaces: parallel port and USB (Universal Serial Bus) version 1.1. The parallel port is the simplest PC interface even if slow and the USB is a serial bus interface present nowadays on all PCs and offering good performances.

  18. PC-based Multiple Information System Interface (PC/MISI) detailed design and implementation plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The design plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intended to be used as a blueprint for the implementation of the system. Each component is described in the detail necessary to allow programmers to implement the system. A description of the system data flow and system file structures is given.

  19. MODELING THE GAMMA-RAY EMISSION IN THE GALACTIC CENTER WITH A FADING COSMIC-RAY ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton

    2016-12-20

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays frommore » the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.« less

  20. Nanoscale Insight and Control of Structural and Electronic Properties of Organic Semiconductor / Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Maughan, Bret

    Organic semiconductor interfaces are promising materials for use in next-generation electronic and optoelectronic devices. Current models for metal-organic interfacial electronic structure and dynamics are inadequate for strongly hybridized systems. This work aims to address this issue by identifying the factors most important for understanding chemisorbed interfaces with an eye towards tuning the interfacial properties. Here, I present the results of my research on chemisorbed interfaces formed between thin-films of phthalocyanine molecules grown on monocrystalline Cu(110). Using atomically-resolved nanoscale imaging in combination with surface-sensitive photoemission techniques, I show that single-molecule level interactions control the structural and electronic properties of the interface. I then demonstrate that surface modifications aimed at controlling interfacial interactions are an effective way to tailor the physical and electronic structure of the interface. This dissertation details a systematic investigation of the effect of molecular and surface functionalization on interfacial interactions. To understand the role of molecular structure, two types of phthalocyanine (Pc) molecules are studied: non-planar, dipolar molecules (TiOPc), and planar, non-polar molecules (H2Pc and CuPc). Multiple adsorption configurations for TiOPc lead to configuration-dependent self-assembly, Kondo screening, and electronic energy-level alignment. To understand the role of surface structure, the Cu(110) surface is textured and passivated by oxygen chemisorption prior to molecular deposition, which gives control over thin-film growth and interfacial electronic structure in H2Pc and CuPc films. Overall, the work presented here demonstrates a method for understanding interfacial electronic structure of strongly hybridized interfaces, an important first step towards developing more robust models for metal-organic interfaces, and reliable, predictive tuning of interfacial properties.

  1. Comic ray flux anisotropies caused by astrospheres

    NASA Astrophysics Data System (ADS)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  2. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.

    PubMed

    Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min

    2017-11-29

    The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

  3. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Characterization of the interface interaction of cobalt on top of copper- and iron-phthalocyanine.

    PubMed

    Schmitt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane

    2011-05-01

    The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.

  5. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-07-01

    Electronic transitions at interfaces between MoO3 layers and organic layers of C60, SubPc, MgPc, and nano-composite layers of SubPc:C60 and MgPc:C60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO3/organic layer interfaces with a separation of holes towards MoO3. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (EHL) of C60, SubPc, and MgPc and the effective EHL of SubPc:C60 and MgPc:C60 were measured. The offsets between the LUMO (ΔEL) or HOMO (ΔEH) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C60, respectively, and to -0.33 or 0.67 eV for MgPc:C60, respectively. Exponential tails below EHL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states.

  6. Relative distribution of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  7. An overview of the evaluation plan for PC/MISI: PC-based Multiple Information System Interface

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Lim, Bee Lee; Hall, Philip P.

    1985-01-01

    An initial evaluation plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intend to be used as a blueprint for the evaluation of this system. Each objective of the design project is discussed along with the evaluation parameters and methodology to be used in the evaluation of the implementation's achievement of those objectives. The potential of the system for research activities related to more general aspects of information retrieval is also discussed.

  8. PC-based Multiple Information System Interface (PC/MISI) design plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.

  9. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shi; Goh, Teck Wee; Sum, Tze Chien, E-mail: Alfred@ntu.edu.sg, E-mail: Tzechien@ntu.edu.sg

    2014-08-01

    The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH{sub 3}NH{sub 3}PbI{sub 3}, facilitating hole transfer from CH{sub 3}NH{sub 3}PbI{sub 3} to CuPc. However, subsequent hole extraction from CuPc may bemore » impeded by the downward band bending in the CuPc layer.« less

  10. AMPS/PC - AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM

    NASA Technical Reports Server (NTRS)

    Schroer, B. J.

    1994-01-01

    The AMPS/PC system is a simulation tool designed to aid the user in defining the specifications of a manufacturing environment and then automatically writing code for the target simulation language, GPSS/PC. The domain of problems that AMPS/PC can simulate are manufacturing assembly lines with subassembly lines and manufacturing cells. The user defines the problem domain by responding to the questions from the interface program. Based on the responses, the interface program creates an internal problem specification file. This file includes the manufacturing process network flow and the attributes for all stations, cells, and stock points. AMPS then uses the problem specification file as input for the automatic code generator program to produce a simulation program in the target language GPSS. The output of the generator program is the source code of the corresponding GPSS/PC simulation program. The system runs entirely on an IBM PC running PC DOS Version 2.0 or higher and is written in Turbo Pascal Version 4 requiring 640K memory and one 360K disk drive. To execute the GPSS program, the PC must have resident the GPSS/PC System Version 2.0 from Minuteman Software. The AMPS/PC program was developed in 1988.

  11. Herschel CHESS discovery of the fossil cloud that gave birth to the Trapezium and Orion KL

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Kama, M.; Ceccarelli, C.; Dominik, C.; Caux, E.; Fuente, A.; Alonso-Albi, T.

    2013-01-01

    Context. The Orion A molecular complex is a nearby (420 pc), very well studied stellar nursery that is believed to contain examples of triggered star formation. Aims: As part of the Herschel guaranteed time key programme CHESS, we present the discovery of a diffuse gas component in the foreground of the intermediate-mass protostar OMC-2 FIR 4, located in the Orion A region. Methods: Making use of the full HIFI spectrum of OMC-2 FIR 4 obtained in CHESS, we detected several ground-state lines from OH+, H2O+, HF, and CH+, all of them seen in absorption against the dust continuum emission of the protostar's envelope. We derived column densities for each species, as well as an upper limit to the column density of the undetected H3O+. In order to model and characterise the foreground cloud, we used the Meudon PDR code to run a homogeneous grid of models that spans a reasonable range of densities, visual extinctions, cosmic ray ionisation rates and far-ultraviolet (FUV) radiation fields, and studied the implications of adopting the Orion Nebula extinction properties instead of the standard interstellar medium ones. Results: The detected absorption lines peak at a velocity of 9 km s-1, which is blue-shifted by 2 km s-1 with respect to the systemic velocity of OMC-2 FIR 4 (VLSR = 11.4 km s-1). The results of our modelling indicate that the foreground cloud is composed of predominantly neutral diffuse gas (nH = 100 cm-3) and is heavily irradiated by an external source of FUV that most likely arises from the nearby Trapezium OB association. The cloud is 6 pc thick and bears many similarities with the so-called C+ interface between Orion-KL and the Trapezium cluster, 2 pc south of OMC-2 FIR 4. Conclusions: We conclude that the foreground cloud we detected is an extension of the C+ interface seen in the direction of Orion KL, and interpret it to be the remains of the parental cloud of OMC-1, which extends from OMC-1 up to OMC-2.

  12. Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters

    NASA Astrophysics Data System (ADS)

    Oruç, Çiğdem; Altındal, Ahmet

    2018-01-01

    So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.

  13. Obtaining Parts

    Science.gov Websites

    The Cosmic Connection Computer Interface For each count, the detector sends out a signal that is room temperature on the upper plot and the cosmic ray count rate per minute on the lower scale. Please contact us for more details on this setup. Sample Data for Cosmic Ray Detector Last modified: April 27

  14. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    PubMed

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  15. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  16. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  17. IBM PC/IX operating system evaluation plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Granier, Martin; Hall, Philip P.; Triantafyllopoulos, Spiros

    1984-01-01

    An evaluation plan for the IBM PC/IX Operating System designed for IBM PC/XT computers is discussed. The evaluation plan covers the areas of performance measurement and evaluation, software facilities available, man-machine interface considerations, networking, and the suitability of PC/IX as a development environment within the University of Southwestern Louisiana NASA PC Research and Development project. In order to compare and evaluate the PC/IX system, comparisons with other available UNIX-based systems are also included.

  18. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.; Rahman, N. A. A.; Zin, M. R. M.

    2014-02-01

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of data acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.

  19. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of datamore » acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.« less

  20. Photo-crystallization in a-Se layer structures: Effects of film-substrate interface-rigidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, G. P.; Gross, N.; Weinstein, B. A.

    Amorphous selenium (a-Se) films deposited on rigid substrates can undergo photo-induced crystallization (PC) even at temperatures (T) well below the glass transition, T{sub g} ∼ 313 K. Substrate-generated shear strain is known to promote the PC process. In the present work, we explore the influence of different substrates (Si and glass), and different film-layer-substrate combinations, on the PC in a variety of a-Se films and film-structures. The intermediate layers (indium tin oxide and polyimide) are chosen to promote conductivity and/or to be a buffer against interface strain in structures of interest for digital imaging applications. The PC characteristics in these samples are evaluatedmore » and compared using optical microscopy, atomic-force microscopy, Raman mapping, and T-dependent Raman spectroscopy. Both the presence of a soft intermediate layer, and the thermal softening that occurs for T increasing through T{sub g}, inhibit the tendency for the onset of PC. The extensive PC mapping results in the wide range of samples studied here, as well as the suppression of PC near T{sub g} in this array of samples, strongly support the generality of this behavior. As a consequence, one may expect that the stability of a-Se films against PC can be enhanced by decreasing the rigidity of the film-substrate interface. In this regard, advanced film structures that employ flexible substrates, soft intermediate layers, and/or are designed to be operated near T{sub g} should be explored.« less

  1. Delayed Triplet-State Formation through Hybrid Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction.

    PubMed

    Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won

    2017-10-05

    Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.

  2. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of August, 1993. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Ten articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) MOM3D - A Method of Moments Code for Electromagnetic Scattering (UNIX Version); (2) EM-Animate - Computer Program for Displaying and Animating the Steady-State Time-Harmonic Electromagnetic Near Field and Surface-Current Solutions; (3) MOM3D - A Method of Moments Code for Electromagnetic Scattering (IBM PC Version); (4) M414 - MIL-STD-414 Variable Sampling Procedures Computer Program; (5) MEDOF - Minimum Euclidean Distance Optimal Filter; (6) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (Macintosh Version); (7) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (IBM PC Version); (8) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (UNIX Version); (9) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (DEC VAX VMS Version); and (10) TFSSRA - Thick Frequency Selective Surface with Rectangular Apertures. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  3. Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: N.Bailey@leeds.ac.uk, E-mail: basu@uwo.ca

    2014-01-01

    We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, somore » that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.« less

  4. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Mathias; Peisert, Heiko, E-mail: heiko.peisert@uni-tuebingen.de; Adler, Hilmar

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the chargemore » transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.« less

  5. A Study of the Association of Pc 3, 4 Micropulsations with Interplanetary Magnetic Field Orientation & Other Solar Wind Parameters.

    DTIC Science & Technology

    1977-11-13

    Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind

  6. PC based graphic display real-time particle beam uniformity

    NASA Technical Reports Server (NTRS)

    Huebner, M. A.; Malone, C. J.; Smith, L. S.; Soli, G. A.

    1989-01-01

    A technique has been developed to support the study of the effects of cosmic rays on integrated circuits. The system is designed to determine the particle distribution across the surface of an integrated circuit accurately while the circuit is bombarded by a particle beam. The system uses photomultiplier tubes, an octal discriminator, a computer-controlled NIM quad counter, and an IBM PC. It provides real-time operator feedback for fast beam tuning and monitors momentary fluctuations in the particle beam. The hardware, software, and system performance are described.

  7. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  8. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells.

    PubMed

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-17

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  9. Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2018-06-01

    Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.

  10. Control of lithium metal anode cycleability by electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Kanemoto, Manabu; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at low temperatures (0 and -20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) was found to enhance Li cycleability in the subsequent cycles at a room temperature (25°C). In contrast when the precycling at the low temperatures was performed in PC mixed with 2-methyltetrahydrofuran (2MeTHF) and LiPF 6 (LiPF 6-PC/2MeTHF), no improvement in the Li cycling efficiency was observed in the subsequent cycles at 25°C. These results suggest that the low-temperature precycling effect on the Li cycleability depends on a co-solvent used in the PC-based electrolytes. Ac impedance analysis revealed that the precycling in the low-temperature LiPF 6-PC/DMC electrolyte provided a compact Li interface with a low resistance. In marked constant to this, a Li anode interface formed by the precycling in the LiPF 6-PC/2MeTHF system was irregular and resistive to Li-ion diffusion. The origins of the low-temperature precycling effect dependent on the co-solvents were discussed.

  11. Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong

    2018-02-01

    Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.

  12. Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

    DOE PAGES

    Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; ...

    2015-02-11

    In this study, near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopymore » and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less

  13. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface

    NASA Astrophysics Data System (ADS)

    Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei

    2017-07-01

    Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.

  14. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  15. T-LECS: The Control Software System for MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.

    2006-07-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.

  16. Adhesion at Entangled Polymer Interfaces: A Unified Approach..

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2006-03-01

    A unified theory of fracture of polymer interfaces was developed which was based on the Rigidity Percolation model of fracture [R.P. Wool, J.Polym.Sci. Part A: Polym Phys., 43,168(2005)]. The polymer fractured critically when the normalized entanglement density p, approached the percolation threshold pc. The fracture energy was found to be G1c ˜ [p-pc]. When applied to interfaces of width X, containing an areal density σ of chains, each contributing L chain entanglements, the percolation term p ˜ σL/X and the percolation threshold was related to σc, Lc, or Xc. For welding of A/A symmetric interfaces, p = σL/X, and pc Lc/M 0, such that when σ/X ˜1/M for randomly distributed chain ends, p˜L ˜ (t/M)^1/2, G/G* = (t/τ*)^1/2, where the weld time τ* ˜ M. When the chain ends are segregated to the surface, σ is constant with time and G/G* = [t/τ*]^1/4. For sub-Tg welding, there exists a surface mobile layer (due to the critical Lindemann Atom fraction) of depth X ˜ 1/δT^ν such that G ˜ δT-2ν, where the critical exponent v = 0.8. For incompatible A/B interfaces of Helfand width d, normalized width w = d/Rge, and entanglement density Nent ˜ d/Le, p ˜ d such that, G1c ˜ [d-dc], G1c ˜ [w-1], and G ˜ [Nent-Nc]. For incompatible A/B interfaces reinforced by an areal density σ of compatibilizer chains, L and X are constant, p ˜ σ, pc ˜σc, such that G1c ˜ [σ-σc], which is in excellent agreement with experimental data.

  17. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  18. Performance of Wireless Unattended Sensor Network in Maritime Applications

    DTIC Science & Technology

    2007-06-01

    longevity. Crossbow Technologies produces a number of gateways for use with their motes which include the MIB510, the MIB600 and the Stargate . The...MIB510 and MIB600 gateways require interface directly with a PC while he Stargate gateway interfaces remotely using the IEEE 802.11 standard for access...dedicated PC is unfeasible, the Stargate gateway allows remote access using the IEEE 802.11 standard. This can be accomplished via a Personal Computer

  19. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    PubMed Central

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-01-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification. PMID:27185635

  20. Understanding the adsorption of CuPc and ZnPc on noble metal surfaces by combining quantum-mechanical modelling and photoelectron spectroscopy.

    PubMed

    Huang, Yu Li; Wruss, Elisabeth; Egger, David A; Kera, Satoshi; Ueno, Nobuo; Saidi, Wissam A; Bucko, Tomas; Wee, Andrew T S; Zojer, Egbert

    2014-03-07

    Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc) and Zn-phthalocyanine (ZnPc) on Au(111) and Ag(111) surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW) interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111) are exclusively due to Pauli pushback. On Ag(111), we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS) experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  1. Oxide-organic heterostructures: a case study of charge transfer disturbance at a SnO2-copper phthalocyanine buried interface.

    PubMed

    Krzywiecki, Maciej; Grządziel, Lucyna; Powroźnik, Paulina; Kwoka, Monika; Rechmann, Julian; Erbe, Andreas

    2018-06-13

    Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step.

  2. Laboratory process control using natural language commands from a personal computer

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.; Mackin, Michael A.

    1989-01-01

    PC software is described which provides flexible natural language process control capability with an IBM PC or compatible machine. Hardware requirements include the PC, and suitable hardware interfaces to all controlled devices. Software required includes the Microsoft Disk Operating System (MS-DOS) operating system, a PC-based FORTRAN-77 compiler, and user-written device drivers. Instructions for use of the software are given as well as a description of an application of the system.

  3. Application of Field System-FS9 and a PC to Antenna Control Unit interface in Radio Astronomy in Peru

    NASA Astrophysics Data System (ADS)

    Vidal, E. V. S.; Ishitsuka, J. I. I.; Koyama, K. Y.

    2006-08-01

    We are in the process to transform a 32m antenna in Peru, used for telecommunications, into a Radio Telescope to perform Radio Astronomy in Peru. The 32m antenna of Peru constructed by NEC was used for telecommunications with communications satellites at 6 GHz for transmission, and 4 GHz for reception. In collaboration of National Institute of Information and Communications Technology (NICT) Japan, and National Observatory of Japan we developed an Antenna Control System for the 32m antenna in Peru. It is based on the Field System FS9, software released by NASA for VLBI station, and an interface to link PC within FS9 software (PC-FS9) and Antenna Control Unit (ACU) of the 32 meters antenna. The PC-FS9 controls the antenna, commands are translated by interface into control signals compatibles with the ACU using: an I/O digital card with two 20bits ports to read azimuth and elevation angles, one 16bits port for reading status of ACU, one 24bits port to send pulses to start or stop operations of antenna, two channels are analogic outputs to drive the azimuth and elevation motors of the antenna, a LCD display to show the status of interface and error messages, and one serial port for communications with PC-FS9,. The first experiment of the control system was made with 11m parabolic antenna of Kashima Space Research Center (NICT), where we tested the right working of the routines implemented for de FS9 software, and simulations was made with looped data between output and input of the interface, both test were done successfully. With this scientific instrument we will be able to contribute with researching of astrophysics. We expect to into a near future to work at 6.7GHz to study Methanol masers, and higher frequencies with some improvements of the surface of the dish.

  4. A generic interface between COSMIC/NASTRAN and PATRAN (R)

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Premthamkorn, Prakit; Maxwell, James C.

    1990-01-01

    Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate post-processing adroitness. PATRAN, on the other hand is widely accepted for its graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of files rapidly and efficiently between the two parent codes. In addition to PATRAN's results file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user is prompted for necessary information during an interactive session. Current implementation supports NASTRAN's displacement approach including the following rigid formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and (4) modal transient response. A wide variety of data blocks are also supported. Error trapping is given special consideration. A sample session with CPI illustrates its simplicity and ease of use.

  5. Four-Channel PC/104 MIL-STD-1553 Circuit Board

    NASA Technical Reports Server (NTRS)

    Cox, Gary L.

    2004-01-01

    The mini bus interface card (miniBIC) is the first four-channel electronic circuit board that conforms to MIL-STD-1553 and to the electrical-footprint portion of PC/104. [MIL-STD-1553 is a military standard that encompasses a method of communication and electrical- interface requirements for digital electronic subsystems connected to a data bus. PC/104 is an industry standard for compact, stackable modules that are fully compatible (in architecture, hardware, and software) with personal-computer data- and power-bus circuitry.] Prior to the development of the miniBIC, only one- and two-channel PC/104 MIL-STD-1553 boards were available. To obtain four channels, it was necessary to include at least two boards in a PC/104 stack. In comparison with such a two-board stack, the miniBIC takes up less space, consumes less power, and is more reliable. In addition, the miniBIC includes 32 digital input/output channels. The miniBIC (see figure) contains four MIL-STD-1553B hybrid integrated circuits (ICs), four transformers, a field-programmable gate array (FPGA), and an Industry Standard Architecture (ISA) interface. Each hybrid IC includes a MILSTD-1553 dual transceiver, memory-management circuitry, processor interface logic circuitry, and 64Kx16 bits of shared static random access memory. The memory is used to configure message and data blocks. In addition, 23 16-bit registers are available for (1) configuring the hybrid IC for, and starting it in, various modes of operation; (2) reading the status of the functionality of the hybrid IC; and (3) resetting the hybrid IC to a known state. The miniBIC can operate as a remote terminal, bus controller, or bus monitor. The FPGA provides the chip-select and data-strobe signals needed for operation of the hybrid ICs. The FPGA also receives interruption signals and forwards them to the ISA bus. The ISA interface connects the address, data, and control interfaces of the hybrid ICs to the ISA backplane. Each channel is, in effect, a MIL-STD-1553 interface that can operate either independently of the others or else as a redundant version of one of the others. The transformer in each channel provides electrical isolation between the rest of the miniBIC circuitry and the bus to which that channel is connected.

  6. Enhancement of the photoprotection and nanomechanical properties of polycarbonate by deposition of thin ceramic coatings

    NASA Astrophysics Data System (ADS)

    Mailhot, B.; Rivaton, A.; Gardette, J.-L.; Moustaghfir, A.; Tomasella, E.; Jacquet, M.; Ma, X.-G.; Komvopoulos, K.

    2006-05-01

    The chemical reactions resulting from ultraviolet radiation produce discoloration and significant changes in the surface properties of polycarbonate (PC). To prevent photon absorption from irradiation and oxygen diffusion and to enhance the surface nanomechanical properties of PC, thin ceramic coatings of ZnO and Al2O3 (both single- and multi-layer) were deposited on bulk PC by radio-frequency magnetron sputtering. The samples were irradiated at wavelengths greater than 300 nm, representative of outdoor conditions. Despite the effectiveness of ZnO to protect PC from irradiation damage, photocatalytic oxidation at the PC/ZnO interface was the limiting factor. To overcome this deficiency, a thin Al2O3 coating was used both as intermediate and top layer because of its higher hardness and wear resistance than ZnO. Therefore, PC/Al2O3/ZnO, PC/ZnO/Al2O3, and PC/Al2O3/ZnO/Al2O3 layered media were fabricated and their photodegradation properties were examined by infrared and ultraviolet-visible spectroscopy. It was found that the photocatalytic activity at the PC/ZnO interface was reduced in the presence of the intermediate Al2O3 layer that limited the oxygen permeability. Nanomechanical experiments performed with a surface force apparatus revealed that the previous coating systems enhanced both the surface nanohardness and the elastic modulus and reduced the coefficient of friction in the order of ZnO, Al2O3, and Al2O3/ZnO/Al2O3. Although irradiation increased the nanohardness and the elastic modulus of PC, the irradiation effect on the surface mechanical properties of ceramic-coated PC was secondary.

  7. The Cosmic Ray Observatory Project in Nebraska and Public Outreach for the Pierre Auger Observatory in Argentina

    NASA Astrophysics Data System (ADS)

    Snow, Gregory

    2005-04-01

    The Cosmic Ray Observatory Project (CROP) is a statewide education and research experiment involving Nebraska high school students, teachers, and college undergraduates in the study of extensive cosmic-ray air showers. A network of high school teams construct, install, and operate school-based detectors in coordination with University of Nebraska physics professors and graduate students. The detector system at each school is an array of scintillation counters recycled from the Chicago Air Shower Array in weather-proof enclosures on the school roof, with a GPS receiver providing a time stamp for cosmic-ray events. The detectors are connected to triggering electronics and a data-acquisition PC inside the building. Students share data via the Internet to search for time coincidences with other sites. CROP has enlisted 26 schools in its first 5 years of operation with the aim of expanding to the 314 high schools in the state over the next several years. The presenter also serves as the Task Leader for Education and Outreach for the Pierre Auger Cosmic Ray Observatory, and selected public outreach activities related to the experiment will be described.

  8. 3D Cosmic Ray Muon Tomography from an Underground Tunnel

    DOE PAGES

    Guardincerri, Elena; Rowe, Charlotte Anne; Schultz-Fellenz, Emily S.; ...

    2017-03-31

    Here, we present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock–air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock–air interface matches that obtained from LIDAR withinmore » 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.« less

  9. 3D Cosmic Ray Muon Tomography from an Underground Tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardincerri, Elena; Rowe, Charlotte Anne; Schultz-Fellenz, Emily S.

    Here, we present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock–air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock–air interface matches that obtained from LIDAR withinmore » 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.« less

  10. 3D Cosmic Ray Muon Tomography from an Underground Tunnel

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Rowe, Charlotte; Schultz-Fellenz, Emily; Roy, Mousumi; George, Nicolas; Morris, Christopher; Bacon, Jeffrey; Durham, Matthew; Morley, Deborah; Plaud-Ramos, Kenie; Poulson, Daniel; Baker, Diane; Bonneville, Alain; Kouzes, Richard

    2017-05-01

    We present an underground cosmic ray muon tomographic experiment imaging 3D density of overburden, part of a joint study with differential gravity. Muon data were acquired at four locations within a tunnel beneath Los Alamos, New Mexico, and used in a 3D tomographic inversion to recover the spatial variation in the overlying rock-air interface, and compared with a priori knowledge of the topography. Densities obtained exhibit good agreement with preliminary results of the gravity modeling, which will be presented elsewhere, and are compatible with values reported in the literature. The modeled rock-air interface matches that obtained from LIDAR within 4 m, our resolution, over much of the model volume. This experiment demonstrates the power of cosmic ray muons to image shallow geological targets using underground detectors, whose development as borehole devices will be an important new direction of passive geophysical imaging.

  11. Mixing of MnPc electronic states at the MnPc/Au(110) interface

    NASA Astrophysics Data System (ADS)

    Gargiani, Pierluigi; Lisi, Simone; Avvisati, Giulia; Mondelli, Pierluigi; Fatale, Sara; Betti, Maria Grazia

    2017-10-01

    Manganese-phthalocyanines form assembled chains with a variety of ordered super-structures, flat lying along the Au(110) reconstructed channels. The chains first give rise to a ×5 symmetry reconstruction, while further deposition of MnPc leads to a ×7 periodicity at the completion of the first single layer. A net polarization with the formation of an interface dipole is mainly due to the molecular π-states located on the macrocycles pyrrole rings, while the central metal ion induces a reduction in the polarization, whose amount is related to the Mn-Au interaction. The adsorption-induced interface polarization is compared to other 3d-metal phthalocyanines, to unravel the role of the central metal atom configuration in the interaction process of the d-states. The MnPc adsorption on Au(110) induces the re-hybridization of the electronic states localized on the central metal atom, promoting a charge redistribution of the molecular orbitals of the MnPc molecules. The molecule-substrate interaction is controlled by a symmetry-determined mixing between the electronic states, involving also the molecular empty orbitals with d character hybridized with the nitrogen atoms of the pyrrole ring, as deduced by photoemission and X-ray absorption spectroscopy exploiting light polarization. The symmetry-determined mixing between the electronic states of the Mn metal center and of the Au substrate induces a density of states close to the Fermi level for the ×5 phase.

  12. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1993-01-01

    A third antenna was added to the system. It is a terrestrial low-gain feed, to act as a veto for local interference. The 3-chip design for a 4 megapoint complex FFT was reduced to finished working hardware. The 4-Megachannel circuit board contains 36 MByte of DRAM, 5 CPLDs, the three large FFT ASICs, and 74 ICs in all. The Austek FDP-based Spectrometer/Power Accumulator (SPA) has now been implemented as a 4-layer printed circuit. A PC interface board has been designed and together with its associated user interface and control software allows an IBM compatible computer to control the SPA board, and facilitates the transfer of spectra to the PC for display, processing, and storage. The Feature Recognizer Array cards receive the stream of modulus words from the 4M FFT cards, and forward a greatly thinned set of reports to the PC's in whose backplane they reside. In particular, a powerful ROM-based state-machine architecture has been adopted, and DRAM has been added to permit integration modes when tracking or reobserving source candidates. The general purpose (GP) array consists of twenty '486 PC class computers, each of which receives and processes the data from a feature extractor/correlator board set. The array performs a first analysis on the provided 'features' and then passes this information on to the workstation. The core workstation software is now written. That is, the communication channels between the user interface, the backend monitor program and the PC's have working software.

  13. Influence of Molecular Orientation on Charge-Transfer Processes at Phthalocyanine/Metal Oxide Interfaces and Relationship to Organic Photovoltaic Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hsiao-Chu; MacDonald, Gordon A.; Shi, Yanrong

    2015-05-04

    The effect of the molecular orientation distribution of the first monolayer of donor molecules at the hole-harvesting contact in an organic photovoltaic (OPV) on device efficiency was investigated. Two zinc phthalocyanine (ZnPc) phosphonic acids (PA) deposited on indium tin oxide (ITO) electrodes are compared: ZnPc(PA)4 contains PA linkers in all four quadrants, and ZnPcPA contains a PA linker in one quadrant. ZnPcPA monolayers exhibited a broad distribution of molecular orientations whereas ZnPc(PA)4 adsorption produced a monolayer with a narrower orientation distribution with the molecular plane more parallel to the ITO surface. We used potential-modulated attenuated total reflectance spectroelectrochemistry (PM-ATR) tomore » characterize the charge-transfer kinetics of these films and show that the highest rate constants correspond to ZnPc subpopulations that are oriented more parallel to the ITO surface plane. For ZnPc(PA)4, rate constants exceeded 104 s–1 and are among the highest ever reported for a surface-confined redox couple, which is attributable to both its orientation and the small ZnPc–electrode separation distance. The performance of OPVs with ITO hole-harvesting contacts modified with ZnPc(PA)4 was comparable to that achieved with highly activated bare ITO contacts, whereas for ZnPcPA-modified contacts, the OPV performance was similar to that observed with (hole-blocking) alkyl-PA modifiers. These results demonstrate the synergism between molecular structure, energetics, and dynamics at interfaces in OPVs.« less

  14. Position-dependent performance of copper phthalocyanine based field-effect transistors by gold nanoparticles modification.

    PubMed

    Luo, Xiao; Li, Yao; Lv, Wenli; Zhao, Feiyu; Sun, Lei; Peng, Yingquan; Wen, Zhanwei; Zhong, Junkang; Zhang, Jianping

    2015-01-21

    A facile fabrication and characteristics of copper phthalocyanine (CuPc)-based organic field-effect transistor (OFET) using the gold nanoparticles (Au NPs) modification is reported, thereby achieving highly improved performance. The effect of Au NPs located at three different positions, that is, at the SiO2/CuPc interface (device B), embedding in the middle of CuPc layer (device C), and on the top of CuPc layer (device D), is investigated, and the results show that device D has the best performance. Compared with the device without Au NPs (reference device A), device D displays an improvement of field-effect mobility (μ(sat)) from 1.65 × 10(-3) to 5.51 × 10(-3) cm(2) V(-1) s(-1), and threshold voltage decreases from -23.24 to -16.12 V. Therefore, a strategy for the performance improvement of the CuPc-based OFET with large field-effect mobility and saturation drain current is developed, on the basis of the concept of nanoscale Au modification. The model of an additional electron transport channel formation by FET operation at the Au NPs/CuPc interface is therefore proposed to explain the observed performance improvement. Optimum CuPc thickness is confirmed to be about 50 nm in the present study. The device-to-device uniformity and time stability are discussed for future application.

  15. Cosmogenic Secondary Radiation from a Nearby Supernova

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2017-01-01

    Increasing evidence has been found for multiple supernovae within 100 pc of the solar system. Supernovae produce large amounts of cosmic rays which upon striking Earth's atmosphere, produce a cascade of secondary particles. Among these cosmic ray secondaries are neutrons and muons, which penetrate far within the atmosphere to sea level and even below sea level. Muons and neutrons are both forms of ionizing radiation which have been linked to increases in cancer, congenital malformations, and other maladies. This work focuses on the impact of muons, as they penetrate into ocean water to impact the lowest levels of the aquatic food chain. We have used monte carlo simulations (CORSIKA, MCNPx, and FLUKA) to determine the ionizing radiation dose due to cosmic ray secondaries. This information shows that although most astrophysical events do not supply the necessary radiation flux to prove dangerous; there may be other impacts such as an increase to mutation rate.

  16. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  17. PV-Diesel Hybrid SCADA Experiment Network Design

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.; Acosta, R.

    1999-01-01

    The essential features of an experimental network for renewable power system satellite based supervisory, control and data acquisition (SCADA) are communication links, controllers, diagnostic equipment and a hybrid power system. Required components for implementing the network consist of two satellite ground stations, to satellite modems, two 486 PCs, two telephone receivers, two telephone modems, two analog telephone lines, one digital telephone line, a hybrid-power system equipped with controller and a satellite spacecraft. In the technology verification experiment (TVE) conducted by Savannah State University and Florida Solar Energy Center, the renewable energy hybrid system is the Apex-1000 Mini-Hybrid which is equipped with NGC3188 for user interface and remote control and the NGC2010 for monitoring and basic control tasks. This power system is connected to a satellite modem via a smart interface, RS232. Commands are sent to the power system control unit through a control PC designed as PC1. PC1 is thus connected to a satellite model through RS232. A second PC, designated PC2, the diagnostic PC is connected to both satellite modems via separate analog telephone lines for checking modems'health. PC2 is also connected to PC1 via a telephone line. Due to the unavailability of a second ground station for the ACTS, one ground station is used to serve both the sending and receiving functions in this experiment. Signal is sent from the control PC to the Hybrid system at a frequency f(sub 1), different from f(sub 2), the signal from the hybrid system to the control PC. f(sub l) and f(sub 2) are sufficiently separated to avoid interference.

  18. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    PubMed

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  20. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC71BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Abdullah, Shahino Mah; Taguchi, Dai; Sulaiman, Khaulah; Iwamoto, Mitsumasa

    2015-04-01

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC71BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC71BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC71BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  1. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  2. Cosmic ray modulation with a Fisk-type heliospheric magnetic field and a latitude-dependent solar wind speed

    NASA Astrophysics Data System (ADS)

    Hitge, M.; Burger, R. A.

    2010-01-01

    The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547-15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1-8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445-448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449-450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003.) is similar to the current Schwadron-Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron-Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445-448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron-Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.

  3. MOO in Your Face: Researching, Designing, and Programming a User-Friendly Interface.

    ERIC Educational Resources Information Center

    Haas, Mark; Gardner, Clinton

    1999-01-01

    Suggests the learning curve of a multi-user, object-oriented domain (MOO) blockades effective use. Discusses use of an IBM/PC-compatible interface that allows developers to modify the interface to provide a sense of presence for the user. Concludes that work in programming a variety of interfaces has led to a more intuitive environment for…

  4. Epitaxial growth and electronic properties of well ordered phthalocyanine heterojunctions MnPc/F{sub 16}CoPc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Susi; Mahns, Benjamin; Treske, Uwe

    2014-09-07

    We have prepared phthalocyanine heterojunctions out of MnPc and F{sub 16}CoPc, which were studied by means of X-ray absorption spectroscopy. This heterojunction is characterized by a charge transfer at the interface, resulting in charged MnPc{sup δ} {sup +} and F{sub 16}CoPc{sup δ} {sup −} species. Our data reveal that the molecules are well ordered and oriented parallel to the substrate surface. Furthermore, we demonstrate the filling of the Co 3d{sub z{sup 2}} orbital due to the charge transfer, which supports the explanation of the density functional theory, that the charge transfer is local and affects the metal centers only.

  5. Educational Studies of Cosmic Rays with a Telescope of Geiger-Muller Counters

    ERIC Educational Resources Information Center

    Wibig, T.; Kolodziejczak, K.; Pierzynski, R.; Sobczak, R.

    2006-01-01

    A group of high school students (XII Liceum) in the framework of the Roland Maze Project has built a compact telescope of three Geiger-Muller counters. The connection between the telescope and a PC computer was also created and programmed by students involved in the Project. This has allowed students to use their equipment to perform serious…

  6. A New PC and LabVIEW Package Based System for Electrochemical Investigations.

    PubMed

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-03-15

    The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.

  7. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  8. Percolation Model of Adhesion at Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  9. Removing cosmic-ray hits from multiorbit HST Wide Field Camera images

    NASA Technical Reports Server (NTRS)

    Windhorst, Rogier A.; Franklin, Barbara E.; Neuschaefer, Lyman W.

    1994-01-01

    We present an optimized algorithm that removes cosmic rays ('CRs') from multiorbit Hubble Space Telescope (HST) Wide Field/Planetary Camera ('WF/PC') images. It computes the image noise in every iteration from the WF/PC CCD equation. This includes all known sources of random and systematic calibration errors. We test this algorithm on WF/PC stacks of 2-12 orbits as a function of the number of available orbits and the formal Poissonian sigma-clipping level. We find that the algorithm needs greater than or equal 4 WF/PC exposures to locate the minimal sky signal (which is noticeably affected by CRs), with an optimal clipping level at 2-2.5 x sigma(sub Poisson). We analyze the CR flux detected on multiorbit 'CR stacks,' which are constructed by subtracting the best CR filtered images from the unfiltered 8-12 orbit average. We use an automated object finder to determine the surface density of CRS as a function of the apparent magnitude (or ADU flux) they would have generated in the images had they not been removed. The power law slope of the CR 'counts' (gamma approximately = 0.6 for N(m) m(exp gamma)) is steeper than that of the faint galaxy counts down to V approximately = 28 mag. The CR counts show a drop off between 28 less than or approximately V less than or approximately 30 mag (the latter is our formal 2 sigma point source sensitivity without spherical aberration). This prevents the CR sky integral from diverging, and is likely due to a real cutoff in the CR energy distribution below approximately 11 ADU per orbit. The integral CR surface density is less than or approximately 10(exp 8)/sq. deg, and their sky signal is V approximately = 25.5-27.0 mag/sq. arcsec, or 3%-13% of our NEP sky background (V = 23.3 mag/sq. arcsec), and well above the EBL integral of the deepest galaxy counts (B(sub J) approximately = 28.0 mag/sq. arcsec). We conclude that faint CRs will always contribute to the sky signal in the deepest WF/PC images. Since WFPC2 has approximately 2.7x lower read noise and a thicker CCD, this will result in more CR detections than in WF/PC, potentially affecting approximately 10%-20% of the pixels in multiorbit WFPC2 data cubes.

  10. The Galactic Center observed with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Jouvin, Lea

    2017-08-01

    The Galactic Center region has been a prime target region for the H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array observations since da ta taking started in 2003. H.E.S.S. has revealed the presence of a very high energy gamma-ray diffuse emission in the central 200 pc, in addition to the detection of a point like source coincident with the supermassive black hole SgrA*. With more than 250 hours of H.E.S.S. data and the continuous improvement of the analysis techniques, a detailed morphology and spectral analysis of the region is now possible. We will report on the new characterisation of the spectrum of the central source down to 100 GeV energies taking advantage of the H.E.S.S. II data, obtained after the inclusion of the large 28-meter CT5 telescope in the array centre. We will present the recent discovery of a powerful cosmic PeVatron accelerator at the center of our Galaxy as well as a new characterization of the diffuse gamma-ray emission in the central 200 pc of our Galaxy through a detailed morphology study. By analysing the nature of the various components of this emission, the existence of a strong cosmic-ray gradient and thus the presence of a strong cosmic-ray accelerator at the very centre of our Galaxy was found. We will also report on the discovery of an additional point-like source HESS J1746-285 in this region possibly associated with the pulsar wind nebula candidate G0.13-0.11.

  11. Bis(tri-n-hexylsilyl oxide) silicon phthalocyanine: a unique additive in ternary bulk heterojunction organic photovoltaic devices.

    PubMed

    Lessard, Benoît H; Dang, Jeremy D; Grant, Trevor M; Gao, Dong; Seferos, Dwight S; Bender, Timothy P

    2014-09-10

    Previous studies have shown that the use of bis(tri-n-hexylsilyl oxide) silicon phthalocyanine ((3HS)2-SiPc) as an additive in a P3HT:PC61BM cascade ternary bulk heterojunction organic photovoltaic (BHJ OPV) device results in an increase in the short circuit current (J(SC)) and efficiency (η(eff)) of up to 25% and 20%, respectively. The previous studies have attributed the increase in performance to the presence of (3HS)2-SiPc at the BHJ interface. In this study, we explored the molecular characteristics of (3HS)2-SiPc which makes it so effective in increasing the OPV device J(SC) and η(eff. Initially, we synthesized phthalocyanine-based additives using different core elements such as germanium and boron instead of silicon, each having similar frontier orbital energies compared to (3HS)2-SiPc and tested their effect on BHJ OPV device performance. We observed that addition of bis(tri-n-hexylsilyl oxide) germanium phthalocyanine ((3HS)2-GePc) or tri-n-hexylsilyl oxide boron subphthalocyanine (3HS-BsubPc) resulted in a nonstatistically significant increase in JSC and η(eff). Secondly, we kept the silicon phthalocyanine core and substituted the tri-n-hexylsilyl solubilizing groups with pentadecyl phenoxy groups and tested the resulting dye in a BHJ OPV. While an increase in JSC and η(eff) was observed at low (PDP)2-SiPc loadings, the increase was not as significant as (3HS)2-SiPc; therefore, (3HS)2-SiPc is a unique additive. During our study, we observed that (3HS)2-SiPc had an extraordinary tendency to crystallize compared to the other compounds in this study and our general experience. On the basis of this observation, we have offered a hypothesis that when (3HS)2-SiPc migrates to the P3HT:PC61BM interface the reason for its unique performance is not solely due to its frontier orbital energies but also might be due to a high driving force for crystallization.

  12. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Ariga, A.; Ariga, T.; Käser, S.; Lechmann, A.; Mair, D.; Scampoli, P.; Vladymyrov, M.; Ereditato, A.; Schlunegger, F.

    2017-06-01

    The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results constrain the continuation of the bedrock-ice interface up to a depth of 50 m below the surface, where the bedrock underneath the glacier strikes NE-SW and dips at 45° ± 5°. This documents the first successful application of this technology to a glaciated environment.

  13. A PIC microcontroller-based system for real-life interfacing of external peripherals with a mobile robot

    NASA Astrophysics Data System (ADS)

    Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan

    2010-02-01

    The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.

  14. NASTRAN migration to UNIX

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.; Turner, Horace Q.

    1990-01-01

    COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASTRAN on other computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available commercially from a number of third party organizations. All these computers, with their own one-of-a-kind operating systems, make NASTRAN machine dependent. The job control language (JCL), the file management, and the program execution procedure of these computers are vastly different, although 95 percent of NASTRAN source code was written in standard ANSI FORTRAN 77. The advantage of the UNIX operating system is that it has no machine boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's, and even some main-frame computers. NASTRAN for the UNIX operating system is definitely the way to go in the future, and makes NASTRAN available to a host of computers, big and small. Since 1985, many NASTRAN improvements and enhancements were made to conform to the ANSI FORTRAN 77 standards. A major UNIX migration effort was incorporated into COSMIC NASTRAN 1990 release. As a pioneer work for the UNIX environment, a version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC ULTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 NASTRAN version for DEC ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an 88 NASTRAN version was tested successfully on a SiliconGraphics workstation.

  15. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  16. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    DTIC Science & Technology

    2016-03-02

    Emotiv Inc., Figure 1) for collection of EEG data. This device is wireless and transmits data via Bluetooth to a PC using a USB dongle. The... Bluetooth to a PC using a USB dongle. The advantage of the system over others is the ability to collect high resolution EEG data without complicated

  17. Discrimination against RNA Backbones by a ssDNA Binding Protein.

    PubMed

    Lloyd, Neil R; Wuttke, Deborah S

    2018-05-01

    Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Interplanetary flow systems associated with cosmic ray modulation in 1977-1980

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Mcdonald, F. B.; Ness, N. F.; Schwenn, R.; Lazarus, A. J.; Mariani, F.

    1984-01-01

    The hydromagnetic flow configurations associated with the cosmic ray modulation in 1977-1980 were determined using solar wind plasma and magnetic field data from Voyager 1 and 2 and Helios 1. The modulation was related to two types of large-scale systems of flows: one containing a number of transients such as shocks and postshock flows, the other consisting primarily of a series of quasi-stationary flows following interaction regions containing a stream interface and often bounded by a forward-reverse shock pair. Each of three major episodes of cosmic ray modulation was associated with the passage of a system of transient flows. Plateaus in the cosmic ray intensity-time profile were associated with the passage of systems of corotating streams.

  19. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  20. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  1. A New PC and LabVIEW Package Based System for Electrochemical Investigations

    PubMed Central

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-01-01

    The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794

  2. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  3. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  4. Integration of an open interface PC scene generator using COTS DVI converter hardware

    NASA Astrophysics Data System (ADS)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  5. Molecular Diagnostics of Diffusive Boundary Layers

    NASA Astrophysics Data System (ADS)

    Rawlings, J. M. C.; Hartquist, T. W.

    1995-11-01

    We have assessed the role of diffusion in determining chemical abundances in molecular interface regions. Chemical models have been developed which include the appropriate diffusion terms and that are appropriate to a narrow diffusion region (˜0.01pc) that may exist at the interface between a dark core and a hot, shocked T-Tauri wind. We have assumed pressure balance throughout and have calculated the chemical abundances as functions of time and position through the interface. The results show that significant enhancements of detectable molecules/transitions are expected (e.g. CO J=6→5, OH and CH). Using a realistic value of the diffusion coefficient a diffusive region of dimension 0.01pc may be established within about 104 years. In general it seems likely that diffusion processes are highly significant on these and smaller lengthscales.

  6. Fingerstroke time estimates for touchscreen-based mobile gaming interaction.

    PubMed

    Lee, Ahreum; Song, Kiburm; Ryu, Hokyoung Blake; Kim, Jieun; Kwon, Gyuhyun

    2015-12-01

    The growing popularity of gaming applications and ever-faster mobile carrier networks have called attention to an intriguing issue that is closely related to command input performance. A challenging mirroring game service, which simultaneously provides game service to both PC and mobile phone users, allows them to play games against each other with very different control interfaces. Thus, for efficient mobile game design, it is essential to apply a new predictive model for measuring how potential touch input compares to the PC interfaces. The present study empirically tests the keystroke-level model (KLM) for predicting the time performance of basic interaction controls on the touch-sensitive smartphone interface (i.e., tapping, pointing, dragging, and flicking). A modified KLM, tentatively called the fingerstroke-level model (FLM), is proposed using time estimates on regression models. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Particle astronomy and particle physics from the moon - The particle observatory

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  8. Digital data, composite video multiplexer and demultiplexer boards for an IBM PC/AT compatible computer

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1993-01-01

    Work continued on the design of two IBM PC/AT compatible computer interface boards. The boards will permit digital data to be transmitted over a composite video channel from the Orbiter. One board combines data with a composite video signal. The other board strips the data from the video signal.

  9. GeoWorks Considered. Part I: A GUI for the Rest of Us. Part II: Doing Windows Right.

    ERIC Educational Resources Information Center

    Flanders, Bruce; Lewis, Paul

    1991-01-01

    Describes GeoWorks, a new graphical user interface (GUI) that works on older, less powerful IBM PCs and compatibles. The PC/GEOS (PC/Graphical Environment Operating System) is explained, user friendliness is emphasized, comparisons are made to Microsoft Windows, and GeoWorks applications software is described. (LRW)

  10. Effect of Trimethylamine N-Oxide on Interfacial Electrostatics at Phospholipid Monolayer-Water Interfaces and Its Relevance to Cardiovascular Disease.

    PubMed

    Mondal, Jahur A

    2016-05-05

    Trimethylamine N-oxide (TMAO), a metabolite of choline containing dietary nutrients which are abundant in red meat, egg, and other animal foods, increases the risk of cardiovascular disease (e.g., atherosclerosis) by boosted accumulation of fatty deposits on artery wall. Hence, for the molecular level elucidation of the pathogenesis of atherosclerosis, it is important to understand the effect of TMAO at the endothelial cell membrane-blood interface (artery wall). Heterodyne-detected vibrational sum frequency generation (HD-VSFG) study of a zwitterionic phosphatidylcholine (PC) lipid monolayer-water interface (mimic of endothelial membrane-blood interface) shows that the interfacial water becomes increasingly H-up oriented in the presence of TMAO in the aqueous phase, revealing a dramatic change in the interfacial electrostatics. Examinations of charged lipid interfaces show that TMAO screens anionic phosphate less effectively than cationic choline, which confirms that TMAO increases the relative influence of the anionic phosphate by preferential screening of the cationic choline at the zwitterionic PC lipid interface where the phosphate and choline groups are simultaneously present. Together, it is conceivable that at an elevated TMAO level in serum would modify the electrostatics at the endothelial cell membrane-blood interface (artery wall), which may affect the influx/efflux of fatty deposits on artery wall, setting the stage for atherosclerosis.

  11. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  12. ACTON - AUTOCAD TO NASTRAN TRANSLATOR

    NASA Technical Reports Server (NTRS)

    Jones, A.

    1994-01-01

    The AutoCAD to NASTRAN translator, ACTON, was developed to facilitate quick generation of small finite element models for use with the NASTRAN finite element modeling program. (NASTRAN is available from COSMIC.) ACTON reads the geometric data of a drawing from the Data Exchange File (DXF) used in AutoCAD and other PC based drafting programs. The geometric entities recognized by ACTON include POINTs, LINEs, SOLIDs, 3DLINEs and 3DFACEs. From this information ACTON creates a NASTRAN bulk data deck which can be used to create a finite element model. The NASTRAN elements created include CBARs, CTRIAs, CQUAD4s, CPENTAs, and CHEXAs. The bulk data deck can be used to create a full NASTRAN deck. It is assumed that the user has at least a working knowledge of AutoCAD and NASTRAN. ACTON was written in Microsoft QuickBasic (Version 2.0). The program was developed for the IBM PC and has been implemented on an IBM PC compatible under DOS 3.21. ACTON was developed in 1988.

  13. Surfatron accelerator in the local interstellar cloud

    NASA Astrophysics Data System (ADS)

    Loznikov, V. M.; Erokhin, N. S.; Zol'nikova, N. N.; Mikhailovskaya, L. A.

    2017-01-01

    Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to 107 GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of 100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of 1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of 2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E CH/ Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E CL/ Z ≤ 3 × 106 GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei ( Z = 26) in the LIC up to an energy of E CL 1017 eV and electron and positrons to the "knee" in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/ Z 3 × 106 GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.

  14. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  15. Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission

    NASA Astrophysics Data System (ADS)

    Corcione, L.; Ligori, S.; Capobianco, V.; Bonino, D.; Valenziano, L.; Guizzo, G. P.

    2016-07-01

    Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU's subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study.

  16. Personal Computer (PC) Thermal Analyzer

    DTIC Science & Technology

    1990-03-01

    demonstrate the power of the PC Thermal Analyzer, it was compared with an existing thermal analysis method. Specifically, the PC Thermal Analyzer was...34Intelligence" I T Kowledge 1 User I Inference e Base I Interface 1i FMechanisms H 1 asI I II - I L m m m m m m - m m i m m - m m - m I- m i m Expert...Temperature in degrees centi- grade? (2) What is the total Heat Output ( power dissipation) in watts?). 25 BOARD ASSEMBLY ~UI U2 aooo 0i0000t00 U15

  17. Physician recruitment websites: the territory ahead.

    PubMed

    DuPont, R E

    2001-01-01

    Recruitment is no longer just a face-to-face interaction between a recruiter and a job-seeker. To remain up-to-date with current technology, physicians should use the various electronic tools available today, including recruitment websites, video previews, and PC-to-PC interviews to get the job they've been looking for. This article discusses the pros and cons of these interfaces.

  18. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  19. The Design of PC/MISI, a PC-Based Common User Interface to Remote Information Storage and Retrieval Systems. M.S. ThesisFinal Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The amount of information contained in the data bases of large-scale information storage and retrieval systems is very large and growing at a rapid rate. The methods available for assessing this information have not been successful in making the information easily available to the people who have the greatest need for it. This thesis describes the design of a personal computer based system which will provide a means for these individuals to retrieve this data through one standardized interface. The thesis identifies each of the major problems associated with providing access to casual users of IS and R systems and describes the manner in which these problems are to be solved by the utilization of the local processing power of a PC. Additional capabilities, not available with standard access methods, are also provided to improve the user's ability to make use of this information. The design of PC/MISI is intended to facilitate its use as a research vehicle. Evaluation mechanisms and possible areas of future research are described. The PC/MISI development effort is part of a larger research effort directed at improving access to remote IS and R systems. This research effort, supported in part by NASA, is also reviewed.

  20. The effect of cationically-modified phosphorylcholine polymers on human osteoblasts in vitro and their effect on bone formation in vivo.

    PubMed

    Lawton, Jonathan M; Habib, Mariam; Ma, Bingkui; Brooks, Roger A; Best, Serena M; Lewis, Andrew L; Rushton, Neil; Bonfield, William

    2017-08-17

    The effect of introducing cationic charge into phosphorylcholine (PC)-based polymers has been investigated in this study with a view to using these materials as coatings to improve bone formation and osseointegration at the bone-implant interface. PC-based polymers, which have been used in a variety of medical devices to improve biocompatibility, are associated with low protein adsorption resulting in reduced complement activation, inflammatory response and cell adhesion. However, in some applications, such as orthopaedics, good integration between the implant and bone is needed to allow the distribution of loading stresses and a bioactive response is required. It has previously been shown that the incorporation of cationic charge into PC-based polymers may increase protein adsorption that stimulates subsequent cell adhesion. In this paper, the effect of cationic charge in PC-based polymers on human osteoblasts (HObs) in vitro and the effect of these polymers on bone formation in the rat tibia was assessed. Increasing PC positive surface charge increased HOb cell adhesion and stimulated increased cell differentiation and the production of calcium phosphate deposits. However, when implanted in bone these materials were at best biotolerant, stimulating the production of fibrous tissue and areas of loosely associated matrix (LAM) around the implant. Their development, as formulated in this study, as bone interfacing implant coatings is therefore not warranted.

  1. High-efficiency THz modulator based on phthalocyanine-compound organic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting; Zhang, Bo, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn; Shen, Jingling, E-mail: bzhang@cnu.edu.cn, E-mail: sjl-phy@cnu.edu.cn

    2015-02-02

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl{sub 2}Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface.

  2. A novel single-stranded DNA detection method based on organic semiconductor heterojunction

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Liu, Hongbo; Zhang, Xia; Zhang, Hao; Chen, Xiong; Wang, Jun

    2016-12-01

    We demonstrate a novel DNA detection method with low-cost and disposable advantages by utilizing F16CuPc/CuPc planar organic heterojunction device. Single-stranded DNA (ssDNA) molecules have been well immobilized on the surface of CuPc film observed by atomic force microscopy, producing an obvious electrical response of the device. The conductivity of the organic heterojunction film was significantly increased by ssDNA immobilization because ssDNA molecules brought additional positive charges at heterojunction interface. Furthermore, the thickness dependence of CuPc upper layer on the electrical response was studied to optimize the sensitivity. This study will be helpful for the development of organic heterojunction based biosensors.

  3. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  4. Key technology research of HILS based on real-time operating system

    NASA Astrophysics Data System (ADS)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  5. Electronic and structural properties at the interface between CuPc and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yongsheng; College of Modern Science and Technology, China Jiliang University, Hangzhou 310018; Mao, Hongying

    2015-01-07

    The electronic and structural properties at Copper phthalocyanine (CuPc)/graphene have been studied using ultraviolet photoemission spectroscopy and first-principles density function theory calculation. The five emission features α, β, γ, δ, and ε originating from the CuPc molecules locate at 1.48, 3.66, 4.98, 6.90, and 9.04 eV, respectively. These features shift in binding energy with the increasing CuPc coverage. The feature α is mostly deriving from Cu 3d orbital with some contributions from C 2p orbital. Further theoretical calculation indicates that the adsorption of CuPc on a top site is the most favorable configuration, and the separation between the adsorbate and graphenemore » is about 3.47 Å. According to the density of states before and after CuPc adsorption, the LUMO of CuPc is slightly occupied, while the Dirac point of graphene slightly shift towards higher energy, suggesting that a small amount of electron transfer from graphene to CuPc upon contact.« less

  6. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  7. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent.

    PubMed

    Yang, Chunyan; Sun, Yingying; Li, Xinjie; Li, Cheng; Tong, Junfeng; Li, Jianfeng; Zhang, Peng; Xia, Yangjun

    2018-06-20

    It has been reported that the performance of bulk heterojunction organic solar cells can be improved by incorporation of nano-heterostructures of metals, semiconductors, and dielectric materials in the active layer. In this manuscript, CdS or Sb 2 S 3 nanocrystals were in situ generated inside the poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid (P3HT:PC 61 BM) system by randomly mixing P3HT and PC 61 BM in the presence of cadmium or antimony xanthate precursor. Hybrid solar cells (HSCs) with the configurations of tin-doped indium oxide substrate (ITO)/CdS interface layer/P3HT:PC 61 BM: x wt.% CdS/MoO 3 /Ag and ITO/CdS interface layer /P3HT:PC 61 BM: x wt.% Sb 2 S 3 /MoO 3 /Ag were fabricated. Hybrid active layers (P3HT:PC 61 BM: x wt.% CdS or P3HT:PC 61 BM: x wt.% Sb 2 S 3 ) were formed completely by thermally annealing the film resulting in the decomposition of the cadmium or antimony xanthate precursor to CdS or Sb 2 S 3 nanocrystals, respectively. The effects of x wt.% CdS (or Sb 2 S 3 ) nanocrystals on the performance of the HSCs were studied. From UV-Vis absorption, hole mobilities, and surface morphological characterizations, it has been proved that incorporation of 3 wt.% CdS (or Sb 2 S 3 ) nanocrystals in the active layer of P3HT:PC 61 BM-based solar cells improved the optical absorption, the hole mobility, and surface roughness in comparison with P3HT:PC 61 BM-based solar cells, thus resulting in the improved power conversion efficiencies (PCEs) of the devices.

  8. A PC-Based Controller for Dextrous Arms

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Seraji, Homayoun; Long, Mark

    1996-01-01

    This paper describes the architecture and performance of a PC-based controller for 7-DOF dextrous manipulators. The computing platform is a 486-based personal computer equipped with a bus extender to access the robot Multibus controller, together with a single board computer as the graphical engine, and with a parallel I/O board to interface with a force-torque sensor mounted on the manipulator wrist.

  9. Molecular orientation of copper phthalocyanine thin films on different monolayers of fullerene on SiO{sub 2} or highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang

    2015-03-23

    The interface electronic structures of copper phthalocyanine (CuPc) have been studied using ultraviolet photoemission spectroscopy as different monolayers of C{sub 60} were inserted between CuPc and a SiO{sub 2} or highly ordered pyrolytic graphite (HOPG) substrate. The results show that CuPc has standing up configuration with one monolayer of C{sub 60} insertion on SiO{sub 2} while lying down on HOPG, indicating that the insertion layer propagates the CuPc-substrate interaction. Meanwhile, CuPc on more than one monolayers of C{sub 60} on different substrates show that the substrate orientation effect quickly vanished. Our study elucidates intriguing molecular interactions that manipulate molecular orientationmore » and donor-acceptor energy level alignment.« less

  10. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  11. Evaluation of Telerobotic Interface Components for Teaching Robot Operation

    ERIC Educational Resources Information Center

    Goldstain, Ofir H.; Ben-Gal, Irad; Bukchin, Yossi

    2011-01-01

    Remote learning has been an increasingly growing field in the last two decades. The Internet development, as well as the increase in PC's capabilities and bandwidth capacity, has made remote learning through the internet a convenient learning preference, leading to a variety of new interfaces and methods. In this work, we consider a remote…

  12. Interfacing Optical Document Scanners: Principles and Practical Considerations.

    ERIC Educational Resources Information Center

    Krus, David J.; Kodimer, Dennis

    1987-01-01

    Handlers for interfacing the ScanTron and 2700 Optical Mark Readers with the IBM AT/XT/PC and Tandy 2000/1000/3000 iAPX 88/186/286 based computers were described. Differences between programing an RS232C serial port using BIOS interrupts and directly addressing the Motorola 8550 ART microprocessor were discussed. (Author/LMO)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javaid, Saqib; National Centre of Physics, Islamabad 45320; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com

    Recently, experimental results have shown that photovoltaic properties of Fullerene (C60)/Phthalocyanine based devices improve considerably as molecular orientation is changed from edge-on to face-on. In this work, we have studied the impact of molecular orientation on C60/ZnPc interfacial properties, particularly focusing on experimentally observed face-on and edge-on configuration, using density functional theory based simulations. The results show that the interfacial electronic properties are strongly anisotropic: direction of charge transfer and interface dipole fluctuates as molecular orientation is switched. As a result of orientation dependant interface dipole, difference between acceptor LUMO and donor HOMO increases as the orientation is changed frommore » edge-on to face-on, suggesting a consequent increase in open circuit voltage (V{sub OC}). Moreover, adsorption and electronic properties indicate that the interfacial interactions are much stronger in the face-on configuration which should further facilitate the charge-separation process. These findings elucidate the energy level alignment at C60/ZnPc interface and help to identify interface dipole as the origin of the orientation dependence of V{sub OC}.« less

  14. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  15. Preliminary In-Flight Loads Analysis of In-Line Launch Vehicles using the VLOADS 1.4 Program

    NASA Technical Reports Server (NTRS)

    Graham, J. B.; Luz, P. L.

    1998-01-01

    To calculate structural loads of in-line launch vehicles for preliminary design, a very useful computer program is VLOADS 1.4. This software may also be used to calculate structural loads for upper stages and planetary transfer vehicles. Launch vehicle inputs such as aerodynamic coefficients, mass properties, propellants, engine thrusts, and performance data are compiled and analyzed by VLOADS to produce distributed shear loads, bending moments, axial forces, and vehicle line loads as a function of X-station along the vehicle's length. Interface loads, if any, and translational accelerations are also computed. The major strength of the software is that it enables quick turnaround analysis of structural loads for launch vehicles during the preliminary design stage of its development. This represents a significant improvement over the alternative-the time-consuming, and expensive chore of developing finite element models. VLOADS was developed as a Visual BASIC macro in a Microsoft Excel 5.0 work book on a Macintosh. VLOADS has also been implemented on a PC computer using Microsoft Excel 7.0a for Windows 95. VLOADS was developed in 1996, and the current version was released to COSMIC, NASA's Software Technology Transfer Center, in 1997. The program is a copyrighted work with all copyright vested in NASA.

  16. Electromagnetic diode based on photonic crystal cavity with embedded highly dispersive meta-interface

    NASA Astrophysics Data System (ADS)

    Chen, Yongqiang; Dong, Lijuan; Xu, Xiaohu; Jiang, Jun; Shi, Yunlong

    2017-12-01

    In this paper, we propose a scheme for subwavelength electromagnetic diodes by employing a photonic crystal (PC) cavity with embedded electromagnetically induced-transparency (EIT)-like highly dispersive meta-interface. A nonreciprocal response, with 21.5 dB transmission light contrast and 12.3 dBm working power, is conceptually demonstrated in a microstrip transmission line system with asymmetric absorption and nonlinear medium inclusion. Such high-contrast transmission and relatively low-threshold diode action stem from the composite PC-EIT mechanism. This mechanism not only possesses a large quality factor and strong localization of fields but also does not enlarge the device volume and drastically reduce transmittance. Our findings should be beneficial for the design of new and practical metamaterial-enabled nonlinear devices.

  17. Development of the low-cost multi-channel analyzer system for γ-ray spectroscopy with a PC sound card

    NASA Astrophysics Data System (ADS)

    Sugihara, Kenkoh; Nakamura, Satoshi N.; Chiga, Nobuyuki; Fujii, Yuu; Tamura, Hirokazu

    2013-10-01

    A low-cost multi-channel analyzer (MCA) system was developed using a custom-build interface circuit and a PC sound card. The performance of the system was studied using γ-ray spectroscopy measurements with a NaI(Tl) scintillation detector. Our system successfully measured the energy of γ-rays at a rate of 1000 counts per second (cps).

  18. Transparently Interposing User Code at the System Interface

    DTIC Science & Technology

    1992-09-01

    trademarks of Symantec Corporation. AFS is a trademark of Transarc Corporation. PC-cillin is a trademark of Trend Micro Devices, Incorporated. Scribe is a...communication. Finally, both the Norton AntiVirus [Symantec 91b] and PC-cillin [ Trend 90] anti-virus applications intercept destructive file operations made... Trend Micro Devices, Incorporated, 1990. [Tygar & Yee 91] J. D. Tygar, Bennet Yee. Dyad: A System for Using Physically Secure Coprocessors

  19. VENTURE/PC manual: A multidimensional multigroup neutron diffusion code system. Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.; Huria, H.C.; Cho, K.W.

    1991-12-01

    VENTURE/PC is a recompilation of part of the Oak Ridge BOLD VENTURE code system, which will operate on an IBM PC or compatible computer. Neutron diffusion theory solutions are obtained for multidimensional, multigroup problems. This manual contains information associated with operating the code system. The purpose of the various modules used in the code system, and the input for these modules are discussed. The PC code structure is also given. Version 2 included several enhancements not given in the original version of the code. In particular, flux iterations can be done in core rather than by reading and writing tomore » disk, for problems which allow sufficient memory for such in-core iterations. This speeds up the iteration process. Version 3 does not include any of the special processors used in the previous versions. These special processors utilized formatted input for various elements of the code system. All such input data is now entered through the Input Processor, which produces standard interface files for the various modules in the code system. In addition, a Standard Interface File Handbook is included in the documentation which is distributed with the code, to assist in developing the input for the Input Processor.« less

  20. A TinyOS-enabled MICA2-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Nuyujukian, Paul H; Pesterev, Aleksey; Mody, Istvan; Judy, Jack W

    2006-07-01

    Existing approaches used to develop compact low-power multichannel wireless neural recording systems range from creating custom-integrated circuits to assembling commercial-off-the-shelf (COTS) PC-based components. Custom-integrated-circuit designs yield extremely compact and low-power devices at the expense of high development and upgrade costs and turn-around times, while assembling COTS-PC-technology yields high performance at the expense of large system size and increased power consumption. To achieve a balance between implementing an ultra-compact custom-fabricated neural transceiver and assembling COTS-PC-technology, an overlay of a neural interface upon the TinyOS-based MICA2 platform is described. The system amplifies, digitally encodes, and transmits neural signals real-time at a rate of 9.6 kbps, while consuming less than 66 mW of power. The neural signals are received and forwarded to a client PC over a serial connection. This data rate can be divided for recording on up to 6 channels, with a resolution of 8 bits/sample. This work demonstrates the strengths and limitations of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications and, thus, provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  1. PC/AT-based architecture for shared telerobotic control

    NASA Astrophysics Data System (ADS)

    Schinstock, Dale E.; Faddis, Terry N.; Barr, Bill G.

    1993-03-01

    A telerobotic control system must include teleoperational, shared, and autonomous modes of control in order to provide a robot platform for incorporating the rapid advances that are occurring in telerobotics and associated technologies. These modes along with the ability to modify the control algorithms are especially beneficial for telerobotic control systems used for research purposes. The paper describes an application of the PC/AT platform to the control system of a telerobotic test cell. The paper provides a discussion of the suitability of the PC/AT as a platform for a telerobotic control system. The discussion is based on the many factors affecting the choice of a computer platform for a real time control system. The factors include I/O capabilities, simplicity, popularity, computational performance, and communication with external systems. The paper also includes a description of the actuation, measurement, and sensor hardware of both the master manipulator and the slave robot. It also includes a description of the PC-Bus interface cards. These cards were developed by the researchers in the KAT Laboratory, specifically for interfacing to the master manipulator and slave robot. Finally, a few different versions of the low level telerobotic control software are presented. This software incorporates shared control by supervisory systems and the human operator and traded control between supervisory systems and the human operator.

  2. Impact of Lipid Oxidization on Vertical Structures and Electrostatics of Phospholipid Monolayers Revealed by Combination of Specular X-ray Reflectivity and Grazing-Incidence X-ray Fluorescence.

    PubMed

    Korytowski, Agatha; Abuillan, Wasim; Makky, Ali; Konovalov, Oleg; Tanaka, Motomu

    2015-07-30

    The influence of phospholipid oxidization of floating monolayers on the structure perpendicular to the global plane and on the density profiles of ions near the lipid monolayer has been investigated by a combination of grazing incidence X-ray fluorescence (GIXF) and specular X-ray reflectivity (XRR). Systematic variation of the composition of the floating monolayers unravels changes in the thickness, roughness and electron density of the lipid monolayers as a function of molar fraction of oxidized phospholipids. Simultaneous GIXF measurements enable one to qualitatively determine the element-specific density profiles of monovalent (K(+) or Cs(+)) and divalent ions (Ca(2+)) in the vicinity of the interface in the presence and absence of two types of oxidized phospholipids (PazePC and PoxnoPC) with high spatial accuracy (±5 Å). We found the condensation of Ca(2+) near carboxylated PazePC was more pronounced compared to PoxnoPC with an aldehyde group. In contrast, the condensation of monovalent ions could hardly be detected even for pure oxidized phospholipid monolayers. Moreover, pure phospholipid monolayers exhibited almost no ion specific condensation near the interface. The quantitative studies with well-defined floating monolayers revealed how the elevation of lipid oxidization level alters the structures and functions of cell membranes.

  3. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim

    2008-02-15

    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  4. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-09-01

    Motivated by recent electronic transport measurement of boron nitride-graphene hybrid atomic layers, we studied magnetization distribution, transmission and current-bias relation of graphene/h-BN/graphene (C/BN/C) nanoribbon-based magnetic tunnel junctions (MTJ) based on density functional theory and non-equilibrium Green's function methods. Three types of MTJs, i.e. asymmetric, symmetric (S) and symmetric (SS), and two types of lead magnetization alignment, i.e. parallel (PC) and antiparallel (APC), are considered. The results show that the magnetization distribution is closely related to the interface structure. Especially for asymmetric MTJ, the B/N atoms at the C/BN interface are spin-polarized and give finite magnetic moments. More interesting, it is found that the APC transmission of asymmetric MTJ with the thinnest barrier dominates over the PC one. By analyzing the projected density of states, one finds that the unusual higher APC transmission than PC is due to the coupling of electronic states of left ZGNR and right ZGNR. By integrating transmission, we calculate the current-bias voltage relation and find that the APC current is larger than PC current at small bias voltage and therefore reproduces a negative tunnel magnetoresistance. The results reported here will be useful and important for the design of C/BN/C-based MTJ.

  5. Scanning tunneling microscopy investigation of copper phthalocyanine and truxenone derivative binary superstructures on graphite.

    PubMed

    Liu, Jia; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Wan, Li-Jun

    2011-02-01

    The binary self-assembly of copper phthalocyanine (CuPc) and 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23) at the solid/liquid interface of highly oriented pyrolytic graphite (HOPG) was investigated by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Pseduohexagonal and linear patterned superstructures of CuPc are obtained by co-adsorbing with TrO23. High-resolution STM images reveal the structural details of the arrangement of TrO23 and CuPc in the binary assembly structures. The molecular ratio between CuPc and TrO23 in the adlayer can be modulated by the CuPc concentration in liquid phase. The electronic properties of CuPc and TrO23 in the co-adsorbed self-assembly are investigated by STS. The results presented here are helpful to the design and fabrication of multi-component functional molecular nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  7. Electronic states of Ca/PC61BM: Mechanism of low work function metal as interfacial material

    NASA Astrophysics Data System (ADS)

    Du, Ying-Ying; Chen, Guang-Hua; Li, Wen-Jie; Bai, Xin-Yuan; Lin, De-Qu; Ju, Huanxin; Hu, Shanwei; Xu, Qian; Wang, Yan; Li, Xiong; Zhu, Junfa; Li, Hong-Nian

    2018-03-01

    We have studied the electronic states at Ca/PC61BM interface using photoemission spectroscopy. It is found that the state of unoccupied molecular orbitals of the top molecular layer (TML) becomes occupied by the electrons transferred from the Ca atoms. The work function of the heavily doped TML of PC61BM film is smaller than that of metal Ca, and thus the contact between the TML and metal Ca is Ohmic. A transition layer (TL) of several molecular layers forms beneath the TML due to the diffusion of the Ca atoms. The TL is conductive and aligns its Fermi level with the negative integer charge transfer level of the interior PC61BM. The built-in electric field in the TL facilitates the electron transport from the interior of the PC61BM film to the TML.

  8. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kumar, Binod

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li 1+ xAl xGe 2- x(PO 4) 3 (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si 3N 4) and PC(Li 2O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li 2O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity.

  9. A Braille Interface to the Texas Instruments SR-52 Programmable Calculator.

    DTIC Science & Technology

    1976-09-21

    F / _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AD—A039 US PENNSYLVANIA STATE UNIV JNIVtRSITY PARK APPLIED RESE——ETc F/G 9/2 * BRAILLE INTERFACE to PC TEXAS...UNCLASSiFIED A BRAILLE INTERFACE TO THE TEXAS INSTRUMENTS SR-52 PR0CRA)*~ABLE CALCULATOR C. P~ JANOTA Technical Memorandum D D C File No. TM 76-244 i...SUPPLEMENTARY NOTES ~~~~ ~ 15. KEY WORDS (ConUnti. on ,.v.ra• .Id. If nøc....ry and td~n t tf y by block ntanb.r) AIDS TO HANDICAPPED BRAILLE INTERFACE

  10. Correlating highpower conversion efficiency of PTB7:PC 71BM inverted organic solar cells with nanoscale structures [Unraveling the correlation between the structural aspects and power conversion efficiency in PTB7:PC 71BM inverted organic solar cells

    DOE PAGES

    Das, Sanjib; Browning, Jim; Gu, Gong; ...

    2015-07-16

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC 71BM as the active layer and poly-[(9,9-bis(3 -( N,N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surfacemore » modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC 71BM into the PFN layer, resulting in improved electron transport. The PC 71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. Furthermore, the DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC 71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less

  11. Influence of oxidized lipids on palmitoyl-oleoyl-phosphatidylcholine organization, contribution of Langmuir monolayers and Langmuir-Blodgett films.

    PubMed

    Grauby-Heywang, Christine; Moroté, Fabien; Mathelié-Guinlet, Marion; Gammoudi, Ibtissem; Faye, Ndeye Rokhaya; Cohen-Bouhacina, Touria

    2016-10-01

    In this work, we studied the interaction of two oxidized lipids, PoxnoPC and PazePC, with POPC phospholipid. Mean molecular areas obtained from (π-A) isotherms of mixed PoxnoPC-POPC and PazePC-POPC monolayers revealed different behaviors of these two oxidized lipids: the presence of PoxnoPC in the monolayers induces their expansion, mean molecular areas being higher than those expected in the case of ideal mixtures. PazePC-POPC behave on the whole ideally. This difference can be explained by a different conformation of oxidized lipids. Moreover the carboxylic function of PazePC is protonated under our experimental conditions, as shown by (π-A) isotherms of PazePC at different pH values. Both oxidized lipids induce also an increase of the monolayer elasticity, PoxnoPC being slightly more efficient than PazePC. These monolayers were transferred from the air-water interface onto mica supports for a study by AFM. AFM images are on the whole homogenous, suggesting the presence of only one lipid phase in both cases. However, in the case of PazePC-POPC monolayers, AFM images show also the presence of areas thicker of 7nm to 10nm than the surrounding lipid phase, probably due to the local formation of multilayer systems induced by compression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Photoelectron spectroscopic studies of ultra-thin CuPc layers on a Si(111)-(√3 × √3)R30°-B surface

    NASA Astrophysics Data System (ADS)

    Menzli, S.; Laribi, A.; Mrezguia, H.; Arbi, I.; Akremi, A.; Chefi, C.; Chérioux, F.; Palmino, F.

    2016-12-01

    The adsorption of copper phthalocyanine (CuPc) molecules on Si(111)-(√3 × √3)R30°-B surface is investigated at room temperature under ultra-high vacuum. Crystallographic, chemical and electronic properties of the interface are investigated by low energy electron diffraction (LEED), ultraviolet and X-ray photoemission spectroscopies (UPS, XPS) and X-ray photoemission diffraction (XPD). LEED and XPD results shed light on the growth mechanism of CuPc on this substrate. At one monolayer coverage the growth mode was characterized by the formation of crystalline 3D nanoislands. The molecular packing deduced from this study appears very close to the one of the bulk CuPc α phase. The 3D islands are formed by molecules aligned in a standing manner. XPS core level spectra of the substrate reveal that there is no discernible chemical interaction between molecules and substrate. However there is charge transfer from molecules to the substrate. During the growth, the work function (WF) was found to decrease from 4.50 eV for the clean substrate to 3.70 eV for the highest coverage (30 monolayers). Within a thickness of two monolayers deposition, an interface dipole of 0.50 eV was found. A substrate band bending of 0.25 eV was deduced over all the range of exposure. UPS spectra indicate the existence of a band bending of the highest occupied molecular orbital (HOMO) of 0.30 eV. The changes in the work function, in the Fermi level position and in the onset of the molecular HOMO state have been used to determine the energy level alignment at the interface.

  13. Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows.

    PubMed

    Lidierth, Malcolm

    2005-02-15

    This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.

  14. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  15. Extracting the Density of States of Copper Phthalocyanine at the SiO2 Interface with Electronic Sum Frequency Generation.

    PubMed

    Pandey, Ravindra; Moon, Aaron P; Bender, Jon A; Roberts, Sean T

    2016-03-17

    Organic semiconductors (OSCs) constitute an attractive platform for optoelectronics design due to the ease of their processability and chemically tunable properties. Incorporating OSCs into electrical circuits requires forming junctions between them and other materials, yet the change in dielectric properties about these junctions can strongly perturb the electronic structure of the OSC. Here we adapt an interface-selective optical technique, electronic sum frequency generation (ESFG), to the study of a model OSC thin-film system, copper phthalocyanine (CuPc) deposited on SiO2. We find that by modeling the thickness dependence of our measured spectra, we can identify changes in CuPc's electronic density of states at both its buried interface with SiO2 and air-exposed surface. Our work demonstrates that ESFG can be used to noninvasively probe the interfacial electronic structure of optically thick OSC films, indicating that it can be used for the study of OSC-based optoelectronics in situ.

  16. The USL NASA PC R and D project: Detailed specifications of objects

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    The specifications for a number of projects which are to be implemented within the University of Southwestern Louisiana NASA PC R and D Project are discussed. The goals and objectives of the PC development project and the interrelationships of the various components are discussed. Six projects are described. They are a NASA/RECON simulator, a user interface to multiple remote information systems, evaluation of various personal computer systems, statistical analysis software development, interactive presentation system development, and the development of a distributed processing environment. The relationships of these projects to one another and to the goals and objectives of the overall project are discussed.

  17. Data related to the PC71BM loading and it's impact on nanostructuring for blend of PBDTTT-EFT:PC71BM bulk heterojunction solar cell.

    PubMed

    Komilian, Soheil; Oklobia, Ochai; Sadat-Shafai, Torfeh

    2018-02-01

    The data included in this article is based on additional supporting information presented in our recent publication Komilian et al. [1]. The role of acceptor material (PC 71 BM) in restructuring copolymer PBDTTT-EFT from its relaxed pristine structure to interfaces suitable for exciton dissociation is discussed. The analysis of data indicates that the impact of acceptor material on nanostructuring initiates concurrent processes some of which supports and some impedes charge extractions. Therefore, this manuscript is designed to identify these processes and give and account of their impact on power conversion efficiency.

  18. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  19. Survey on the implementation and reliability of CubeSat electrical bus interfaces

    NASA Astrophysics Data System (ADS)

    Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard

    2017-06-01

    This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.

  20. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat accumulation on signal fidelity. The average number of artifacts contaminating the EMG signals during treadmill running was reduced approximat ely three-fold by the prototype electrode/interface, when compared to methods currently available. Peel adhesion of the interface to the skin was significantly improved for treadmill running. Similarly, the artifacts from controlled impacts on the electrode housing were significantly reduced for both treadmill running and for the repetitive lifting task.

  1. Surfatron accelerator in the local interstellar cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: vloznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.

    2017-01-15

    Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~10{sup 7} GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described bymore » a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E{sub CH}/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E{sub Ð}¡{sub L}/Z ≤ 3 × 10{sup 6} GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E{sub CL} ~ 10{sup 17} eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 10{sup 6} GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopwood, J.E.; Affeldt, B.

    An IBM personal computer (PC), a Gerber coordinate digitizer, and a collection of other instruments make up a system known as the Coordinate Digitizer Interactive Processor (CDIP). The PC extracts coordinate data from the digitizer through a special interface, and then, after reformatting, transmits the data to a remote VAX computer, a floppy disk, and a display terminal. This system has improved the efficiency of producing printed circuit-board artwork and extended the useful life of the Gerber GCD-1 Digitizer. 1 ref., 12 figs.

  3. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine.

    PubMed

    Pak, Jinsu; Jang, Jingon; Cho, Kyungjune; Kim, Tae-Young; Kim, Jae-Keun; Song, Younggul; Hong, Woong-Ki; Min, Misook; Lee, Hyoyoung; Lee, Takhee

    2015-11-28

    Recently, two-dimensional materials such as molybdenum disulfide (MoS2) have been extensively studied as channel materials for field effect transistors (FETs) because MoS2 has outstanding electrical properties such as a low subthreshold swing value, a high on/off ratio, and good carrier mobility. In this study, we characterized the electrical and photo-responsive properties of MoS2 FET when stacking a p-type organic copper phthalocyanine (CuPc) layer on the MoS2 surface. We observed that the threshold voltage of MoS2 FET could be controlled by stacking the CuPc layers due to a charge transfer phenomenon at the interface. Particularly, we demonstrated that CuPc/MoS2 hybrid devices exhibited high performance as a photodetector compared with the pristine MoS2 FETs, caused by more electron-hole pairs separation at the p-n interface. Furthermore, we found the optimized CuPc thickness (∼2 nm) on the MoS2 surface for the best performance as a photodetector with a photoresponsivity of ∼1.98 A W(-1), a detectivity of ∼6.11 × 10(10) Jones, and an external quantum efficiency of ∼12.57%. Our study suggests that the MoS2 vertical hybrid structure with organic material can be promising as efficient photodetecting devices and optoelectronic circuits.

  4. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  5. Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, R. B., E-mail: rbfirestone@lbl.gov

    2014-07-01

    Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less

  6. Synthesis, interface (Au/M2Pc2/p-Si), electrochemical and electrocatalytic properties of novel ball-type phthalocyanines.

    PubMed

    Şengül, Abdurrahman; Doğan, H Zekeriya; Altındal, Ahmet; Özkaya, Ali Rıza; Salih, Bekir; Bekaroğlu, Özer

    2012-07-07

    The phthalodinitrile derivative (3) was prepared by the reaction of 4,4'-(octahydro-4,7-methano-5H-inden-5-ylidene)bisphenol (1) and 4-nitrophthalonitrile (2) with dry DMF as the solvent in the presence of the base K(2)CO(3) by the method of nucleophilic substitution of an activated nitro group in an aromatic ring. The template reaction of 3 with the corresponding metal salts gave the novel bi-nuclear ball-type metallophthalocyanines, MPcs {M = Co (4), Cu (5), Zn (6)}. Newly synthesized compounds were characterized by elemental analysis, UV-vis, FT-IR (ATR), MALDI-TOF mass and (1)H-NMR spectroscopy techniques. The electronic spectra exhibit an intense π→π* transition of characteristic Q and B bands of the Pc core. The dielectric properties and interface between the spin coated films of 4-6 and a p-type silicon substrate have been studied by fabricating metal-insulator-semiconductor capacitors. The results indicated that the frequency dependence of the dielectric permittivity, ε'(ω), exhibits non-Debye type relaxation for all the temperatures investigated. The ac conductivity results indicated that the conduction mechanism can be explained by a hopping model at low temperatures (<430 K) and a free band conduction mechanism at high temperatures (≥430 K). The density of interface state calculations on these novel compounds showed that the combination of Au/4/p-Si is a promising structure with a high dielectric constant and a low interface trap density suitable for metal-oxide-semiconductor devices. The electrochemical properties of the Pc complexes were examined by cyclic voltammetry, differential voltammetry and controlled potential coulometry on platinum in non-aqueous media. The complexes showed ring-based and/or metal-based mixed-valence behaviours as a result of the remarkable interaction between the two Pc rings and/or metal centres. The mixed-valence splitting values for the complexes suggested that the mixed valence species are considerably stable. The Vulcan XC-72(VC)/Nafion(Nf)/4 modified glassy carbon electrode showed much a higher catalytic performance towards oxygen reduction than those of VC/Nf/5 and VC/Nf/6 modified ones.

  7. Tailoring the electronic transitions of NdNiO{sub 3} films through (111){sub pc} oriented interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, S., E-mail: sara.catalano@unige.ch; Gibert, M.; Zubko, P.

    2015-06-01

    Bulk NdNiO{sub 3} and thin films grown along the pseudocubic (001){sub pc} axis display a 1st order metal to insulator transition (MIT) together with a Néel transition at T = 200 K. Here, we show that for NdNiO{sub 3} films deposited on (111){sub pc} NdGaO{sub 3}, the MIT occurs at T = 335 K and the Néel transition at T = 230 K. By comparing transport and magnetic properties of layers grown on substrates with different symmetries and lattice parameters, we demonstrate a particularly large tuning when the epitaxy is realized on (111){sub pc} surfaces. We attribute this effect tomore » the specific lattice matching conditions imposed along this direction when using orthorhombic substrates.« less

  8. Interface doping of conjugated organic films by means of diffusion of atomic components from the surfaces of semiconductors and of metal oxides.

    PubMed

    Komolov, A S; Akhremtchik, S N; Lazneva, E F

    2011-08-15

    The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Negative differential resistance in nickel octabutoxy phthalocyanine and nickel octabutoxy phthalocyanine/graphene oxide ultrathin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arup; Suresh, K. A.

    2018-04-01

    We find negative differential resistance (NDR) at room temperature in ultrathin films of nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine [NiPc(OBu)8] deposited on highly ordered pyrolytic graphite (HOPG) substrate [NiPc(OBu)8/HOPG] and NiPc(OBu)8 on graphene oxide (GO) deposited on HOPG [NiPc(OBu)8/GO/HOPG]. For the NiPc(OBu)8/HOPG system, NiPc(OBu)8 was transferred four times onto HOPG by the Langmuir-Blodgett (LB) technique. We have prepared a stable Langmuir monolayer of amphiphilic GO at the air-water interface and transferred it onto HOPG by the LB technique. Further, the monolayer of NiPc(OBu)8 was transferred four times for good coverage on GO to obtain the NiPc(OBu)8/GO/HOPG system. The current-voltage characteristics were carried out using a current sensing atomic force microscope (CSAFM) with a platinum (Pt) tip that forms Pt/NiPc(OBu)8/HOPG and Pt/NiPc(OBu)8/GO/HOPG junctions. The CSAFM, UV-visible spectroscopy, and cyclic voltammetry studies show that the NDR effect occurs due to molecular resonant tunneling. In the Pt/NiPc(OBu)8/GO/HOPG junction, we find that due to the presence of GO, the features of NDR become more prominent. Also, GO causes a shift in NDR voltage towards a lower value in the negative bias direction. We attribute this behavior to the role of GO in injecting holes into the NiPc(OBu)8 film.

  10. Using PAFEC as a preprocessor for COSMIC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Gray, W. H.; Baudry, T. V.

    1983-01-01

    Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated data base management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid format COSMIC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free format engineering keyword oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.

  11. HST Archival Imaging of the Light Echoes of SN 1987A

    NASA Astrophysics Data System (ADS)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  12. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that ofmore » the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.« less

  13. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  14. COSMIC: Software catalog 1991 edition diskette format

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The PC edition of the annual COSMIC Software contains descriptions of the over 1,200 computer programs available for use within the United States as of January 1, 1991. By using the PC version of the catalog, it is possible to conduct extensive searches of the software inventory for programs that meet specific criteria. Elements such as program keywords, hardware specifications, source code languages, and title acronyms can be used for the basis of such searches. After isolating those programs that might be of best interest to the user, it is then possible to either view at the monitor, or generate a hardcopy listing of all information on those packages. In addition to the program elements that the user can search on, information such as total program size, distribution media, and program price, as well as extensive abstracts on the program, are also available to the user at this time. Another useful feature of the catalog allows for the retention of programs that meet certain search criteria between individual sessions of using the catalog. This allows users to save the information on those programs that are of interest to them in different areas of application. They can then recall a specific collection of programs for information retrieval or further search reduction if desired. In addition, this version of the catalog is adaptable to a network/shared resource environment, allowing multiple users access to a single copy of the catalog database simultaneously.

  15. Morphology of the D/A interface in vapor deposited bilayer organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Erwin, Patrick; Dimitriou, Michael; Thompson, Mark E.

    2017-08-01

    A series of bilayer films were prepared by vacuum deposition onto Silicon substrates. These films consisted of either Si/SiO2/donor/C60 or Si/SiO2/C60/donor, where the organic films were in the 20-40 nm thick range and the donors were 7,7-difluoro-14-phenyl-7H-6l4,7l4-[1,3,2]diazaborinino[4,3-a:6,1-a']diisoindole (bDIP), copper phthalocyanine (CuPC), 3,6,11,14-tetraphenyldiindeno[1,2,3-cd:1',2',3'-lm]perylene (DBP) and 2-(4-(diphenylamino)-2,6- dihydroxyphenyl)-4-(4-(diphenyliminio)-2,6-dihydroxycyclohexa-2,5-dien-1-ylidene)-3-oxocyclobut-1-en-1-olate (DPSQ). The donors chosen here have been reported to give good power efficiencies when incorporated into bilayer photovoltaic cells with a C60 acceptor. These bilayer films were examined by neutron reflectometry to characterize the interface between the donor and C60. In the SiO2/donor/C60 films, DPSQ, CuPC, and DBP show a discrete interface with C60 while bDIP shows substantial spontaneous mixing at the interface, consistent with a donor/(donor + C60)/C60 structure, where the mixed layer is 14 nm.. In the SiO2/C60/donor films, all four donors show negligible mixing at the D/A interface consistent with a discrete D/A junction.

  16. Protein-lipid interactions at the air/water interface.

    PubMed

    Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J

    2005-10-07

    Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

  17. CLIPS application user interface for the PC

    NASA Technical Reports Server (NTRS)

    Jenkins, Jim; Holbrook, Rebecca; Shewhart, Mark; Crouse, Joey; Yarost, Stuart

    1991-01-01

    The majority of applications that utilize expert system development programs for their knowledge representation and inferencing capability require some form of interface with the end user. This interface is more than likely an interaction through the computer screen. When building an application the user interface can prove to be the most difficult and time consuming aspect to program. Commercial products currently exist which address this issue. To keep pace C Language Integrated Production System (CLIPS) will need to find a solution for their lack of an easy to use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user community and provides the backbone of a possible solution.

  18. A Sensor Failure Simulator for Control System Reliability Studies

    NASA Technical Reports Server (NTRS)

    Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.

    1986-01-01

    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.

  19. A sensor failure simulator for control system reliability studies

    NASA Astrophysics Data System (ADS)

    Melcher, K. J.; Delaat, J. C.; Merrill, W. C.; Oberle, L. G.; Sadler, G. G.; Schaefer, J. H.

    A real-time Sensor Failure Simulator (SFS) was designed and assembled for the Advanced Detection, Isolation, and Accommodation (ADIA) program. Various designs were considered. The design chosen features an IBM-PC/XT. The PC is used to drive analog circuitry for simulating sensor failures in real-time. A user defined scenario describes the failure simulation for each of the five incoming sensor signals. Capabilities exist for editing, saving, and retrieving the failure scenarios. The SFS has been tested closed-loop with the Controls Interface and Monitoring (CIM) unit, the ADIA control, and a real-time F100 hybrid simulation. From a productivity viewpoint, the menu driven user interface has proven to be efficient and easy to use. From a real-time viewpoint, the software controlling the simulation loop executes at greater than 100 cycles/sec.

  20. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

    PubMed

    Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao

    2016-09-07

    A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.

  1. Multi-Scale Simulation of Interfacial Phenomena and Nano-Particle Placement in Polymer Matrix Composites

    DTIC Science & Technology

    2012-08-01

    Molecular Dynamics Simulations Coarse-Grain Particle Dynamics Simulations Local structure; Force field parameterization Extended structure...K) C8H18 C12H26 C16H34 Adhesive forces can cause local density gradients and defects " Pronounced layering of polymer near interfaces...reactive end groups (CnH2n+1S) on Cu Gap SubPc on C60 Pentacene on a-SiO2 Cyclopentene on Au Crystalline CuPc on Al Polyimide on Si

  2. Could a nearby supernova explosion have caused a mass extinction?

    PubMed Central

    Ellis, J; Schramm, D N

    1995-01-01

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. PMID:11607506

  3. Could a nearby supernova explosion have caused a mass extinction?

    PubMed

    Ellis, J; Schramm, D N

    1995-01-03

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of gamma-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer are discussed. A supernova explosion of the order of 10 pc away could be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the "KT boundary." The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events.

  4. Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The diffuse very high-energy (VHE; >100 GeV) γ-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual γ-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total γ-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE γ-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.

  5. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-10-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.

  6. A microcomputer interface for a digital audio processor-based data recording system.

    PubMed Central

    Croxton, T L; Stump, S J; Armstrong, W M

    1987-01-01

    An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444

  7. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).« less

  8. Isocurvature fluctuations through axion trapping by cosmic string wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath

    2005-03-15

    We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.

  9. Embeddable Reconfigurable Neuroprocessors

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil

    1993-01-01

    Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.

  10. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  11. Control and acquisition system of a space instrument for cosmic ray measurement

    NASA Astrophysics Data System (ADS)

    Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.

    2000-04-01

    The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.

  12. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, X.; Shao, C; Zhang, X

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more ofmore » these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.« less

  13. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  14. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (MACINTOSH VERSION)

    NASA Technical Reports Server (NTRS)

    Riley, G.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  15. CLIPS 6.0 - C LANGUAGE INTEGRATED PRODUCTION SYSTEM, VERSION 6.0 (DEC VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Donnell, B.

    1994-01-01

    CLIPS, the C Language Integrated Production System, is a complete environment for developing expert systems -- programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS 6.0 provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS 6.0 allow CLIPS to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS 6.0, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three. CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS 6.0 supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element). In addition, there is no longer a limitation on the number of multifield slots that a deftemplate can contain. The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS 6.0 supports tight integration of the rule-based programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL). CLIPS 6.0 provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. CLIPS provides several delivery options for programs including the ability to generate stand alone executables or to load programs from text or binary files. CLIPS 6.0 provides support for the modular development and execution of knowledge bases with the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such that explicit control can be maintained over restricting the access of the constructs by other modules. This type of control is similar to global and local scoping used in languages such as C or Ada. By restricting access to deftemplate and defclass constructs, modules can function as blackboards, permitting only certain facts and instances to be seen by other modules. Modules are also used by rules to provide execution control. The CRSV (Cross-Reference, Style, and Verification) utility included with previous version of CLIPS is no longer supported. The capabilities provided by this tool are now available directly within CLIPS 6.0 to aid in the development, debugging, and verification of large rule bases. COSMIC offers four distribution versions of CLIPS 6.0: UNIX (MSC-22433), VMS (MSC-22434), MACINTOSH (MSC-22429), and IBM PC (MSC-22430). Executable files, source code, utilities, documentation, and examples are included on the program media. All distribution versions include identical source code for the command line version of CLIPS 6.0. This source code should compile on any platform with an ANSI C compiler. Each distribution version of CLIPS 6.0, except that for the Macintosh platform, includes an executable for the command line version. For the UNIX version of CLIPS 6.0, the command line interface has been successfully implemented on a Sun4 running SunOS, a DECstation running DEC RISC ULTRIX, an SGI Indigo Elan running IRIX, a DEC Alpha AXP running OSF/1, and an IBM RS/6000 running AIX. Command line interface executables are included for Sun4 computers running SunOS 4.1.1 or later and for the DEC RISC ULTRIX platform. The makefiles may have to be modified slightly to be used on other UNIX platforms. The UNIX, Macintosh, and IBM PC versions of CLIPS 6.0 each have a platform specific interface. Source code, a makefile, and an executable for the Windows 3.1 interface version of CLIPS 6.0 are provided only on the IBM PC distribution diskettes. Source code, a makefile, and an executable for the Macintosh interface version of CLIPS 6.0 are provided only on the Macintosh distribution diskettes. Likewise, for the UNIX version of CLIPS 6.0, only source code and a makefile for an X-Windows interface are provided. The X-Windows interface requires MIT's X Window System, Version 11, Release 4 (X11R4), the Athena Widget Set, and the Xmu library. The source code for the Athena Widget Set is provided on the distribution medium. The X-Windows interface has been successfully implemented on a Sun4 running SunOS 4.1.2 with the MIT distribution of X11R4 (not OpenWindows), an SGI Indigo Elan running IRIX 4.0.5, and a DEC Alpha AXP running OSF/1 1.2. The VAX version of CLIPS 6.0 comes only with the generic command line interface. ASCII makefiles for the command line version of CLIPS are provided on all the distribution media for UNIX, VMS, and DOS. Four executables are provided with the IBM PC version: a windowed interface executable for Windows 3.1 built using Borland C++ v3.1, an editor for use with the windowed interface, a command line version of CLIPS for Windows 3.1, and a 386 command line executable for DOS built using Zortech C++ v3.1. All four executables are capable of utilizing extended memory and require an 80386 CPU or better. Users needing an 8086/8088 or 80286 executable must recompile the CLIPS source code themselves. Users who wish to recompile the DOS executable using Borland C++ or MicroSoft C must use a DOS extender program to produce an executable capable of using extended memory. The version of CLIPS 6.0 for IBM PC compatibles requires DOS v3.3 or later and/or Windows 3.1 or later. It is distributed on a set of three 1.4Mb 3.5 inch diskettes. A hard disk is required. The Macintosh version is distributed in compressed form on two 3.5 inch 1.4Mb Macintosh format diskettes, and requires System 6.0.5, or higher, and 1Mb RAM. The version for DEC VAX/VMS is available in VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard distribution medium) or a TK50 tape cartridge. The UNIX version is distributed in UNIX tar format on a .25 inch streaming magnetic tape cartridge (Sun QIC-24). For the UNIX version, alternate distribution media and formats are available upon request. The CLIPS 6.0 documentation includes a User's Guide and a three volume Reference Manual consisting of Basic and Advanced Programming Guides and an Interfaces Guide. An electronic version of the documentation is provided on the distribution medium for each version: in MicroSoft Word format for the Macintosh and PC versions of CLIPS, and in both PostScript format and MicroSoft Word for Macintosh format for the UNIX and DEC VAX versions of CLIPS. CLIPS was developed in 1986 and Version 6.0 was released in 1993.

  16. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  17. Charge transfer induced by MoO3 at boron subphthalocyanine chloride/α-sexithiophene heterojunction interface

    NASA Astrophysics Data System (ADS)

    Foggiatto, Alexandre L.; Sakurai, Takeaki

    2018-03-01

    The energy-level alignment of boron subphthalocyanine chloride (SubPc)/α-sexithiophene (6T) grown on MoO3 was investigated using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). We demonstrated that the p-doping effect generated by the MoO3 layer can induce charge transfer at the organic-organic heterojunction interface. After the deposition of 6T on MoO3, the fermi level becomes pinned close to the 6T highest occupied molecular orbital (HOMO) level and when SubPc is deposited, owing to its tail states, charge transfer occurs in order to achieve thermodynamic equilibrium. We also demonstrated that the charge transfer can be reduced by annealing the film. We suggested that the reduction of the misalignment on the film induces a reduction in the density of gap states, which controls the charge transfer.

  18. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  19. Onboard System Evaluation of Rotors Vibration, Engines (OBSERVE) monitoring System

    DTIC Science & Technology

    1992-07-01

    consists of a Data Acquisiiton Unit (DAU), Control and Display Unit ( CADU ), Universal Tracking Devices (UTD), Remote Cockpit Display (RCD) and a PC...and Display Unit ( CADU ) - The CADU provides data storage and a graphical user interface neccesary to display both the measured data and diagnostic...information. The CADU has an interface to a Credit Card Memory (CCM) which operates similar to a disk drive, allowing the storage of data and programs. The

  20. An on-line reactivity and power monitor for a TRIGA reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binney, Stephen E.; Bakir, Alia J.

    1988-07-01

    As the personal computer (PC) becomes more and more of a significant influence on modern technology, it is reasonable that at some point in time they would be used to interface with TRIGA reactors. A personal computer with a special interface board has been used to monitor key parameters during operation of the Oregon State University TRIGA Reactor (OSTR). A description of the apparatus used and sample results are included.

  1. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  2. Remote media vision-based computer input device

    NASA Astrophysics Data System (ADS)

    Arabnia, Hamid R.; Chen, Ching-Yi

    1991-11-01

    In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.

  3. RadioAstron space-ground interferometer at 324 MHz: interstellar plasma in the direction to PSR B1919+21

    NASA Astrophysics Data System (ADS)

    Smirnova, Tatiana; Andrianov, Andrey; Shishov, Vladimir

    We present results obtained from analysis of our observations carried out on the space-ground interferometer RadioAstron at frequency of 324 MHz. Observations were conducted on 04.07.12 with a baseline projection of 60000 km. We used two ground telescopes: GBT and WSRT with the space radio telescope (SRT). Notable visibility amplitudes were detected at all baseline projections. We found that frequency structure of interstellar scintillation for pulsar B1919+21 is defined by angular refraction with refractive angle: θref ≈ 60 mas. Cosmic prism is located near to observer with a distance of about 10 pc. The scattering angle is resolved by cosmic interferometer and θsc is about 1 mas. The temporal structure of scintillation is mainly defined by interstellar plasma of extended media, but frequency structure - by extended media and prism influence. We detected also the influence of ionosphere on a phase variations of interferometer.

  4. A visual interface to computer programs for linkage analysis.

    PubMed

    Chapman, C J

    1990-06-01

    This paper describes a visual approach to the input of information about human families into computer data bases, making use of the GEM graphic interface on the Atari ST. Similar approaches could be used on the Apple Macintosh or on the IBM PC AT (to which it has been transferred). For occasional users of pedigree analysis programs, this approach has considerable advantages in ease of use and accessibility. An example of such use might be the analysis of risk in families with Huntington disease using linked RFLPs. However, graphic interfaces do make much greater demands on the programmers of these systems.

  5. Can your software engineer program your PLC?

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; Taylor, Philip

    2016-07-01

    The use of Programmable Logic Controllers (PLCs) in the control of large physics experiments is ubiquitous1, 2, 3. The programming of these controllers is normally the domain of engineers with a background in electronics, this paper introduces PLC program development from the software engineer's perspective. PLC programs provide the link between control software running on PC architecture systems and physical hardware controlled and monitored by digital and analog signals. The higher-level software running on the PC is typically responsible for accepting operator input and from this deciding when and how hardware connected to the PLC is controlled. The PLC accepts demands from the PC, considers the current state of its connected hardware and if correct to do so (based upon interlocks or other constraints) adjusts its hardware output signals appropriately for the PC's demands. A published ICD (Interface Control Document) defines the PLC memory locations available to be written and read by the PC to control and monitor the hardware. Historically the method of programming PLCs has been ladder diagrams that closely resemble circuit diagrams, however, PLC manufacturers nowadays also provide, and promote, the use of higher-level programming languages4. Based on techniques used in the development of high-level PC software to control PLCs for multiple telescopes, this paper examines the development of PLC programs to operate the hardware of a medical cyclotron beamline controlled from a PC using the Experimental Physics and Industrial Control System (EPICS), which is also widely used in telescope control5, 6, 7. The PLC used is the new generation Siemens S7-1200 programmed using Siemens Pascal based Structured Control Language (SCL), which is their implementation of Structured Text (ST). The approach described is that from a software engineer's perspective, utilising Siemens Totally Integrated Automation (TIA) Portal integrated development environment (IDE) to create modular PLC programs based upon reusable functions capable of being unit tested without the PLC connected to hardware. Emphasis has been placed on designing an interface between EPICS and SCL that enforces correct operation of hardware through stringent separation of PC accessible PLC memory and hardware I/O addresses used only by the PLC. The paper also introduces the method used to automate the creation, from the same source document, the PLC memory structure (tag) definitions (defining memory used to access hardware I/O and that accessed by the PC) and creation of the PC program data structures (EPICS database records) used to access the permitted PLC addresses. From direct experience this paper demonstrates the advantages of PLC program development being shared between electronic and software engineers, to enable use of the most appropriate processes from both the perspective of the hardware and the higher-level software used to control it.

  6. Effect of lipid/polysaccharide ratio on surface activity of model root mucilage in its solid and liquid states

    NASA Astrophysics Data System (ADS)

    Chen, Fengxian; Arye, Gilboa

    2016-04-01

    The rhizosphere can be defined as the volume of soil around living roots, which is influenced by root activity. The biological, chemical and physical conditions that prevail in the rhizosphere are significantly different from those of the bulk soil. Plant roots can release diverse organic materials in the rhizosphere which may have different effects on its bio-chemo-physical activity. Among these exudates is the root mucilage which can play a role on the maintenance of root-soil contact, lubrication of the root tip, protection of roots from desiccation and disease, stabilization of soil micro-aggregates and the selective absorption and storage of ions. The surface activity of the root mucilage at the liquid-air interface deduced from its surface tension depression relative to water, implying on its amphiphilic nature. Consequently as the rhizosphere dry out, hydrophobic functional groups may exhibit orientation at the solid-air interface and thus, the wettability of the rhizosphere may temporarily decrease. The major fraction of the root mucilage comprise of polysaccharides and to a much lesser extent, amino acids, organic acids, and phospholipids. The most frequent polysaccharide and phospholipids detected in root mucilage are polygalacturonic acid (PGA) and Phosphatidylcholine (PC), respectively. The latter, is thought to be main cause for the surface active nature of root mucilage. Nevertheless, the role and function of root mucilage in the rhizosphere is commonly studied based on model root mucilage that comprise of only one component, where the most frequent ones are PGA or PC (or lecithin). The main objective of this study was to quantify the effect of concentration and PGA/PC ratios on the wettability of a model rhizosphere soil and the surface tension of the model root mucilage at the liquid-air interface. The PGA/PC mixtures were measured for their equilibrium and dynamic surface tension using the Wilhelmy-Plate method. Quartz sand or glass slides were coated with PGA and/or PC using the above solutions and measured for their initial advancing contact angle and dynamic one, using the capillary rise and sessile drop methods, respectively. The results of this study will be presented and their implications for the wettability of the rhizosphere will be discussed.

  7. The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury.

    PubMed

    Grzelak, Candice Alexandra; Martelotto, Luciano Gastón; Sigglekow, Nicholas David; Patkunanathan, Bramilla; Ajami, Katerina; Calabro, Sarah Ruth; Dwyer, Benjamin James; Tirnitz-Parker, Janina Elke Eleonore; Watkins, D Neil; Warner, Fiona Jane; Shackel, Nicholas Adam; McCaughan, Geoffrey William

    2014-01-01

    In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with progenitors. Copyright © 2013 European Association for the Study of the Liver. All rights reserved.

  8. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.

  9. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Aster, R. W.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  10. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.

    PubMed

    Kencana, Andy Prima; Heng, John

    2008-11-01

    This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.

  11. A compact electroencephalogram recording device with integrated audio stimulation system.

    PubMed

    Paukkunen, Antti K O; Kurttio, Anttu A; Leminen, Miika M; Sepponen, Raimo E

    2010-06-01

    A compact (96 x 128 x 32 mm(3), 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 microV(rms) at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.

  12. A compact electroencephalogram recording device with integrated audio stimulation system

    NASA Astrophysics Data System (ADS)

    Paukkunen, Antti K. O.; Kurttio, Anttu A.; Leminen, Miika M.; Sepponen, Raimo E.

    2010-06-01

    A compact (96×128×32 mm3, 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 μVrms at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW® and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.

  13. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Senku, E-mail: senku@ele.kindai.ac.jp; Otani, Tomohiro; Fukuzawa, Ken

    2014-05-12

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum levelmore » shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.« less

  14. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  15. Development of a PC interface board for true color control using an Ar Kr white-light laser

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Park, Sohee; Kim, Youngseop; Lee, Jangwoen

    2006-06-01

    For the optimal laser display, it is crucial to select and control color signals of proper wavelengths in order to construct a wide range of laser display colors. In traditional laser display schemes, color control has been achieved through the mechanical manipulation of red, green, and blue (RGB) laser beam intensities using color filters. To maximize the effect of a laser display and its color contents, it is desirable to generate laser beams with wide selection of wavelengths. We present an innovative laser display control technique, which generates six channel laser wavelengths from a white-light laser using a RF-controlled polychromatic acousto optical modulator (PCAOM). This technique enables us not only to control the intensity of individual channels, but also to achieve true color signals for the laser beam display including RGB, yellow, cyan, and violet (YCV), and other intermediate colors. For the optimal control of the PCAOM and galvano-mirror, we designed and fabricated a PC interface board. Using this PC control, we separated the white-light from an Ar-Kr mixed gas laser into various wavelengths and reconstructed them into different color schemes. Also we demonstrated the effective control and simultaneous display of reconstructed true color laser beams on a flat screen.

  16. The universal toolbox thermal imager

    NASA Astrophysics Data System (ADS)

    Hollock, Steve; Jones, Graham; Usowicz, Paul

    2003-09-01

    The Introduction of Microsoft Pocket PC 2000/2002 has seen a standardisation of the operating systems used by the majority of PDA manufacturers. This, coupled with the recent price reductions associated with these devices, has led to a rapid increase in the sales of such units; their use is now common in industrial, commercial and domestic applications throughout the world. This paper describes the results of a programme to develop a thermal imager that will interface directly to all of these units so as to take advantage of the existing and future installed base of such devices. The imager currently interfaces with virtually any Pocket PC which provides the necessary processing, display and storage capability; as an alternative, the output of the unit can be visualised and processed in real time using a PC or laptop computer. In future, the open architecture employed by this imager will allow it to support all mobile computing devices, including phones and PDAs. The imager has been designed for one-handed or two-handed operation so that it may be pointed at awkward angles or used in confined spaces; this flexibility of use coupled with the extensive feature range and exceedingly low-cost of the imager, is extending the marketplace for thermal imaging from military and professional, through industrial to the commercial and domestic marketplaces.

  17. UIMX: A User Interface Management System For Scientific Computing With X Windows

    NASA Astrophysics Data System (ADS)

    Foody, Michael

    1989-09-01

    Applications with iconic user interfaces, (for example, interfaces with pulldown menus, radio buttons, and scroll bars), such as those found on Apple's Macintosh computer and the IBM PC under Microsoft's Presentation Manager, have become very popular, and for good reason. They are much easier to use than applications with traditional keyboard-oriented interfaces, so training costs are much lower and just about anyone can use them. They are standardized between applications, so once you learn one application you are well along the way to learning another. The use of one reinforces the common elements between applications of the interface, and, as a result, you remember how to use them longer. Finally, for the developer, their support costs can be much lower because of their ease of use.

  18. Fabrication and charge/energy-transfer study of 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole/CuPc composite films

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Gu, Shuangxi; Wei, Xiao; Xue, Minzhao; Zhang, Qing; Sheng, Qiaorong; Liu, Yangang

    2010-12-01

    Composite films of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole (TBT) and copper phthalocyanine (CuPc) are fabricated via protonation-coelectrophoretic deposition from nitromethane solutions of TBT/CuPc mixture in the presence of trifluoroacetic acid as a protonation reagent. A nanospheres-nanowires interpenetrating network structure is obtained when the molar percentage of TBT is 70%. Furthermore, the existence of TBT makes α-phased CuPc be partly transformed into the β-phase, and simultaneously, CuPc disorganizes the TBT unit cells. The blue shift on the absorption edge of TBT and the significant fluorescence quenching in the composite films indicate energy/charge transfer and donor-acceptor (D-A) heterojunction formation. Then these results are proved from another point of view: the mutual overlap of absorption and emission spectra of TBT and CuPc lead to a bidirectional Förster resonance energy transfer at the interface; the molecular energy levels calculated from the results of cyclic voltammetry theoretically determine that there exist a D-A heterojunction and charge transfer from TBT to CuPc. Finally, from the investigation of the field-induced surface photovoltage spectra, it can be concluded that this charge transfer results in efficient dissociation of the photoinduced excitons in the composite films, followed by the generation of a strong photovoltage response.

  19. Radio emission from supernova remnants in a cloudy interstellar medium

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Cowie, L. L.

    1982-01-01

    The van der Laan (1962) theory of SNR radio emission is modified in light of the inhomogeneity of the interstellar medium, and in order to allow for particle acceleration in shock fronts. It is proposed that most of the radio emission in 10-20 pc radius SNRs originates in cold interstellar clouds that have been crushed by the high pressure hot gas within the expanding remnant. Under these circumstances, simple reacceleration of ambient interstellar cosmic ray electrons can account for the surface brightness-diameter distribution of observed remnants, with the additional, relativistic particle energy compensating for the decreased filling factor of the radio-emitting regions. Warm interstellar gas, at about 8000 K, may also be compressed within very large SNRs (of radius of 30-100 pc) and account for both the giant radio loops, when these SNRs are seen individually, and the anomalously bright galactic nonthermal radio background, which may be the superposition of a number of such features.

  20. Could a nearby supernova explosion have caused a mass extinction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.; Schramm, D.N.

    1995-01-03

    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by paleontologists. We discuss the possible rate of such events in the light of the recent suggested identification of Geminga as a supernova remnant less than 100 parsec (pc) away and the discovery of a millisecond pulsar about 150 pc away and observations of SN 1987A. The fluxes of {gamma}-radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth`s ozone layer are discussed. A supernova explosion of the order of 10 pc away couldmore » be expected as often as every few hundred million years and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs at the {open_quotes}KT boundary.{close_quotes} The recent argument that the KT event was exceedingly large and thus quite rare supports the need for other catastrophic events. 24 refs.« less

  1. Electronic Structure of C60/Zinc Phthalocyanine/V₂O₅ Interfaces Studied Using Photoemission Spectroscopy for Organic Photovoltaic Applications.

    PubMed

    Lim, Chang Jin; Park, Min Gyu; Kim, Min Su; Han, Jeong Hwa; Cho, Soohaeng; Cho, Mann-Ho; Yi, Yeonjin; Lee, Hyunbok; Cho, Sang Wan

    2018-02-18

    The interfacial electronic structures of a bilayer of fullerene (C 60 ) and zinc phthalocyanine (ZnPc) grown on vanadium pentoxide (V₂O₅) thin films deposited using radio frequency sputtering under various conditions were studied using X-ray and ultraviolet photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the ZnPc layer and the lowest unoccupied molecular orbital (LUMO) level of the C 60 layer was determined and compared with that grown on an indium tin oxide (ITO) substrate. The energy difference of a heterojunction on all V₂O₅ was found to be 1.3~1.4 eV, while that on ITO was 1.1 eV. This difference could be due to the higher binding energy of the HOMO of ZnPc on V₂O₅ than that on ITO regardless of work functions of the substrates. We also determined the complete energy level diagrams of C 60 /ZnPc on V₂O₅ and ITO.

  2. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  3. A nonpolar, nonamphiphilic molecule can accelerate adsorption of phospholipids and lower their surface tension at the air/water interface.

    PubMed

    Nguyen, Phuc Nghia; Trinh Dang, Thuan Thao; Waton, Gilles; Vandamme, Thierry; Krafft, Marie Pierre

    2011-10-04

    The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC(8)-PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γ(eq)) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γ(eq) values were significantly lower (by up to 10 mN m(-1)) when PFH was present in the gas phase. The efficacy of PFH in decreasing γ(eq) depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30%) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface-tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC(8)-PC at the PFH-saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    PubMed

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  5. Impact-induced fracture mechanisms of immiscible PC/ABS (50/50) blends

    NASA Astrophysics Data System (ADS)

    Machmud, M. N.; Omiya, M.; Inoue, H.; Kishimoto, K.

    2018-03-01

    This paper presents a study on fracture mechanisms of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) (50/50) blends with different ABS types under a drop weight impact test (DWIT) using a circular sheet specimen. Formation of secondary crack indicated by a stress-whitening layer on the mid-plane of scattered specimens and secondary surface of fracture perpendicular to primary fracture surface were captured under scanning electron microscope (SEM). Although the both blends finally failed in brittle modes, SEM observation showed that their secondary fracture mechanisms were completely different. Observation through the thickness of the etched PC/ABS specimen samples using SEM also clearly showed that PC and ABS were immiscible. The immiscibility between PC and ABS was indicated by presence of their layer structures through the thickness of the blends. It was revealed that layer of ABS structure was influenced by size of rubber particle and this latter parameter then affected microstructure and fracture mechanisms of the blends. Impact-induced fracture mechanisms of the blends due to such microstructures are discussed in this paper. It was also pointed out that the secondary cracking was likely caused by interface delamination between PC and ABS layers in the core due to transverse shear stress generated during the impact test.

  6. Giant Molecular Clouds with High Abundance of Atomic Carbon and Cyano Radical in the Milky Way's Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko; Oka, Tomoharu; Nagai, Makoto; Kamegai, Kazuhisa

    2015-08-01

    The central 400 pc region of the Milky Way Galaxy is the closest galactic central region to us, providing a unique opportunity to detailedly investigate gas dynamics, star formation activity, and chemistry under the extreme environment of galactic centers, where the presence of bar, intense UV/cosmic-ray fluxes, high degree of turbulence may significantly affect those processes. We report the results of molecular line surveys toward the Milky Way's central molecular zone (CMZ) performed with the ASTE 10m telescope, the Mopra 22m telescope, and the Nobeyama 45 m telescope. With the observations of the 500 GHz [CI] fine structure line of atomic carbon (C0), we have found a molecular cloud structure with remarkably bright [CI] emission in the Sgr A comlex in the innermost 20 pc region. The [CI] cloud is more extended than the GMCs in the region, and appears to connect the northern part of the 50 kms-1 (M-0.02-0.07) and the circumnuclear disk (CND), though no corresponding structures are visible in other molecular lines. The [C0]/[CO] abundance ratio is measured to be 0.5-2, which is 2-10 times those measured to the clouds at larger Galactic radii. This high ratio is close to the values measured toward centers of galaxies with starburst and AGN, suggesting that the chemical state of the cloud is similar to that in those active galaxies. We have also found a large scale gradient of the cyano radical (CN) abundance toward the Galactic center in the innermost 100 pc radius, showing near the Sgr A complex. We suggest that the cloud with high C0 and CN abundance is a feature formed as a result of inward transfer of diffuse molecular gas by the bar potential in the inner Galaxy, in which PDR-like chemical composition remains preserved, and that thus the [CI] cloud could be deeply related to formation of the GMCs and star formation in the CMZ. We also discuss other possible mechanisms to enhance C0 and CN abundances, including the enhanced cosmic-ray dissociation ratio.

  7. NASTRAN interfacing modules within the Integrated Analysis Capability (IAC) Program

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1986-01-01

    The IAC program provides the framework required for the development of an extensive multidisciplinary analysis capability. Several NASTRAN related capabilities were developed which can all be expanded in a routine manner to meet in-house unique needs. Plans are to complete the work discussed herein and to provide it to the engineering community through COSMIC. Release is to be after the current IAC Level 2 contract work on the IAC executive system is completed and meshed with the interfacing modules and analysis capabilities under development at the GSFC.

  8. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  9. Simple and advanced ferromagnet/molecule spinterfaces

    NASA Astrophysics Data System (ADS)

    Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.

    2016-10-01

    Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.

  10. Elucidating Complex Surface Reconstructions with Atomic-Resolution Scanning Tunneling Microscopy: Au(100)-Aqueous Electrochemical Interface

    DTIC Science & Technology

    1992-05-01

    that unusually high-quality STM data of this type 5-7can be obtained at ordered gold -aqueous interfaces. Reconstruction is seen 2 to be triggered on...all three low-index gold surfaces by altering the potential to values corresponding to small (10-15 pC cm-2 ) negative surface electronic 5-7 charges...connections. The former was platinum and the latter was a freshly electrooxidized gold wire. All electrode potentials quoted here, however, are

  11. Planetary data analysis and display system: A version of PC-McIDAS

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.; Sromovsky, L. A.; Saunders, R. S.; Martin, Michael

    1993-01-01

    We propose to develop a system for access and analysis of planetary data from past and future space missions based on an existing system, the PC-McIDAS workstation. This system is now in use in the atmospheric science community for access to meteorological satellite and conventional weather data. The proposed system would be usable not only by planetary atmospheric researchers but also by the planetary geologic community. By providing the critical tools of an efficient system architecture, newer applications and customized user interfaces can be added by the end user within such a system.

  12. Simultaneous real-time data collection methods

    NASA Technical Reports Server (NTRS)

    Klincsek, Thomas

    1992-01-01

    This paper describes the development of electronic test equipment which executes, supervises, and reports on various tests. This validation process uses computers to analyze test results and report conclusions. The test equipment consists of an electronics component and the data collection and reporting unit. The PC software, display screens, and real-time data-base are described. Pass-fail procedures and data replay are discussed. The OS2 operating system and Presentation Manager user interface system were used to create a highly interactive automated system. The system outputs are hardcopy printouts and MS DOS format files which may be used as input for other PC programs.

  13. An HPLC-ICP-MS technique for determination of cadmium-phytochelatins in genetically modified Arabidopsis thaliana.

    PubMed

    Sadi, Baki B M; Vonderheide, Anne P; Gong, Ji-Ming; Schroeder, Julian I; Shann, Jodi R; Caruso, Joseph A

    2008-01-01

    A reversed-phase high-performance liquid chromatographic technique was developed to separate cadmium-phytochelatin complexes (Cd-PC2, Cd-PC3, and Cd-PC4) of interest in the plant Arapidopsis thaliana. High-performance liquid chromatography (HPLC) was coupled to an inductively coupled plasma mass spectrometric (ICP-MS) system with some modification to the interface. This was done in order to sustain the plasma with optimum sensitivity for cadmium detection in the presence of the high methanol loads used in the gradient elution of the reversed-phase separation. The detection limits were found to be 91.8 ngl(-1), 77.2 ngl(-1) and 49.2 ngl(-1) for Cd-PC2, Cd-PC3, and Cd-PC4 respectively. The regression coefficients (r2) for Cd-PC2 to Cd-PC4 detection ranged from 0.998 to 0.999. The method was then used to investigate the occurrence and effect of cadmium-phytochelatin complexes in wild-type Arabidopsis and a phytochelatin-deficient mutant cad1-3 that had been genetically modified to ectopically express the wheat TaPCS1 phytochelatin synthase enzyme. The primary complex found in both wild-type and transgenic plants was Cd-PC2. In both lines, higher levels of Cd-PC2 were found in shoots than in roots, showing that phytochelatin synthases contribute to the accumulation of cadmium in shoots, in the Cd-PC2 form. Genetic modification did, however, impact the overall accumulation of Cd. Transgenic plants contained almost two times more cadmium in the form of Cd-PC2 in their roots than did the corresponding wild-type plants. Similarly, the shoot samples of the modified species also contained more (by 1.6 times) cadmium in the form of Cd-PC2 than the wild type. The enhanced role of PC2 in the transgenic Arabidopsis correlates with data showing long-distance transport of Cd in transgenic plants. Targeted transgenic expression of non-native phytochelatin synthases may contribute to improving the efficiency of plants for phytoremediation.

  14. Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy

    NASA Astrophysics Data System (ADS)

    Stadtmüller, Benjamin; Haag, Norman; Seidel, Johannes; van Straaten, Gerben; Franke, Markus; Kumpf, Christian; Cinchetti, Mirko; Aeschlimann, Martin

    2016-12-01

    The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals-like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.

  15. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    DOE PAGES

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC 61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC 61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH 3NH 3PbI 3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC 61BM to promote the efficient electronmore » transport between ITO and PC 61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC 61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.« less

  16. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    NASA Astrophysics Data System (ADS)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, X.; Florinski, V.

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less

  18. Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate.

    PubMed

    Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin

    2015-05-01

    As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 10(9) Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.

  19. CLIPS interface development tools and their application

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A.; Rewerts, Chris C.; Srinivasan, Raghavan; Rogers, Joseph B.; Jones, Don D.

    1990-01-01

    A package of C-based PC user interface development functions has been developed and integrated into CLIPS. The primary function is ASK which provides a means to ask the user questions via multiple choice menus or the keyboard and then returns the user response to CLIPS. A parameter-like structure supplies information for the interface. Another function, SHOW, provides a means to paginate and display text. A third function, TITLE, formats and displays title screens. A similar set of C-based functions that are more general and thus will run on UNIX and machines have also been developed. Seven expert system applications were transformed from commercial development environments into CLIPS and utilize ASK, SHOW, and TITLE. Development of numerous new expert system applications using CLIPS and these interface functions has started. These functions greatly reduce the time required to build interfaces for CLIPS applications.

  20. A PC-based bus monitor program for use with the transport systems research vehicle RS-232 communication interfaces

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has recently increased. Each application utilizes a number of nonidentical computer and peripheral configurations and requires task specific software development. To aid these development tasks, an IBM PC-based RS-232 bus monitoring system was produced. It can simultaneously monitor two communication ports of a PC or clone, including the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs in a separate window for each port's input with binary display being selectable. A number of other features including binary log files, screen capture to files, and a full range of communication parameters are provided.

  1. Toward Software Both Seen and Heard.

    ERIC Educational Resources Information Center

    Lazzaro, Joseph J.

    1996-01-01

    Visually impaired users are hampered by current PC software written for graphical user interfaces. Screen readers that vocalize displayed text require standardization that remains missing in the programming industry; the readers cannot interpret many cues in the Windows environment. More programming standards and adaptive technology for computers…

  2. Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy

    PubMed Central

    Duwé, Sam; Neely, Robert K.; Zhang, Jin

    2012-01-01

    Abstract. We present Localizer, a freely available and open source software package that implements the computational data processing inherent to several types of superresolution fluorescence imaging, such as localization (PALM/STORM/GSDIM) and fluctuation imaging (SOFI/pcSOFI). Localizer delivers high accuracy and performance and comes with a fully featured and easy-to-use graphical user interface but is also designed to be integrated in higher-level analysis environments. Due to its modular design, Localizer can be readily extended with new algorithms as they become available, while maintaining the same interface and performance. We provide front-ends for running Localizer from Igor Pro, Matlab, or as a stand-alone program. We show that Localizer performs favorably when compared with two existing superresolution packages, and to our knowledge is the only freely available implementation of SOFI/pcSOFI microscopy. By dramatically improving the analysis performance and ensuring the easy addition of current and future enhancements, Localizer strongly improves the usability of superresolution imaging in a variety of biomedical studies. PMID:23208219

  3. Radio Astronomy Software Defined Receiver Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a usermore » s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.« less

  4. A SPDS Node to Support the Systematic Interpretation of Cosmic Ray Data

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The purpose of this project was to establish and maintain a Space Physics Data System (SPDS) node that supports the analysis and interpretation of current and future galactic cosmic ray (GCR) measurements by (1) providing on-line databases relevant to GCR propagation studies; (2) providing other on-line services, such as anonymous FTP access, mail list service and pointers to e-mail address books, to support the cosmic ray community; (3) providing a mechanism for those in the community who might wish to submit similar contributions for public access; (4) maintaining the node to assure that the databases remain current; and (5) investigating other possibilities, such as CD-ROM, for public dissemination of the data products. Shortly after the original grant to support these activities was established at Louisiana State University a detailed study of alternate choices for the node hardware was initiated. The chosen hardware was an Apple Workgroup Server 9150/120 consisting of a 120 MHz PowerPC 601 processor, 32 MB of memory, two I GB disks and one 2 GB disk. This hardware was ordered and installed and has been operating reliably ever since. A preliminary version of the database server was available during the first year effort and was used as part of the very successful SPDS demonstration during the Rome, Italy International Cosmic Ray Conference. For this server version we were able to establish the html and anonymous FTP server software, develop a Web page structure which can be easily modified to include new items, provide an on-line database of charge changing total cross sections, include the cross section prediction software of Silberberg & Tsao as well as Webber, Kish and Schrier for download access, and provide an on-line bibliography of the cross section measurement references by the Transport Collaboration. The preliminary version of this SPDS Cosmic Ray node was examined by members of the C&H SPDS committee and returned comments were used to refine the implementation.

  5. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Maurer

    2008-09-18

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the fluxmore » of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented.« less

  6. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents

    NASA Astrophysics Data System (ADS)

    Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila

    2017-09-01

    The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations.

  7. A low-cost PC-based telemetry data-reduction system

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1990-04-01

    The Solar Energy Research Institute's (SERI) Wind Research Branch is using Pulse Code Modulation (PCM) telemetry data-acquisition systems to study horizontal-axis wind turbines. PCM telemetry systems are used in test installations that require accurate multiple-channel measurements taken from a variety of different locations. SERI has found them ideal for use in tests requiring concurrent acquisition of data-reduction system to facilitate quick, in-the-field multiple-channel data analysis. Called the PC-PCM System, it consists of two basic components. First, AT-compatible hardware boards are used for decoding and combining PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for the DOS operating system was developed to simplify data-acquisition control and management. The software provides a quick, easy-to-use interface between the PC and PCM data streams. Called the Quick-Look Data Management Program, it is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. This paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data. Also discussed are problems and techniques associated with PC-based telemetry data acquisition, processing, and real-time display.

  8. Mass spectrometer calibration of Cosmic Dust Analyzer

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.; Gupta, Satish C.; Jyoti, G.; Beauchamp, J. L.

    2003-02-01

    The time-of-flight (TOF) mass spectrometer (MS) of the Cosmic Dust Analyzer (CDA) instrument aboard the Cassini spacecraft is expected to be placed in orbit about Saturn to sample submicrometer-diameter ring particles and impact ejecta from Saturn's satellites. The CDA measures a mass spectrum of each particle that impacts the chemical analyzer sector of the instrument. Particles impact a Rh target plate at velocities of 1-100 km/s and produce some 10-8 to 10-5 times the particle mass of positive valence, single-charged ions. These are analyzed via a TOF MS. Initial tests employed a pulsed N2 laser acting on samples of kamacite, pyrrhotite, serpentine, olivine, and Murchison meteorite induced bursts of ions which were detected with a microchannel plate and a charge sensitive amplifier (CSA). Pulses from the N2 laser (1011 W/cm2) are assumed to simulate particle impact. Using aluminum alloy as a test sample, each pulse produces a charge of ~4.6 pC (mostly Al+1), whereas irradiation of a stainless steel target produces a ~2.8 pC (Fe+1) charge. Thus the present system yields ~10-5% of the laser energy in resulting ions. A CSA signal indicates that at the position of the microchannel plate, the ion detector geometry is such that some 5% of the laser-induced ions are collected in the CDA geometry. Employing a multichannel plate detector in this MS yields for Al-Mg-Cu alloy and kamacite targets well-defined peaks at 24 (Mg+1), 27(Al+1), and 64 (Cu+1) and 56 (Fe+1), 58 (Ni+1), and 60 (Ni+1) dalton, respectively.

  9. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is necessary only to add an identification record and the namelist data that are to be changed from the previous run. This code was originally developed in 1989 in FORTRAN V on a CDC 6000 computer system, and was later ported to an MS-DOS environment. Both versions are available from COSMIC. There are only a few differences between the PC version (LAR-14458) and CDC version (LAR-14178) of AERO2S distributed by COSMIC. The CDC version has one main source code file while the PC version has two files which are easier to edit and compile on a PC. The PC version does not require a FORTRAN compiler which supports NAMELIST because a special INPUT subroutine has been added. The CDC version includes two MODIFY decks which can be used to improve the code and prevent the possibility of some infrequently occurring errors while PC-version users will have to make these code changes manually. The PC version includes an executable which was generated with the Ryan McFarland/FORTRAN compiler and requires 253K RAM and an 80x87 math co-processor. Using this executable, the sample case requires about four hours to execute on an 8MHz AT-class microcomputer with a co-processor. The source code conforms to the FORTRAN 77 standard except that it uses variables longer than six characters. With two minor modifications, the PC version should be portable to any computer with a FORTRAN compiler and sufficient memory. The CDC version of AERO2S is available in CDC NOS Internal format on a 9-track 1600 BPI magnetic tape. The PC version is available on a set of two 5.25 inch 360K MS-DOS format diskettes. IBM AT is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. CDC is a registered trademark of Control Data Corporation. NOS is a trademark of Control Data Corporation.

  10. A new electrode design for ambipolar injection in organic semiconductors.

    PubMed

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  11. Structural characteristics of phosphorus-doped C60 thin film prepared by radio frequency-plasma assisted thermal evaporation technique.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-02-01

    Phosphorus doped C60 (P:C60) thin films were prepared by a radio frequency plasma assisted thermal evaporation technique using C60 powder as a carbon source and a mixture of argon and phosphine (PH3) gas as a dopant precursor. The effects of the plasma power on the structural characteristics of the as-prepared films were then studied using Raman spectroscopy, Auger electron spectroscopy (AES) and X-ray photo-electrons spectroscopy (XPS). XPS and Auger analysis indicated that the films were mainly composed of C and P and that the concentration of P was proportional to the plasma power. The Raman results implied that the doped films contained a more disordered carbon structure than the un-doped samples. The P:C60 films were then used as a coating layer for the Si anodes of lithium ion secondary batteries. The cyclic voltammetry (CV) analysis of the P:C60 coated Si electrodes demonstrated that the P:C60 coating layer might be used to improve the transport of Li-ions at the electrode/electrolyte interface.

  12. Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on crosslinked silica aerogel substrates

    PubMed Central

    Lynch, Kyle J.; Skalli, Omar

    2017-01-01

    Fundamental understanding and characterization of neural response to substrate topography is essential in the development of next generation biomaterials for nerve repair. Aerogels are a new class of materials with great potential as a biomaterial. In this work, we examine the extension of neurites by PC12 cells plated on matrigel-coated and collagen-coated mesoporous aerogel surfaces. We have successfully established the methodology for adhesion and growth of PC12 cells on polyurea crosslinked silica aerogels. Additionally, we have quantified neurite behaviors and compared their response on aerogel substrates with their behavior on tissue culture (TC) plastic, and polydimethylsiloxane (PDMS). We found that, on average, PC12 cells extend longer neurites on crosslinked silica aerogels than on tissue culture plastic, and, that the average number of neurites per cluster is lower on aerogels than on tissue culture plastic. Aerogels are an attractive candidate for future development of smart neural implants and the work presented here creates a platform for future work with this class of materials as a substrate for bioelectronic interfacing. PMID:29049304

  13. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2018-01-01

    We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.

  14. Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on crosslinked silica aerogel substrates.

    PubMed

    Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh

    2017-01-01

    Fundamental understanding and characterization of neural response to substrate topography is essential in the development of next generation biomaterials for nerve repair. Aerogels are a new class of materials with great potential as a biomaterial. In this work, we examine the extension of neurites by PC12 cells plated on matrigel-coated and collagen-coated mesoporous aerogel surfaces. We have successfully established the methodology for adhesion and growth of PC12 cells on polyurea crosslinked silica aerogels. Additionally, we have quantified neurite behaviors and compared their response on aerogel substrates with their behavior on tissue culture (TC) plastic, and polydimethylsiloxane (PDMS). We found that, on average, PC12 cells extend longer neurites on crosslinked silica aerogels than on tissue culture plastic, and, that the average number of neurites per cluster is lower on aerogels than on tissue culture plastic. Aerogels are an attractive candidate for future development of smart neural implants and the work presented here creates a platform for future work with this class of materials as a substrate for bioelectronic interfacing.

  15. A PC-based telemetry system for acquiring and reducing data from multiple PCM streams

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1991-07-01

    The Solar Energy Research Institute's (SERI) Wind Research Program is using Pulse Code Modulation (PCM) Telemetry Data-Acquisition Systems to study horizontal-axis wind turbines. Many PCM systems are combined for use in test installations that require accurate measurements from a variety of different locations. SERI has found them ideal for data-acquisition from multiple wind turbines and meteorological towers in wind parks. A major problem has been in providing the capability to quickly combine and examine incoming data from multiple PCM sources in the field. To solve this problem, SERI has developed a low-cost PC-based PCM Telemetry Data-Reduction System (PC-PCM System) to facilitate quick, in-the-field multiple-channel data analysis. The PC-PCM System consists of two basic components. First, PC-compatible hardware boards are used to decode and combine multiple PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for use under DOS was developed to simplify data-acquisition control and management. The software, called the Quick-Look Data Management Program, provides a quick, easy-to-use interface between the PC and multiple PCM data streams. The Quick-Look Data Management Program is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. The paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data from multiple PCM streams. Also discussed are problems and techniques associated with PC-based telemetry data-acquisition, processing, and real-time display.

  16. Spacelab, Spacehab, and Space Station Freedom payload interface projects

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1992-01-01

    Contributions were made to several projects. Howard Nguyen was assisted in developing the Space Station RPS (Rack Power Supply). The RPS is a computer controlled power supply that helps test equipment used for experiments before the equipment is installed on Space Station Freedom. Ron Bennett of General Electric Government Services was assisted in the design and analysis of the Standard Interface Rack Controller hardware and software. An analysis was made of the GPIB (General Purpose Interface Bus), looking for any potential problems while transmitting data across the bus, such as the interaction of the bus controller with a data talker and its listeners. An analysis was made of GPIB bus communications in general, including any negative impact the bus may have on transmitting data back to Earth. A study was made of transmitting digital data back to Earth over a video channel. A report was written about the study and a revised version of the report will be submitted for publication. Work was started on the design of a PC/AT compatible circuit board that will combine digital data with a video signal. Another PC/AT compatible circuit board is being designed to recover the digital data from the video signal. A proposal was submitted to support the continued development of the interface boards after the author returns to Memphis State University in the fall. A study was also made of storing circuit board design software and data on the hard disk server of a LAN (Local Area Network) that connects several IBM style PCs. A report was written that makes several recommendations. A preliminary design review was started of the AIVS (Automatic Interface Verification System). The summer was over before any significant contribution could be made to this project.

  17. Computer Series, 102: Bits and Pieces, 40.

    ERIC Educational Resources Information Center

    Birk, James P., Ed.

    1989-01-01

    Discussed are seven computer programs: (1) a computer graphics experiment for organic chemistry laboratory; (2) a gel filtration simulation; (3) judging spelling correctness; (4) interfacing the TLC548 ADC; (5) a digitizing circuit for the Apple II game port; (6) a chemical information base; and (7) an IBM PC article database. (MVL)

  18. Teaching Motion with the Global Positioning System

    ERIC Educational Resources Information Center

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  19. Control and Restructuring at the Syntax-Semantics Interface

    ERIC Educational Resources Information Center

    Grano, Thomas Angelo

    2012-01-01

    Landau (2000) distinguishes between P(artial) C(ontrol) and E(xhaustive) C(ontrol): PC predicates like hope admit a subset relation between controller and controllee (e.g., "Kim hoped to gather at noon." [controllee = Kim and contextually salient others]); EC predicates like "try" do not (*"Kim tried to gather at…

  20. INDOOR AIR QUALITY MODEL VERSION 1.0 DOCUMENTATION

    EPA Science Inventory

    The report presents a multiroom model for estimating the impact of various sources on indoor air quality (IAQ). The model is written for use on IBM-PC and compatible microcomputers. It is easy to use with a menu-driven user interface. Data are entered using a fill-in-a-form inter...

  1. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    PubMed

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  2. The muon component in extensive air showers and new p+C data in fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, C.; Bluemer, J.; Engel, R.

    2007-03-19

    One of the most promising approaches to determine the energy spectrum and composition of the cosmic rays with energies above 1015 eV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore simulation of air showers using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which come mainly from hadronic interaction models. One aim of this work is to specify the low energy hadronic interactions which are important for the muon production in EAS. Therefore we simulate extensive air showers with a modified version of the simulation package CORSIKA. Inmore » particular we investigate in detail the energy and the phase space regions of secondary particle production, which are most important for muon production. This phase space region is covered by fixed target experiments at CERN. In the second part of this work we present preliminary momentum spectra of secondary {pi}+ and {pi}- in p+C collisions at 12 GeV/c measured with the HARP spectrometer at the PS accelerator at CERN. In addition we use the new p+C NA49 data at 158 GeV/c to check the reliability of hadronic interaction models for muon production in EAS. Finally, possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.« less

  3. Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Tasaka, Yuko; Yoshimoto, Nobuko; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at a low-temperature (-20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) enhanced Li cycleability in the subsequent cycles at a room temperature (25°C). In LiPF 6-PC/DMC, not only the low-temperature precycling in the initial 10 cycles was effective in the improvement of Li cycle life but also the first low-temperature Li deposition followed by room temperature cycling enhanced the Li cycle life. Such a precycling effect was observed with various current densities at the initial Li deposition and the subsequent cycling. When the current density of the cycling was high, improved cycling efficiency was observed and the efficiency of the Li electrode undergoing the precycling was close to that at a constant temperature of -20°C.

  4. A survey of the state-of-the-art and focused research in range systems, task 1

    NASA Technical Reports Server (NTRS)

    Omura, J. K.

    1986-01-01

    This final report presents the latest research activity in voice compression. We have designed a non-real time simulation system that is implemented around the IBM-PC where the IBM-PC is used as a speech work station for data acquisition and analysis of voice samples. A real-time implementation is also proposed. This real-time Voice Compression Board (VCB) is built around the Texas Instruments TMS-3220. The voice compression algorithm investigated here was described in an earlier report titled, Low Cost Voice Compression for Mobile Digital Radios, by the author. We will assume the reader is familiar with the voice compression algorithm discussed in this report. The VCB compresses speech waveforms at data rates ranging from 4.8 K bps to 16 K bps. This board interfaces to the IBM-PC 8-bit bus, and plugs into a single expansion slot on the mother board.

  5. Design criteria for a PC-based common user interface to remote information systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1984-01-01

    A set of design criteria are presented which will allow the implementation of an interface to multiple remote information systems on a microcomputer. The focus of the design description is on providing the user with the functionality required to retrieve, store and manipulate data residing in remote information systems through the utilization of a standardized interface system. The intent is to spare the user from learning the details of retrieval from specific systems while retaining the full capabilities of each system. The system design includes multi-level capabilities to enhance usability by a wide range of users and utilizes microcomputer graphics capabilities where applicable. A data collection subsystem for evaluation purposes is also described.

  6. KSC-98pc521

    NASA Image and Video Library

    1998-04-21

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-090, containing three educational experiments sponsored by Utah State University, and at right is G-743, an experiment sponsored by Broward Community College in Florida to test DNA exposed to cosmic radiation in a microgravity environment. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT

  7. Blowout Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed software shell for developing expert systems, has been embedded in a PC-based expert system for training oil rig personnel in monitoring oil drilling. Oil drilling rigs if not properly maintained for possible blowouts pose hazards to human life, property and the environment may be destroyed. CLIPS is designed to permit the delivery of artificial intelligence on computer. A collection of rules is set up and, as facts become known, these rules are applied. In the Well Site Advisor, CLIPS provides the capability to accurately process, predict and interpret well data in a real time mode. CLIPS was provided to INTEQ by COSMIC.

  8. Improved NASTRAN plotting

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.

    1991-01-01

    The new 1991 COSMIC/NASTRAN version, compatible with the older versions, tries to remove some old constraints and make it easier to extract information from the plot file. It also includes some useful improvements and new enhancements. New features available in the 1991 version are described. They include a new PLT1 tape with simplified ASCII plot commands and short records, combined hidden and shrunk plot, an x-y-z coordinate system on all structural plots, element offset plot, improved character size control, improved FIND and NOFIND logic, a new NASPLOT post-prosessor to perform screen plotting or generate PostScript files, and a BASIC/NASTPLOT program for PC.

  9. KSC-97PC1013

    NASA Image and Video Library

    1997-07-02

    Workers from the Johns Hopkins University’s Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A

  10. Electrodynamic response of the middle atmosphere to auroral pulsations

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.

    1990-01-01

    The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.

  11. Adopting Industry Standards for Control Systems Within Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Young, James Scott; Boulanger, Richard

    2002-01-01

    This paper gives a description of OPC (Object Linking and Embedding for Process Control) standards for process control and outlines the experiences at JSC with using these standards to interface with I/O hardware from three independent vendors. The I/O hardware was integrated with a commercially available SCADA/HMI software package to make up the control and monitoring system for the Environmental Systems Test Stand (ESTS). OPC standards were utilized for communicating with I/O hardware and the software was used for implementing monitoring, PC-based distributed control, and redundant data storage over an Ethernet physical layer using an embedded din-rail mounted PC.

  12. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    PubMed

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  13. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Qi, Hongzhi; Jung, Tzyy-Ping; Ming, Dong

    2016-12-01

    Objective. Detecting the shift of covert visuospatial attention (CVSA) is vital for gaze-independent brain-computer interfaces (BCIs), which might be the only communication approach for severely disabled patients who cannot move their eyes. Although previous studies had demonstrated that it is feasible to use CVSA-related electroencephalography (EEG) features to control a BCI system, the communication speed remains very low. This study aims to improve the speed and accuracy of CVSA detection by fusing EEG features of N2pc and steady-state visual evoked potential (SSVEP). Approach. A new paradigm was designed to code the left and right CVSA with the N2pc and SSVEP features, which were then decoded by a classification strategy based on canonical correlation analysis. Eleven subjects were recruited to perform an offline experiment in this study. Temporal waves, amplitudes, and topographies for brain responses related to N2pc and SSVEP were analyzed. The classification accuracy derived from the hybrid EEG features (SSVEP and N2pc) was compared with those using the single EEG features (SSVEP or N2pc). Main results. The N2pc could be significantly enhanced under certain conditions of SSVEP modulations. The hybrid EEG features achieved significantly higher accuracy than the single features. It obtained an average accuracy of 72.9% by using a data length of 400 ms after the attention shift. Moreover, the average accuracy reached ˜80% (peak values above 90%) when using 2 s long data. Significance. The results indicate that the combination of N2pc and SSVEP is effective for fast detection of CVSA. The proposed method could be a promising approach for implementing a gaze-independent BCI.

  14. CARES/PC - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    NASA Technical Reports Server (NTRS)

    Szatmary, S. A.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES/PC performs statistical analysis of data obtained from the fracture of simple, uniaxial tensile or flexural specimens and estimates the Weibull and Batdorf material parameters from this data. CARES/PC is a subset of the program CARES (COSMIC program number LEW-15168) which calculates the fast-fracture reliability or failure probability of ceramic components utilizing the Batdorf and Weibull models to describe the effects of multi-axial stress states on material strength. CARES additionally requires that the ceramic structure be modeled by a finite element program such as MSC/NASTRAN or ANSYS. The more limited CARES/PC does not perform fast-fracture reliability estimation of components. CARES/PC estimates ceramic material properties from uniaxial tensile or from three- and four-point bend bar data. In general, the parameters are obtained from the fracture stresses of many specimens (30 or more are recommended) whose geometry and loading configurations are held constant. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests measure the accuracy of the hypothesis that the fracture data comes from a population with a distribution specified by the estimated Weibull parameters. Ninety-percent confidence intervals on the Weibull parameters and the unbiased value of the shape parameter for complete samples are provided when the maximum likelihood technique is used. CARES/PC is written and compiled with the Microsoft FORTRAN v5.0 compiler using the VAX FORTRAN extensions and dynamic array allocation supported by this compiler for the IBM/MS-DOS or OS/2 operating systems. The dynamic array allocation routines allow the user to match the number of fracture sets and test specimens to the memory available. Machine requirements include IBM PC compatibles with optional math coprocessor. Program output is designed to fit 80-column format printers. Executables for both DOS and OS/2 are provided. CARES/PC is distributed on one 5.25 inch 360K MS-DOS format diskette in compressed format. The expansion tool PKUNZIP.EXE is supplied on the diskette. CARES/PC was developed in 1990. IBM PC and OS/2 are trademarks of International Business Machines. MS-DOS and MS OS/2 are trademarks of Microsoft Corporation. VAX is a trademark of Digital Equipment Corporation.

  15. A TinyOS-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Mody, Istvan; Judy, Jack W

    2004-01-01

    The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  16. Multimodal browsing using VoiceXML

    NASA Astrophysics Data System (ADS)

    Caccia, Giuseppe; Lancini, Rosa C.; Peschiera, Giuseppe

    2003-06-01

    With the increasing development of devices such as personal computers, WAP and personal digital assistants connected to the World Wide Web, end users feel the need to browse the Internet through multiple modalities. We intend to investigate on how to create a user interface and a service distribution platform granting the user access to the Internet through standard I/O modalities and voice simultaneously. Different architectures are evaluated suggesting the more suitable for each client terminal (PC o WAP). In particular the design of the multimodal usermachine interface considers the synchronization issue between graphical and voice contents.

  17. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM 370 VERSION)

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  18. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  19. Performance Confirmation Data Aquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.W. Markman

    2000-10-27

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M&O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition softwaremore » and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application.« less

  20. General Relativity Today

    NASA Astrophysics Data System (ADS)

    Blandford, Roger D.

    2016-01-01

    A hundred years after its birth, general relativity has become a highly successful theory in the sese that it has passed many experimental and observational tests and finds widespread application to diverse set of cosmic phenomena. It remains an accurate research field as more tests are deployed, epitomized by the exciting prospect of detecting gravitational radiation directly. General realtivity is the essential foundation of modern cosmology and underlies our detailed description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. The interface with physics on both the largest and the smallest scales continues to be very fertile. In this talk I will attempt to highlight some key steps along the way to general relativity today.

  1. A century of general relativity: Astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Blandford, R. D.

    2015-03-01

    One hundred years after its birth, general relativity has become a highly successful physical theory in the sense that it has passed a large number of experimental and observational tests and finds extensive application to a wide variety of cosmic phenomena. It remains an active area of research as new tests are on the way, epitomized by the exciting prospect of detecting gravitational waves from merging black holes. General relativity is the essential foundation of the standard model of cosmology and underlies our description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. Its interface with physics on the smallest and largest scales will continue to provide fertile areas of investigation in its next century.

  2. Hydrogen And Deuterium In The Local Interstellar Medium.

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2016-03-01

    In this work we report on the results of a series of IUE observations of interstellar HI and DI Ly alpha absorption against the chromospheric Lyalpha emission of the nearby late -type stars alpha Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). From these observations we have derived the density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars. We have also placed lower limits on the deuterium to hydrogen (D/H) ratio towards the same stars. Our IUE results are generally consistent with previous observations of the same stars with the Copernicus satellite showing that our modelling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighbourhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus. In particular, we confirm the strong lower limit of 1.9 times 10^{-5} on the D/H ratio found towards Capella and we also place a lower limit of 1.5 times 10 ^{-5} on the D/H ratio towards alpha Cen B. Although an interstellar D/H ratio of 2 times 10^ {-5} is consistent with all the observations of late-type stars, the lower D/H ratios found towards several hot stars may indicate real variations in the D/H ratio in the local interstellar medium. Finally, we discuss the reality of a step in the cosmic background and of several galactic emission lines found by Auriemma et al. (1984) and show that, in fact, they are both artifacts of the data and of the analysis.

  3. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  4. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807

  5. On the reason for the kink in the rigidity spectra of cosmic-ray protons and helium nuclei near 230 GV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.

    A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×10{sup 5} GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagneticmore » waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ∼100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ∼0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e{sup +}), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e{sup +}. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.« less

  6. WinTICS-24 --- A Telescope Control Interface for MS Windows

    NASA Astrophysics Data System (ADS)

    Hawkins, R. Lee

    1995-12-01

    WinTICS-24 is a telescope control system interface and observing assistant written in Visual Basic for MS Windows. It provides the ability to control a telescope and up to 3 other instruments via the serial ports on an IBM-PC compatible computer, all from one consistent user interface. In addition to telescope control, WinTICS contains an observing logbook, trouble log (which can automatically email its entries to a responsible person), lunar phase display, object database (which allows the observer to type in the name of an object and automatically slew to it), a time of minimum calculator for eclipsing binary stars, and an interface to the Guide CD-ROM for bringing up finder charts of the current telescope coordinates. Currently WinTICS supports control of DFM telescopes, but is easily adaptable to other telescopes and instrumentation.

  7. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  8. PCIE interface design for high-speed image storage system based on SSD

    NASA Astrophysics Data System (ADS)

    Wang, Shiming

    2015-02-01

    This paper proposes and implements a standard interface of miniaturized high-speed image storage system, which combines PowerPC with FPGA and utilizes PCIE bus as the high speed switching channel. Attached to the PowerPC, mSATA interface SSD(Solid State Drive) realizes RAID3 array storage. At the same time, a high-speed real-time image compression patent IP core also can be embedded in FPGA, which is in the leading domestic level with compression rate and image quality, making that the system can record higher image data rate or achieve longer recording time. The notebook memory card buckle type design is used in the mSATA interface SSD, which make it possible to complete the replacement in 5 seconds just using single hand, thus the total length of repeated recordings is increased. MSI (Message Signaled Interrupts) interruption guarantees the stability and reliability of continuous DMA transmission. Furthermore, only through the gigabit network, the remote display, control and upload to backup function can be realized. According to an optional 25 frame/s or 30 frame/s, upload speeds can be up to more than 84 MB/s. Compared with the existing FLASH array high-speed memory systems, it has higher degree of modularity, better stability and higher efficiency on development, maintenance and upgrading. Its data access rate is up to 300MB/s, realizing the high speed image storage system miniaturization, standardization and modularization, thus it is fit for image acquisition, storage and real-time transmission to server on mobile equipment.

  9. Remote Instrumentation for Teaching Laboratory

    ERIC Educational Resources Information Center

    Baran, Jit; Currie, Ron; Kennepohl, Dietmar

    2004-01-01

    The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…

  10. Rewriting Requirements for Design

    DTIC Science & Technology

    2002-11-06

    Lights 1.2.8. Window Lights 2. Behavior Hiding 2.1. Function Drivers 2.1.1. Malfunction Lights 2.1.2. Office Lights 2.2. Shared Services 2.2.1. Mode...4702, 1981. [6] P.C. Clements, Abstract Interface Specifications for the A-7E Shared Services Module, NRL Memorandum Report 4863, 1982. [7] D.L

  11. From in silica to in silico: retention thermodynamics at solid-liquid interfaces.

    PubMed

    El Hage, Krystel; Bemish, Raymond J; Meuwly, Markus

    2018-06-28

    The dynamics of solvated molecules at the solid/liquid interface is essential for a molecular-level understanding for the solution thermodynamics in reversed phase liquid chromatography (RPLC). The heterogeneous nature of the systems and the competing intermolecular interactions makes solute retention in RPLC a surprisingly challenging problem which benefits greatly from modelling at atomistic resolution. However, the quality of the underlying computational model needs to be sufficiently accurate to provide a realistic description of the energetics and dynamics of systems, especially for solution-phase simulations. Here, the retention thermodynamics and the retention mechanism of a range of benzene-derivatives in C18 stationary-phase chains in contact with water/methanol mixtures is studied using point charge (PC) and multipole (MTP) electrostatic models. The results demonstrate that free energy simulations with a faithful MTP representation of the computational model provide quantitative and molecular level insight into the thermodynamics of adsorption/desorption in chromatographic systems while a conventional PC representation fails in doing so. This provides a rational basis to develop more quantitative and validated models for the optimization of separation systems.

  12. Graphical workstation capability for reliability modeling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.

    1992-01-01

    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.

  13. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  14. Tactile feedback to the palm using arbitrarily shaped DEA

    NASA Astrophysics Data System (ADS)

    Mößinger, Holger; Haus, Henry; Kauer, Michaela; Schlaak, Helmut F.

    2014-03-01

    Tactile stimulation enhances user experience and efficiency in human machine interaction by providing information via another sensory channel to the human brain. DEA as tactile interfaces have been in the focus of research in recent years. Examples are (vibro-) tactile keyboards or Braille displays. These applications of DEA focus mainly on interfacing with the user's fingers or fingertips only - demonstrating the high spatial resolution achievable with DEA. Besides providing a high resolution, the flexibility of DEA also allows designing free form surfaces equipped with single actuators or actuator matrices which can be fitted to the surface of the human skin. The actuators can then be used to provide tactile stimuli to different areas of the body, not to the fingertips only. Utilizing and demonstrating this flexibility we designed a free form DEA pad shaped to fit into the inside of the human palm. This pad consists of four single actuators which can provide e.g. directional information such as left, right, up and down. To demonstrate the value of such free form actuators we manufactured a PC-mouse using 3d printing processes. The actuator pad is mounted on the back of the mouse, resting against the palm while operating it. Software on the PC allows control of the vibration patterns displayed by the actuators. This allows helping the user by raising attention to certain directions or by discriminating between different modes like "pick" or "manipulate". Results of first tests of the device show an improved user experience while operating the PC mouse.

  15. Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2015-12-01

    The aim of this research was to analyse the dental discolouration caused by mineral trioxide aggregate (MTA) induced by bismuth oxide and also assess the colour stability of other dental cements. Bismuth oxide, calcium tungstate and zirconium oxide were placed in contact with sodium hypochlorite for 24 h after which they were dried and photographed. Phase analyses were performed by X-ray diffraction (XRD) of radiopacifiers before and after immersion in sodium hypochlorite. Furthermore, teeth previously immersed in water or sodium hypochlorite were filled with MTA Angelus, Portland cement (PC), PC with 20 % zirconium oxide, PC with 20 % calcium tungstate and Biodentine. Teeth were immersed for 28 days in Hank's balanced salt solution after which they were sectioned and characterized using scanning electron microscopy (SEM) with energy-dispersive mapping and stereomicroscopy. Bismuth oxide in contact with sodium hypochlorite exhibited a change in colour from light yellow to dark brown. XRD analysis demonstrated peaks for radiopacifier and sodium chloride in samples immersed in sodium hypochlorite. The SEM images of the dentine to material interface showed alteration in material microstructure for MTA Angelus and Biodentine with depletion in calcium content in the material. The energy-dispersive maps showed migration of radiopacifier and silicon in dentine. MTA Angelus in contact with a tooth previously immersed in sodium hypochlorite resulted in colour alteration at the cement/dentine interface. MTA Angelus should not be used after irrigation with sodium hypochlorite as this will result in tooth discoloration.

  16. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  17. User Interface Considerations for Collecting Data at the Point of Care in the Tablet PC Computing Environment

    PubMed Central

    Silvey, Garry M.; Lobach, David F.; Macri, Jennifer M.; Hunt, Megan; Kacmaz, Roje O.; Lee, Paul P.

    2006-01-01

    Collecting clinical data directly from clinicians is a challenge. Many standard development environments designed to expedite the creation of user interfaces for electronic healthcare applications do not provide acceptable components for satisfying the requirements for collecting and displaying clinical data at the point of care on the tablet computer. Through an iterative design and testing approach using think-aloud sessions in the eye care setting, we were able to identify and resolve several user interface issues. Issues that we discovered and subsequently resolved included checkboxes that were too small to be selectable with a stylus, radio buttons that could not be unselected, and font sizes that were too small to be read at arm’s length. PMID:17238715

  18. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  19. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    PubMed

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  20. Cosmic veto gamma-spectrometry for Comprehensive Nuclear-Test-Ban Treaty samples

    NASA Astrophysics Data System (ADS)

    Burnett, J. L.; Davies, A. V.

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a global network of monitoring stations that perform high-resolution gamma-spectrometry on air filter samples for the identification of 85 radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a novel cosmic veto gamma-spectrometer has been developed to improve the sensitivity of station measurements, providing a mean background reduction of 80.8% with mean MDA improvements of 45.6%. The CTBT laboratory requirement for a 140Ba MDA is achievable after 1.5 days counting compared to 5-7 days using conventional systems. The system consists of plastic scintillation plates that detect coincident cosmic-ray interactions within an HPGe gamma-spectrometer using the Canberra LynxTM multi-channel analyser. The detector is remotely configurable using a TCP/IP interface and requires no dedicated coincidence electronics. It would be especially useful in preventing false-positives at remote station locations (e.g. Halley, Antarctica) where sample transfer to certified laboratories is logistically difficult. The improved sensitivity has been demonstrated for a CTBT air filter sample collected after the Fukushima incident.

  1. A century of general relativity: astrophysics and cosmology.

    PubMed

    Blandford, R D

    2015-03-06

    One hundred years after its birth, general relativity has become a highly successful physical theory in the sense that it has passed a large number of experimental and observational tests and finds extensive application to a wide variety of cosmic phenomena. It remains an active area of research as new tests are on the way, epitomized by the exciting prospect of detecting gravitational waves from merging black holes. General relativity is the essential foundation of the standard model of cosmology and underlies our description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. Its interface with physics on the smallest and largest scales will continue to provide fertile areas of investigation in its next century. Copyright © 2015, American Association for the Advancement of Science.

  2. Data communication between Panasonic PLC and PC using SerialPort control in C#.NET environment

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Gan, Xiaochuan; Ma, Liqun

    2015-02-01

    With the gradual promotion of Microsoft.NET platform, C# as an object-oriented programming language based on the platform has been widely used. Therefore, more attention is concentrated on how to achieve the communication between Panasonic PLC and PC efficiently and fast in C#.NET environment. In this paper, a method of using SerialPort control which could be used for achieving communication between PLC and PC is introduced. Meanwhile, the reason of abnormal thread when displayed the receiving data in form is analyzed and the programming method to solve the problem of thread safety is designed. Achieving the communication of Panasonic PLC and PC in C#.NET environment can give full play to the advantages of the .NET framework. It is practical, easy communication, high reliability and can combine with other measurement and calibration procedures effectively and conveniently. Configuration software is expensive and can only communicate with PLC separately, but these shortcomings can be solved in C#.NET environment. A well-designed user interface realized real-time monitoring of PLC parameters and achieved management and control integration. The experiment show that this method of data transfer is accurate and the program' running is stable.

  3. Tablet PC interaction with digital micromirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.

    2007-02-01

    Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.

  4. Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin.

    PubMed

    Conte, Claudia; Costabile, Gabriella; d'Angelo, Ivana; Pannico, Marianna; Musto, Pellegrino; Grassia, Gianluca; Ialenti, Armando; Tirino, Pasquale; Miro, Agnese; Ungaro, Francesca; Quaglia, Fabiana

    2015-09-15

    The aim of this work was to investigate the potential of small nanoparticles (NPs) made of a poly(ethylene glycol)-poly(ε-caprolactone)-amphiphilic diblock copolymer (PEG-b-PCL, PEG=2kDa and PCL=4.2kDa) as drug carrier system through the skin. Zinc(II) phthalocyanine (ZnPc), selected as lipophilic and fluorescent model molecule, was loaded inside NPs by a melting/sonication procedure. Loaded NPs with a hydrodynamic diameter around 60nm, a slightly negative zeta potential and a ZnPc entrapment dependent on polymer/ZnPc ratio were obtained. Spectroscopic investigations evidenced that ZnPc was entrapped in monomeric form maintaining its emission properties. The transport of ZnPc through porcine ear skin was evaluated on Franz-type diffusion cells after treatment with different vehicles (water or PEG 0.4kDa) containing free ZnPc or ZnPc-loaded NPs without and with (2-hydroxypropyl)-β-cyclodextrin (HPβCD) as permeation enhancer. Independently of the sample tested, ZnPc was transported in the skin without reaching receptor compartment. On the other hand, ZnPc was found in the skin in large amount and also in the viable epidermis when delivered through NPs associated with HPβCD, especially in conditions limiting water evaporation. Fluorescence images of skin samples after 24h of permeation were in line with ZnPc dosage in the skin and demonstrated the ability of NPs covalently tagged with rhodamine to penetrate the skin and to locate in the intercellular spaces. Insight into skin chemical properties upon application of NPs by confocal Raman spectroscopy demonstrated that HPβCD caused an alteration of water profile in the skin, highly reducing the degree of hydration at stratum corneum/viable epidermis interface which can promote NP transport. Taken together, these results highlight PEG-b-PCL NPs coupled with HPβCD as a novel vehicle for the skin delivery of highly lipophilic compounds paving the way to several applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Open ISEmeter: An open hardware high-impedance interface for potentiometric detection.

    PubMed

    Salvador, C; Mesa, M S; Durán, E; Alvarez, J L; Carbajo, J; Mozo, J D

    2016-05-01

    In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA(+)-DS(-)). The experimental measures of emf indicate Nernstian behaviour with the CTA(+) content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.

  6. Using Tablet PC's for the Final Test of Baccalaureate

    ERIC Educational Resources Information Center

    Laborda, Jesús García; Royo, Teresa Magal

    2016-01-01

    Online testing is becoming a popular way to deliver language tests, partly because of its reduced cost, partly because of the high quality of test data collection. In language tests, interface validation has received a limited attention in professional literature (García, Magal, da Rocha, & Fernández, 2010). This paper will show the validation…

  7. PIC microcontroller-based RF wireless ECG monitoring system.

    PubMed

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  8. Exploring the use of tablet PCs in veterinary medical education: opportunity or obstacle?

    PubMed

    Wang, Hong; Rush, Bonnie R; Wilkerson, Melinda; van der Merwe, Deon

    2014-01-01

    A tablet PC is a laptop computer with a touch screen and a digital pen or stylus that can be used for handwritten notes and drawings. The use of tablet PCs has been investigated in many disciplines such as engineering, mathematics, science, and education. The purpose of this article is to explore student and faculty attitudes toward and experiences with tablet PCs 6 years after the implementation of a tablet PC program in the College of Veterinary Medicine (CVM) at Kansas State University (K-State). This study reports that the use of tablet PCs has enhanced students' learning experiences through learner-interface interaction, learner-content interaction, learner-instructor interaction, and learner-learner interaction. This study also identifies digital distraction as the major negative experience with tablet PCs during class time. The tablet PC program provides CVM faculty the potential to pursue technology integration strategies that support expected learning outcomes and provides students the potential to develop self-monitoring and self-discipline skills that support learning with digital technologies.

  9. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells

    DOE PAGES

    Venkatesan, Swaminathan; Chen, Jihua; Ngo, Evan C.; ...

    2014-12-31

    In this study, inverted bulk heterojunction solar cells were fabricated using poly(3-hexylthiophene) (P3HT) blended with two different fullerene derivatives namely phenyl-C61-butyric acid methyl ester (PC 60BM) and indene-C 60 bis-adduct (IC 60BA). The effects of annealing temperatures on the morphology, optical and structural properties were studied and correlated to differences in photovoltaic device performance. It was observed that annealing temperature significantly improved the performance of P3HT:IC 60BA solar cells while P3HT:PC 60BM cells showed relatively less improvement. The performance improvement is attributed to the extent of fullerene mixing with polymer domains. Energy filtered transmission electron microscopy (EFTEM) and x-ray diffractionmore » (XRD) results showed that ICBA mixes with disordered P3HT much more readily than PC 60BM which leads to lower short circuit current density and fill factor for P3HT:IC 60BA cells annealed below 120°C. Annealing above 120°C improves the crystallinity of P3HT in case of P3HT:IC 60BA whereas in P3HT:PC 60BM films, annealing above 80°C leads to negligible change in crystallinity. Crystallization of P3HT also leads to higher domain purity as seen EFTEM. Further it is seen that cells processed with additive nitrobenzene (NB) showed enhanced short circuit current density and power conversion efficiency regardless of the fullerene derivative used. Addition of NB led to nanoscale phase separation between purer polymer and fullerene domains. Kelvin probe force microscopy (KPFM) images showed that enhanced domain purity in additive casted films led to a sharper interface between polymer and fullerene. Lastly, enhanced domain purity and interfacial sharpness led to lower bimolecular recombination and higher mobility and charge carrier lifetime in NB modified devices.« less

  11. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    PubMed

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  12. Disentangling the Circumnuclear Environs of Centaurus A. III. An Inner Molecular Ring, Nuclear Shocks, and the CO to Warm H{sub 2} Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espada, D.; Miura, R. E.; Iono, D.

    2017-07-10

    We present the distribution and kinematics of the molecular gas in the circumnuclear disk (CND; 400 pc × 200 pc) of Centaurus A with resolutions of ∼5 pc (0.″3) and shed light onto the mechanism feeding the active galactic nucleus (AGN) using CO(3–2), HCO{sup +}(4–3), HCN(4–3), and CO(6–5) observations obtained with ALMA. Multiple filaments or streamers of tens to a hundred parsec scale exist within the CND, which form a ring-like structure with an unprojected diameter of 9″ × 6″ (162 pc × 108 pc) and a position angle P.A. ≃ 155°. Inside the nuclear ring, there are two leadingmore » and straight filamentary structures with lengths of about 30–60 pc at P.A. ≃ 120° on opposite sides of the AGN, with a rotational symmetry of 180° and steeper position–velocity diagrams, which are interpreted as nuclear shocks due to non-circular motions. Along the filaments, and unlike other nearby AGNs, several dense molecular clumps present low HCN/HCO{sup +}(4–3) ratios (≲0.5). The filaments abruptly end in the probed transitions at r ≃ 20 pc from the AGN, but previous near-IR H{sub 2}( J = 1–0)S(1) maps show that they continue in an even warmer gas phase ( T ∼ 1000 K), winding up in the form of nuclear spirals, and forming an inner ring structure with another set of symmetric filaments along the N–S direction and within r ≃ 10 pc. The molecular gas is governed primarily by non-circular motions, being the successive shock fronts at different scales where loss of angular momentum occurs, a mechanism that may feed efficiently powerful radio galaxies down to parsec scales.« less

  13. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    PubMed

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  14. Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.

    PubMed

    Sirowy, Scott; Givargis, Tony; Vahid, Frank

    2009-01-01

    Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.

  15. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films and, in turn, affects the nanoscale distribution of electrical and chemical properties. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at MO/OSC interfaces play in OPV PCE.

  16. New constraints on modelling the random magnetic field of the MW

    NASA Astrophysics Data System (ADS)

    Beck, Marcus C.; Beck, Alexander M.; Beck, Rainer; Dolag, Klaus; Strong, Andrew W.; Nielaba, Peter

    2016-05-01

    We extend the description of the isotropic and anisotropic random component of the small-scale magnetic field within the existing magnetic field model of the Milky Way from Jansson & Farrar, by including random realizations of the small-scale component. Using a magnetic-field power spectrum with Gaussian random fields, the NE2001 model for the thermal electrons and the Galactic cosmic-ray electron distribution from the current GALPROP model we derive full-sky maps for the total and polarized synchrotron intensity as well as the Faraday rotation-measure distribution. While previous work assumed that small-scale fluctuations average out along the line-of-sight or which only computed ensemble averages of random fields, we show that these fluctuations need to be carefully taken into account. Comparing with observational data we obtain not only good agreement with 408 MHz total and WMAP7 22 GHz polarized intensity emission maps, but also an improved agreement with Galactic foreground rotation-measure maps and power spectra, whose amplitude and shape strongly depend on the parameters of the random field. We demonstrate that a correlation length of 0≈22 pc (05 pc being a 5σ lower limit) is needed to match the slope of the observed power spectrum of Galactic foreground rotation-measure maps. Using multiple realizations allows us also to infer errors on individual observables. We find that previously-used amplitudes for random and anisotropic random magnetic field components need to be rescaled by factors of ≈0.3 and 0.6 to account for the new small-scale contributions. Our model predicts a rotation measure of -2.8±7.1 rad/m2 and 04.4±11. rad/m2 for the north and south Galactic poles respectively, in good agreement with observations. Applying our model to deflections of ultra-high-energy cosmic rays we infer a mean deflection of ≈3.5±1.1 degree for 60 EeV protons arriving from CenA.

  17. New insights into the interstellar medium of the dwarf galaxy IC 10: connection between magnetic fields, the radio-infrared correlation and star formation

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Roychowdhury, Sambit; Heesen, Volker; Beck, Rainer; Brinks, Elias; Westcott, Jonathan; Hindson, Luke

    2017-10-01

    We present the highest sensitivity and angular resolution study at 0.32 GHz of the dwarf irregular galaxy IC 10, observed using the Giant Metrewave Radio Telescope, probing ˜45 pc spatial scales. We find the galaxy-averaged radio continuum spectrum to be relatively flat, with a spectral index α = -0.34 ± 0.01 (Sν ∝ να), mainly due to a high contribution from free-free emission. At 0.32 GHz, some of the H II regions show evidence of free-free absorption as they become optically thick below ˜0.41 GHz with corresponding free electron densities of ˜ 11-22 cm- 3. After removing the free-free emission, we studied the radio-infrared (IR) relations on 55, 110 and 165 pc spatial scales. We find that on all scales the non-thermal emission at 0.32 and 6.2 GHz correlates better with far-infrared (FIR) emission at 70 μm than mid-IR emission at 24 μm. The dispersion of the radio-FIR relation arises due to variations in both magnetic field and dust temperature, and decreases systematically with increasing spatial scale. The effect of cosmic ray transport is negligible as cosmic ray electrons were only injected ≲5 Myr ago. The average magnetic field strength (B) of 12 μG in the disc is comparable to that of large star-forming galaxies. The local magnetic field is strongly correlated with local star formation rate (SFR) as B ∝ SFR0.35 ± 0.03, indicating a starburst-driven fluctuation dynamo to be efficient (˜10 per cent) in amplifying the field in IC 10. The high spatial resolution observations presented here suggest that the high efficiency of magnetic field amplification and strong coupling with SFR likely sets up the radio-FIR correlation in cosmologically young galaxies.

  18. Characterizing cosmic-ray propagation in massive star-forming regions: The case of 30 Doradus and the large Magellanic cloud

    DOE PAGES

    Murphy, E. J.; Porter, T. A.; Moskalenko, I. V.; ...

    2012-04-24

    We investigate the propagation characteristics of cosmic-ray (CR) electrons and nuclei in the 30 Doradus (30 Dor) star-forming region in the Large Magellanic Cloud (LMC) using infrared, radio, and γ-ray data and a phenomenological model based on the radio-far-infrared correlation within galaxies. By employing a correlation analysis, we derive an average propagation length of ~100-140 pc for ~3 GeV CR electrons resident in 30 Dor from consideration of the radio and infrared data. Assuming that the observed γ-ray emission toward 30 Dor is associated with the star-forming region, and applying the same methodology to the infrared and γ-ray data, wemore » estimate a ~20 GeV propagation length of 200-320 pc for the CR nuclei. This is approximately twice as large as for ~3 GeV CR electrons, corresponding to a spatial diffusion coefficient that is ~4 times higher, scaling as (R/GV) δ with δ ≈ 0.7-0.8 depending on the smearing kernel used in the correlation analysis. This value is in agreement with the results found by extending the correlation analysis to include ~70 GeV CR nuclei traced by the 3-10 GeV γ-ray data (δ ≈ 0.66 ± 0.23). Using the mean age of the stellar populations in 30 Dor and the results from our correlation analysis, we estimate a diffusion coefficient D R ≈ (0.9-1.0) × 10 27(R/GV) 0.7 cm 2 s –1. We also compare the values of the CR electron propagation length and surface brightness for 30 Dor and the LMC as a whole with those of entire disk galaxies. We find that the trend of decreasing average CR propagation distance with increasing disk-averaged star formation activity holds for the LMC, and extends down to single star-forming regions, at least for the case of 30 Dor.« less

  19. Superhydrophobic photosensitizers. Mechanistic studies of (1)O2 generation in the plastron and solid/liquid droplet interface.

    PubMed

    Aebisher, David; Bartusik, Dorota; Liu, Yang; Zhao, Yuanyuan; Barahman, Mark; Xu, QianFeng; Lyons, Alan M; Greer, Alexander

    2013-12-18

    We describe here a physical-organic study of the first triphasic superhydrophobic sensitizer for photooxidations in water droplets. Control of synthetic parameters enables the mechanistic study of "borderline" two- and three-phase superhydrophobic sensitizer surfaces where (1)O2 is generated in compartments that are wetted, partially wetted, or remain dry in the plastron (i.e., air layer beneath the droplet). The superhydrophobic surface is synthesized by partially embedding silicon phthalocyanine (Pc) sensitizing particles to specific locations on polydimethylsiloxane (PDMS) posts printed in a square array (1 mm tall posts on 0.5 mm pitch). In the presence of red light and oxygen, singlet oxygen is formed on the superhydrophobic surface and reacts with 9,10-anthracene dipropionate dianion (1) within a freestanding water droplet to produce an endoperoxide in 54-72% yields. Control of the (1)O2 chemistry was achieved by the synthesis of superhydrophobic surfaces enriched with Pc particles either at the PDMS end-tips or at PDMS post bases. Much of the (1)O2 that reacts with anthracene 1 in the droplets was generated by the sensitizer "wetted" at the Pc particle/water droplet interface and gave the highest endoperoxide yields. About 20% of the (1)O2 can be introduced into the droplet from the plastron. The results indicate that the superhydrophobic sensitizer surface offers a unique system to study (1)O2 transfer routes where a balance of gas and liquid contributions of (1)O2 is tunable within the same superhydrophobic surface.

  20. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less

  1. Gravity dependency of the gramicidin A channel conductivity. A model for gravity perception on the cellular level.

    PubMed

    Schatz, A; Linke-Hommes, A; Neubert, J

    1996-01-01

    Theoretical investigations involving the membrane-solution interface have revealed that the density of the solution varies appreciably within interfacial layers adjacent to charged membrane surfaces. The hypothesis that gravity interacts with this configuration and modifies transport rates across horizontal and vertical membranes differently was supported by initial experiments with gramicidin A channels in phosphatidylserine (PS) membranes in 0.1 M KCl. Channel conductivity was found to be about 1.6 times higher in horizontal membranes than in vertical membranes. Here we present the results of further experiments with gramicidin A channels (incorporated into charged PS- and uncharged phosphatidylcholine (PC) membranes in KCl- and CsCl-solutions) to demonstrate that the hypothesis is more generally applicable. Again, channel conductivity was found to be higher in horizontal PS membranes by a factor of between 1.20 and 1.75 in 0.1 M CsCl. No difference in channel conductivity was found for uncharged PC membranes in 0.1 M KCl and in 0.1 M CsCl. However, for PC membranes in 0.05 M KCl the channel conductivity was significantly higher in horizontal membranes by a factor of between 1.07 and 1.14. These results are consistent with the results of our model calculations of layer density and extension, which showed that the layer formation is enhanced by increasing membrane surface charge and decreasing electrolyte ion concentration. The mechanism of gravity interaction with membrane transport processes via interface reactions might be utilized by biological systems for orientational behaviour in the gravity field, which has been observed even for cellular systems.

  2. Field-testing the new DECtalk PC system for medical applications

    NASA Technical Reports Server (NTRS)

    Grams, R. R.; Smillov, A.; Li, B.

    1992-01-01

    Synthesized human speech has now reached a new level of performance. With the introduction of DEC's new DECtalk PC, the small system developer will have a very powerful tool for creative design. It has been our privilege to be involved in the beta-testing of this new device and to add a medical dictionary which covers a wide range of medical terminology. With the inherent board level understanding of speech synthesis and the medical dictionary, it is now possible to provide full digital speech output for all medical files and terms. The application of these tools will cover a wide range of options for the future and allow a new dimension in dealing with the complex user interface experienced in medical practice.

  3. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  4. CRPropa 3—a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista, Rafael Alves; Dundovic, Andrej; Sigl, Guenter

    2016-05-01

    We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles. Users can assemble modules of the most relevant propagation effects in galactic and extragalactic space, include their own physics modules with new features, and receive on output primary and secondary cosmic messengers including nuclei, neutrinos and photons. In extension to the propagation physics contained in a previous CRPropa version, the new version facilitates high-performance computing and comprises new physical features such as an interface for galactic propagation using lensing techniques, an improved photonuclear interaction calculation, and propagation in time dependent environmentsmore » to take into account cosmic evolution effects in anisotropy studies and variable sources. First applications using highlighted features are presented as well.« less

  5. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  6. Development of a platform-independent receiver control system for SISIFOS

    NASA Astrophysics Data System (ADS)

    Lemke, Roland; Olberg, Michael

    1998-05-01

    Up to now receiver control software was a time consuming development usually written by receiver engineers who had mainly the hardware in mind. We are presenting a low-cost and very flexible system which uses a minimal interface to the real hardware, and which makes it easy to adapt to new receivers. Our system uses Tcl/Tk as a graphical user interface (GUI), SpecTcl as a GUI builder, Pgplot as plotting software, a simple query language (SQL) database for information storage and retrieval, Ethernet socket to socket communication and SCPI as a command control language. The complete system is in principal platform independent but for cost saving reasons we are using it actually on a PC486 running Linux 2.0.30, which is a copylefted Unix. The only hardware dependent part are the digital input/output boards, analog to digital and digital to analog convertors. In the case of the Linux PC we are using a device driver development kit to integrate the boards fully into the kernel of the operating system, which indeed makes them look like an ordinary device. The advantage of this system is firstly the low price and secondly the clear separation between the different software components which are available for many operating systems. If it is not possible, due to CPU performance limitations, to run all the software in a single machine,the SQL-database or the graphical user interface could be installed on separate computers.

  7. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  8. A cross-platform GUI to control instruments compliant with SCPI through VISA

    NASA Astrophysics Data System (ADS)

    Roach, Eric; Liu, Jing

    2015-10-01

    In nuclear physics experiments, it is necessary and important to control instruments from a PC, which automates many tasks that require human operations otherwise. Not only does this make long term measurements possible, but it also makes repetitive operations less error-prone. We created a graphical user interface (GUI) to control instruments connected to a PC through RS232, USB, LAN, etc. The GUI is developed using Qt Creator, a cross-platform integrated development environment, which makes it portable to various operating systems, including those commonly used in mobile devices. NI-VISA library is used in the back end so that the GUI can be used to control instruments connected through various I/O interfaces without any modification. Commonly used SCPI commands can be sent to different instruments using buttons, sliders, knobs, and other various widgets provided by Qt Creator. As an example, we demonstrate how we set and fetch parameters and how to retrieve and display data from an Agilent Digital Storage Oscilloscope X3034A with the GUI. Our GUI can be easily used for other instruments compliant with SCPI and VISA with little or no modification.

  9. Advanced Resistive Exercise Device (ARED) Flight Software (FSW): A Unique Approach to Exercise in Long Duration Habitats

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark

    2005-01-01

    ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.

  10. The role of thin MgO(100) epilayer for polarized charge injection into top-emitting OLED

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; Jong Lee, Nyun; Bae, Yu Jeong; Cho, Hyunduck; Lee, Changhee; Ito, Eisuke

    2012-02-01

    A new top-emitting OLED (TOLED) structure, which is formed on an Si(100) substrate and an epitaxial MgO(100)/Fe(100)/MgO(100) bottom electrode, was investigated. Our TOLED design included a semi-transparent cathode Al, a stack of conventional organic electroluminescent layers (α-NPD/Alq3/LiF) and a thin Cu-Phthalocyanine (CuPc) film to enhance the hole injection into the luminescent layers. At room temperature (RT), magnetoluminescence of ˜5 % was observed in low magnetic field up to 1 Tesla , which is obviously larger than that of the OLEDs with epitaxial and polycrystalline Fe anodes without MgO(100) covering layer. Our results indicate that the magnetic field effect on the electroluminescence could be strongly related to the magnetic properties of bottom electrode, more precisely the interfacial properties between CuPc layer and the anode. Therefore, we focused on understanding interface electronic states and energy alignment by using x-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Our results showed that the use of appropriate oxide layers could represent a new interface engineering technique for improving reliability and functionality in organic semiconductor devices.

  11. Tunneling Spectroscopy Studies of Epitaxial Graphene on Silicon Carbide(0001) and Its Interfaces

    NASA Astrophysics Data System (ADS)

    Sandin, Andreas Axel Tomas

    A two dimensional network of sp2 bonded carbon atoms is defined as graphene. This novel material possesses remarkable electronic properties due to its unique band structure at the vicinity of the Fermi energy. The toughest challenge to bring use of graphene electronic properties in device geometries is that graphene is exceptionally sensitive to its electrical environment for integration into macroscopic system of electrical contacts and substrates. One of the most promising substrates for graphene is the polar surfaces of SiC for the reason it can be grown epitaxially by sublimating Si from the top-most SiC atomic layers. In this work, the interfaces of graphene grown on the Si-terminated polar surface SiC(0001) is studied in UHV using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), low energy electron diffraction (LEED) and auger electron Spectroscopy (AES). STM is used image the graphene surface and interfaces with the capability of atomic resolution. LEED is used to study surface atomic reciprocal ordering and AES is used to determine surface atomic composition during the graphene formation. Interfacial layer (Buffer layer), Single layer graphene and bilayer graphene are identified electronically by means of probing the first member of the image potential derived state. This state is found by dZ/dV spectroscopy in the high energy unoccupied states and is exceptionally sensitive to electrostatic changes to the surface which is detected by energy shifts of image potential states (IPS). This sensitivity is utilized to probe the graphene screening of external electric fields by varying the electric field in the tunneling junction and addresses the fact that charged impurity scattering is likely to be crucial for epitaxial graphene on SiC(0001) when it comes to transport parameters. Shifts of IPS energy position has also been used verify work function changes for identification of several Sodium Intercalation structures of epitaxial graphene. STS, STM along with DFT calculations are used to determine the interface location of Sodium, SiC-bufferlayer or bufferlayer-graphene intercalation. In this thesis, STM, and STS are used to study the interactions of paramagnetic FePc molecules with epitaxial graphene. The molecules, FePc, is found to interact with the graphene substrate where STM images show substrate induced orientation of FePc densely packed square lattice structure. At sub-monolayer coverages, FePc form a molecular gas at room temperature suggesting a low diffusion barrier on the graphene lattice. The substrate interaction is probed by STS and show an abnormally low LUMO energy that suggest strong electronic coupling between graphene and FePc. DFT calculations support the experimental observations and predict a spin-dependent molecule-graphene hybridization close to the Fermi energy in unoccupied states. For majority spins, DFT demonstrates the Dirac cone splits and a delocalized hybrid state is found in the band gap. For minority spin the Dirac cone is intact with energy of Dirac point empty. In addition, a novel method of improving UHV graphene growth on SiC(0001) is presented. During growth the SiC surface is exposed to atomic hydrogen which allows selective etching of Si over Carbon. This result in more uniform non-thermal formation of the buffer layer with many fewer defects and thus leads to nearly pit-free and defect-free thermal graphene layers.

  12. Laser Signature Prediction Using The VALUE Computer Program

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander; Hoffman, George A.; Patton, Ronald

    1989-09-01

    A variety of enhancements are being made to the 1976-vintage LASERX computer code. These include: - Surface characterization with BDRF tabular data - Specular reflection from transparent surfaces - Generation of glint direction maps - Generation of relative range imagery - Interface to the LOWTRAN atmospheric transmission code - Interface to the LEOPS laser sensor code - User friendly menu prompting for easy setup Versions of VALUE have been written for both VAX/VMS and PC/DOS computer environments. Outputs have also been revised to be user friendly and include tables, plots, and images for (1) intensity, (2) cross section,(3) reflectance, (4) relative range, (5) region type, and (6) silhouette.

  13. Morphology-defined interaction of copper phthalocyanine with O2/H2O

    NASA Astrophysics Data System (ADS)

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; Gredig, Thomas; Ivanov, Ilia N.

    2016-10-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but interaction with ambient gas/vapor may lead to changes in its electronic properties and limit OPV device lifetimes. CuPc films of thickness 25 and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. We measured electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. CuPc films deposited at 250°C showed a factor of 5 higher uptake of O2 as detected by a quartz crystal microbalance (QCM), possibly due to the formation of β-CuPc at T>200°C which allows higher O2 mobility between stacked molecules. While weight-based measurements stabilize after ˜10 min of gas exposure, resistance response stabilizes over times >1 h, suggesting that mass change occurs by rapid adsorption at active surface sites whereas resistive response is dominated by slow diffusion of adsorbates into the bulk film. The 25 nm films exhibit higher resistive response than 100 nm films after an hour of O2/H2O exposure due to fast analyte diffusion down to the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold.

  14. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  15. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.

    PubMed

    Kuang, Ping; Eyderman, Sergey; Hsieh, Mei-Li; Post, Anthony; John, Sajeev; Lin, Shawn-Yu

    2016-06-28

    In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

  16. Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-05-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  17. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  18. Software package for performing experiments about the convolutionally encoded Voyager 1 link

    NASA Technical Reports Server (NTRS)

    Cheng, U.

    1989-01-01

    A software package enabling engineers to conduct experiments to determine the actual performance of long constraint-length convolutional codes over the Voyager 1 communication link directly from the Jet Propulsion Laboratory (JPL) has been developed. Using this software, engineers are able to enter test data from the Laboratory in Pasadena, California. The software encodes the data and then sends the encoded data to a personal computer (PC) at the Goldstone Deep Space Complex (GDSC) over telephone lines. The encoded data are sent to the transmitter by the PC at GDSC. The received data, after being echoed back by Voyager 1, are first sent to the PC at GDSC, and then are sent back to the PC at the Laboratory over telephone lines for decoding and further analysis. All of these operations are fully integrated and are completely automatic. Engineers can control the entire software system from the Laboratory. The software encoder and the hardware decoder interface were developed for other applications, and have been modified appropriately for integration into the system so that their existence is transparent to the users. This software provides: (1) data entry facilities, (2) communication protocol for telephone links, (3) data displaying facilities, (4) integration with the software encoder and the hardware decoder, and (5) control functions.

  19. Charge transfer and symmetry reduction at the CuPc/Ag(110) interface studied by photoemission tomography

    NASA Astrophysics Data System (ADS)

    Schönauer, K.; Weiss, S.; Feyer, V.; Lüftner, D.; Stadtmüller, B.; Schwarz, D.; Sueyoshi, T.; Kumpf, C.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S.; Soubatch, S.

    2016-11-01

    On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32∘ away from the high-symmetry directions [1 1 ¯0 ] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky -plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32∘ against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.

  20. Adsorption-induced symmetry reduction of metal-phthalocyanines studied by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Sforzini, J.; Bocquet, F. C.; Tautz, F. S.

    2017-10-01

    We investigate the vibrational properties of Pt- and Pd-phthalocyanine (PtPc and PdPc) molecules on Ag(111) with high-resolution electron energy loss spectroscopy (HREELS). In the monolayer regime, both molecules exhibit long-range order. The vibrational spectra prove a flat adsorption geometry. The redshift of specific vibrational modes suggests a moderate interaction of the molecules with the substrate. The presence of asymmetric vibrational peaks indicates an interfacial dynamical charge transfer (IDCT). The molecular orbital that is involved in IDCT is the former Eg lowest unoccupied molecular orbital (LUMO) of the molecules that becomes partially occupied upon adsorption. A group-theoretical analysis of the IDCT modes, based on calculated vibrational frequencies and line shape fits, provides proof for the reduction of the symmetry of the molecule-substrate complex from fourfold D4 h to C2 v(σv) , Cs(σv) , or C2 and the ensuing lifting of the degeneracy of the former LUMO of the molecule. The vibration-based analysis of orbital degeneracies, as carried out here for PtPc/Ag(111) and PdPc/Ag(111), is particularly useful whenever the presence of multiple molecular in-plane orientations at the interface makes the analysis of orbital degeneracies with angle-resolved photoemission spectroscopy difficult.

  1. Three-Phase Morphology Evolution in Sequentially Solution-Processed Polymer Photodetector: Toward Low Dark Current and High Photodetectivity.

    PubMed

    Wang, Hanyu; Xing, Shen; Zheng, Yifan; Kong, Jaemin; Yu, Junsheng; Taylor, André D

    2018-01-31

    Sequentially solution-processed polymer photodetectors (SSP PPDs) based on poly(3-hexylthiophene-2,5-diyl) (P3HT)/[6,6]-phenyl C 71 -butyric acid methyl ester (PC 71 BM) are fabricated by depositing the top layers of PC 71 BM from an appropriate cosolvent of 2-chlorophenol (2-CP)/o-dichlorobenzene (ODCB) onto the predeposited bottom layers of P3HT. By adjusting the ratio of 2-CP/ODCB in the top PC 71 BM layers, the resulting SSP PPD shows a decreased dark current and an increased photocurrent, leading to a maximum detectivity of 1.23 × 10 12 Jones at a wavelength of 550 nm. This value is 5.3-fold higher than that of the conventional bulk heterojunction PPD. Morphology studies reveal that the PC 71 BM partially penetrates the predeposited P3HT layer during the spin-coating process, resulting in an optimal three-phase morphology with one well-mixed interdiffusion P3HT/PC 71 BM phase in the middle of the bulk and two pure phases of P3HT and PC 71 BM at the two electrode sides. We show that the pure phases form high Schottky barriers (>2.0 eV) at the active layer/electrodes interface and efficiently block unfavorable reverse charge carrier injection by significantly decreasing the dark current. The interdiffussion phase enlarges the donor-acceptor interfacial area leading to a large photocurrent. We also reveal that the improved performance of SSP PPDs is also due to the enhanced optical absorption, improved P3HT crystallinity, increased charge carrier mobilities, and suppressed bimolecular recombination.

  2. Computerization of a telescope at secondary education

    NASA Astrophysics Data System (ADS)

    García Santiago, A.; Martos Jumillas, J.

    2017-03-01

    The work we are presenting in this paper is the computerization of a refractor telescope on an EQ3 type equatorial mount through Arduino. The control of the mount is done via three different interfaces: Stellarium, an Android interface for mobile phones and a second interface for PC made with Processing. The aforementioned work was done by the authors with a double purpose: presenting the interest in astronomy in the Mathematics department, and the development of applications within the subject of Technology in 4th ESO. So, it is a collaborative project between both departments. Except for the telescope and the mount, all the resources we have used can be found in any high school: free software (Guadalinex v9), App Inventor and Processing.The project was carried out under the principle of reducing all possible costs given the economic possibilities of the institution.

  3. Ethernet-based test stand for a CAN network

    NASA Astrophysics Data System (ADS)

    Ziebinski, Adam; Cupek, Rafal; Drewniak, Marek

    2017-11-01

    This paper presents a test stand for the CAN-based systems that are used in automotive systems. The authors propose applying an Ethernet-based test system that supports the virtualisation of a CAN network. The proposed solution has many advantages compared to classical test beds that are based on dedicated CAN-PC interfaces: it allows the physical constraints associated with the number of interfaces that can be simultaneously connected to a tested system to be avoided, which enables the test time for parallel tests to be shortened; the high speed of Ethernet transmission allows for more frequent sampling of the messages that are transmitted by a CAN network (as the authors show in the experiment results section) and the cost of the proposed solution is much lower than the traditional lab-based dedicated CAN interfaces for PCs.

  4. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  5. A Cost Effective System Design Approach for Critical Space Systems

    NASA Technical Reports Server (NTRS)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically designed for convection cooling methods.

  6. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  7. Open ISEmeter: An open hardware high-impedance interface for potentiometric detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvador, C.; Carbajo, J.; Mozo, J. D., E-mail: jdaniel.mozo@diq.uhu.es

    In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA{sup +}-DS{supmore » −}). The experimental measures of emf indicate Nernstian behaviour with the CTA{sup +} content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.« less

  8. Plasma combined self-assembled monolayer pretreatment on electroplated-Cu surface for low temperature Cu-Sn bonding in 3D integration

    NASA Astrophysics Data System (ADS)

    Wang, Junqiang; Wang, Qian; Wu, Zijian; Tan, Lin; Cai, Jian; Wang, Dejun

    2017-05-01

    A novel pretreatment of plasma combined self-assembled monolayer (PcSAM) was proposed to improve surface properties of electroplated Cu for low temperature Cu-Sn bonding in 3D integration. Measurement results revealed that self-assemble monolayer (SAM) would be easier absorbed on plasma-activated Cu surface and protect the clean surface from re-oxidation when storage. The absorbed SAM layer could be removed by thermal desorption during bonding process. With optimal PcSAM pretreatment, oxygen content of the Cu surface was reduced to as low as 1.39%. The followed Cu-Sn bonding was realized at low temperature of 200 °C. Finally, bonding interface exhibited a defect-free interconnection, and bonding strength has reached as high as 68.7 MPa.

  9. Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM

    NASA Astrophysics Data System (ADS)

    Bharti, Vishal; Chand, Suresh; Dutta, Viresh

    2018-04-01

    In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.

  10. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  11. The spectra program library: A PC based system for gamma-ray spectra analysis and INAA data reduction

    USGS Publications Warehouse

    Baedecker, P.A.; Grossman, J.N.

    1995-01-01

    A PC based system has been developed for the analysis of gamma-ray spectra and for the complete reduction of data from INAA experiments, including software to average the results from mulitple lines and multiple countings and to produce a final report of analysis. Graphics algorithms may be called for the analysis of complex spectral features, to compare the data from alternate photopeaks and to evaluate detector performance during a given counting cycle. A database of results for control samples can be used to prepare quality control charts to evaluate long term precision and to search for systemic variations in data on reference samples as a function of time. The entire software library can be accessed through a user-friendly menu interface with internal help.

  12. Photoinduced charge transfer from vacuum-deposited molecules to single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Osada, Kazuki; Tanaka, Masatoshi; Ohno, Shinya; Suzuki, Takanori

    2016-06-01

    Variations of photoluminescence (PL) and Raman spectra of single-layer MoS2, MoSe2, WS2, and WSe2 due to the vacuum deposition of C60 or copper phthalocyanine (CuPc) molecules have been investigated. PL spectra are decomposed into two competitive components, an exciton and a charged exciton (trion), depending on carrier density. The variation of PL spectra is interpreted in terms of charge transfer across the interfaces between transition metal dichalcogenides (TMDs) and dopant molecules. We find that deposited C60 molecules inject photoexcited electrons into MoS2, MoSe2, and WS2 or holes into WSe2. CuPc molecules also inject electrons into MoS2, MoSe2, and WS2, while holes are depleted from WSe2 to CuPc. We then propose a band alignment between TMDs and dopant molecules. Peak shifts of Raman spectra and doped carrier density estimated using a three-level model also support the band alignment. We thus demonstrate photoinduced charge transfer from dopant molecules to single-layer TMDs.

  13. Vesicle Origami and the Influence of Cholesterol on Lipid Packing.

    PubMed

    Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas

    2016-05-17

    The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol.

  14. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    PubMed

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  15. Overview of the NASA Wallops Flight Facility Mobile Range Control System

    NASA Technical Reports Server (NTRS)

    Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.

    1999-01-01

    The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.

  16. Neutron monitors and muon detectors for solar modulation studies: 2. ϕ time series

    NASA Astrophysics Data System (ADS)

    Ghelfi, A.; Maurin, D.; Cheminet, A.; Derome, L.; Hubert, G.; Melot, F.

    2017-08-01

    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter ϕ (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference ϕ time series from neutron monitor data. We show that we can have an unbiased and accurate ϕ reconstruction (Δϕ / ϕ ≃ 10 %). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide ϕ time series. Two by-products of this calculation are updated ϕ values for the cosmic-ray database and a web interface to retrieve and plot ϕ from the 50's to today (http://lpsc.in2p3.fr/crdb).

  17. ATHENA: system design and implementation for a next-generation x-ray telescope

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.; Stefanescu, A.

    2017-08-01

    ATHENA, Europe's next generation x-ray telescope, is currently under Assessment Phase study with parallel candidate industrial Prime contractors after selection for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. This paper will consider the main technical requirements of the mission, and their mapping to resulting design choices at both mission and spacecraft level. The reference mission architecture and current reference spacecraft design will then be described, with particular emphasis given to description of the Science Instrument Module (SIM) design, currently under the responsibility of the ESA Study Team. The SIM is a very challenging item due primarily to the need to provide to the instruments (i) a soft ride during launch, and (ii) a very large ( 3 kW) heat dissipation capability at varying interface temperatures and locations.

  18. Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Johnson, N. J. E.

    1980-01-01

    Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.

  19. KSC-08pd2557

    NASA Image and Video Library

    2008-09-05

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. In the foreground, center, are Mission Specialists Mike Massimino and Michael Good, looking at the box containing the Cosmic Origins Spectrograph, or COS, on the orbital replacement unit carrier. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd2558

    NASA Image and Video Library

    2008-09-05

    CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. Looking at the box containing the Cosmic Origins Spectrograph, or COS, on the orbital replacement unit carrier are Mission Specialist Michael Good (upper right, on stand) and HST inspectors. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett

  1. Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.

    2011-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.

  2. The effect of subpressure on the bond strength of resin to zirconia ceramic.

    PubMed

    Li, Yong-Mei; Zhuge, Rui-Shen; Zhang, Zu-Tai; Tian, Yue-Ming; Ding, Ning

    2017-01-01

    This study was conducted to investigate the effect of subpressure on the bond strength of resin to zirconia ceramic. The subpressure would create a pressure gradient which could clean out the bubbles in the adhesives or bonding interface. Twenty-eight pre-sintered zirconia discs were fabricated. Half of them were polished (group P, n = 14), and the rest were sandblasted (group S, n = 14). After sintered,the surface roughness of the zirconia discs was measured. Then, they were randomly divided into two subgroups (n = 7). The groups were named as follows: PC: P + no additional treatments; PP: P + 0.04 MPa after application of adhesives; SC: S + no additional treatments; and SP: S + 0.04 MPa after application of adhesives. Resin columns were bonded to the zirconia specimens to determine shear bond strength (SBS). The bonding interfaces were observed and the fracture modes were evaluated. Statistical analysis was performed on all data. The surface roughness of group S was significantly higher than that of group P (P<0.05). The SBS values were PC = 13.48 ± 0.7 MPa, PP = 15.22 ± 0.8 MPa, SC = 17.23 ± 0.7 MPa and SP = 21.68 ± 1.4 MPa. There were significant differences among the groups (P<0.05). Scanning electron microscopy (SEM) results showed that the adhesives of group SP and PP were closer and denser to the zirconia ceramic than that of group PC and SC. The proportion of the mixed fracture mode significantly increased after adding subpressure (P< 0.05). Subpressure can improve the shear bond strength of resin to zirconia ceramics and increase micro-infiltration between the adhesives and the zirconia ceramics, especially on the rough surfaces.

  3. Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell

    NASA Astrophysics Data System (ADS)

    Tozlu, Cem; Mutlu, Adem; Can, Mustafa; Havare, Ali Kemal; Demic, Serafettin; Icli, Sıddık

    2017-11-01

    The effects of surface modification of titanium dioxide (TiO2) on the performance of inverted type organic solar cells (i-OSCs) was investigated in this study. A series of benzoic acid derivatized self-assembled monolayer (SAM) molecules of 4‧-[(hexyloxy)phenyl]amino-3,5-biphenyl dicarboxylic acid (CT17) and 4‧-[1-naphthyl (phenyl)amino]biphenyl-4-carboxylic acid (CT19) were utilized to modify the interface between TiO2 buffer layer and poly-3 hexylthiophene (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PC61BM) active layer having the device structure of ITO/TiO2/SAM/P3HT:PC61BM/MoO3/Ag. The work function and surface wetting properties of TiO2 buffer layer served as electron transporting layer between ITO and PC61BM active layer were tuned by SAM method. The solar cell of the SAM modified devices exhibited better performance. The power conversion efficiency (PCE) of i-OSCs devices with bare TiO2 electrodes enhanced from 2.00% to 2.21% and 2.43% with CT17 and CT19 treated TiO2 electrodes, respectively. The open circuit voltage (Voc) of the SAM treated TiO2 devices reached to 0.60 V and 0.61 V, respectively, while the Voc of untreated TiO2 was 0.57 V. The water contact angle of i-OSCs with CT17 and CT19 SAMs was also higher than the value of the unmodified TiO2 electrode. These results show that inserting a monolayer at the interface between organic and inorganic layers is an useful alternative method to improve the performance of i-OSCs.

  4. Development and evaluation of a time-dependent radiographic technology by using a muon read out module

    NASA Astrophysics Data System (ADS)

    Kusagaya, T.; Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2012-04-01

    We will present a real-time monitoring system for cosmic-ray muon radiography as an application of a readout module developed by T. Uchida et al [1,2]. The readout module was developed originally for probing the internal structure of volcanoes in 2008 [3]. Its features are small in size, low power consumption, and the capability to access remotely via Ethernet. The current statistics data of cosmic-ray muons can be read from a PC placed far from the module at anytime. By using this feature, we constructed a real-time monitoring system. As a test experiment, we observed fluid movement in a cylinder with a diameter of 112 meters water equivalent. In this work, we succeeded to resolve the fluid movement in the cylinder. We varied the fluid level inside the cylinder and measured the muon intensity. We found that the muon intensity correlates inversely with the fluid level: the muon intensity increases for the lower fluid level and decreases for the higher fluid level. Although the time resolution of muon radiography was sufficient to resolve changes in the fluid level, an adequate time window has to be chosen for different operating conditions. We anticipate that this system will be applicable to exploring high-speed phenomena in a gigantic object.

  5. THE INFLUENCE OF DISSIPATION RANGE POWER SPECTRA AND PLASMA-WAVE POLARIZATION ON COSMIC-RAY SCATTERING MEAN FREE PATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co

    2010-08-20

    The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less

  6. New insights into apoptosome structure and function.

    PubMed

    Dorstyn, Loretta; Akey, Christopher W; Kumar, Sharad

    2018-05-15

    The apoptosome is a platform that activates apical procaspases in response to intrinsic cell death signals. Biochemical and structural studies in the past two decades have extended our understanding of apoptosome composition and structure, while illuminating the requirements for initiator procaspase activation. A number of studies have now provided high-resolution structures for apoptosomes from C. elegans (CED-4), D. melanogaster (Dark), and H. sapiens (Apaf-1), which define critical protein interfaces, including intra and interdomain interactions. This work also reveals interactions of apoptosomes with their respective initiator caspases, CED-3, Dronc and procaspase-9. Structures of the human apoptosome have defined the requirements for cytochrome c binding, which triggers the conversion of inactive Apaf-1 molecules to an extended, assembly competent state. While recent data have provided a detailed understanding of apoptosome formation and procaspase activation, they also highlight important evolutionary differences with functional implications for caspase activation. CARD/CARD interactions in the CED-4, Dark and Apaf-1 apoptosomes. Type I, II and III interfaces that stabilize CARD-CARD interactions are indicated (left column). Note that the Type I interface appears to be unique to Apaf-1/pc-9 CARD interactions. Middle column shows cartoons of the active states of the CARD-CARD disks, illustrating the two CED-4 tetrameric ring layers (top) and the recruitment of 8 Dronc CARDs and between 3-4 pc-9 CARDs, to the Dark and Apaf-1 apoptosomes respectively (middle and lower panels). Ribbon diagrams of the CED-4, Dark and Apaf-1 apoptosomes are shown (right column).

  7. The BET protein FSH functionally interacts with ASH1 to orchestrate global gene activity in Drosophila

    PubMed Central

    2013-01-01

    Background The question of how cells re-establish gene expression states after cell division is still poorly understood. Genetic and molecular analyses have indicated that Trithorax group (TrxG) proteins are critical for the long-term maintenance of active gene expression states in many organisms. A generally accepted model suggests that TrxG proteins contribute to maintenance of transcription by protecting genes from inappropriate Polycomb group (PcG)-mediated silencing, instead of directly promoting transcription. Results and discussion Here we report a physical and functional interaction in Drosophila between two members of the TrxG, the histone methyltransferase ASH1 and the bromodomain and extraterminal family protein FSH. We investigated this interface at the genome level, uncovering a widespread co-localization of both proteins at promoters and PcG-bound intergenic elements. Our integrative analysis of chromatin maps and gene expression profiles revealed that the observed ASH1-FSH binding pattern at promoters is a hallmark of active genes. Inhibition of FSH-binding to chromatin resulted in global down-regulation of transcription. In addition, we found that genes displaying marks of robust PcG-mediated repression also have ASH1 and FSH bound to their promoters. Conclusions Our data strongly favor a global coactivator function of ASH1 and FSH during transcription, as opposed to the notion that TrxG proteins impede inappropriate PcG-mediated silencing, but are dispensable elsewhere. Instead, our results suggest that PcG repression needs to overcome the transcription-promoting function of ASH1 and FSH in order to silence genes. PMID:23442797

  8. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.

    PubMed

    Tasaki, Ken

    2005-02-24

    The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.

  9. Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures

    PubMed Central

    2013-01-01

    For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu–phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still, they are also distinctly different, as only at the Ag(111)–PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. PMID:23447750

  10. Online handwritten mathematical expression recognition

    NASA Astrophysics Data System (ADS)

    Büyükbayrak, Hakan; Yanikoglu, Berrin; Erçil, Aytül

    2007-01-01

    We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft's Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.

  11. Band transition and topological interface modes in 1D elastic phononic crystals.

    PubMed

    Yin, Jianfei; Ruzzene, Massimo; Wen, Jihong; Yu, Dianlong; Cai, Li; Yue, Linfeng

    2018-05-01

    In this report, we design a one-dimensional elastic phononic crystal (PC) comprised of an Aluminum beam with periodically arranged cross-sections to study the inversion of bulk bands due to the change of topological phases. As the geometric parameters of the unit cell varies, the second bulk band closes and reopens forming a topological transition point. This phenomenon is confirmed for both longitudinal waves and bending waves. By constructing a structural system formed by two PCs with different topological phases, for the first time, we experimentally demonstrate the existence of interface mode within the bulk band gap as a result of topological transition for both longitudinal and bending modes in elastic systems, although for bending modes, additional conditions have to be met in order to have the interface mode due to the dispersive nature of the bending waves in uniform media compared to the longitudinal waves.

  12. Development of the Situation Awareness Flight Training and Simulation Evaluation (SAFTE) System: II: Final Development, Initial Test, and Documentation of the System

    DTIC Science & Technology

    1999-08-01

    Parkway, Cambridge, MA 02138, (617) 876-8085) has ready-to-use DIS/ HLA interfaces for the PC ($3500.00). The other work required involves improving the...bomb the Target Designator Box. (SA MEASURE B27 : When the aircraft passes 1,300 MSL, ask: YOU MUST ABORT THE ATTACK IF YOU HAVE NOT RELEASED THE

  13. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli.

    PubMed

    Barriga, Hanna M G; Booth, Paula; Haylock, Stuart; Bazin, Richard; Templer, Richard H; Ces, Oscar

    2014-09-06

    Droplet interface bilayers (DIBs) provide an exciting new platform for the study of membrane proteins in stable bilayers of controlled composition. To date, the successful reconstitution and activity measurement of membrane proteins in DIBs has relied on the use of the synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). We report the functional reconstitution of the mechanosensitive channel of large conductance (MscL) into DIBs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a lipid of significantly greater biological relevance than DPhPC. MscL functionality has been demonstrated using a fluorescence-based assay, showing that dye flow occurs across the DIB when MscL is gated by the cysteine reactive chemical 2-(trimethylammonium)ethyl methane thiosulfonate bromide (MTSET). MscL has already been the subject of a number of studies investigating its interaction with the membrane. We propose that this method will pave the way for future MscL studies looking in detail at the effects of controlled composition or membrane asymmetry on MscL activity using biologically relevant lipids and will also be applicable to other lipid-protein systems, paving the way for the study of membrane proteins in DIBs with biologically relevant lipids.

  14. Stacking the Deck: Leveraging Surface Interactions to Tune Interfacial Electronic Structure

    NASA Astrophysics Data System (ADS)

    Maughan, Bret; Eads, Calley; Zahl, Percy; Sutter, Peter; Monti, Oliver

    We present results from a series of experiments aimed at understanding and controlling molecular interactions in phthalocyanine (Pc) thin-films on Cu(110) to tailor the interfacial electronic structure. Using low-temperature scanning tunneling microscopy (LT-STM), we identify interactions that drive surface-molecule coupling, molecular self-assembly and thin-film order. We provide evidence that interactions with native Cu adatoms play a pivotal role in self-assembly of Pc systems, along with anisotropic nanoribbon growth dynamics, supported by an agent-based kinetic Monte Carlo (AB-KMC) simulation. We show further that self-assembled nanoribbon length can be controlled using surface diffusion barriers and that ordered 2D thin-film growth is promoted by diminishing surface-molecule interactions that otherwise dominate native Cu(110) interfaces. Altogether, this detailed structural understanding allows us to interpret interfacial electronic structure and dynamics, uncovered through ultraviolet (UPS) and two-photon photoemission (2PPE) spectroscopy experiments, in molecular configuration-specific detail. In all, our understanding of interfacial processes guides strategic modifications to both surface and molecule to harness interfacial interactions and thereby modify the collective electronic structure of the interface. NSF No. CHE-1213243 and No. CHE-1565497, Arizona TRIF, DOE/BNL Cntrct No. DE-SC0012704, and DOE No. DE-SC0016343.

  15. Structural studies of the HIV-1 accessory protein Vpu in langmuir monolayers: synchrotron X-ray reflectivity.

    PubMed Central

    Zheng, S; Strzalka, J; Ma, C; Opella, S J; Ocko, B M; Blasie, J K

    2001-01-01

    Vpu is an 81 amino acid integral membrane protein encoded by the HIV-1 genome with a N-terminal hydrophobic domain and a C-terminal hydrophilic domain. It enhances the release of virus from the infected cell and triggers degradation of the virus receptor CD4. Langmuir monolayers of mixtures of Vpu and the phospholipid 1,2-dilignoceroyl-sn-glycero-3-phosphocholine (DLgPC) at the water-air interface were studied by synchrotron radiation-based x-ray reflectivity over a range of mole ratios at constant surface pressure and for several surface pressures at a maximal mole ratio of Vpu/DLgPC. Analysis of the x-ray reflectivity data by both slab model-refinement and model-independent box-refinement methods firmly establish the monolayer electron density profiles. The electron density profiles as a function of increasing Vpu/DLgPC mole ratio at a constant, relatively high surface pressure indicated that the amphipathic helices of the cytoplasmic domain lie on the surface of the phospholipid headgroups and the hydrophobic transmembrane helix is oriented approximately normal to the plane of monolayer within the phospholipid hydrocarbon chain layer. At maximal Vpu/DLgPC mole ratio, the tilt of the transmembrane helix with respect to the monolayer normal decreases with increasing surface pressure and the conformation of the cytoplasmic domain varies substantially with surface pressure. PMID:11259297

  16. Application of ZigBee sensor network to data acquisition and monitoring

    NASA Astrophysics Data System (ADS)

    Terada, Mitsugu

    2009-01-01

    A ZigBee sensor network for data acquisition and monitoring is presented in this paper. It is configured using a commercially available ZigBee solution. A ZigBee module is connected via a USB interface to a Microsoft Windows PC, which works as a base station in the sensor network. Data collected by remote devices are sent to the base station PC, which is set as a data sink. Each remote device is built of a commercially available ZigBee module product and a sensor. The sensor is a thermocouple connected to a cold junction compensator amplifier. The signal from the amplifier is input to an AD converter port on the ZigBee module. Temperature data are transmitted according to the ZigBee protocol from the remote device to the data sink PC. The data sampling rate is one sampling per second; the highest possible rate is four samplings per second. The data are recorded in the hexadecimal number format by device control software, and the data file is stored in text format on the data sink PC. Time-dependent data changes can be monitored using the macro function of spreadsheet software. The system is considered a useful tool in the field of education, based on the results of trial use for measurement in an undergraduate laboratory class at a university.

  17. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.

    PubMed

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-10-21

    High-response organic field-effect transistor (OFET)-based NO₂ sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO₂ analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO₂. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO₂ molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO₂ sensors in future electronic nose and environment monitoring.

  18. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    PubMed Central

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-01-01

    High-response organic field-effect transistor (OFET)-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring. PMID:27775653

  19. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    PubMed Central

    Losa-Adams, Elisabeth; F.-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    Summary The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites. PMID:24991522

  20. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants.

    PubMed

    Gil-Lozano, Carolina; Losa-Adams, Elisabeth; F-Dávila, Alfonso; Gago-Duport, Luis

    2014-01-01

    The Fenton reaction is the most widely used advanced oxidation process (AOP) for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc) as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2) particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe(3+) into Fe(2+) and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm) with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L) and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  1. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  2. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  3. X ray studies of the Hyades cluster

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1993-01-01

    The Hyades cluster occupies a unique position in both the history of astronomy and at the frontiers of contemporary astronomical research. At a distance of only 45 pc, the Hyades is the nearest star cluster in the Galaxy which is localized in the sky: the UMa cluster, which is closer, but much sparser, essentially surrounds the Solar neighborhood. The Hyades is the prototype cluster for distance determination using the 'moving-cluster' method, and thus serves to define the zero-age main sequence from which the cosmic distance scale is essentially bootstrapped. The Hyades age (0.6-0.7 Gyr), nearly 8 times younger than the Sun, guarantees the Hyades critical importance to studies of stellar evolution. The results of a complete survey of the Hyades cluster using the ROSAT All Sky Survey (RASS) are reported.

  4. Design and implementation of a prototype micropositioning and fusion of optical fibers

    NASA Astrophysics Data System (ADS)

    Vega, Fabio; Torres, Cesar; Mattos, Lorenzo

    2011-09-01

    We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.

  5. The NOvA simulation chain

    NASA Astrophysics Data System (ADS)

    Aurisano, A.; Backhouse, C.; Hatcher, R.; Mayer, N.; Musser, J.; Patterson, R.; Schroeter, R.; Sousa, A.

    2015-12-01

    The NOνA experiment is a two-detector, long-baseline neutrino experiment operating in the recently upgraded NuMI muon neutrino beam. Simulating neutrino interactions and backgrounds requires many steps including: the simulation of the neutrino beam flux using FLUKA and the FLUGG interface; cosmic ray generation using CRY; neutrino interaction modeling using GENIE; and a simulation of the energy deposited in the detector using GEANT4. To shorten generation time, the modeling of detector-specific aspects, such as photon transport, detector and electronics noise, and readout electronics, employs custom, parameterized simulation applications. We will describe the NOνA simulation chain, and present details on the techniques used in modeling photon transport near the ends of cells, and in developing a novel data-driven noise simulation. Due to the high intensity of the NuMI beam, the Near Detector samples a high rate of muons originating in the surrounding rock. In addition, due to its location on the surface at Ash River, MN, the Far Detector collects a large rate (˜ 140 kHz) of cosmic muons. We will discuss the methods used in NOνA for overlaying rock muons and cosmic ray muons with simulated neutrino interactions and show how realistically the final simulation reproduces the preliminary NOνA data.

  6. The NO vA simulation chain

    DOE PAGES

    Aurisano, A.; Backhouse, C.; Hatcher, R.; ...

    2015-12-23

    The NO vA experiment is a two-detector, long-baseline neutrino experiment operating in the recently upgraded NuMI muon neutrino beam. Simulating neutrino interactions and backgrounds requires many steps including: the simulation of the neutrino beam flux using FLUKA and the FLUGG interface, cosmic ray generation using CRY, neutrino interaction modeling using GENIE, and a simulation of the energy deposited in the detector using GEANT4. To shorten generation time, the modeling of detector-specific aspects, such as photon transport, detector and electronics noise, and readout electronics, employs custom, parameterized simulation applications. We will describe the NO vA simulation chain, and present details onmore » the techniques used in modeling photon transport near the ends of cells, and in developing a novel data-driven noise simulation. Due to the high intensity of the NuMI beam, the Near Detector samples a high rate of muons originating in the surrounding rock. In addition, due to its location on the surface at Ash River, MN, the Far Detector collects a large rate ((˜) 140 kHz) of cosmic muons. Furthermore, we will discuss the methods used in NO vA for overlaying rock muons and cosmic ray muons with simulated neutrino interactions and show how realistically the final simulation reproduces the preliminary NO vA data.« less

  7. Low-voltage Organic Thin Film Transistors (OTFTs) with Solution-processed High-k Dielectric cum Interface Engineering

    NASA Astrophysics Data System (ADS)

    Su, Yaorong

    Although impressive progress has been made in improving the performance of organic thin film transistors (OTFTs), the high operation voltage resulting from the low gate areal capacitance of traditional SiO 2 remains a severe limitation that hinders OTFTs' development in practical applications. In this regard, developing new materials with high- k characteristics at low cost is of great scientific and technological importance in the area of both academia and industry. In this thesis, we first describe a simple solution-based method to fabricate a high-k bilayer Al2Oy/TiOx (ATO) dielectric system at low temperature. Then the dielectric properties of the ATO are characterized and discussed in detail. Furthermore, by employing the high-k ATO as gate dielectric, low-voltage copper phthalocyanine (CuPc) based OTFTs are successfully developed. Interestingly, the obtained low-voltage CuPc TFT exhibits outstanding electrical performance, which is even higher than the device fabricated on traditional low-k SiO2. The above results seem to be contradictory to the reported results due to the fact that high-k usually shows adverse effect on the device performance. This abnormal phenomenon is then studied in detail. Characterization on the initial growth shows that the CuPc molecules assemble in a "rod-like" nano crystal with interconnected network on ATO, which probably promotes the charge carrier transport, whereas, they form isolated small islands with amorphous structure on SiO2. In addition, a better metal/organic contact is observed on ATO, which benefits the charge carrier injection. Our studies suggest that the low-temperature, solution-processed high-k ATO is a promising candidate for fabrication of high-performance, low-voltage OTFTs. Furthermore, it is well known that the properties of the dielectric/semiconductor and electrode/semiconductor interfaces are crucial in controlling the electrical properties of OTFTs. Hence, investigation the effects of interfaces engineering on improving the electrical characteristics of OTFTs is of great technological importance. For the dielectric/semiconductor interface, an octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) is used to modify the surface of ATO (ODPA/ATO). For the electrode/semiconductor interface, a simple in-situ modified Cu (M-Cu) is employed as source-drain (S/D) electrodes in stead of commonly used Au. The electrical characteristics of pentacene TFT are drastically enhanced upon interfaces modification. Moreover, by encapsulating the M-Cu with a thin layer of Au (Au/ M-Cu), the device performance is further improved. The detailed mechanism is systematically explored. Finally, organic electronic devices on flexible plastic substrates have attracted much attention due to their low-cost, rollability, large-area processability, and so on. One of the most critical issues in realization flexible OTFTs is the integration of gate dielectrics with flexible substrates. We have successfully incorporated the ODPA/ATO with Au coated flexible polyimide (PI) substrate. By using Au/M-Cu as S/D electrode, the flexible pentacene TFTs show outstanding electrical performance. In addition, the mechanical flexibility and reliability of the devices are studied in detail. Our approach demonstrates an effective way to realize low-cost, high-performance flexible OTFTs.

  8. Development of deterministic transport methods for low energy neutrons for shielding in space

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry

    1993-01-01

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from MGSLAB and MGSEMI were compared to ANISN/PC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the FN method seems to generate reasonable results.

  9. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.

    2017-07-01

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.

  10. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  11. Software Management System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.

  12. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel tomore » the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.« less

  13. MAPPER: A personal computer map projection tool

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1993-01-01

    MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.

  14. Embedded Training Display Technology for the Army’s Future Combat Vehicles

    DTIC Science & Technology

    2004-12-01

    RESULTS 2.1 OLED Microdisplays and Associated Electronics The OLED kit used in developing the prototype is available from eMagin Corporation. A...port a computer. Fig. 1. SVGA PC interface kit from eMagin 2.2 Overall Optical Layout Head-mounted projection optics as opposed to... eMagin Corporation) chosen for a prototyping phase of this project is color, thus requiring optical aberration correction across the visible

  15. PCACE-Personal-Computer-Aided Cabling Engineering

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1987-01-01

    PCACE computer program developed to provide inexpensive, interactive system for learning and using engineering approach to interconnection systems. Basically database system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records. Directly emulates typical manual engineering methods of handling data, thus making interface between user and program very natural. Apple version written in P-Code Pascal and IBM PC version of PCACE written in TURBO Pascal 3.0

  16. Lessons learned in control center technologies and non-technologies

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.

    1991-01-01

    Information is given in viewgraph form on the Solar Mesosphere Explorer (SME) Control Center and the Oculometer and Automated Space Interface System (OASIS). Topics covered include SME mission operations functions; technical and non-technical features of the SME control center; general tasks and objects within the Space Station Freedom (SSF) ground system nodes; OASIS-Real Time for the control and monitoring of of space systems and subsystems; and OASIS planning, scheduling, and PC architecture.

  17. Inlet Reservoir Model. Part 2: PC-Interface

    DTIC Science & Technology

    2011-12-01

    2008); and Zarillo and Kraus (2003). Figure 1 shows a schematic of an inlet system within the IRM with various types of reservoirs (e.g., channel...ERDC/CHL CHETN-IV-xx 2  Knowledge of engineering activities within the inlet system (e.g., dredging of a deposition basin or dredged channel...there to the Shore, S. As the first reservoir in the system , E, fills and its volume increases closer to the equilibrium (identified for all

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.

    A three-component phenomenological model for the description of specific features of spectra of cosmic-ray protons and helium nuclei in the hardness range from 30 to 2 × 10{sup 5} GV is proposed. The first component corresponds to the constant background; the second component, to a variable “soft” (30–500 GV) heliospheric source; and the third component, to a variable “hard” (0.5–200 TV) galactic source inside a local bubble. The corresponding “surfatron accelerators” are responsible for the existence and variability of both sources. In order for such accelerators to operate, there should be an extended area with a nearly uniform and constantmore » (in both the magnitude and direction) magnetic field and electromagnetic waves propagating perpendicular (or obliquely) to it. The dimensions of each source determine the maximum energy to which cosmic rays can be accelerated. The soft source with a size of ∼100 au lies at the periphery of the heliosphere, beyond the terminal shock, while the hard source with a size of >0.1 pc is located near the boundary of a local interstellar cloud at a distance of ∼0.01 pc from the Sun. A kink in the hardness spectra of p and He (near the hardness of about 230 GV) is caused by the variability of physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law indices of the background, the soft heliospheric source, and the nearby hard galactic source. Ultrarelativistic acceleration of p and He in space plasma by an electromagnetic wave propagating perpendicular to the external magnetic field is investigated using numerical calculations. The conditions for particle trapping by the wave, as well as the dynamics of the velocity and momentum components, are analyzed. The calculations show that, in contrast to electrons and positrons (e{sup +}), a trapped proton can escape from the effective potential well after a relatively short time, thereby terminating to accelerate. Such an effect gives rise to softer spectra of p and He sources as compared to those of e{sup +}. The possibility of deviation of the spectra of accelerated protons from standard power-law dependences due to the surfatron mechanism is discussed.« less

  19. Universal MOSFET parameter analyzer

    NASA Astrophysics Data System (ADS)

    Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.

    2006-05-01

    MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).

  20. Adaptive properties of human cementum and cementum dentin junction with age

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Choi, Ryan M.; Choi, Erin M.; Seto, Melanie L.; Ryder, Mark I.; Gansky, Stuart A.; Curtis, Donald A.; Ho, Sunita P.

    2014-01-01

    Objectives The objective of this study was to evaluate age related changes age related changes in physical (structure/mechanical properties) and chemical (elemental/inorganic mineral content) properties of cementum layers interfacing dentin. Methods Human mandibular molars (N=43) were collected and sorted by age (younger = 19–39, middle = 40–60, older = 61–81 years). The structures of primary and secondary cementum (PC, SC) types were evaluated using light and atomic force microscopy (AFM) techniques. Chemical composition of cementum layers were characterized through gravimetric analysis by estimating ash weight and concentrations of Ca, Mn, and Zn trace elements in the analytes through inductively coupled plasma mass spectroscopy. The hardness of PC and SC was determined using microindentation and site-specific reduced elastic modulus properties were determined using nanoindentation techniques. Results PC contained fibrous, 1–3 µm wide hygroscopic radial PDL-inserts. SC illustrated PC-like structure adjacent to a multilayered architecture composing of regions that contained mineral dominant lamellae. The width of cementum dentin junction (CDJ) decreased as measured from cementum enamel junction (CEJ) to the tooth apex (49–21µm), and significantly decreased with age (44–23µm; p<0.05). The inorganic ratio defined as the ratio of post-burn to pre-burn increased with age within primary cementum (PC) and secondary cementum (SC). Cementum showed an increase in hardness with age (PC (0.40–0.46GPa), SC (0.37–0.43GPa)), while dentin showed a decreasing trend (coronal dentin (0.70–0.72GPa); apical dentin (0.63 – 0.73 GPa)). Significance The observed physicochemical changes are indicative of an increased mineralization of cementum and CDJ over time. Changes in tissue properties of the teeth can alter overall tooth biomechanics, and in turn the entire bone-tooth complex including the periodontal ligament. This study provides baseline information about the changes in physicochemical properties of cementum with age, which can be identified as adaptive in nature. PMID:25133753

  1. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  2. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  3. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  4. Research and realization of key technology in HILS interactive system

    NASA Astrophysics Data System (ADS)

    Liu, Che; Lu, Huiming; Wang, Fankai

    2018-03-01

    This paper designed HILS (Hardware In the Loop Simulation) interactive system based on xPC platform . Through the interface between C++ and MATLAB engine, establish the seamless data connection between Simulink and interactive system, complete data interaction between system and Simulink, realize the function development of model configuration, parameter modification and off line simulation. We establish the data communication between host and target machine through TCP/IP protocol to realize the model download and real-time simulation. Use database to store simulation data, implement real-time simulation monitoring and simulation data management. Realize system function integration by Qt graphic interface library and dynamic link library. At last, take the typical control system as an example to verify the feasibility of HILS interactive system.

  5. Single software platform used for high speed data transfer implementation in a 65k pixel camera working in single photon counting mode

    NASA Astrophysics Data System (ADS)

    Maj, P.; Kasiński, K.; Gryboś, P.; Szczygieł, R.; Kozioł, A.

    2015-12-01

    Integrated circuits designed for specific applications generally use non-standard communication methods. Hybrid pixel detector readout electronics produces a huge amount of data as a result of number of frames per seconds. The data needs to be transmitted to a higher level system without limiting the ASIC's capabilities. Nowadays, the Camera Link interface is still one of the fastest communication methods, allowing transmission speeds up to 800 MB/s. In order to communicate between a higher level system and the ASIC with a dedicated protocol, an FPGA with dedicated code is required. The configuration data is received from the PC and written to the ASIC. At the same time, the same FPGA should be able to transmit the data from the ASIC to the PC at the very high speed. The camera should be an embedded system enabling autonomous operation and self-monitoring. In the presented solution, at least three different hardware platforms are used—FPGA, microprocessor with real-time operating system and the PC with end-user software. We present the use of a single software platform for high speed data transfer from 65k pixel camera to the personal computer.

  6. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  7. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    PubMed

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  9. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  10. An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase

    NASA Astrophysics Data System (ADS)

    Li, Tianyi; Schlüter, Steffen; Dragila, Maria Ines; Wildenschild, Dorthe

    2018-04-01

    We present an improved method for estimating interfacial curvatures from x-ray computed microtomography (CMT) data that significantly advances the potential for this tool to unravel the mechanisms and phenomena associated with multi-phase fluid motion in porous media. CMT data, used to analyze the spatial distribution and capillary pressure-saturation (Pc-S) relationships of liquid phases, requires accurate estimates of interfacial curvature. Our improved method for curvature estimation combines selective interface modification and distance weighting approaches. It was verified against synthetic (analytical computer-generated) and real image data sets, demonstrating a vast improvement over previous methods. Using this new tool on a previously published data set (multiphase flow) yielded important new insights regarding the pressure state of the disconnected nonwetting phase during drainage and imbibition. The trapped and disconnected non-wetting phase delimits its own hysteretic Pc-S curve that inhabits the space within the main hysteretic Pc-S loop of the connected wetting phase. Data suggests that the pressure of the disconnected, non-wetting phase is strongly modified by the pore geometry rather than solely by the bulk liquid phase that surrounds it.

  11. Practical Pocket PC Application w/Biometric Security

    NASA Technical Reports Server (NTRS)

    Logan, Julian

    2004-01-01

    I work in the Flight Software Engineering Branch, where we provide design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. The majority of microchips that are used in modern society have been programmed using embedded technology. These small chips can be found in microwaves, calculators, home security systems, cell phones and more. My assignment this summer entails working with an iPAQ HP 5500 Pocket PC. This top-of-the-line hand-held device is one of the first mobile PC's to introduce biometric security capabilities. Biometric security, in this case a fingerprint authentication system, is on the edge of technology as far as securing information. The benefits of fingerprint authentication are enormous. The most significant of them are that it is extremely difficult to reproduce someone else's fingerprint, and it is equally difficult to lose or forget your own fingerprint as opposed to a password or pin number. One of my goals for this summer is to integrate this technology with another Pocket PC application. The second task for the summer is to develop a simple application that provides an Astronaut EVA (Extravehicular Activity) Log Book capability. The Astronaut EVA Log Book is what an astronaut would use to report the status of field missions, crew physical health, successes, future plans, etc. My goal is to develop a user interface into which these data fields can be entered and stored. The applications that I am developing are created using eMbedded Visual C++ 4.0 with the Pocket PC 2003 Software Development Kit provided by Microsoft.

  12. INFIBRA: machine vision inspection of acrylic fiber production

    NASA Astrophysics Data System (ADS)

    Davies, Roger; Correia, Bento A. B.; Contreiras, Jose; Carvalho, Fernando D.

    1998-10-01

    This paper describes the implementation of INFIBRA, a machine vision system for the inspection of acrylic fiber production lines. The system was developed by INETI under a contract from Fisipe, Fibras Sinteticas de Portugal, S.A. At Fisipe there are ten production lines in continuous operation, each approximately 40 m in length. A team of operators used to perform periodic manual visual inspection of each line in conditions of high ambient temperature and humidity. It is not surprising that failures in the manual inspection process occurred with some frequency, with consequences that ranged from reduced fiber quality to production stoppages. The INFIBRA system architecture is a specialization of a generic, modular machine vision architecture based on a network of Personal Computers (PCs), each equipped with a low cost frame grabber. Each production line has a dedicated PC that performs automatic inspection, using specially designed metrology algorithms, via four video cameras located at key positions on the line. The cameras are mounted inside custom-built, hermetically sealed water-cooled housings to protect them from the unfriendly environment. The ten PCs, one for each production line, communicate with a central PC via a standard Ethernet connection. The operator controls all aspects of the inspection process, from configuration through to handling alarms, via a simple graphical interface on the central PC. At any time the operator can also view on the central PC's screen the live image from any one of the 40 cameras employed by the system.

  13. Band structure of comb-like photonic crystals containing meta-materials

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  14. Effect of illumination on the dielectrical properties of P3HT:PC70BM nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamza, Saidi; Mhamdi, Asya; Aloui, Walid; Bouazizi, Abdelaziz; Khirouni, Kamel

    2017-05-01

    In this work, the effects of light-generated carriers on the dielectric properties of the structure ITO/PEDOT: PSS/P3HT:PC70BM/Al were carried out. Impedance spectroscopy was performed at an applied bias equal to the open-circuit. From the real and imaginary part of the impedance, a dipolar relaxation type was observed, which decreased in the presence of light due to an increase in the electron mobility. The Cole-Cole diagram fit using a parallel model R-CPE equivalent circuit leads to the comparison of parallel resistances (R p) and capacitance (CPE) in dark and under illumination. The decrease of R p is related to the increases in the photo-generated charge carrier density. The increase in the capacitance is related to the enhancement of the P3HT/PCBM interface homogeneity.

  15. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    PubMed

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  16. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller

    NASA Astrophysics Data System (ADS)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADμC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62kbytes of flash memory, 8kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100ns and a minimum time delay between successive events of approximately 9μs. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  17. Personal Computer-less (PC-less) Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Wahyudin, D.; Fushilat, I.

    2018-02-01

    The need of microcontroller training kit is necessary for practical work of students of electrical engineering education. However, to use available training kit not only costly but also does not meet the need of laboratory requirements. An affordable and portable microcontroller kit could answer such problem. This paper explains the design and development of Personal Computer Less (PC-Less) Microcontroller Training Kit. It was developed based on Lattepanda processor and Arduino microcontroller as target. The training kit equipped with advanced input-output interfaces that adopted the concept of low cost and low power system. The preliminary usability testing proved this device can be used as a tool for microcontroller programming and industrial automation training. By adopting the concept of portability, the device could be operated in the rural area which electricity and computer infrastructure are limited. Furthermore, the training kit is suitable for student of electrical engineering student from university and vocational high school.

  18. Aqueous-Solid System for Highly Efficient and Environmentally Friendly Transphosphatidylation Catalyzed by Phospholipase D To Produce Phosphatidylserine.

    PubMed

    Li, Binglin; Wang, Jiao; Zhang, Xiaoli; Zhao, Binxia; Niu, Lu

    2016-10-12

    The purely aqueous system of phospholipase D (PLD)-mediated transphosphatidylation using pre-existing carriers for the adsorption of phosphatidylcholine (PC) to act as an "artificial interface" was introduced to replace the liquid-liquid system. Toxic organic solvents are avoided during the reaction, and the free enzyme can be simply reused by centrifugation. Special attention has been paid to the effect of the pore diameter and surface area of silica gel 60H covered with PC molecules on the yield of phosphatidylserine (PS). Results indicated that the highest PS yield of 99.5% was achieved. Moreover, 73.6% of the yield of PS was obtained after being used for six batches. This is the first description of the remarkably high reusability of free enzymes for enzymatic synthesis of PS as well. The excellent results make the aqueous-solid system more promising candidates for the industrial production of PS.

  19. A graphical language for reliability model generation

    NASA Technical Reports Server (NTRS)

    Howell, Sandra V.; Bavuso, Salvatore J.; Haley, Pamela J.

    1990-01-01

    A graphical interface capability of the hybrid automated reliability predictor (HARP) is described. The graphics-oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault tree gates, including sequence dependency gates, or by a Markov chain. With this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the Graphical Kernel System (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing.

  20. A low frequency RFI monitoring system

    NASA Astrophysics Data System (ADS)

    Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.

    Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.

  1. Gaseous infall and star formation from redshift 2 to the Milky Way

    NASA Astrophysics Data System (ADS)

    Hill, Alex

    2015-10-01

    We propose to model magnetized gas as it flows into galaxy disks in Milky Way-like and redshift 2 environments in order to understand the pc to kpc scale physics that control a crucial link in galaxy evolution: how do galaxies get the gas which sustains star formation over cosmic time? UV observations with the Cosmic Origins Spectrograph (COS) on HST have demonstrated that star-forming galaxies have baryonic halos much more massive than the galaxies themselves; these halos are most likely a link in the evolution of galaxies as cosmological filaments feed ongoing star formation in galactic disks. However, the galaxy formation simulations that support this hypothesis do not resolve the parsec-scale hydrodynamic processes which determine if and how the gas in the halo can reach the disk. To address this theoretical disconnect, we will conduct magnetohydrodynamic simulations in which these clouds fall under the galactic potential into a state-of-the-art simulation of the three-phase interstellar medium in the galactic disk. We will leverage recent HST and radio observations of accreting clouds around the Milky Way to set the initial conditions of the gas, including magnetic fields and metallicity. Our results will connect the HST metallicity measurements directly to the impact of gaseous galactic halos and infall on galaxy evolution and the star formation history of the Universe.

  2. Program For Evaluation Of Reliability Of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, N.; Janosik, L. A.; Gyekenyesi, J. P.; Powers, Lynn M.

    1996-01-01

    CARES/LIFE predicts probability of failure of monolithic ceramic component as function of service time. Assesses risk that component fractures prematurely as result of subcritical crack growth (SCG). Effect of proof testing of components prior to service also considered. Coupled to such commercially available finite-element programs as ANSYS, ABAQUS, MARC, MSC/NASTRAN, and COSMOS/M. Also retains all capabilities of previous CARES code, which includes estimation of fast-fracture component reliability and Weibull parameters from inert strength (without SCG contributing to failure) specimen data. Estimates parameters that characterize SCG from specimen data as well. Written in ANSI FORTRAN 77 to be machine-independent. Program runs on any computer in which sufficient addressable memory (at least 8MB) and FORTRAN 77 compiler available. For IBM-compatible personal computer with minimum 640K memory, limited program available (CARES/PC, COSMIC number LEW-15248).

  3. Massive star clusters in a z=1 star-forming galaxy seen at a 100 pc scale thanks to strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, Miroslava; Cava, Antonio; Richard, Johan; Schaerer, Daniel; Egami, Eiichi

    2015-08-01

    Deep and high-resolution imaging has revealed clumpy, rest-frame UV morphologies among z=1-3 galaxies. The majority of these galaxies has been shown to be dominated by ordered disk rotation, which led to the conclusion that the observed giant clumps, resolved on kpc-scales, are generated from disk fragmentation due to gravitational instability. State-of-the-art numerical simulations show that they may occupy a relevant role in galaxy evolution, contributing to the galactic bulge formation. Despite the high resolution attained by the most advanced ground- and space-based facilities, as well as in numerical simulations, the intrinsic typical masses and scale sizes of these star-forming clumps remain unconstrained, since they are barely resolved at z=1-3.Thanks to the amplification and stretching power provided by strong gravitational lensing, we are likely to reach the spatial resolving power for unveiling the physics of these star-forming regions. We report on the study of clumpy star formation observed in the Cosmic Snake, a strongly lensed galaxy at z=1, representative of the typical star-forming population close to the peak of Universe activity. About 20 clumps are identified in the HST images. Benefiting from extreme amplification factors up to 100, they are resolved down to an intrinsic scale of 100 pc, never reached before at z=1.The HST multi-wavelength analysis of these individual star clusters allows us to determine their intrinsic physical properties, showing stellar masses (Ms) from 106 to 108.3 Msun, sizes from 100 to 400 pc, and ages from 106 to 108.5 yr. The masses we find are in line with the new, very high resolution numerical simulations, which also suggest that the massive giant clumps previously observed at high redshift with Ms as high as 109-10 Msun may suffer from low resolution effects, being unresolved conglomerates of less massive star clusters. We also compare our results with those of massive young clusters in nearby galaxies. Our approved ALMA observations will reach the same 100 pc scale, which is essential for the study of associated giant molecular clouds in this galaxy.

  4. Fabryq: Using Phones as Smart Proxies to Control Wearable Devices from the Web

    DTIC Science & Technology

    2014-06-12

    energy efficient, embedded low power device with a short range radio; 2) a user’s mobile phone, which shows a user interface but also acts as a router...ically relays information to a companion application running on the user’s mobile phone (or PC), which in turn communi- cates with servers that the...skills in several diverse fields. Thus, experimentation in deploy- able, mobile wearable devices is largely reserved to experts, and implementation cycles

  5. Computer-based desktop system for surgical videotape editing.

    PubMed

    Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M

    1997-05-01

    The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.

  6. Evolution of the VLT instrument control system toward industry standards

    NASA Astrophysics Data System (ADS)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  7. Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, X.; Niu, Zh; Chen, F.

    2014-02-01

    A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response.

  8. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    PubMed

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  9. ISDEC-2 and ISDEC-3 controllers for HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Ramaprakash, A. N.; Chordia, Pravinkumar; Punnadi, Sujit; Chillal, Kalpesh; Mestri, Vilas; Bharti, Rupali; Sinha, Sakya; Kohok, Abhay

    2016-07-01

    ISDEC-2 - IUCAA1 SIDECAR Drive Electronics Controller is an alternative for Teledyne make JADE2 based controller for HAWAII detectors. It is a ready to use complete package and has been developed keeping in mind general astronomical requirements and widely used observatory set-ups like preferred OS-Linux , multi-extension fits output with fully populated headers (with detector as well as telescope and observation specific information), etc. Actual exposure time is measured for each frame to a few tens of microsecond accuracy and put in the fits header. It also caters to several application specific requirements like fast resets, strip mode, multiple region readout with on board co-adding, etc. ISDEC-2 is designed to work at -40 deg. and is already in use at observatories worldwide. ISDEC-3 is an Artix-7 FPGA based SIDECAR Drive Electronics Controller currently being developed at IUCAA. It will retain all the functionality supported by ISDEC-2 and will also support the operation of H2RG in continuos, fast (32 output, 5 MSPS, 12 bit) mode. It will have a 5 Gbps USB 3.0 PC interface and 1 Gbps Ethernet interface for image data transfer from SIDECAR to host PC. Additionally, the board will have DDR-3 memory for on-board storage and processing. ISDEC-3 will be capable of handling two SIDECARs simultaneously (in sync) for H2RG slow modes.

  10. The NMDB collaboration

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.

    2015-12-01

    Since the International Geophysical Year (IGY) in 1957-58 cosmic rays areroutinely measured by many ground-based Neutron Monitors (NM) around theworld. The World Data Center for Cosmic Rays (WDCCR) was established as apart of this activity and is providing a database of cosmic-ray neutronobservations in unified formats. However, that standard data comprises onlyof one hour averages, whereas most NM stations have been enhanced at the endof the 20th century to provide data in one minute resolution or even better.This data was only available on the web-sites of the institutes operatingthe station, and every station invented their own data format for thehigh-resolution measurements. There were some efforts to collect data fromseveral stations, to make this data available on FTP servers, however noneof these efforts could provide real-time data for all stations.The EU FP7 project NMDB (real-time database for high-resolution NeutronMonitor measurements, http://nmdb.eu) was funded by the European Commission,and a new database was set up by several Neutron Monitor stations in Europeand Asia to store high-resolution data and to provide access to the data inreal-time (i.e. less than five minute delay). By storing the measurements ina database, a standard format for the high-resolution measurements isenforced. This database is complementary to the WDCCR, as it does not (yet)provide all historical data, but the creation of this effort has spurred anew collaboration between Neutron Monitor scientists worldwide, (new)stations have gone online (again), new projects are building on the resultsof NMDB, new users outside of the Cosmic Ray community are starting to useNM data for new applications like soil moisture measurements using cosmicrays. These applications are facilitated by the easy access to the data withthe http://nest.nmdb.eu interface that offers access to all NMDB data forall users.

  11. CLIPS: A proposal for improved usability

    NASA Technical Reports Server (NTRS)

    Patton, Charles R.

    1990-01-01

    This paper proposes the enhancement of the CLIPS user interface to improve the over-all usability of the CLIPS development environment. It suggests some directions for the long term growth of the user interface, and discusses some specific strengths and weaknesses of the current CLIPS PC user interface. Every user of CLIPS shares a common experience: his/her first interaction with the system itself. As with any new language, between the process of installing CLIPS on the appropriate computer and the completion of a large application, an intensive learning process takes place. For those with extensive programming knowledge and LISP backgrounds, this experience may have been mostly interesting and pleasant. Being familiar with products that are similar to CLIPS in many ways, these users enjoy a relatively short training period with the product. Already familiar with many of the functions they wish to employ, experienced users are free to focus on the capabilities of CLIPS that make it uniquely useful within their working environment.

  12. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick; KCWI Team

    2013-01-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  13. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Bauer, K.; Borga, A.

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  14. USL NASA/RECON project presentations at the 1985 ACM Computer Science Conference: Abstracts and visuals

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Gallagher, Suzy; Granier, Martin; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1985-01-01

    This Working Paper Series entry represents the abstracts and visuals associated with presentations delivered by six USL NASA/RECON research team members at the above named conference. The presentations highlight various aspects of NASA contract activities pursued by the participants as they relate to individual research projects. The titles of the six presentations are as follows: (1) The Specification and Design of a Distributed Workstation; (2) An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval; (3) Critical Comparative Analysis of the Major Commercial IS and R Systems; (4) Design Criteria for a PC-Based Common User Interface to Remote Information Systems; (5) The Design of an Object-Oriented Graphics Interface; and (6) Knowledge-Based Information Retrieval: Techniques and Applications.

  15. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    DOE PAGES

    Anderson, J.; Bauer, K.; Borga, A.; ...

    2016-12-13

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less

  16. [The current state of the brain-computer interface problem].

    PubMed

    Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A

    2015-01-01

    It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.

  17. FastDart : a fast, accurate and friendly version of DART code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Taboada, H.

    2000-11-08

    A new enhanced, visual version of DART code is presented. DART is a mechanistic model based code, developed for the performance calculation and assessment of aluminum dispersion fuel. Major issues of this new version are the development of a new, time saving calculation routine, able to be run on PC, a friendly visual input interface and a plotting facility. This version, available for silicide and U-Mo fuels,adds to the classical accuracy of DART models for fuel performance prediction, a faster execution and visual interfaces. It is part of a collaboration agreement between ANL and CNEA in the area of Lowmore » Enriched Uranium Advanced Fuels, held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy.« less

  18. A new observational approach to investigate the heliospheric interstellar wind interface - The study of extreme and far ultraviolet resonantly scattered solar radiation from neon, oxygen, carbon and nitrogen

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Fahr, Hans J.

    1990-01-01

    One of the outstanding uncertainties in the understanding of the heliosphere concerns the character of the interaction between the outflowing solar wind and the interstellar medium. A new possibility for obtaining information on this topic is suggested. The cosmically abundant elements neon, oxygen, carbon, and nitrogen will be affected differently at their interface passage depending upon the character of this region. Consequently, the distribution of these atoms and their ions will vary within the inner heliosphere. The study of resonantly scattered solar radiation from these species will then provide information on the nature of the interface. A preliminary evaluation of this approach has been carried out, and the results are encouraging. The relevant lines to be studied are in the extreme and far ulraviolet. The existing data in these bands are reviewed; unfortunately, past instrumentation has had insufficient resolution and sensitivity to provide useful information. The capabilities of future approved missions with capabilities in this area are evaluated.

  19. A SOAP Web Services Interface to ACE Data

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Hamell, G. R.

    2005-05-01

    Since early in 1998, NASA's Advanced Composition Explorer (ACE) spacecraft has provided continuous measurements of solar wind and energetic particle activity from L1, located approximately 0.01 AU sunward of Earth. ACE data from nine instruments are being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. The spacecraft has enough fuel to stay in orbit about L1 until at least 2020. The ACE Science Center (ASC) provides access to ACE data, and performs level 1 and browse data processing for the science instruments. Available on-line are solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to ACE data via a SOAP Web Services interface. The interface utilizes the Space Physics Archive Search and Extract (SPASE) dictionary, and will be compatible with emerging virtual observatories.

  20. From a single Neutron Monitor to an International Network: the Real-Time Database for High-Resolution Neutron Monitor Measurements (NMDB)

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.

    2016-12-01

    Cosmic rays are routinely measured by standardized ground-based Neutron Monitors (NM) around the world. Stations provide measurements as 1-hour averages to the World-Data Center for Cosmic Rays, but most stations can also provide high-resolution measurements at 1-minute cadence. Measurements of one station provide information about the cosmic ray intensity over time at this location. By correcting the measurement for changes in atmospheric pressure, the intensity of the incoming radiation at the top of the atmosphere can be determined. Studying this time series gives information about long-term changes in the heliospheric environment (11 and 22 year solar cycles), as well as information on shorter (Forbush decrease, Fd) and impulsive (Ground Level Enhancement, GLE) events. Since the measurement of a NM is a cumulative measurement a single station can provide only limited information on the spectrum of the incoming radiation. The whole network of Neutron Monitors, however, can act as a large spectrometer. By combining the measurements of many NM stations, the direction and the spectrum of the incoming radiation can be modeled. With this method, high energy solar particle events (that lead to GLEs) and the precursors of Coronal Mass Ejections (CME, manifesting as a Fd) can be detected by the ground-based instruments before the lower energy particles can harm satellites or astronauts. These ALERT systems require the availability of NM data in real-time, which wass one of the goals of the NMDB project. The easy to use NEST interface (nest.nmdb.eu) to NMDB data allows everyone to plot and download data for all participating stations. Since the project started, not only space agencies and ALERT systems make use of the data, but NMDB has attracted several users outside the cosmic ray community. This data is now also used for example as reference value for soil humidity measurements with cosmic rays, or by the DHS for radiation monitors at border crossings, as well as for computer companies testing the susceptibility of their ICs to cosmic rays. These new uses have only become possible since the individual stations have agreed to share their data freely. We encourage all NM stations that are not yet part of NMDB to join the network, and the space and funding agencies to continue to support these important measurements.

  1. A prototype computer-aided modelling tool for life-support system models

    NASA Technical Reports Server (NTRS)

    Preisig, H. A.; Lee, Tae-Yeong; Little, Frank

    1990-01-01

    Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.

  2. A PC-controlled microwave tomographic scanner for breast imaging

    NASA Astrophysics Data System (ADS)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  3. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  4. Application of total distributed control system in car-body inspection

    NASA Astrophysics Data System (ADS)

    Yang, Xueyou; Ren, Dahai; Wang, Zhong; Ye, Shenghua; Lu, Hongbo; Duan, Jilin

    1996-08-01

    An application of distributed control system in Autocar-body Visual Inspection Station is presented in the paper, a distributed control system using PC as the host processor and single-chip microcomputer as the slave controller is proposed. In this paper, the physical interface of the control network and the relevant hardware are introduced. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.

  5. Distributed control system in a car-body inspection station

    NASA Astrophysics Data System (ADS)

    Yang, Xueyou; Ren, Dahai; Ye, Shenghua; Lu, Hongbo; Duan, Jilin

    1997-06-01

    In this paper, a distributed control network in autocar-body visual inspection station is presented in which PC is used as the host processor and single-chip microcomputers are employed as slave controllers. The physical interface of the control network and the relevant hardware are introduced in this paper. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.

  6. Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems. Multi-University Research Initiative on High-Confidence Design for Distributed Embedded Systems

    DTIC Science & Technology

    2009-01-01

    controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for

  7. Reliability Information Analysis Center 1st Quarter 2007, Technical Area Task (TAT) Report

    DTIC Science & Technology

    2007-02-05

    34* Created new SQL server database for "PC Configuration" web application. Added roles for security closed 4235 and posted application to production. "e Wrote...and ran SQL Server scripts to migrate production databases to new server . "e Created backup jobs for new SQL Server databases. "* Continued...second phase of the TENA demo. Extensive tasking was established and assigned. A TENA interface to EW Server was reaffirmed after some uncertainty about

  8. A comprehensive cost model for NASA data archiving

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Klenk, K. F.; Treinish, L. A.

    1990-01-01

    A simple archive cost model has been developed to help predict NASA's archiving costs. The model covers data management activities from the beginning of the mission through launch, acquisition, and support of retrospective users by the long-term archive; it is capable of determining the life cycle costs for archived data depending on how the data need to be managed to meet user requirements. The model, which currently contains 48 equations with a menu-driven user interface, is available for use on an IBM PC or AT.

  9. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    PubMed Central

    Shiundu, Paul M.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888

  10. Enhanced Impact Resistance of Three-Dimensional-Printed Parts with Structured Filaments.

    PubMed

    Peng, Fang; Zhao, Zhiyang; Xia, Xuhui; Cakmak, Miko; Vogt, Bryan D

    2018-05-09

    Net-shape manufacture of customizable objects through three-dimensional (3D) printing offers tremendous promise for personalization to improve the fit, performance, and comfort associated with devices and tools used in our daily lives. However, the application of 3D printing in structural objects has been limited by their poor mechanical performance that manifests from the layer-by-layer process by which the part is produced. Here, this interfacial weakness is overcome using a structured, core-shell polymer filament where a polycarbonate (PC) core solidifies quickly to define the shape, whereas an olefin ionomer shell contains functionality (crystallinity and ionic) that strengthen the interface between the printed layers. This structured filament leads to improved dimensional accuracy and impact resistance in comparison to the individual components. The impact resistance from structured filaments containing 45 vol % shell can exceed 800 J/m. The origins of this improved impact resistance are probed using X-ray microcomputed tomography. Energy is dissipated by delamination of the shell from PC near the crack tip, whereas PC remains intact to provide stability to the part after impact. This structured filament provides tremendous improvements in the critical properties for manufacture and represents a major leap forward in the impact properties obtainable for 3D-printed parts.

  11. Frequency dependent steering with backward leaky waves via photonic crystal interface layer.

    PubMed

    Colak, Evrim; Caglayan, Humeyra; Cakmak, Atilla O; Villa, Alessandro D; Capolino, Filippo; Ozbay, Ekmel

    2009-06-08

    A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

  12. Microstructural studies of organic spin valves and superconducting vortex ratchets

    NASA Astrophysics Data System (ADS)

    Liu, Yaohua

    Thin film's microstructure plays important roles in their transport properties. Spin transport in organic semiconductors (OSCs) were studied using spin valves structures, with Fe and Co as the top and bottom ferromagnetic (FM) contacts, respectively. Magnetoresistance (MR) effects have been observed up to room temperature in junctions based on an electron-carrying OSC, tris(8-hyroxyquinoline) aluminum (Alq3) and a hole-carrying OSC, copper phthalocyanine (CuPc). However, junctions based on two other electron-carrying OSCs with higher lateral mobilities showed weaker spin transport effects. Morphological studies indicated that these high mobility films had rougher surfaces than either Alq3 or CuPc, therefore the degradation may originate from enhanced scattering due to the rougher FM/OSC interfaces. FM/OSC interfaces were studied in detail in Alga-based devices. These multilayer films have well-defined layer structures with modest average chemical roughness (3-5 nm) at the FM/A1q3 interfaces. Reflectometry shows that larger MR effects are correlated with sharper FM/OSC interfaces and a magnetically dead layer at the Alq3/Fe boundary. Combined with magnetotransport and magnetometery studies, our results support spin injection and transport in Alq3. A lower bound for the spin diffusion length in Alq3 was estimated as 43 +/- 5 nm at 80 K. However, the subtle correlations between microstructure and magnetotransport indicate the importance of interfacial effects. Thin film's microstructures can also be engineered to study interesting physics phenomena. We studied superconducting vortex motion, especially the vortex ratchet effect, in one-dimensional thickness-modulated granular Al films. The potential profile for a single vortex due to thickness modulation was estimated using the Bardeen-Stephen model, which agrees with the transport results. For a sample with a nearly sawtooth potential profile, the rectification velocity showed a maximum around 4.4B1, where B1 is the first matching field, similar to simulations. We also observed reverse vortex rectification, which originates from the interplay between the pinning potential and vortex-vortex interactions. More interestingly, the rectification effects showed clear frequency dependence at driving frequencies as low as 10 kHz, suggesting the failure of the heavily overdamped model.

  13. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.

  14. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.

    PubMed

    Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P

    2007-05-22

    We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.

  15. A design of real time image capturing and processing system using Texas Instrument's processor

    NASA Astrophysics Data System (ADS)

    Wee, Toon-Joo; Chaisorn, Lekha; Rahardja, Susanto; Gan, Woon-Seng

    2007-09-01

    In this work, we developed and implemented an image capturing and processing system that equipped with capability of capturing images from an input video in real time. The input video can be a video from a PC, video camcorder or DVD player. We developed two modes of operation in the system. In the first mode, an input image from the PC is processed on the processing board (development platform with a digital signal processor) and is displayed on the PC. In the second mode, current captured image from the video camcorder (or from DVD player) is processed on the board but is displayed on the LCD monitor. The major difference between our system and other existing conventional systems is that image-processing functions are performed on the board instead of the PC (so that the functions can be used for further developments on the board). The user can control the operations of the board through the Graphic User Interface (GUI) provided on the PC. In order to have a smooth image data transfer between the PC and the board, we employed Real Time Data Transfer (RTDX TM) technology to create a link between them. For image processing functions, we developed three main groups of function: (1) Point Processing; (2) Filtering and; (3) 'Others'. Point Processing includes rotation, negation and mirroring. Filter category provides median, adaptive, smooth and sharpen filtering in the time domain. In 'Others' category, auto-contrast adjustment, edge detection, segmentation and sepia color are provided, these functions either add effect on the image or enhance the image. We have developed and implemented our system using C/C# programming language on TMS320DM642 (or DM642) board from Texas Instruments (TI). The system was showcased in College of Engineering (CoE) exhibition 2006 at Nanyang Technological University (NTU) and have more than 40 users tried our system. It is demonstrated that our system is adequate for real time image capturing. Our system can be used or applied for applications such as medical imaging, video surveillance, etc.

  16. A continuous analyzer for soluble anionic constituents and ammonium in atmospheric particulate matter.

    PubMed

    Al-Horr, Rida; Samanta, Gautam; Dasgupta, Purnendu K

    2003-12-15

    A new continuous soluble particle collector (PC) that does not use steam is described. Preceded by a denuder and interfaced with an ion chromatograph, this compact collector (3 in. o.d., approximately 5 in. total height) permits collection and continuous extraction of soluble components in atmospheric particulate matter. The PC is mounted atop a parallel plate wetted denuder for removal of soluble gases. The soluble gas denuded air enters the PC through an inlet. One version of the PC contained an integral cyclone-like inlet. For this device, penetration of particles as a function of size was characterized. In the simpler design, the sampled air enters the PC through a nozzle, and deionized water flows through a capillary tube placed close to the exit side of the nozzle by Venturi action or is forcibly pumped. Some growth of the aerosol occurs in the highly humid mist-chamber environment, but the dominant aerosol capture mechanism involves capture by the water film that forms on the hydrophobic PTFE membrane filter that constitutes the top of the PC and the airflow exit. Water drops coalesce on the filter and fall below into a purpose-machined cavity equipped with a liquid sensor. The water and the dissolved constituents are aspirated by a pump onto serial cation and anion preconcentrator columns. NH4+ captured by the cation preconcentrator is eluted with NaOH and is passed across an asymmetric membrane device. NH3 diffuses from the alkaline donor stream into a deionized water flowing countercurrent; the conductivity of the latter provides a measure of ammonium. The anions on the anion preconcentrator column are eluted and measured by a fully automated ion chromatography system. The total system thus provides automated semicontinuous measurement of soluble anions and ammonium. With a 15 min analytical cycle and a sampling rate of 5 L/min, the limit of detection (LOD) for ammonium is 8 ng/m3 and those for sulfate, nitrate, and oxalate are < or = 0.1 ng/m3. The system has been extensively field tested.

  17. SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems - From Planetary Disks To Nearby Super Earths

    NASA Technical Reports Server (NTRS)

    Boccaletti, Anthony; Schneider, Jean; Traub, Wes; Lagage, Pierre-Olivier; Stam, Daphne; Gratton, Raffaele; Trauger, John; Cahoy, Kerri; Snik, Frans; Baudoz, Pierre; hide

    2012-01-01

    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450-900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (less than 25 pc) with masses ranging from a few Jupiter masses to Super Earths (approximately 2 Earth radii, approximately 10 mass compared to Earth) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System.

  18. The CAnadian NIRISS Unbiased Cluster Survey (CANUCS)

    NASA Astrophysics Data System (ADS)

    Ravindranath, Swara; NIRISS GTO Team

    2017-06-01

    CANUCS GTO program is a JWST spectroscopy and imaging survey of five massive galaxy clusters and ten parallel fields using the NIRISS low-resolution grisms, NIRCam imaging and NIRSpec multi-object spectroscopy. The primary goal is to understand the evolution of low mass galaxies across cosmic time. The resolved emission line maps and line ratios for many galaxies, with some at resolution of 100pc via the magnification by gravitational lensing will enable determining the spatial distribution of star formation, dust and metals. Other science goals include the detection and characterization of galaxies within the reionization epoch, using multiply-imaged lensed galaxies to constrain cluster mass distributions and dark matter substructure, and understanding star-formation suppression in the most massive galaxy clusters. In this talk I will describe the science goals of the CANUCS program. The proposed prime and parallel observations will be presented with details of the implementation of the observation strategy using JWST proposal planning tools.

  19. Stochastic Inversion of 2D Magnetotelluric Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  20. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  1. Another Program For Generating Interactive Graphics

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    VAX/Ultrix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. When used throughout company for wide range of applications, makes both application program and computer seem transparent, with noticeable improvements in learning curve. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC's and PS/2 computers running AIX, and HP 9000 S

  2. PC-based control unit for a head-mounted operating microscope for augmented-reality visualization in surgical navigation

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar

    2002-05-01

    Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.

  3. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer.

    PubMed

    Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi

    2016-07-20

    We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.

  4. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer.

    PubMed

    Adamides, George; Katsanos, Christos; Parmet, Yisrael; Christou, Georgios; Xenos, Michalis; Hadzilacos, Thanasis; Edan, Yael

    2017-07-01

    Teleoperation of an agricultural robotic system requires effective and efficient human-robot interaction. This paper investigates the usability of different interaction modes for agricultural robot teleoperation. Specifically, we examined the overall influence of two types of output devices (PC screen, head mounted display), two types of peripheral vision support mechanisms (single view, multiple views), and two types of control input devices (PC keyboard, PS3 gamepad) on observed and perceived usability of a teleoperated agricultural sprayer. A modular user interface for teleoperating an agricultural robot sprayer was constructed and field-tested. Evaluation included eight interaction modes: the different combinations of the 3 factors. Thirty representative participants used each interaction mode to navigate the robot along a vineyard and spray grape clusters based on a 2 × 2 × 2 repeated measures experimental design. Objective metrics of the effectiveness and efficiency of the human-robot collaboration were collected. Participants also completed questionnaires related to their user experience with the system in each interaction mode. Results show that the most important factor for human-robot interface usability is the number and placement of views. The type of robot control input device was also a significant factor in certain dependents, whereas the effect of the screen output type was only significant on the participants' perceived workload index. Specific recommendations for mobile field robot teleoperation to improve HRI awareness for the agricultural spraying task are presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less

  6. Interface design of VSOP'94 computer code for safety analysis

    NASA Astrophysics Data System (ADS)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  7. Nano-JASMINE: cosmic radiation degradation of CCD performance and centroid detection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Shimura, Yuki; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Yamada, Yoshiyuki

    2012-09-01

    Nano-JASMINE (NJ) is a very small astrometry satellite project led by the National Astronomical Observatory of Japan. The satellite is ready for launch, and the launch is currently scheduled for late 2013 or early 2014. The satellite is equipped with a fully depleted CCD and is expected to perform astrometry observations for stars brighter than 9 mag in the zw-band (0.6 µm-1.0 µm). Distances of stars located within 100 pc of the Sun can be determined by using annual parallax measurements. The targeted accuracy for the position determination of stars brighter than 7.5 mag is 3 mas, which is equivalent to measuring the positions of stars with an accuracy of less than one five-hundredth of the CCD pixel size. The position measurements of stars are performed by centroiding the stellar images taken by the CCD that operates in the time and delay integration mode. The degradation of charge transfer performance due to cosmic radiation damage in orbit is proved experimentally. A method is then required to compensate for the effects of performance degradation. One of the most effective ways of achieving this is to simulate observed stellar outputs, including the effect of CCD degradation, and then formulate our centroiding algorithm and evaluate the accuracies of the measurements. We report here the planned procedure to simulate the outputs of the NJ observations. We also developed a CCD performance-measuring system and present preliminary results obtained using the system.

  8. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; hide

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  9. The Python Sky Model: software for simulating the Galactic microwave sky

    NASA Astrophysics Data System (ADS)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  10. A proposed non-intrusive method for finding coefficients of slip and molecular reflectivity in microgravity

    NASA Technical Reports Server (NTRS)

    Noever, D. A.; Rosenberger, F. E.

    1989-01-01

    A proposed experimental program to look at a series of vapor transport properties measured along solid and liquid surfaces is described. The research objectives proposed are: (1) with accuracy otherwise unobtainable on ground, to determine the coefficient of slip measured between gases and the surfaces of liquids and solids; (2) for the first time, to classify and tabulate dominant surface effects found for a variety of solids, particularly those crystalized by vapor transport; and (3) to extend understanding of settling rates predicted for cosmic dust and condensed vapor falling through planetary atmospheres. The method used to obtain these objectives, has aided, to an order of magnitude, understanding of various liquid-gas interfaces such as oil and water. But to date, no similar characterization has proved successful for solids or liquids of uncertain densities. Likewise, no data exist in either ground-based research or as part of a microgravity program that, when collected with the high accuracy expected in low gravity, could definitely settle outstanding questions in kinetic theory, molecular dynamics, and cosmic physics.

  11. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Andreas; Wiengarten, Tobias; Fichtner, Horst

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects bymore » modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.« less

  12. Gravitationally Unstable Condensations Revealed by ALMA in the TUKH122 Prestellar Core in the Orion A Cloud

    NASA Astrophysics Data System (ADS)

    Ohashi, Satoshi; Sanhueza, Patricio; Sakai, Nami; Kandori, Ryo; Choi, Minho; Hirota, Tomoya; Nguyễn-Lu’o’ng, Quang; Tatematsu, Ken’ichi

    2018-04-01

    We have investigated the TUKH122 prestellar core in the Orion A cloud using ALMA 3 mm dust continuum, N2H+ (J = 1‑0), and CH3OH ({J}K={2}K-{1}K) molecular-line observations. Previous studies showed that TUKH122 is likely on the verge of star formation because the turbulence is almost dissipated and chemically evolved among other starless cores in the Orion A cloud. By combining ALMA 12 m and ACA data, we recover extended emission with a resolution of ∼5″ corresponding to 0.01 pc and identify six condensations with a mass range of 0.1–0.4 M ⊙ and a radius of ≲0.01 pc. These condensations are gravitationally bound following a virial analysis and are embedded in the filament, including the elongated core with a mass of ∼29 M ⊙ and a radial density profile of r ‑1.6 derived by Herschel. The separation of these condensations is ∼0.035 pc, consistent with the thermal Jeans length at a density of 4.4 × 105 cm‑3. This density is similar to the central part of the core. We also find a tendency for the N2H+ molecule to deplete at the dust peak condensation. This condensation may be beginning to collapse because the line width becomes broader. Therefore, the fragmentation still occurs in the prestellar core by thermal Jeans instability, and multiple stars are formed within the TUKH122 prestellar core. The CH3OH emission shows a large shell-like distribution and surrounds these condensations, suggesting that the CH3OH molecule formed on dust grains is released into the gas phase by nonthermal desorption such as photoevaporation caused by cosmic-ray-induced UV radiation.

  13. Establishing a communications link between two different, incompatible, personal computers: with practical examples and illustrations and program code.

    PubMed

    Davidson, R W

    1985-01-01

    The increasing need to communicate to exchange data can be handled by personal microcomputers. The necessity for the transference of information stored in one type of personal computer to another type of personal computer is often encountered in the process of integrating multiple sources of information stored in different and incompatible computers in Medical Research and Practice. A practical example is demonstrated with two relatively inexpensive commonly used computers, the IBM PC jr. and the Apple IIe. The basic input/output (I/O) interface chip for serial communication for each computer are joined together using a Null connector and cable to form a communications link. Using BASIC (Beginner's All-purpose Symbolic Instruction Code) Computer Language and the Disk Operating System (DOS) the communications handshaking protocol and file transfer is established between the two computers. The BASIC programming languages used are Applesoft (Apple Personal Computer) and PC BASIC (IBM Personal computer).

  14. Functionalized copper(II)-phthalocyanine in solution and as thin film: photochemical and morphological characterization toward applications.

    PubMed

    Ingrosso, Chiara; Curri, M Lucia; Fini, Paola; Giancane, Gabriele; Agostiano, Angela; Valli, Ludovico

    2009-09-01

    This article reports on an extensive investigation on a functionalized phthalocyanine, namely, copper(II) tetrakis-(isopropoxy-carbonyl)-phthalocyanine (TIPCuPc). The self-association of the molecules is extensively described in solution in different solvents (DMSO, DMF, CHCl(3), pyridine) by means of UV-vis steady state spectroscopy at the air/water interface by Brewster angle microscopy (BAM) and in thin films by using atomic force microscopy (AFM). We investigated the morphology of TIPCuPc as thin film by evaluating different factors: temperature, solvent, concentration, transferring procedure (spin-coating and Langmuir-Schafer technique), and nature of the substrate (mica and quartz). The behavior of the molecules under UV light irradiation and their thermal stability were studied as well. Such a detailed study can allow a suitable processing of this phthalocyanine derivative for future applications. Here the photoelectrochemical activity of the phthalocyanine was investigated when suitably combined as sensitizer with rodlike TiO(2) nanocrystals (NCs) in hybrid junctions integrated in a photoelectrochemical cell.

  15. COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Smith, J. P.

    1994-01-01

    The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running MS-DOS, a Sun4 series computer running SunOS, an HP-9000 series computer running HP-UX, and a CRAY X-MP series computer running UNICOS. COMPPAP requires 1Mb of RAM and the BLAS and LINPACK math libraries, which are included on the distribution medium. The COMPPAP documentation provides instructions for using the commercial post-processing package PATRAN for graphical interpretation of COMPPAP output. The UNIX version includes two electronic versions of the documentation: one in LaTex format and one in PostScript format. The standard distribution medium for the PC version (MSC-22428) is a 5.25 inch 1.2Mb MS-DOS format diskette. The standard distribution medium for the UNIX version (MSC-22286) is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. COMPPAP was developed in 1992.

  16. TERRESTRIAL EFFECTS OF NEARBY SUPERNOVAE IN THE EARLY PLEISTOCENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing {sup 60}Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look atmore » the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.« less

  17. Terrestrial Effects of Nearby Supernovae in the Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Engler, E. E.; Kachelrieß, M.; Melott, A. L.; Overholt, A. C.; Semikoz, D. V.

    2016-07-01

    Recent results have strongly confirmed that multiple supernovae happened at distances of ˜100 pc, consisting of two main events: one at 1.7-3.2 million years ago, and the other at 6.5-8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing 60Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  18. IRDS prototyping with applications to the representation of EA/RA models

    NASA Technical Reports Server (NTRS)

    Lekkos, Anthony A.; Greenwood, Bruce

    1988-01-01

    The requirements and system overview for the Information Resources Dictionary System (IRDS) are described. A formal design specification for a scaled down IRDS implementation compatible with the proposed FIPS IRDS standard is contained. The major design objectives for this IRDS will include a menu driven user interface, implementation of basic IRDS operations, and PC compatibility. The IRDS was implemented using Smalltalk/5 object oriented programming system and an ATT 6300 personal computer running under MS-DOS 3.1. The difficulties encountered in using Smalltalk are discussed.

  19. An adaptive structure data acquisition system using a graphical-based programming language

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Clark, Douglas J.; Losey, Robert W.

    1992-01-01

    An example of the implementation of data fusion using a PC and a graphical programming language is discussed. A schematic of the data acquisition system and user interface panel for an adaptive structure test are presented. The computer programs (a series of icons 'wired' together) are also discussed. The way in which using graphical-based programming software to control a data acquisition system can simplify analysis of data, promote multidisciplinary interaction, and provide users a more visual key to understanding their data are shown.

  20. A compact high-definition low-cost digital stereoscopic video camera for rapid robotic surgery development.

    PubMed

    Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C

    2012-01-01

    Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.

  1. Generically Used Expert Scheduling System (GUESS): User's Guide Version 1.0

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira

    1996-01-01

    This user's guide contains instructions explaining how to best operate the program GUESS, a generic expert scheduling system. GUESS incorporates several important features for a generic scheduler, including automatic scheduling routines to generate a 'first' schedule for the user, a user interface that includes Gantt charts and enables the human scheduler to manipulate schedules manually, diagnostic report generators, and a variety of scheduling techniques. The current version of GUESS runs on an IBM PC or compatible in the Windows 3.1 or Windows '95 environment.

  2. Acoustic Response of Underwater Munitions near a Sediment Interface: Measurement Model Comparisons and Classification Schemes

    DTIC Science & Technology

    2015-04-23

    12 Figure 4. Pulse- compressed baseband signals for sequence 40 from TREX13 …… 13 Figure 5. SAS image for sequence 40 from TREX13...12 meshes with data …………… 28 Figure 14. FE simulations for aluminum and steel replicas of an 100-mm UXO …… 28 Figure 15. FE meshes for two targets...PCB Pulse- compressed and baseband PC SWAT Personal Computer Shallow Water Acoustic Toolset PondEx09 Pond Experiment 2009 PondEx10 Pond Experiment

  3. PC-Based systems for experiments in optical characterization of materials

    NASA Astrophysics Data System (ADS)

    López-Mora, C. C.; Trejo-Duran, M.; Alvarado-Méndez, E.; Rojas-Laguna, R.; Vargas-Rodríguez, E.; Estudillo-Ayala, J. M.; Mata-Chavez, R.; Sukhoivanov, I.; García-Pérez, A.; Ibarra-Manzano, O. G.; Andrade-Lucio, J. A.

    2011-01-01

    An automatic control for applications of optical characterization of materials using the optical Z-Scan technique is presented in this work. The emphasis is placed in the design of the graphical user interface (GUI) and the automation process. For this purpose, we use a USB data acquisition module with programmable I/O ports for control and signals acquisition for the complete system. The control software was developed using the graphical programming language LabVIEW® and compiled in order to obtain a portable system with the hardware used in this work.

  4. SedMob: A mobile application for creating sedimentary logs in the field

    NASA Astrophysics Data System (ADS)

    Wolniewicz, Pawel

    2014-05-01

    SedMob is an open-source, mobile software package for creating sedimentary logs, targeted for use in tablets and smartphones. The user can create an unlimited number of logs, save data from each bed in the log as well as export and synchronize the data with a remote server. SedMob is designed as a mobile interface to SedLog: a free multiplatform package for drawing graphic logs that runs on PC computers. Data entered into SedMob are saved in the CSV file format, fully compatible with SedLog.

  5. KSC-98pc461

    NASA Image and Video Library

    1998-04-10

    STS-91 Mission Specialists Franklin Chang-Diaz, Ph.D., and Janet Kavandi, Ph.D., participate in the Crew Equipment Interface Test, or CEIT, inside an airlock in KSC's Orbiter Processing Facility Bay 2. During CEIT, the crew have an opportunity to get a hands-on look at the payloads with which they'll be working on-orbit. The STS-91 crew are scheduled to launch aboard the Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on May 28 at 8:05 EDT

  6. PC Software for Artificial Intelligence Applications.

    PubMed

    Epp, H; Kalin, M; Miller, D

    1988-05-06

    Our review has emphasized that AI tools are programming languages inspired by some problem-solving paradigm. We want to underscore their status as programming languages; even if an AI tool seems to fit a problem perfectly, its proficient use still requires the training and practice associated with any programming language. The programming manuals for PC-Plus, Smalltalk/ V, and Nexpert Object are all tutorial in nature, and the corresponding software packages come with sample applications. We find the manuals to be uniformly good introductions that try to anticipate the problems of a user who is new to the technology. All three vendors offer free technical support by telephone to licensed users. AI tools are sometimes oversold as a way to make programming easy or to avoid it altogether. The truth is that AI tools demand programming-but programming that allows you to concentrate on the essentials of the problem. If we had to implement a diagnostic system, we would look first to a product such as PC-Plus rather than BASIC or C, because PC-Plus is designed specifically for such a problem, whereas these conventional languages are not. If we had to implement a system that required graphical interfaces and could benefit from inheritance, we would look first to an object-oriented system such as Smalltalk/V that provides built-in mechanisms for both. If we had to implement an expert system that called for some mix of AI and conventional techniques, we would look first to a product such as Nexpert Object that integrates various problem-solving technologies. Finally, we might use FORTRAN if we were concerned primarily with programming a well-defined numerical algorithm. AI tools are a valuable complement to traditional languages.

  7. Morphology-defined interaction of copper phthalocyanine with O 2/H 2O

    DOE PAGES

    Muckley, Eric S.; Miller, Nicholas; Jacobs, Christopher B.; ...

    2016-11-01

    Copper phthalocyanine (CuPc) is an important hole transport layer for organic photovoltaics (OPVs), but its interaction with ambient gas/vapor may lead to changes in electronic properties of the material which subsequently limits the lifetime of OPV devices. CuPc films of thickness 25 nm and 100 nm were grown by thermal sublimation at 25°C, 150°C, and 250°C in order to vary morphology. Using a source-measure unit and a quartz crystal microbalance (QCM), we measured changes in electrical resistance and film mass in situ during exposure to controlled pulses of O 2 and H 2O vapor. Mass loading by O 2 wasmore » enhanced by a factor of 5 in films deposited at 250 C, possibly due to the ~200° C CuPc -> transition which allows higher O 2 mobility between stacked molecules. While gas/vapor sorption occurred over timescales of < 10 minutes, resistance change occurred over timescales > 1 hour, suggesting that mass change occurs by rapid adsorption at active surface sites, whereas resistive response is dominated by slow diffusion of adsorbates into the film bulk. Resistive response generally increases with film deposition temperature due to increased porosity associated with larger crystalline domains. The 25 nm thick films exhibit higher resistive response than 100 nm thick films after an hour of O 2/H 2O exposure due to the smaller analyte diffusion length required for reaching the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O 2/H 2O molecules on gold, which is consistent with findings of other studies.« less

  8. FPGA implementation of a ZigBee wireless network control interface to transmit biomedical signals

    NASA Astrophysics Data System (ADS)

    Gómez López, M. A.; Goy, C. B.; Bolognini, P. C.; Herrera, M. C.

    2011-12-01

    In recent years, cardiac hemodynamic monitors have incorporated new technologies based on wireless sensor networks which can implement different types of communication protocols. More precisely, a digital conductance catheter system recently developed adds a wireless ZigBee module (IEEE 802.15.4 standards) to transmit cardiac signals (ECG, intraventricular pressure and volume) which would allow the physicians to evaluate the patient's cardiac status in a noninvasively way. The aim of this paper is to describe a control interface, implemented in a FPGA device, to manage a ZigBee wireless network. ZigBee technology is used due to its excellent performance including simplicity, low-power consumption, short-range transmission and low cost. FPGA internal memory stores 8-bit signals with which the control interface prepares the information packets. These data were send to the ZigBee END DEVICE module that receives and transmits wirelessly to the external COORDINATOR module. Using an USB port, the COORDINATOR sends the signals to a personal computer for displaying. Each functional block of control interface was assessed by means of temporal diagrams. Three biological signals, organized in packets and converted to RS232 serial protocol, were sucessfully transmitted and displayed in a PC screen. For this purpose, a custom-made graphical software was designed using LabView.

  9. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2010-01-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552

  10. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  11. Directed Vertical Diffusion of Photovoltaic Active Layer Components into Porous ZnO-Based Cathode Buffer Layers.

    PubMed

    Kang, Jia-Jhen; Yang, Tsung-Yu; Lan, Yi-Kang; Wu, Wei-Ru; Su, Chun-Jen; Weng, Shih-Chang; Yamada, Norifumi L; Su, An-Chung; Jeng, U-Ser

    2018-04-01

    Cathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed. Uniquely revealed for a high-performance model PSC are the often overlooked porosity distributions of the ZnO-based CBL and the differential diffusions of the polymer PTB7-Th and fullerene derivative PC 71 BM of the active layer into the CBL. Interface modification of the ZnO-based CBL with fullerene derivative PCBEOH for size-selective nanochannels can selectively improve the diffusion of PC 71 BM more than that of the polymer. The deeper penetration of PC 71 BM establishes a gradient distribution of fullerene derivatives over the ZnO/PCBE-OH CBL, resulting in markedly improved electron mobility and device efficiency of the inverted PSC. The result suggests a new CBL design concept of progressive matching of the conduction bands. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  13. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.

    PubMed

    Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng

    2017-02-22

    The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na 2 CO 3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na 2 SO 3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inverted polymer solar cell based on MEH-PPV/PC61BM coupled with ZnO nanoparticles as electron transport layer

    NASA Astrophysics Data System (ADS)

    Salem, A. M. S.; El-Sheikh, S. M.; Harraz, Farid A.; Ebrahim, S.; Soliman, M.; Hafez, H. S.; Ibrahim, I. A.; Abdel-Mottaleb, M. S. A.

    2017-12-01

    In this work, we demonstrate the use of annealed sol-gel derived ZnO nanoparticles acting as electron transport layer (ETL) in inverted bulk heterojunction (BHJ) polymer solar cells (PSCs). We have examined the photovoltaic performance of devices based on poly(2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene) (MEH-PPV):(6,6)-phenyl-C61-butyric acid methyl ester (PC61BM) blend system employing the ZnO nanoparticles as an ETL with CuI as hole transport layer (HTL) in comparison to the case of using the conventional HTL of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) sulfonic acid (PEDOT:PSS). The effect of the presence of another layer of ZnO macrospheres attached to the ZnO nanoparticles is also investigated. The highest power conversion efficiency (PCE) value of 1.35% was achieved for device: ITO/ZnO nanoparticles/MEH-PPV:PC61BM/CuI/Ag, which is 275% more the value obtained when CuI was replaced by PEDOT:PSS. The comprehensive analyses on structural and optical characteristics including SEM, XRD, FTIR, PL and UV-vis spectroscopy indicated that the use of the ZnO nanoparticles alone as ETL, together with the CuI as HTL could effectively reduce trap-assisted recombination and charge accumulation at the interface, which is beneficial for the enhanced device performance.

  15. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.

  16. Distributed Software for Observations in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Baffa, C.; Giani, E.

    We have developed an integrated system that performs astronomical observations in Near Infrared bands operating two-dimensional instruments at the Italian National Infrared Facility's \\htmllink{ARNICA}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/arnica/arnica.html} and \\htmllink{LONGSP}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/longsp/longsp.html}. This software consists of several communicating processes, generally executed across a network, as well as on a single computer. The user interface is organized as widget-based X11 client. The interprocess communication is provided by sockets and uses TCP/IP. The processes denoted for control of hardware (telescope and other instruments) should be executed currently on a PC dedicated for this task under DESQview/X, while all other components (user interface, tools for the data analysis, etc.) can also work under UNIX\\@. The hardware independent part of software is based on the Athena Widget Set and is compiled by GNU C to provide maximum portability.

  17. Nanoscale neuroelectronic interface based on open-ended nanocoax arrays

    NASA Astrophysics Data System (ADS)

    Naughton, Jeffrey R.; Rizal, Binod; Burns, Michael J.; Yeom, Jee; Heyse, Shannon; Archibald, Michelle; Shepard, Stephen; McMahon, Gregory; Chiles, Thomas C.; Naughton, Michael J.

    2012-02-01

    We describe the development of a nanoscale neuroelectronic array with submicron pixelation for recording and stimulation with high spatial resolution. The device is composed of an array of nanoscale coaxial electrodes, either network- or individually-configured. As a neuroelectronic interface, it will employ noninvasive real-time capacitive coupling to the plasma membrane with potential for extracellular recording of intra- and interneural synaptic activity, with one target being precision measurement of electrical signals associated with induced and spontaneous synapse firing in pre- and post-synaptic somata. Subarrays or even individual pixels can also be actuated for precisely-localized stimulation. We report initial results from measurements using the rat adrenal pheochromocytoma PC12 cell line, which terminally differentiates in response to nerve growth factor, as well as SH-SY5Y neuroblastoma cells in response to retinoic acid, characterizing the basic performance of the fabricated device.

  18. Magnetostriction measurement by four probe method

    NASA Astrophysics Data System (ADS)

    Dange, S. N.; Radha, S.

    2018-04-01

    The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.

  19. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    NASA Astrophysics Data System (ADS)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  20. Technology transfer of operator-in-the-loop simulation

    NASA Technical Reports Server (NTRS)

    Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.

    1994-01-01

    The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.

Top